PPCISelLowering.cpp revision d27a258d2d7691db3731135a448b7654d260cc07
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/VectorExtras.h"
20#include "llvm/Analysis/ScalarEvolutionExpressions.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/SSARegMap.h"
26#include "llvm/Constants.h"
27#include "llvm/Function.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Support/CommandLine.h"
32using namespace llvm;
33
34static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc");
35
36PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
37  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
38
39  // Fold away setcc operations if possible.
40  setSetCCIsExpensive();
41  setPow2DivIsCheap();
42
43  // Use _setjmp/_longjmp instead of setjmp/longjmp.
44  setUseUnderscoreSetJmp(true);
45  setUseUnderscoreLongJmp(true);
46
47  // Set up the register classes.
48  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
49  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
50  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
51
52  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
53  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
54  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
55
56  // PowerPC does not have truncstore for i1.
57  setStoreXAction(MVT::i1, Promote);
58
59  // PowerPC has pre-inc load and store's.
60  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
61  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
65  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
66  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
70
71  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
72  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
73
74  // PowerPC has no intrinsics for these particular operations
75  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
76  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
77  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
78
79  // PowerPC has no SREM/UREM instructions
80  setOperationAction(ISD::SREM, MVT::i32, Expand);
81  setOperationAction(ISD::UREM, MVT::i32, Expand);
82  setOperationAction(ISD::SREM, MVT::i64, Expand);
83  setOperationAction(ISD::UREM, MVT::i64, Expand);
84
85  // We don't support sin/cos/sqrt/fmod
86  setOperationAction(ISD::FSIN , MVT::f64, Expand);
87  setOperationAction(ISD::FCOS , MVT::f64, Expand);
88  setOperationAction(ISD::FREM , MVT::f64, Expand);
89  setOperationAction(ISD::FSIN , MVT::f32, Expand);
90  setOperationAction(ISD::FCOS , MVT::f32, Expand);
91  setOperationAction(ISD::FREM , MVT::f32, Expand);
92
93  // If we're enabling GP optimizations, use hardware square root
94  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
95    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
96    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
97  }
98
99  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
100  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
101
102  // PowerPC does not have BSWAP, CTPOP or CTTZ
103  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
104  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
105  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
106  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
107  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
108  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
109
110  // PowerPC does not have ROTR
111  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
112
113  // PowerPC does not have Select
114  setOperationAction(ISD::SELECT, MVT::i32, Expand);
115  setOperationAction(ISD::SELECT, MVT::i64, Expand);
116  setOperationAction(ISD::SELECT, MVT::f32, Expand);
117  setOperationAction(ISD::SELECT, MVT::f64, Expand);
118
119  // PowerPC wants to turn select_cc of FP into fsel when possible.
120  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
121  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
122
123  // PowerPC wants to optimize integer setcc a bit
124  setOperationAction(ISD::SETCC, MVT::i32, Custom);
125
126  // PowerPC does not have BRCOND which requires SetCC
127  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
128
129  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
130
131  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
132  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
133
134  // PowerPC does not have [U|S]INT_TO_FP
135  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
136  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
137
138  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
139  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
140  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
141  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
142
143  // We cannot sextinreg(i1).  Expand to shifts.
144  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
145
146
147  // Support label based line numbers.
148  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
149  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
150  // FIXME - use subtarget debug flags
151  if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
152    setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
153
154  // We want to legalize GlobalAddress and ConstantPool nodes into the
155  // appropriate instructions to materialize the address.
156  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
157  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
158  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
159  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
160  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
161  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
162
163  // RET must be custom lowered, to meet ABI requirements
164  setOperationAction(ISD::RET               , MVT::Other, Custom);
165
166  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
167  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
168
169  // Use the default implementation.
170  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
171  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
172  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
173  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
174  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
175  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
176  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
177
178  // We want to custom lower some of our intrinsics.
179  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
180
181  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
182    // They also have instructions for converting between i64 and fp.
183    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
184    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
185    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
186
187    // FIXME: disable this lowered code.  This generates 64-bit register values,
188    // and we don't model the fact that the top part is clobbered by calls.  We
189    // need to flag these together so that the value isn't live across a call.
190    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
191
192    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
193    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
194  } else {
195    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
196    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
197  }
198
199  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
200    // 64 bit PowerPC implementations can support i64 types directly
201    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
202    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
203    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
204  } else {
205    // 32 bit PowerPC wants to expand i64 shifts itself.
206    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
207    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
208    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
209  }
210
211  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
212    // First set operation action for all vector types to expand. Then we
213    // will selectively turn on ones that can be effectively codegen'd.
214    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
215         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
216      // add/sub are legal for all supported vector VT's.
217      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
218      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
219
220      // We promote all shuffles to v16i8.
221      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
222      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
223
224      // We promote all non-typed operations to v4i32.
225      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
226      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
227      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
228      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
229      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
230      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
231      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
232      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
233      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
234      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
235      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
236      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
237
238      // No other operations are legal.
239      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
240      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
241      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
242      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
243      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
244      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
245      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
246      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
247      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
248
249      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
250    }
251
252    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
253    // with merges, splats, etc.
254    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
255
256    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
257    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
258    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
259    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
260    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
261    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
262
263    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
264    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
265    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
266    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
267
268    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
269    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
270    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
271    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
272
273    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
274    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
275
276    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
277    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
278    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
279    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
280  }
281
282  setSetCCResultType(MVT::i32);
283  setShiftAmountType(MVT::i32);
284  setSetCCResultContents(ZeroOrOneSetCCResult);
285
286  if (TM.getSubtarget<PPCSubtarget>().isPPC64())
287    setStackPointerRegisterToSaveRestore(PPC::X1);
288  else
289    setStackPointerRegisterToSaveRestore(PPC::R1);
290
291  // We have target-specific dag combine patterns for the following nodes:
292  setTargetDAGCombine(ISD::SINT_TO_FP);
293  setTargetDAGCombine(ISD::STORE);
294  setTargetDAGCombine(ISD::BR_CC);
295  setTargetDAGCombine(ISD::BSWAP);
296
297  computeRegisterProperties();
298}
299
300const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
301  switch (Opcode) {
302  default: return 0;
303  case PPCISD::FSEL:          return "PPCISD::FSEL";
304  case PPCISD::FCFID:         return "PPCISD::FCFID";
305  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
306  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
307  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
308  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
309  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
310  case PPCISD::VPERM:         return "PPCISD::VPERM";
311  case PPCISD::Hi:            return "PPCISD::Hi";
312  case PPCISD::Lo:            return "PPCISD::Lo";
313  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
314  case PPCISD::SRL:           return "PPCISD::SRL";
315  case PPCISD::SRA:           return "PPCISD::SRA";
316  case PPCISD::SHL:           return "PPCISD::SHL";
317  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
318  case PPCISD::STD_32:        return "PPCISD::STD_32";
319  case PPCISD::CALL:          return "PPCISD::CALL";
320  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
321  case PPCISD::BCTRL:         return "PPCISD::BCTRL";
322  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
323  case PPCISD::MFCR:          return "PPCISD::MFCR";
324  case PPCISD::VCMP:          return "PPCISD::VCMP";
325  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
326  case PPCISD::LBRX:          return "PPCISD::LBRX";
327  case PPCISD::STBRX:         return "PPCISD::STBRX";
328  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
329  }
330}
331
332//===----------------------------------------------------------------------===//
333// Node matching predicates, for use by the tblgen matching code.
334//===----------------------------------------------------------------------===//
335
336/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
337static bool isFloatingPointZero(SDOperand Op) {
338  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
339    return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
340  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
341    // Maybe this has already been legalized into the constant pool?
342    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
343      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
344        return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
345  }
346  return false;
347}
348
349/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
350/// true if Op is undef or if it matches the specified value.
351static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
352  return Op.getOpcode() == ISD::UNDEF ||
353         cast<ConstantSDNode>(Op)->getValue() == Val;
354}
355
356/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
357/// VPKUHUM instruction.
358bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
359  if (!isUnary) {
360    for (unsigned i = 0; i != 16; ++i)
361      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
362        return false;
363  } else {
364    for (unsigned i = 0; i != 8; ++i)
365      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
366          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
367        return false;
368  }
369  return true;
370}
371
372/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
373/// VPKUWUM instruction.
374bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
375  if (!isUnary) {
376    for (unsigned i = 0; i != 16; i += 2)
377      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
378          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
379        return false;
380  } else {
381    for (unsigned i = 0; i != 8; i += 2)
382      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
383          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
384          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
385          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
386        return false;
387  }
388  return true;
389}
390
391/// isVMerge - Common function, used to match vmrg* shuffles.
392///
393static bool isVMerge(SDNode *N, unsigned UnitSize,
394                     unsigned LHSStart, unsigned RHSStart) {
395  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
396         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
397  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
398         "Unsupported merge size!");
399
400  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
401    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
402      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
403                             LHSStart+j+i*UnitSize) ||
404          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
405                             RHSStart+j+i*UnitSize))
406        return false;
407    }
408      return true;
409}
410
411/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
412/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
413bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
414  if (!isUnary)
415    return isVMerge(N, UnitSize, 8, 24);
416  return isVMerge(N, UnitSize, 8, 8);
417}
418
419/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
420/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
421bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
422  if (!isUnary)
423    return isVMerge(N, UnitSize, 0, 16);
424  return isVMerge(N, UnitSize, 0, 0);
425}
426
427
428/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
429/// amount, otherwise return -1.
430int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
431  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
432         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
433  // Find the first non-undef value in the shuffle mask.
434  unsigned i;
435  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
436    /*search*/;
437
438  if (i == 16) return -1;  // all undef.
439
440  // Otherwise, check to see if the rest of the elements are consequtively
441  // numbered from this value.
442  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
443  if (ShiftAmt < i) return -1;
444  ShiftAmt -= i;
445
446  if (!isUnary) {
447    // Check the rest of the elements to see if they are consequtive.
448    for (++i; i != 16; ++i)
449      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
450        return -1;
451  } else {
452    // Check the rest of the elements to see if they are consequtive.
453    for (++i; i != 16; ++i)
454      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
455        return -1;
456  }
457
458  return ShiftAmt;
459}
460
461/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
462/// specifies a splat of a single element that is suitable for input to
463/// VSPLTB/VSPLTH/VSPLTW.
464bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
465  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
466         N->getNumOperands() == 16 &&
467         (EltSize == 1 || EltSize == 2 || EltSize == 4));
468
469  // This is a splat operation if each element of the permute is the same, and
470  // if the value doesn't reference the second vector.
471  unsigned ElementBase = 0;
472  SDOperand Elt = N->getOperand(0);
473  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
474    ElementBase = EltV->getValue();
475  else
476    return false;   // FIXME: Handle UNDEF elements too!
477
478  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
479    return false;
480
481  // Check that they are consequtive.
482  for (unsigned i = 1; i != EltSize; ++i) {
483    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
484        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
485      return false;
486  }
487
488  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
489  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
490    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
491    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
492           "Invalid VECTOR_SHUFFLE mask!");
493    for (unsigned j = 0; j != EltSize; ++j)
494      if (N->getOperand(i+j) != N->getOperand(j))
495        return false;
496  }
497
498  return true;
499}
500
501/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
502/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
503unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
504  assert(isSplatShuffleMask(N, EltSize));
505  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
506}
507
508/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
509/// by using a vspltis[bhw] instruction of the specified element size, return
510/// the constant being splatted.  The ByteSize field indicates the number of
511/// bytes of each element [124] -> [bhw].
512SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
513  SDOperand OpVal(0, 0);
514
515  // If ByteSize of the splat is bigger than the element size of the
516  // build_vector, then we have a case where we are checking for a splat where
517  // multiple elements of the buildvector are folded together into a single
518  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
519  unsigned EltSize = 16/N->getNumOperands();
520  if (EltSize < ByteSize) {
521    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
522    SDOperand UniquedVals[4];
523    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
524
525    // See if all of the elements in the buildvector agree across.
526    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
527      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
528      // If the element isn't a constant, bail fully out.
529      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
530
531
532      if (UniquedVals[i&(Multiple-1)].Val == 0)
533        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
534      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
535        return SDOperand();  // no match.
536    }
537
538    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
539    // either constant or undef values that are identical for each chunk.  See
540    // if these chunks can form into a larger vspltis*.
541
542    // Check to see if all of the leading entries are either 0 or -1.  If
543    // neither, then this won't fit into the immediate field.
544    bool LeadingZero = true;
545    bool LeadingOnes = true;
546    for (unsigned i = 0; i != Multiple-1; ++i) {
547      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
548
549      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
550      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
551    }
552    // Finally, check the least significant entry.
553    if (LeadingZero) {
554      if (UniquedVals[Multiple-1].Val == 0)
555        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
556      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
557      if (Val < 16)
558        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
559    }
560    if (LeadingOnes) {
561      if (UniquedVals[Multiple-1].Val == 0)
562        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
563      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
564      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
565        return DAG.getTargetConstant(Val, MVT::i32);
566    }
567
568    return SDOperand();
569  }
570
571  // Check to see if this buildvec has a single non-undef value in its elements.
572  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
573    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
574    if (OpVal.Val == 0)
575      OpVal = N->getOperand(i);
576    else if (OpVal != N->getOperand(i))
577      return SDOperand();
578  }
579
580  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
581
582  unsigned ValSizeInBytes = 0;
583  uint64_t Value = 0;
584  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
585    Value = CN->getValue();
586    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
587  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
588    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
589    Value = FloatToBits(CN->getValue());
590    ValSizeInBytes = 4;
591  }
592
593  // If the splat value is larger than the element value, then we can never do
594  // this splat.  The only case that we could fit the replicated bits into our
595  // immediate field for would be zero, and we prefer to use vxor for it.
596  if (ValSizeInBytes < ByteSize) return SDOperand();
597
598  // If the element value is larger than the splat value, cut it in half and
599  // check to see if the two halves are equal.  Continue doing this until we
600  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
601  while (ValSizeInBytes > ByteSize) {
602    ValSizeInBytes >>= 1;
603
604    // If the top half equals the bottom half, we're still ok.
605    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
606         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
607      return SDOperand();
608  }
609
610  // Properly sign extend the value.
611  int ShAmt = (4-ByteSize)*8;
612  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
613
614  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
615  if (MaskVal == 0) return SDOperand();
616
617  // Finally, if this value fits in a 5 bit sext field, return it
618  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
619    return DAG.getTargetConstant(MaskVal, MVT::i32);
620  return SDOperand();
621}
622
623//===----------------------------------------------------------------------===//
624//  Addressing Mode Selection
625//===----------------------------------------------------------------------===//
626
627/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
628/// or 64-bit immediate, and if the value can be accurately represented as a
629/// sign extension from a 16-bit value.  If so, this returns true and the
630/// immediate.
631static bool isIntS16Immediate(SDNode *N, short &Imm) {
632  if (N->getOpcode() != ISD::Constant)
633    return false;
634
635  Imm = (short)cast<ConstantSDNode>(N)->getValue();
636  if (N->getValueType(0) == MVT::i32)
637    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
638  else
639    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
640}
641static bool isIntS16Immediate(SDOperand Op, short &Imm) {
642  return isIntS16Immediate(Op.Val, Imm);
643}
644
645
646/// SelectAddressRegReg - Given the specified addressed, check to see if it
647/// can be represented as an indexed [r+r] operation.  Returns false if it
648/// can be more efficiently represented with [r+imm].
649bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
650                                            SDOperand &Index,
651                                            SelectionDAG &DAG) {
652  short imm = 0;
653  if (N.getOpcode() == ISD::ADD) {
654    if (isIntS16Immediate(N.getOperand(1), imm))
655      return false;    // r+i
656    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
657      return false;    // r+i
658
659    Base = N.getOperand(0);
660    Index = N.getOperand(1);
661    return true;
662  } else if (N.getOpcode() == ISD::OR) {
663    if (isIntS16Immediate(N.getOperand(1), imm))
664      return false;    // r+i can fold it if we can.
665
666    // If this is an or of disjoint bitfields, we can codegen this as an add
667    // (for better address arithmetic) if the LHS and RHS of the OR are provably
668    // disjoint.
669    uint64_t LHSKnownZero, LHSKnownOne;
670    uint64_t RHSKnownZero, RHSKnownOne;
671    ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
672
673    if (LHSKnownZero) {
674      ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
675      // If all of the bits are known zero on the LHS or RHS, the add won't
676      // carry.
677      if ((LHSKnownZero | RHSKnownZero) == ~0U) {
678        Base = N.getOperand(0);
679        Index = N.getOperand(1);
680        return true;
681      }
682    }
683  }
684
685  return false;
686}
687
688/// Returns true if the address N can be represented by a base register plus
689/// a signed 16-bit displacement [r+imm], and if it is not better
690/// represented as reg+reg.
691bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
692                                            SDOperand &Base, SelectionDAG &DAG){
693  // If this can be more profitably realized as r+r, fail.
694  if (SelectAddressRegReg(N, Disp, Base, DAG))
695    return false;
696
697  if (N.getOpcode() == ISD::ADD) {
698    short imm = 0;
699    if (isIntS16Immediate(N.getOperand(1), imm)) {
700      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
701      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
702        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
703      } else {
704        Base = N.getOperand(0);
705      }
706      return true; // [r+i]
707    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
708      // Match LOAD (ADD (X, Lo(G))).
709      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
710             && "Cannot handle constant offsets yet!");
711      Disp = N.getOperand(1).getOperand(0);  // The global address.
712      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
713             Disp.getOpcode() == ISD::TargetConstantPool ||
714             Disp.getOpcode() == ISD::TargetJumpTable);
715      Base = N.getOperand(0);
716      return true;  // [&g+r]
717    }
718  } else if (N.getOpcode() == ISD::OR) {
719    short imm = 0;
720    if (isIntS16Immediate(N.getOperand(1), imm)) {
721      // If this is an or of disjoint bitfields, we can codegen this as an add
722      // (for better address arithmetic) if the LHS and RHS of the OR are
723      // provably disjoint.
724      uint64_t LHSKnownZero, LHSKnownOne;
725      ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
726      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
727        // If all of the bits are known zero on the LHS or RHS, the add won't
728        // carry.
729        Base = N.getOperand(0);
730        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
731        return true;
732      }
733    }
734  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
735    // Loading from a constant address.
736
737    // If this address fits entirely in a 16-bit sext immediate field, codegen
738    // this as "d, 0"
739    short Imm;
740    if (isIntS16Immediate(CN, Imm)) {
741      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
742      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
743      return true;
744    }
745
746    // FIXME: Handle small sext constant offsets in PPC64 mode also!
747    if (CN->getValueType(0) == MVT::i32) {
748      int Addr = (int)CN->getValue();
749
750      // Otherwise, break this down into an LIS + disp.
751      Disp =  DAG.getTargetConstant((short)Addr, MVT::i32);
752      Base = DAG.getConstant(Addr - (signed short)Addr, MVT::i32);
753      return true;
754    }
755  }
756
757  Disp = DAG.getTargetConstant(0, getPointerTy());
758  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
759    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
760  else
761    Base = N;
762  return true;      // [r+0]
763}
764
765/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
766/// represented as an indexed [r+r] operation.
767bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
768                                                SDOperand &Index,
769                                                SelectionDAG &DAG) {
770  // Check to see if we can easily represent this as an [r+r] address.  This
771  // will fail if it thinks that the address is more profitably represented as
772  // reg+imm, e.g. where imm = 0.
773  if (SelectAddressRegReg(N, Base, Index, DAG))
774    return true;
775
776  // If the operand is an addition, always emit this as [r+r], since this is
777  // better (for code size, and execution, as the memop does the add for free)
778  // than emitting an explicit add.
779  if (N.getOpcode() == ISD::ADD) {
780    Base = N.getOperand(0);
781    Index = N.getOperand(1);
782    return true;
783  }
784
785  // Otherwise, do it the hard way, using R0 as the base register.
786  Base = DAG.getRegister(PPC::R0, N.getValueType());
787  Index = N;
788  return true;
789}
790
791/// SelectAddressRegImmShift - Returns true if the address N can be
792/// represented by a base register plus a signed 14-bit displacement
793/// [r+imm*4].  Suitable for use by STD and friends.
794bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
795                                                 SDOperand &Base,
796                                                 SelectionDAG &DAG) {
797  // If this can be more profitably realized as r+r, fail.
798  if (SelectAddressRegReg(N, Disp, Base, DAG))
799    return false;
800
801  if (N.getOpcode() == ISD::ADD) {
802    short imm = 0;
803    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
804      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
805      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
806        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
807      } else {
808        Base = N.getOperand(0);
809      }
810      return true; // [r+i]
811    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
812      // Match LOAD (ADD (X, Lo(G))).
813      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
814             && "Cannot handle constant offsets yet!");
815      Disp = N.getOperand(1).getOperand(0);  // The global address.
816      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
817             Disp.getOpcode() == ISD::TargetConstantPool ||
818             Disp.getOpcode() == ISD::TargetJumpTable);
819      Base = N.getOperand(0);
820      return true;  // [&g+r]
821    }
822  } else if (N.getOpcode() == ISD::OR) {
823    short imm = 0;
824    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
825      // If this is an or of disjoint bitfields, we can codegen this as an add
826      // (for better address arithmetic) if the LHS and RHS of the OR are
827      // provably disjoint.
828      uint64_t LHSKnownZero, LHSKnownOne;
829      ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
830      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
831        // If all of the bits are known zero on the LHS or RHS, the add won't
832        // carry.
833        Base = N.getOperand(0);
834        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
835        return true;
836      }
837    }
838  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
839    // Loading from a constant address.
840
841    // If this address fits entirely in a 14-bit sext immediate field, codegen
842    // this as "d, 0"
843    short Imm;
844    if (isIntS16Immediate(CN, Imm)) {
845      Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
846      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
847      return true;
848    }
849
850    // FIXME: Handle small sext constant offsets in PPC64 mode also!
851    if (CN->getValueType(0) == MVT::i32) {
852      int Addr = (int)CN->getValue();
853
854      // Otherwise, break this down into an LIS + disp.
855      Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
856      Base = DAG.getConstant(Addr - (signed short)Addr, MVT::i32);
857      return true;
858    }
859  }
860
861  Disp = DAG.getTargetConstant(0, getPointerTy());
862  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
863    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
864  else
865    Base = N;
866  return true;      // [r+0]
867}
868
869
870/// getPreIndexedAddressParts - returns true by value, base pointer and
871/// offset pointer and addressing mode by reference if the node's address
872/// can be legally represented as pre-indexed load / store address.
873bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
874                                                  SDOperand &Offset,
875                                                  ISD::MemIndexedMode &AM,
876                                                  SelectionDAG &DAG) {
877  // Disabled by default for now.
878  if (!EnablePPCPreinc) return false;
879
880  SDOperand Ptr;
881  MVT::ValueType VT;
882  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
883    Ptr = LD->getBasePtr();
884    VT = LD->getLoadedVT();
885
886  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
887    ST = ST;
888    Ptr = ST->getBasePtr();
889    VT  = ST->getStoredVT();
890  } else
891    return false;
892
893  // PowerPC doesn't have preinc load/store instructions for vectors.
894  if (MVT::isVector(VT))
895    return false;
896
897  // TODO: Check reg+reg first.
898
899  // LDU/STU use reg+imm*4, others use reg+imm.
900  if (VT != MVT::i64) {
901    // reg + imm
902    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
903      return false;
904  } else {
905    // reg + imm * 4.
906    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
907      return false;
908  }
909
910  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
911    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
912    // sext i32 to i64 when addr mode is r+i.
913    if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
914        LD->getExtensionType() == ISD::SEXTLOAD &&
915        isa<ConstantSDNode>(Offset))
916      return false;
917  }
918
919  AM = ISD::PRE_INC;
920  return true;
921}
922
923//===----------------------------------------------------------------------===//
924//  LowerOperation implementation
925//===----------------------------------------------------------------------===//
926
927static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
928  MVT::ValueType PtrVT = Op.getValueType();
929  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
930  Constant *C = CP->getConstVal();
931  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
932  SDOperand Zero = DAG.getConstant(0, PtrVT);
933
934  const TargetMachine &TM = DAG.getTarget();
935
936  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
937  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
938
939  // If this is a non-darwin platform, we don't support non-static relo models
940  // yet.
941  if (TM.getRelocationModel() == Reloc::Static ||
942      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
943    // Generate non-pic code that has direct accesses to the constant pool.
944    // The address of the global is just (hi(&g)+lo(&g)).
945    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
946  }
947
948  if (TM.getRelocationModel() == Reloc::PIC_) {
949    // With PIC, the first instruction is actually "GR+hi(&G)".
950    Hi = DAG.getNode(ISD::ADD, PtrVT,
951                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
952  }
953
954  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
955  return Lo;
956}
957
958static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
959  MVT::ValueType PtrVT = Op.getValueType();
960  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
961  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
962  SDOperand Zero = DAG.getConstant(0, PtrVT);
963
964  const TargetMachine &TM = DAG.getTarget();
965
966  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
967  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
968
969  // If this is a non-darwin platform, we don't support non-static relo models
970  // yet.
971  if (TM.getRelocationModel() == Reloc::Static ||
972      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
973    // Generate non-pic code that has direct accesses to the constant pool.
974    // The address of the global is just (hi(&g)+lo(&g)).
975    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
976  }
977
978  if (TM.getRelocationModel() == Reloc::PIC_) {
979    // With PIC, the first instruction is actually "GR+hi(&G)".
980    Hi = DAG.getNode(ISD::ADD, PtrVT,
981                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
982  }
983
984  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
985  return Lo;
986}
987
988static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
989  MVT::ValueType PtrVT = Op.getValueType();
990  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
991  GlobalValue *GV = GSDN->getGlobal();
992  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
993  SDOperand Zero = DAG.getConstant(0, PtrVT);
994
995  const TargetMachine &TM = DAG.getTarget();
996
997  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
998  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
999
1000  // If this is a non-darwin platform, we don't support non-static relo models
1001  // yet.
1002  if (TM.getRelocationModel() == Reloc::Static ||
1003      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1004    // Generate non-pic code that has direct accesses to globals.
1005    // The address of the global is just (hi(&g)+lo(&g)).
1006    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1007  }
1008
1009  if (TM.getRelocationModel() == Reloc::PIC_) {
1010    // With PIC, the first instruction is actually "GR+hi(&G)".
1011    Hi = DAG.getNode(ISD::ADD, PtrVT,
1012                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1013  }
1014
1015  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1016
1017  if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
1018      (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
1019    return Lo;
1020
1021  // If the global is weak or external, we have to go through the lazy
1022  // resolution stub.
1023  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1024}
1025
1026static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1027  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1028
1029  // If we're comparing for equality to zero, expose the fact that this is
1030  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1031  // fold the new nodes.
1032  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1033    if (C->isNullValue() && CC == ISD::SETEQ) {
1034      MVT::ValueType VT = Op.getOperand(0).getValueType();
1035      SDOperand Zext = Op.getOperand(0);
1036      if (VT < MVT::i32) {
1037        VT = MVT::i32;
1038        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1039      }
1040      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1041      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1042      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1043                                  DAG.getConstant(Log2b, MVT::i32));
1044      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1045    }
1046    // Leave comparisons against 0 and -1 alone for now, since they're usually
1047    // optimized.  FIXME: revisit this when we can custom lower all setcc
1048    // optimizations.
1049    if (C->isAllOnesValue() || C->isNullValue())
1050      return SDOperand();
1051  }
1052
1053  // If we have an integer seteq/setne, turn it into a compare against zero
1054  // by xor'ing the rhs with the lhs, which is faster than setting a
1055  // condition register, reading it back out, and masking the correct bit.  The
1056  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1057  // the result to other bit-twiddling opportunities.
1058  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1059  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1060    MVT::ValueType VT = Op.getValueType();
1061    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1062                                Op.getOperand(1));
1063    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1064  }
1065  return SDOperand();
1066}
1067
1068static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1069                              unsigned VarArgsFrameIndex) {
1070  // vastart just stores the address of the VarArgsFrameIndex slot into the
1071  // memory location argument.
1072  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1073  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1074  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1075  return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1076                      SV->getOffset());
1077}
1078
1079static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1080                                       int &VarArgsFrameIndex) {
1081  // TODO: add description of PPC stack frame format, or at least some docs.
1082  //
1083  MachineFunction &MF = DAG.getMachineFunction();
1084  MachineFrameInfo *MFI = MF.getFrameInfo();
1085  SSARegMap *RegMap = MF.getSSARegMap();
1086  SmallVector<SDOperand, 8> ArgValues;
1087  SDOperand Root = Op.getOperand(0);
1088
1089  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1090  bool isPPC64 = PtrVT == MVT::i64;
1091  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1092
1093  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64);
1094
1095  static const unsigned GPR_32[] = {           // 32-bit registers.
1096    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1097    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1098  };
1099  static const unsigned GPR_64[] = {           // 64-bit registers.
1100    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1101    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1102  };
1103  static const unsigned FPR[] = {
1104    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1105    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1106  };
1107  static const unsigned VR[] = {
1108    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1109    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1110  };
1111
1112  const unsigned Num_GPR_Regs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1113  const unsigned Num_FPR_Regs = sizeof(FPR)/sizeof(FPR[0]);
1114  const unsigned Num_VR_Regs  = sizeof( VR)/sizeof( VR[0]);
1115
1116  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1117
1118  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1119
1120  // Add DAG nodes to load the arguments or copy them out of registers.  On
1121  // entry to a function on PPC, the arguments start after the linkage area,
1122  // although the first ones are often in registers.
1123  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1124    SDOperand ArgVal;
1125    bool needsLoad = false;
1126    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1127    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1128    unsigned ArgSize = ObjSize;
1129
1130    unsigned CurArgOffset = ArgOffset;
1131    switch (ObjectVT) {
1132    default: assert(0 && "Unhandled argument type!");
1133    case MVT::i32:
1134      // All int arguments reserve stack space.
1135      ArgOffset += PtrByteSize;
1136
1137      if (GPR_idx != Num_GPR_Regs) {
1138        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1139        MF.addLiveIn(GPR[GPR_idx], VReg);
1140        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1141        ++GPR_idx;
1142      } else {
1143        needsLoad = true;
1144        ArgSize = PtrByteSize;
1145      }
1146      break;
1147    case MVT::i64:  // PPC64
1148      // All int arguments reserve stack space.
1149      ArgOffset += 8;
1150
1151      if (GPR_idx != Num_GPR_Regs) {
1152        unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1153        MF.addLiveIn(GPR[GPR_idx], VReg);
1154        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1155        ++GPR_idx;
1156      } else {
1157        needsLoad = true;
1158      }
1159      break;
1160    case MVT::f32:
1161    case MVT::f64:
1162      // All FP arguments reserve stack space.
1163      ArgOffset += isPPC64 ? 8 : ObjSize;
1164
1165      // Every 4 bytes of argument space consumes one of the GPRs available for
1166      // argument passing.
1167      if (GPR_idx != Num_GPR_Regs) {
1168        ++GPR_idx;
1169        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1170          ++GPR_idx;
1171      }
1172      if (FPR_idx != Num_FPR_Regs) {
1173        unsigned VReg;
1174        if (ObjectVT == MVT::f32)
1175          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
1176        else
1177          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1178        MF.addLiveIn(FPR[FPR_idx], VReg);
1179        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1180        ++FPR_idx;
1181      } else {
1182        needsLoad = true;
1183      }
1184      break;
1185    case MVT::v4f32:
1186    case MVT::v4i32:
1187    case MVT::v8i16:
1188    case MVT::v16i8:
1189      // Note that vector arguments in registers don't reserve stack space.
1190      if (VR_idx != Num_VR_Regs) {
1191        unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
1192        MF.addLiveIn(VR[VR_idx], VReg);
1193        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1194        ++VR_idx;
1195      } else {
1196        // This should be simple, but requires getting 16-byte aligned stack
1197        // values.
1198        assert(0 && "Loading VR argument not implemented yet!");
1199        needsLoad = true;
1200      }
1201      break;
1202    }
1203
1204    // We need to load the argument to a virtual register if we determined above
1205    // that we ran out of physical registers of the appropriate type
1206    if (needsLoad) {
1207      // If the argument is actually used, emit a load from the right stack
1208      // slot.
1209      if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1210        int FI = MFI->CreateFixedObject(ObjSize,
1211                                        CurArgOffset + (ArgSize - ObjSize));
1212        SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1213        ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1214      } else {
1215        // Don't emit a dead load.
1216        ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1217      }
1218    }
1219
1220    ArgValues.push_back(ArgVal);
1221  }
1222
1223  // If the function takes variable number of arguments, make a frame index for
1224  // the start of the first vararg value... for expansion of llvm.va_start.
1225  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1226  if (isVarArg) {
1227    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1228                                               ArgOffset);
1229    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1230    // If this function is vararg, store any remaining integer argument regs
1231    // to their spots on the stack so that they may be loaded by deferencing the
1232    // result of va_next.
1233    SmallVector<SDOperand, 8> MemOps;
1234    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1235      unsigned VReg;
1236      if (isPPC64)
1237        VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1238      else
1239        VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1240
1241      MF.addLiveIn(GPR[GPR_idx], VReg);
1242      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1243      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1244      MemOps.push_back(Store);
1245      // Increment the address by four for the next argument to store
1246      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1247      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1248    }
1249    if (!MemOps.empty())
1250      Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1251  }
1252
1253  ArgValues.push_back(Root);
1254
1255  // Return the new list of results.
1256  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1257                                    Op.Val->value_end());
1258  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1259}
1260
1261/// isCallCompatibleAddress - Return the immediate to use if the specified
1262/// 32-bit value is representable in the immediate field of a BxA instruction.
1263static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1264  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1265  if (!C) return 0;
1266
1267  int Addr = C->getValue();
1268  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1269      (Addr << 6 >> 6) != Addr)
1270    return 0;  // Top 6 bits have to be sext of immediate.
1271
1272  return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
1273}
1274
1275static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG) {
1276  SDOperand Chain = Op.getOperand(0);
1277  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1278  SDOperand Callee    = Op.getOperand(4);
1279  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1280
1281  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1282  bool isPPC64 = PtrVT == MVT::i64;
1283  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1284
1285  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1286  // SelectExpr to use to put the arguments in the appropriate registers.
1287  std::vector<SDOperand> args_to_use;
1288
1289  // Count how many bytes are to be pushed on the stack, including the linkage
1290  // area, and parameter passing area.  We start with 24/48 bytes, which is
1291  // prereserved space for [SP][CR][LR][3 x unused].
1292  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64);
1293
1294  // Add up all the space actually used.
1295  for (unsigned i = 0; i != NumOps; ++i) {
1296    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1297    ArgSize = std::max(ArgSize, PtrByteSize);
1298    NumBytes += ArgSize;
1299  }
1300
1301  // The prolog code of the callee may store up to 8 GPR argument registers to
1302  // the stack, allowing va_start to index over them in memory if its varargs.
1303  // Because we cannot tell if this is needed on the caller side, we have to
1304  // conservatively assume that it is needed.  As such, make sure we have at
1305  // least enough stack space for the caller to store the 8 GPRs.
1306  NumBytes = std::max(NumBytes, PPCFrameInfo::getMinCallFrameSize(isPPC64));
1307
1308  // Adjust the stack pointer for the new arguments...
1309  // These operations are automatically eliminated by the prolog/epilog pass
1310  Chain = DAG.getCALLSEQ_START(Chain,
1311                               DAG.getConstant(NumBytes, PtrVT));
1312
1313  // Set up a copy of the stack pointer for use loading and storing any
1314  // arguments that may not fit in the registers available for argument
1315  // passing.
1316  SDOperand StackPtr;
1317  if (isPPC64)
1318    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1319  else
1320    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1321
1322  // Figure out which arguments are going to go in registers, and which in
1323  // memory.  Also, if this is a vararg function, floating point operations
1324  // must be stored to our stack, and loaded into integer regs as well, if
1325  // any integer regs are available for argument passing.
1326  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64);
1327  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1328
1329  static const unsigned GPR_32[] = {           // 32-bit registers.
1330    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1331    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1332  };
1333  static const unsigned GPR_64[] = {           // 64-bit registers.
1334    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1335    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1336  };
1337  static const unsigned FPR[] = {
1338    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1339    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1340  };
1341  static const unsigned VR[] = {
1342    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1343    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1344  };
1345  const unsigned NumGPRs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1346  const unsigned NumFPRs = sizeof(FPR)/sizeof(FPR[0]);
1347  const unsigned NumVRs  = sizeof( VR)/sizeof( VR[0]);
1348
1349  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1350
1351  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1352  SmallVector<SDOperand, 8> MemOpChains;
1353  for (unsigned i = 0; i != NumOps; ++i) {
1354    SDOperand Arg = Op.getOperand(5+2*i);
1355
1356    // PtrOff will be used to store the current argument to the stack if a
1357    // register cannot be found for it.
1358    SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1359    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1360
1361    // On PPC64, promote integers to 64-bit values.
1362    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1363      unsigned ExtOp = ISD::ZERO_EXTEND;
1364      if (cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue())
1365        ExtOp = ISD::SIGN_EXTEND;
1366      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1367    }
1368
1369    switch (Arg.getValueType()) {
1370    default: assert(0 && "Unexpected ValueType for argument!");
1371    case MVT::i32:
1372    case MVT::i64:
1373      if (GPR_idx != NumGPRs) {
1374        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1375      } else {
1376        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1377      }
1378      ArgOffset += PtrByteSize;
1379      break;
1380    case MVT::f32:
1381    case MVT::f64:
1382      if (isVarArg && isPPC64) {
1383        // Float varargs need to be promoted to double.
1384        if (Arg.getValueType() == MVT::f32)
1385          Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1386      }
1387
1388      if (FPR_idx != NumFPRs) {
1389        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1390
1391        if (isVarArg) {
1392          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1393          MemOpChains.push_back(Store);
1394
1395          // Float varargs are always shadowed in available integer registers
1396          if (GPR_idx != NumGPRs) {
1397            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1398            MemOpChains.push_back(Load.getValue(1));
1399            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1400          }
1401          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1402            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1403            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1404            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1405            MemOpChains.push_back(Load.getValue(1));
1406            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1407          }
1408        } else {
1409          // If we have any FPRs remaining, we may also have GPRs remaining.
1410          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1411          // GPRs.
1412          if (GPR_idx != NumGPRs)
1413            ++GPR_idx;
1414          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64)
1415            ++GPR_idx;
1416        }
1417      } else {
1418        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1419      }
1420      if (isPPC64)
1421        ArgOffset += 8;
1422      else
1423        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1424      break;
1425    case MVT::v4f32:
1426    case MVT::v4i32:
1427    case MVT::v8i16:
1428    case MVT::v16i8:
1429      assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1430      assert(VR_idx != NumVRs &&
1431             "Don't support passing more than 12 vector args yet!");
1432      RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1433      break;
1434    }
1435  }
1436  if (!MemOpChains.empty())
1437    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1438                        &MemOpChains[0], MemOpChains.size());
1439
1440  // Build a sequence of copy-to-reg nodes chained together with token chain
1441  // and flag operands which copy the outgoing args into the appropriate regs.
1442  SDOperand InFlag;
1443  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1444    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1445                             InFlag);
1446    InFlag = Chain.getValue(1);
1447  }
1448
1449  std::vector<MVT::ValueType> NodeTys;
1450  NodeTys.push_back(MVT::Other);   // Returns a chain
1451  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1452
1453  SmallVector<SDOperand, 8> Ops;
1454  unsigned CallOpc = PPCISD::CALL;
1455
1456  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1457  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1458  // node so that legalize doesn't hack it.
1459  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1460    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1461  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1462    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1463  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1464    // If this is an absolute destination address, use the munged value.
1465    Callee = SDOperand(Dest, 0);
1466  else {
1467    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
1468    // to do the call, we can't use PPCISD::CALL.
1469    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1470    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1471    InFlag = Chain.getValue(1);
1472
1473    // Copy the callee address into R12 on darwin.
1474    Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1475    InFlag = Chain.getValue(1);
1476
1477    NodeTys.clear();
1478    NodeTys.push_back(MVT::Other);
1479    NodeTys.push_back(MVT::Flag);
1480    Ops.push_back(Chain);
1481    CallOpc = PPCISD::BCTRL;
1482    Callee.Val = 0;
1483  }
1484
1485  // If this is a direct call, pass the chain and the callee.
1486  if (Callee.Val) {
1487    Ops.push_back(Chain);
1488    Ops.push_back(Callee);
1489  }
1490
1491  // Add argument registers to the end of the list so that they are known live
1492  // into the call.
1493  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1494    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1495                                  RegsToPass[i].second.getValueType()));
1496
1497  if (InFlag.Val)
1498    Ops.push_back(InFlag);
1499  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1500  InFlag = Chain.getValue(1);
1501
1502  SDOperand ResultVals[3];
1503  unsigned NumResults = 0;
1504  NodeTys.clear();
1505
1506  // If the call has results, copy the values out of the ret val registers.
1507  switch (Op.Val->getValueType(0)) {
1508  default: assert(0 && "Unexpected ret value!");
1509  case MVT::Other: break;
1510  case MVT::i32:
1511    if (Op.Val->getValueType(1) == MVT::i32) {
1512      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32, InFlag).getValue(1);
1513      ResultVals[0] = Chain.getValue(0);
1514      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32,
1515                                 Chain.getValue(2)).getValue(1);
1516      ResultVals[1] = Chain.getValue(0);
1517      NumResults = 2;
1518      NodeTys.push_back(MVT::i32);
1519    } else {
1520      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1521      ResultVals[0] = Chain.getValue(0);
1522      NumResults = 1;
1523    }
1524    NodeTys.push_back(MVT::i32);
1525    break;
1526  case MVT::i64:
1527    Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1528    ResultVals[0] = Chain.getValue(0);
1529    NumResults = 1;
1530    NodeTys.push_back(MVT::i64);
1531    break;
1532  case MVT::f32:
1533  case MVT::f64:
1534    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1535                               InFlag).getValue(1);
1536    ResultVals[0] = Chain.getValue(0);
1537    NumResults = 1;
1538    NodeTys.push_back(Op.Val->getValueType(0));
1539    break;
1540  case MVT::v4f32:
1541  case MVT::v4i32:
1542  case MVT::v8i16:
1543  case MVT::v16i8:
1544    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1545                                   InFlag).getValue(1);
1546    ResultVals[0] = Chain.getValue(0);
1547    NumResults = 1;
1548    NodeTys.push_back(Op.Val->getValueType(0));
1549    break;
1550  }
1551
1552  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1553                      DAG.getConstant(NumBytes, PtrVT));
1554  NodeTys.push_back(MVT::Other);
1555
1556  // If the function returns void, just return the chain.
1557  if (NumResults == 0)
1558    return Chain;
1559
1560  // Otherwise, merge everything together with a MERGE_VALUES node.
1561  ResultVals[NumResults++] = Chain;
1562  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1563                              ResultVals, NumResults);
1564  return Res.getValue(Op.ResNo);
1565}
1566
1567static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
1568  SDOperand Copy;
1569  switch(Op.getNumOperands()) {
1570  default:
1571    assert(0 && "Do not know how to return this many arguments!");
1572    abort();
1573  case 1:
1574    return SDOperand(); // ret void is legal
1575  case 3: {
1576    MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
1577    unsigned ArgReg;
1578    if (ArgVT == MVT::i32) {
1579      ArgReg = PPC::R3;
1580    } else if (ArgVT == MVT::i64) {
1581      ArgReg = PPC::X3;
1582    } else if (MVT::isVector(ArgVT)) {
1583      ArgReg = PPC::V2;
1584    } else {
1585      assert(MVT::isFloatingPoint(ArgVT));
1586      ArgReg = PPC::F1;
1587    }
1588
1589    Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
1590                            SDOperand());
1591
1592    // If we haven't noted the R3/F1 are live out, do so now.
1593    if (DAG.getMachineFunction().liveout_empty())
1594      DAG.getMachineFunction().addLiveOut(ArgReg);
1595    break;
1596  }
1597  case 5:
1598    Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(3),
1599                            SDOperand());
1600    Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
1601    // If we haven't noted the R3+R4 are live out, do so now.
1602    if (DAG.getMachineFunction().liveout_empty()) {
1603      DAG.getMachineFunction().addLiveOut(PPC::R3);
1604      DAG.getMachineFunction().addLiveOut(PPC::R4);
1605    }
1606    break;
1607  }
1608  return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
1609}
1610
1611static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
1612                                   const PPCSubtarget &Subtarget) {
1613  // When we pop the dynamic allocation we need to restore the SP link.
1614
1615  // Get the corect type for pointers.
1616  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1617
1618  // Construct the stack pointer operand.
1619  bool IsPPC64 = Subtarget.isPPC64();
1620  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
1621  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
1622
1623  // Get the operands for the STACKRESTORE.
1624  SDOperand Chain = Op.getOperand(0);
1625  SDOperand SaveSP = Op.getOperand(1);
1626
1627  // Load the old link SP.
1628  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
1629
1630  // Restore the stack pointer.
1631  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
1632
1633  // Store the old link SP.
1634  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
1635}
1636
1637static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1638                                         const PPCSubtarget &Subtarget) {
1639  MachineFunction &MF = DAG.getMachineFunction();
1640  bool IsPPC64 = Subtarget.isPPC64();
1641
1642  // Get current frame pointer save index.  The users of this index will be
1643  // primarily DYNALLOC instructions.
1644  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1645  int FPSI = FI->getFramePointerSaveIndex();
1646
1647  // If the frame pointer save index hasn't been defined yet.
1648  if (!FPSI) {
1649    // Find out what the fix offset of the frame pointer save area.
1650    int Offset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64);
1651    // Allocate the frame index for frame pointer save area.
1652    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, Offset);
1653    // Save the result.
1654    FI->setFramePointerSaveIndex(FPSI);
1655  }
1656
1657  // Get the inputs.
1658  SDOperand Chain = Op.getOperand(0);
1659  SDOperand Size  = Op.getOperand(1);
1660
1661  // Get the corect type for pointers.
1662  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1663  // Negate the size.
1664  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1665                                  DAG.getConstant(0, PtrVT), Size);
1666  // Construct a node for the frame pointer save index.
1667  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
1668  // Build a DYNALLOC node.
1669  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
1670  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
1671  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
1672}
1673
1674
1675/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1676/// possible.
1677static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1678  // Not FP? Not a fsel.
1679  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
1680      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
1681    return SDOperand();
1682
1683  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1684
1685  // Cannot handle SETEQ/SETNE.
1686  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
1687
1688  MVT::ValueType ResVT = Op.getValueType();
1689  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
1690  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1691  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
1692
1693  // If the RHS of the comparison is a 0.0, we don't need to do the
1694  // subtraction at all.
1695  if (isFloatingPointZero(RHS))
1696    switch (CC) {
1697    default: break;       // SETUO etc aren't handled by fsel.
1698    case ISD::SETULT:
1699    case ISD::SETOLT:
1700    case ISD::SETLT:
1701      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1702    case ISD::SETUGE:
1703    case ISD::SETOGE:
1704    case ISD::SETGE:
1705      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1706        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1707      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
1708    case ISD::SETUGT:
1709    case ISD::SETOGT:
1710    case ISD::SETGT:
1711      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1712    case ISD::SETULE:
1713    case ISD::SETOLE:
1714    case ISD::SETLE:
1715      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1716        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1717      return DAG.getNode(PPCISD::FSEL, ResVT,
1718                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
1719    }
1720
1721      SDOperand Cmp;
1722  switch (CC) {
1723  default: break;       // SETUO etc aren't handled by fsel.
1724  case ISD::SETULT:
1725  case ISD::SETOLT:
1726  case ISD::SETLT:
1727    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1728    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1729      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1730      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1731  case ISD::SETUGE:
1732  case ISD::SETOGE:
1733  case ISD::SETGE:
1734    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1735    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1736      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1737      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1738  case ISD::SETUGT:
1739  case ISD::SETOGT:
1740  case ISD::SETGT:
1741    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1742    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1743      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1744      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1745  case ISD::SETULE:
1746  case ISD::SETOLE:
1747  case ISD::SETLE:
1748    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1749    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1750      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1751      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1752  }
1753  return SDOperand();
1754}
1755
1756static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
1757  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
1758  SDOperand Src = Op.getOperand(0);
1759  if (Src.getValueType() == MVT::f32)
1760    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
1761
1762  SDOperand Tmp;
1763  switch (Op.getValueType()) {
1764  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
1765  case MVT::i32:
1766    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
1767    break;
1768  case MVT::i64:
1769    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
1770    break;
1771  }
1772
1773  // Convert the FP value to an int value through memory.
1774  SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
1775  if (Op.getValueType() == MVT::i32)
1776    Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
1777  return Bits;
1778}
1779
1780static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
1781  if (Op.getOperand(0).getValueType() == MVT::i64) {
1782    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
1783    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
1784    if (Op.getValueType() == MVT::f32)
1785      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1786    return FP;
1787  }
1788
1789  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
1790         "Unhandled SINT_TO_FP type in custom expander!");
1791  // Since we only generate this in 64-bit mode, we can take advantage of
1792  // 64-bit registers.  In particular, sign extend the input value into the
1793  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
1794  // then lfd it and fcfid it.
1795  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1796  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
1797  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1798  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
1799
1800  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
1801                                Op.getOperand(0));
1802
1803  // STD the extended value into the stack slot.
1804  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
1805                                DAG.getEntryNode(), Ext64, FIdx,
1806                                DAG.getSrcValue(NULL));
1807  // Load the value as a double.
1808  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
1809
1810  // FCFID it and return it.
1811  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
1812  if (Op.getValueType() == MVT::f32)
1813    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1814  return FP;
1815}
1816
1817static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
1818  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1819         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1820
1821  // Expand into a bunch of logical ops.  Note that these ops
1822  // depend on the PPC behavior for oversized shift amounts.
1823  SDOperand Lo = Op.getOperand(0);
1824  SDOperand Hi = Op.getOperand(1);
1825  SDOperand Amt = Op.getOperand(2);
1826
1827  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1828                               DAG.getConstant(32, MVT::i32), Amt);
1829  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
1830  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
1831  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1832  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1833                               DAG.getConstant(-32U, MVT::i32));
1834  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
1835  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1836  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
1837  SDOperand OutOps[] = { OutLo, OutHi };
1838  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1839                     OutOps, 2);
1840}
1841
1842static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
1843  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1844         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
1845
1846  // Otherwise, expand into a bunch of logical ops.  Note that these ops
1847  // depend on the PPC behavior for oversized shift amounts.
1848  SDOperand Lo = Op.getOperand(0);
1849  SDOperand Hi = Op.getOperand(1);
1850  SDOperand Amt = Op.getOperand(2);
1851
1852  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1853                               DAG.getConstant(32, MVT::i32), Amt);
1854  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1855  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1856  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1857  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1858                               DAG.getConstant(-32U, MVT::i32));
1859  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
1860  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1861  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
1862  SDOperand OutOps[] = { OutLo, OutHi };
1863  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1864                     OutOps, 2);
1865}
1866
1867static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
1868  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1869         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
1870
1871  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
1872  SDOperand Lo = Op.getOperand(0);
1873  SDOperand Hi = Op.getOperand(1);
1874  SDOperand Amt = Op.getOperand(2);
1875
1876  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1877                               DAG.getConstant(32, MVT::i32), Amt);
1878  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1879  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1880  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1881  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1882                               DAG.getConstant(-32U, MVT::i32));
1883  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
1884  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
1885  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
1886                                    Tmp4, Tmp6, ISD::SETLE);
1887  SDOperand OutOps[] = { OutLo, OutHi };
1888  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1889                     OutOps, 2);
1890}
1891
1892//===----------------------------------------------------------------------===//
1893// Vector related lowering.
1894//
1895
1896// If this is a vector of constants or undefs, get the bits.  A bit in
1897// UndefBits is set if the corresponding element of the vector is an
1898// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
1899// zero.   Return true if this is not an array of constants, false if it is.
1900//
1901static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
1902                                       uint64_t UndefBits[2]) {
1903  // Start with zero'd results.
1904  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
1905
1906  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
1907  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
1908    SDOperand OpVal = BV->getOperand(i);
1909
1910    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
1911    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
1912
1913    uint64_t EltBits = 0;
1914    if (OpVal.getOpcode() == ISD::UNDEF) {
1915      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
1916      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
1917      continue;
1918    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1919      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
1920    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1921      assert(CN->getValueType(0) == MVT::f32 &&
1922             "Only one legal FP vector type!");
1923      EltBits = FloatToBits(CN->getValue());
1924    } else {
1925      // Nonconstant element.
1926      return true;
1927    }
1928
1929    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
1930  }
1931
1932  //printf("%llx %llx  %llx %llx\n",
1933  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
1934  return false;
1935}
1936
1937// If this is a splat (repetition) of a value across the whole vector, return
1938// the smallest size that splats it.  For example, "0x01010101010101..." is a
1939// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
1940// SplatSize = 1 byte.
1941static bool isConstantSplat(const uint64_t Bits128[2],
1942                            const uint64_t Undef128[2],
1943                            unsigned &SplatBits, unsigned &SplatUndef,
1944                            unsigned &SplatSize) {
1945
1946  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
1947  // the same as the lower 64-bits, ignoring undefs.
1948  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
1949    return false;  // Can't be a splat if two pieces don't match.
1950
1951  uint64_t Bits64  = Bits128[0] | Bits128[1];
1952  uint64_t Undef64 = Undef128[0] & Undef128[1];
1953
1954  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
1955  // undefs.
1956  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
1957    return false;  // Can't be a splat if two pieces don't match.
1958
1959  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
1960  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
1961
1962  // If the top 16-bits are different than the lower 16-bits, ignoring
1963  // undefs, we have an i32 splat.
1964  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
1965    SplatBits = Bits32;
1966    SplatUndef = Undef32;
1967    SplatSize = 4;
1968    return true;
1969  }
1970
1971  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
1972  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
1973
1974  // If the top 8-bits are different than the lower 8-bits, ignoring
1975  // undefs, we have an i16 splat.
1976  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
1977    SplatBits = Bits16;
1978    SplatUndef = Undef16;
1979    SplatSize = 2;
1980    return true;
1981  }
1982
1983  // Otherwise, we have an 8-bit splat.
1984  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
1985  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
1986  SplatSize = 1;
1987  return true;
1988}
1989
1990/// BuildSplatI - Build a canonical splati of Val with an element size of
1991/// SplatSize.  Cast the result to VT.
1992static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
1993                             SelectionDAG &DAG) {
1994  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
1995
1996  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
1997    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
1998  };
1999
2000  MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2001
2002  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2003  if (Val == -1)
2004    SplatSize = 1;
2005
2006  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2007
2008  // Build a canonical splat for this value.
2009  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
2010  SmallVector<SDOperand, 8> Ops;
2011  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2012  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2013                              &Ops[0], Ops.size());
2014  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2015}
2016
2017/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2018/// specified intrinsic ID.
2019static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2020                                  SelectionDAG &DAG,
2021                                  MVT::ValueType DestVT = MVT::Other) {
2022  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2023  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2024                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
2025}
2026
2027/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2028/// specified intrinsic ID.
2029static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2030                                  SDOperand Op2, SelectionDAG &DAG,
2031                                  MVT::ValueType DestVT = MVT::Other) {
2032  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2033  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2034                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2035}
2036
2037
2038/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2039/// amount.  The result has the specified value type.
2040static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2041                             MVT::ValueType VT, SelectionDAG &DAG) {
2042  // Force LHS/RHS to be the right type.
2043  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2044  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2045
2046  SDOperand Ops[16];
2047  for (unsigned i = 0; i != 16; ++i)
2048    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2049  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2050                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2051  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2052}
2053
2054// If this is a case we can't handle, return null and let the default
2055// expansion code take care of it.  If we CAN select this case, and if it
2056// selects to a single instruction, return Op.  Otherwise, if we can codegen
2057// this case more efficiently than a constant pool load, lower it to the
2058// sequence of ops that should be used.
2059static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2060  // If this is a vector of constants or undefs, get the bits.  A bit in
2061  // UndefBits is set if the corresponding element of the vector is an
2062  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2063  // zero.
2064  uint64_t VectorBits[2];
2065  uint64_t UndefBits[2];
2066  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2067    return SDOperand();   // Not a constant vector.
2068
2069  // If this is a splat (repetition) of a value across the whole vector, return
2070  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2071  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2072  // SplatSize = 1 byte.
2073  unsigned SplatBits, SplatUndef, SplatSize;
2074  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2075    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2076
2077    // First, handle single instruction cases.
2078
2079    // All zeros?
2080    if (SplatBits == 0) {
2081      // Canonicalize all zero vectors to be v4i32.
2082      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2083        SDOperand Z = DAG.getConstant(0, MVT::i32);
2084        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2085        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2086      }
2087      return Op;
2088    }
2089
2090    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2091    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2092    if (SextVal >= -16 && SextVal <= 15)
2093      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2094
2095
2096    // Two instruction sequences.
2097
2098    // If this value is in the range [-32,30] and is even, use:
2099    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2100    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2101      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2102      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2103    }
2104
2105    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2106    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2107    // for fneg/fabs.
2108    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2109      // Make -1 and vspltisw -1:
2110      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2111
2112      // Make the VSLW intrinsic, computing 0x8000_0000.
2113      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2114                                       OnesV, DAG);
2115
2116      // xor by OnesV to invert it.
2117      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2118      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2119    }
2120
2121    // Check to see if this is a wide variety of vsplti*, binop self cases.
2122    unsigned SplatBitSize = SplatSize*8;
2123    static const char SplatCsts[] = {
2124      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2125      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2126    };
2127
2128    for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
2129      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2130      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2131      int i = SplatCsts[idx];
2132
2133      // Figure out what shift amount will be used by altivec if shifted by i in
2134      // this splat size.
2135      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2136
2137      // vsplti + shl self.
2138      if (SextVal == (i << (int)TypeShiftAmt)) {
2139        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2140        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2141          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2142          Intrinsic::ppc_altivec_vslw
2143        };
2144        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2145        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2146      }
2147
2148      // vsplti + srl self.
2149      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2150        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2151        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2152          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2153          Intrinsic::ppc_altivec_vsrw
2154        };
2155        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2156        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2157      }
2158
2159      // vsplti + sra self.
2160      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2161        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2162        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2163          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2164          Intrinsic::ppc_altivec_vsraw
2165        };
2166        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2167        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2168      }
2169
2170      // vsplti + rol self.
2171      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2172                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2173        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2174        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2175          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2176          Intrinsic::ppc_altivec_vrlw
2177        };
2178        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2179        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2180      }
2181
2182      // t = vsplti c, result = vsldoi t, t, 1
2183      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2184        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2185        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2186      }
2187      // t = vsplti c, result = vsldoi t, t, 2
2188      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2189        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2190        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2191      }
2192      // t = vsplti c, result = vsldoi t, t, 3
2193      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2194        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2195        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2196      }
2197    }
2198
2199    // Three instruction sequences.
2200
2201    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2202    if (SextVal >= 0 && SextVal <= 31) {
2203      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2204      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2205      LHS = DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
2206      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2207    }
2208    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2209    if (SextVal >= -31 && SextVal <= 0) {
2210      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2211      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2212      LHS = DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
2213      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2214    }
2215  }
2216
2217  return SDOperand();
2218}
2219
2220/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2221/// the specified operations to build the shuffle.
2222static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2223                                        SDOperand RHS, SelectionDAG &DAG) {
2224  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2225  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
2226  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2227
2228  enum {
2229    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2230    OP_VMRGHW,
2231    OP_VMRGLW,
2232    OP_VSPLTISW0,
2233    OP_VSPLTISW1,
2234    OP_VSPLTISW2,
2235    OP_VSPLTISW3,
2236    OP_VSLDOI4,
2237    OP_VSLDOI8,
2238    OP_VSLDOI12
2239  };
2240
2241  if (OpNum == OP_COPY) {
2242    if (LHSID == (1*9+2)*9+3) return LHS;
2243    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2244    return RHS;
2245  }
2246
2247  SDOperand OpLHS, OpRHS;
2248  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2249  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2250
2251  unsigned ShufIdxs[16];
2252  switch (OpNum) {
2253  default: assert(0 && "Unknown i32 permute!");
2254  case OP_VMRGHW:
2255    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
2256    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2257    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
2258    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2259    break;
2260  case OP_VMRGLW:
2261    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2262    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2263    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2264    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2265    break;
2266  case OP_VSPLTISW0:
2267    for (unsigned i = 0; i != 16; ++i)
2268      ShufIdxs[i] = (i&3)+0;
2269    break;
2270  case OP_VSPLTISW1:
2271    for (unsigned i = 0; i != 16; ++i)
2272      ShufIdxs[i] = (i&3)+4;
2273    break;
2274  case OP_VSPLTISW2:
2275    for (unsigned i = 0; i != 16; ++i)
2276      ShufIdxs[i] = (i&3)+8;
2277    break;
2278  case OP_VSPLTISW3:
2279    for (unsigned i = 0; i != 16; ++i)
2280      ShufIdxs[i] = (i&3)+12;
2281    break;
2282  case OP_VSLDOI4:
2283    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2284  case OP_VSLDOI8:
2285    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2286  case OP_VSLDOI12:
2287    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2288  }
2289  SDOperand Ops[16];
2290  for (unsigned i = 0; i != 16; ++i)
2291    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2292
2293  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2294                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2295}
2296
2297/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
2298/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
2299/// return the code it can be lowered into.  Worst case, it can always be
2300/// lowered into a vperm.
2301static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2302  SDOperand V1 = Op.getOperand(0);
2303  SDOperand V2 = Op.getOperand(1);
2304  SDOperand PermMask = Op.getOperand(2);
2305
2306  // Cases that are handled by instructions that take permute immediates
2307  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2308  // selected by the instruction selector.
2309  if (V2.getOpcode() == ISD::UNDEF) {
2310    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2311        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2312        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2313        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2314        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2315        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2316        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2317        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2318        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2319        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2320        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2321        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2322      return Op;
2323    }
2324  }
2325
2326  // Altivec has a variety of "shuffle immediates" that take two vector inputs
2327  // and produce a fixed permutation.  If any of these match, do not lower to
2328  // VPERM.
2329  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2330      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2331      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2332      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2333      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2334      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2335      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2336      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2337      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2338    return Op;
2339
2340  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
2341  // perfect shuffle table to emit an optimal matching sequence.
2342  unsigned PFIndexes[4];
2343  bool isFourElementShuffle = true;
2344  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2345    unsigned EltNo = 8;   // Start out undef.
2346    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
2347      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2348        continue;   // Undef, ignore it.
2349
2350      unsigned ByteSource =
2351        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2352      if ((ByteSource & 3) != j) {
2353        isFourElementShuffle = false;
2354        break;
2355      }
2356
2357      if (EltNo == 8) {
2358        EltNo = ByteSource/4;
2359      } else if (EltNo != ByteSource/4) {
2360        isFourElementShuffle = false;
2361        break;
2362      }
2363    }
2364    PFIndexes[i] = EltNo;
2365  }
2366
2367  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2368  // perfect shuffle vector to determine if it is cost effective to do this as
2369  // discrete instructions, or whether we should use a vperm.
2370  if (isFourElementShuffle) {
2371    // Compute the index in the perfect shuffle table.
2372    unsigned PFTableIndex =
2373      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2374
2375    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2376    unsigned Cost  = (PFEntry >> 30);
2377
2378    // Determining when to avoid vperm is tricky.  Many things affect the cost
2379    // of vperm, particularly how many times the perm mask needs to be computed.
2380    // For example, if the perm mask can be hoisted out of a loop or is already
2381    // used (perhaps because there are multiple permutes with the same shuffle
2382    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
2383    // the loop requires an extra register.
2384    //
2385    // As a compromise, we only emit discrete instructions if the shuffle can be
2386    // generated in 3 or fewer operations.  When we have loop information
2387    // available, if this block is within a loop, we should avoid using vperm
2388    // for 3-operation perms and use a constant pool load instead.
2389    if (Cost < 3)
2390      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2391  }
2392
2393  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2394  // vector that will get spilled to the constant pool.
2395  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2396
2397  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2398  // that it is in input element units, not in bytes.  Convert now.
2399  MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
2400  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2401
2402  SmallVector<SDOperand, 16> ResultMask;
2403  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2404    unsigned SrcElt;
2405    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2406      SrcElt = 0;
2407    else
2408      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2409
2410    for (unsigned j = 0; j != BytesPerElement; ++j)
2411      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2412                                           MVT::i8));
2413  }
2414
2415  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2416                                    &ResultMask[0], ResultMask.size());
2417  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2418}
2419
2420/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2421/// altivec comparison.  If it is, return true and fill in Opc/isDot with
2422/// information about the intrinsic.
2423static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2424                                  bool &isDot) {
2425  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2426  CompareOpc = -1;
2427  isDot = false;
2428  switch (IntrinsicID) {
2429  default: return false;
2430    // Comparison predicates.
2431  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
2432  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2433  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
2434  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
2435  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2436  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2437  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2438  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2439  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2440  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2441  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2442  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2443  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2444
2445    // Normal Comparisons.
2446  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
2447  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
2448  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
2449  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
2450  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
2451  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
2452  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
2453  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
2454  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
2455  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
2456  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
2457  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
2458  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
2459  }
2460  return true;
2461}
2462
2463/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2464/// lower, do it, otherwise return null.
2465static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2466  // If this is a lowered altivec predicate compare, CompareOpc is set to the
2467  // opcode number of the comparison.
2468  int CompareOpc;
2469  bool isDot;
2470  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2471    return SDOperand();    // Don't custom lower most intrinsics.
2472
2473  // If this is a non-dot comparison, make the VCMP node and we are done.
2474  if (!isDot) {
2475    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2476                                Op.getOperand(1), Op.getOperand(2),
2477                                DAG.getConstant(CompareOpc, MVT::i32));
2478    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2479  }
2480
2481  // Create the PPCISD altivec 'dot' comparison node.
2482  SDOperand Ops[] = {
2483    Op.getOperand(2),  // LHS
2484    Op.getOperand(3),  // RHS
2485    DAG.getConstant(CompareOpc, MVT::i32)
2486  };
2487  std::vector<MVT::ValueType> VTs;
2488  VTs.push_back(Op.getOperand(2).getValueType());
2489  VTs.push_back(MVT::Flag);
2490  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2491
2492  // Now that we have the comparison, emit a copy from the CR to a GPR.
2493  // This is flagged to the above dot comparison.
2494  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2495                                DAG.getRegister(PPC::CR6, MVT::i32),
2496                                CompNode.getValue(1));
2497
2498  // Unpack the result based on how the target uses it.
2499  unsigned BitNo;   // Bit # of CR6.
2500  bool InvertBit;   // Invert result?
2501  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2502  default:  // Can't happen, don't crash on invalid number though.
2503  case 0:   // Return the value of the EQ bit of CR6.
2504    BitNo = 0; InvertBit = false;
2505    break;
2506  case 1:   // Return the inverted value of the EQ bit of CR6.
2507    BitNo = 0; InvertBit = true;
2508    break;
2509  case 2:   // Return the value of the LT bit of CR6.
2510    BitNo = 2; InvertBit = false;
2511    break;
2512  case 3:   // Return the inverted value of the LT bit of CR6.
2513    BitNo = 2; InvertBit = true;
2514    break;
2515  }
2516
2517  // Shift the bit into the low position.
2518  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2519                      DAG.getConstant(8-(3-BitNo), MVT::i32));
2520  // Isolate the bit.
2521  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2522                      DAG.getConstant(1, MVT::i32));
2523
2524  // If we are supposed to, toggle the bit.
2525  if (InvertBit)
2526    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2527                        DAG.getConstant(1, MVT::i32));
2528  return Flags;
2529}
2530
2531static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2532  // Create a stack slot that is 16-byte aligned.
2533  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2534  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2535  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2536  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2537
2538  // Store the input value into Value#0 of the stack slot.
2539  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2540                                 Op.getOperand(0), FIdx, NULL, 0);
2541  // Load it out.
2542  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2543}
2544
2545static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2546  if (Op.getValueType() == MVT::v4i32) {
2547    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2548
2549    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
2550    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2551
2552    SDOperand RHSSwap =   // = vrlw RHS, 16
2553      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2554
2555    // Shrinkify inputs to v8i16.
2556    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2557    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2558    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2559
2560    // Low parts multiplied together, generating 32-bit results (we ignore the
2561    // top parts).
2562    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2563                                        LHS, RHS, DAG, MVT::v4i32);
2564
2565    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2566                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2567    // Shift the high parts up 16 bits.
2568    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2569    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2570  } else if (Op.getValueType() == MVT::v8i16) {
2571    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2572
2573    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2574
2575    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2576                            LHS, RHS, Zero, DAG);
2577  } else if (Op.getValueType() == MVT::v16i8) {
2578    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2579
2580    // Multiply the even 8-bit parts, producing 16-bit sums.
2581    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2582                                           LHS, RHS, DAG, MVT::v8i16);
2583    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2584
2585    // Multiply the odd 8-bit parts, producing 16-bit sums.
2586    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2587                                          LHS, RHS, DAG, MVT::v8i16);
2588    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2589
2590    // Merge the results together.
2591    SDOperand Ops[16];
2592    for (unsigned i = 0; i != 8; ++i) {
2593      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
2594      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2595    }
2596    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2597                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2598  } else {
2599    assert(0 && "Unknown mul to lower!");
2600    abort();
2601  }
2602}
2603
2604/// LowerOperation - Provide custom lowering hooks for some operations.
2605///
2606SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2607  switch (Op.getOpcode()) {
2608  default: assert(0 && "Wasn't expecting to be able to lower this!");
2609  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
2610  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
2611  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
2612  case ISD::SETCC:              return LowerSETCC(Op, DAG);
2613  case ISD::VASTART:            return LowerVASTART(Op, DAG, VarArgsFrameIndex);
2614  case ISD::FORMAL_ARGUMENTS:
2615      return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex);
2616  case ISD::CALL:               return LowerCALL(Op, DAG);
2617  case ISD::RET:                return LowerRET(Op, DAG);
2618  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
2619  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG,
2620                                                               PPCSubTarget);
2621
2622  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
2623  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
2624  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
2625
2626  // Lower 64-bit shifts.
2627  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
2628  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
2629  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
2630
2631  // Vector-related lowering.
2632  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
2633  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
2634  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2635  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
2636  case ISD::MUL:                return LowerMUL(Op, DAG);
2637  }
2638  return SDOperand();
2639}
2640
2641//===----------------------------------------------------------------------===//
2642//  Other Lowering Code
2643//===----------------------------------------------------------------------===//
2644
2645MachineBasicBlock *
2646PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2647                                           MachineBasicBlock *BB) {
2648  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2649  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
2650          MI->getOpcode() == PPC::SELECT_CC_I8 ||
2651          MI->getOpcode() == PPC::SELECT_CC_F4 ||
2652          MI->getOpcode() == PPC::SELECT_CC_F8 ||
2653          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
2654         "Unexpected instr type to insert");
2655
2656  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2657  // control-flow pattern.  The incoming instruction knows the destination vreg
2658  // to set, the condition code register to branch on, the true/false values to
2659  // select between, and a branch opcode to use.
2660  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2661  ilist<MachineBasicBlock>::iterator It = BB;
2662  ++It;
2663
2664  //  thisMBB:
2665  //  ...
2666  //   TrueVal = ...
2667  //   cmpTY ccX, r1, r2
2668  //   bCC copy1MBB
2669  //   fallthrough --> copy0MBB
2670  MachineBasicBlock *thisMBB = BB;
2671  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2672  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2673  unsigned SelectPred = MI->getOperand(4).getImm();
2674  BuildMI(BB, TII->get(PPC::BCC))
2675    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2676  MachineFunction *F = BB->getParent();
2677  F->getBasicBlockList().insert(It, copy0MBB);
2678  F->getBasicBlockList().insert(It, sinkMBB);
2679  // Update machine-CFG edges by first adding all successors of the current
2680  // block to the new block which will contain the Phi node for the select.
2681  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2682      e = BB->succ_end(); i != e; ++i)
2683    sinkMBB->addSuccessor(*i);
2684  // Next, remove all successors of the current block, and add the true
2685  // and fallthrough blocks as its successors.
2686  while(!BB->succ_empty())
2687    BB->removeSuccessor(BB->succ_begin());
2688  BB->addSuccessor(copy0MBB);
2689  BB->addSuccessor(sinkMBB);
2690
2691  //  copy0MBB:
2692  //   %FalseValue = ...
2693  //   # fallthrough to sinkMBB
2694  BB = copy0MBB;
2695
2696  // Update machine-CFG edges
2697  BB->addSuccessor(sinkMBB);
2698
2699  //  sinkMBB:
2700  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2701  //  ...
2702  BB = sinkMBB;
2703  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
2704    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2705    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2706
2707  delete MI;   // The pseudo instruction is gone now.
2708  return BB;
2709}
2710
2711//===----------------------------------------------------------------------===//
2712// Target Optimization Hooks
2713//===----------------------------------------------------------------------===//
2714
2715SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2716                                               DAGCombinerInfo &DCI) const {
2717  TargetMachine &TM = getTargetMachine();
2718  SelectionDAG &DAG = DCI.DAG;
2719  switch (N->getOpcode()) {
2720  default: break;
2721  case PPCISD::SHL:
2722    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2723      if (C->getValue() == 0)   // 0 << V -> 0.
2724        return N->getOperand(0);
2725    }
2726    break;
2727  case PPCISD::SRL:
2728    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2729      if (C->getValue() == 0)   // 0 >>u V -> 0.
2730        return N->getOperand(0);
2731    }
2732    break;
2733  case PPCISD::SRA:
2734    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2735      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
2736          C->isAllOnesValue())    // -1 >>s V -> -1.
2737        return N->getOperand(0);
2738    }
2739    break;
2740
2741  case ISD::SINT_TO_FP:
2742    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
2743      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
2744        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
2745        // We allow the src/dst to be either f32/f64, but the intermediate
2746        // type must be i64.
2747        if (N->getOperand(0).getValueType() == MVT::i64) {
2748          SDOperand Val = N->getOperand(0).getOperand(0);
2749          if (Val.getValueType() == MVT::f32) {
2750            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2751            DCI.AddToWorklist(Val.Val);
2752          }
2753
2754          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
2755          DCI.AddToWorklist(Val.Val);
2756          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
2757          DCI.AddToWorklist(Val.Val);
2758          if (N->getValueType(0) == MVT::f32) {
2759            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
2760            DCI.AddToWorklist(Val.Val);
2761          }
2762          return Val;
2763        } else if (N->getOperand(0).getValueType() == MVT::i32) {
2764          // If the intermediate type is i32, we can avoid the load/store here
2765          // too.
2766        }
2767      }
2768    }
2769    break;
2770  case ISD::STORE:
2771    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
2772    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
2773        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
2774        N->getOperand(1).getValueType() == MVT::i32) {
2775      SDOperand Val = N->getOperand(1).getOperand(0);
2776      if (Val.getValueType() == MVT::f32) {
2777        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2778        DCI.AddToWorklist(Val.Val);
2779      }
2780      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
2781      DCI.AddToWorklist(Val.Val);
2782
2783      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
2784                        N->getOperand(2), N->getOperand(3));
2785      DCI.AddToWorklist(Val.Val);
2786      return Val;
2787    }
2788
2789    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
2790    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
2791        N->getOperand(1).Val->hasOneUse() &&
2792        (N->getOperand(1).getValueType() == MVT::i32 ||
2793         N->getOperand(1).getValueType() == MVT::i16)) {
2794      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
2795      // Do an any-extend to 32-bits if this is a half-word input.
2796      if (BSwapOp.getValueType() == MVT::i16)
2797        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
2798
2799      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
2800                         N->getOperand(2), N->getOperand(3),
2801                         DAG.getValueType(N->getOperand(1).getValueType()));
2802    }
2803    break;
2804  case ISD::BSWAP:
2805    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
2806    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
2807        N->getOperand(0).hasOneUse() &&
2808        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
2809      SDOperand Load = N->getOperand(0);
2810      LoadSDNode *LD = cast<LoadSDNode>(Load);
2811      // Create the byte-swapping load.
2812      std::vector<MVT::ValueType> VTs;
2813      VTs.push_back(MVT::i32);
2814      VTs.push_back(MVT::Other);
2815      SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
2816      SDOperand Ops[] = {
2817        LD->getChain(),    // Chain
2818        LD->getBasePtr(),  // Ptr
2819        SV,                // SrcValue
2820        DAG.getValueType(N->getValueType(0)) // VT
2821      };
2822      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
2823
2824      // If this is an i16 load, insert the truncate.
2825      SDOperand ResVal = BSLoad;
2826      if (N->getValueType(0) == MVT::i16)
2827        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
2828
2829      // First, combine the bswap away.  This makes the value produced by the
2830      // load dead.
2831      DCI.CombineTo(N, ResVal);
2832
2833      // Next, combine the load away, we give it a bogus result value but a real
2834      // chain result.  The result value is dead because the bswap is dead.
2835      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
2836
2837      // Return N so it doesn't get rechecked!
2838      return SDOperand(N, 0);
2839    }
2840
2841    break;
2842  case PPCISD::VCMP: {
2843    // If a VCMPo node already exists with exactly the same operands as this
2844    // node, use its result instead of this node (VCMPo computes both a CR6 and
2845    // a normal output).
2846    //
2847    if (!N->getOperand(0).hasOneUse() &&
2848        !N->getOperand(1).hasOneUse() &&
2849        !N->getOperand(2).hasOneUse()) {
2850
2851      // Scan all of the users of the LHS, looking for VCMPo's that match.
2852      SDNode *VCMPoNode = 0;
2853
2854      SDNode *LHSN = N->getOperand(0).Val;
2855      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
2856           UI != E; ++UI)
2857        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
2858            (*UI)->getOperand(1) == N->getOperand(1) &&
2859            (*UI)->getOperand(2) == N->getOperand(2) &&
2860            (*UI)->getOperand(0) == N->getOperand(0)) {
2861          VCMPoNode = *UI;
2862          break;
2863        }
2864
2865      // If there is no VCMPo node, or if the flag value has a single use, don't
2866      // transform this.
2867      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
2868        break;
2869
2870      // Look at the (necessarily single) use of the flag value.  If it has a
2871      // chain, this transformation is more complex.  Note that multiple things
2872      // could use the value result, which we should ignore.
2873      SDNode *FlagUser = 0;
2874      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
2875           FlagUser == 0; ++UI) {
2876        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
2877        SDNode *User = *UI;
2878        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2879          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
2880            FlagUser = User;
2881            break;
2882          }
2883        }
2884      }
2885
2886      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
2887      // give up for right now.
2888      if (FlagUser->getOpcode() == PPCISD::MFCR)
2889        return SDOperand(VCMPoNode, 0);
2890    }
2891    break;
2892  }
2893  case ISD::BR_CC: {
2894    // If this is a branch on an altivec predicate comparison, lower this so
2895    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
2896    // lowering is done pre-legalize, because the legalizer lowers the predicate
2897    // compare down to code that is difficult to reassemble.
2898    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2899    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
2900    int CompareOpc;
2901    bool isDot;
2902
2903    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2904        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
2905        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
2906      assert(isDot && "Can't compare against a vector result!");
2907
2908      // If this is a comparison against something other than 0/1, then we know
2909      // that the condition is never/always true.
2910      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
2911      if (Val != 0 && Val != 1) {
2912        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
2913          return N->getOperand(0);
2914        // Always !=, turn it into an unconditional branch.
2915        return DAG.getNode(ISD::BR, MVT::Other,
2916                           N->getOperand(0), N->getOperand(4));
2917      }
2918
2919      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
2920
2921      // Create the PPCISD altivec 'dot' comparison node.
2922      std::vector<MVT::ValueType> VTs;
2923      SDOperand Ops[] = {
2924        LHS.getOperand(2),  // LHS of compare
2925        LHS.getOperand(3),  // RHS of compare
2926        DAG.getConstant(CompareOpc, MVT::i32)
2927      };
2928      VTs.push_back(LHS.getOperand(2).getValueType());
2929      VTs.push_back(MVT::Flag);
2930      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2931
2932      // Unpack the result based on how the target uses it.
2933      PPC::Predicate CompOpc;
2934      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
2935      default:  // Can't happen, don't crash on invalid number though.
2936      case 0:   // Branch on the value of the EQ bit of CR6.
2937        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
2938        break;
2939      case 1:   // Branch on the inverted value of the EQ bit of CR6.
2940        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
2941        break;
2942      case 2:   // Branch on the value of the LT bit of CR6.
2943        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
2944        break;
2945      case 3:   // Branch on the inverted value of the LT bit of CR6.
2946        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
2947        break;
2948      }
2949
2950      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
2951                         DAG.getConstant(CompOpc, MVT::i32),
2952                         DAG.getRegister(PPC::CR6, MVT::i32),
2953                         N->getOperand(4), CompNode.getValue(1));
2954    }
2955    break;
2956  }
2957  }
2958
2959  return SDOperand();
2960}
2961
2962//===----------------------------------------------------------------------===//
2963// Inline Assembly Support
2964//===----------------------------------------------------------------------===//
2965
2966void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
2967                                                       uint64_t Mask,
2968                                                       uint64_t &KnownZero,
2969                                                       uint64_t &KnownOne,
2970                                                       unsigned Depth) const {
2971  KnownZero = 0;
2972  KnownOne = 0;
2973  switch (Op.getOpcode()) {
2974  default: break;
2975  case PPCISD::LBRX: {
2976    // lhbrx is known to have the top bits cleared out.
2977    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
2978      KnownZero = 0xFFFF0000;
2979    break;
2980  }
2981  case ISD::INTRINSIC_WO_CHAIN: {
2982    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
2983    default: break;
2984    case Intrinsic::ppc_altivec_vcmpbfp_p:
2985    case Intrinsic::ppc_altivec_vcmpeqfp_p:
2986    case Intrinsic::ppc_altivec_vcmpequb_p:
2987    case Intrinsic::ppc_altivec_vcmpequh_p:
2988    case Intrinsic::ppc_altivec_vcmpequw_p:
2989    case Intrinsic::ppc_altivec_vcmpgefp_p:
2990    case Intrinsic::ppc_altivec_vcmpgtfp_p:
2991    case Intrinsic::ppc_altivec_vcmpgtsb_p:
2992    case Intrinsic::ppc_altivec_vcmpgtsh_p:
2993    case Intrinsic::ppc_altivec_vcmpgtsw_p:
2994    case Intrinsic::ppc_altivec_vcmpgtub_p:
2995    case Intrinsic::ppc_altivec_vcmpgtuh_p:
2996    case Intrinsic::ppc_altivec_vcmpgtuw_p:
2997      KnownZero = ~1U;  // All bits but the low one are known to be zero.
2998      break;
2999    }
3000  }
3001  }
3002}
3003
3004
3005/// getConstraintType - Given a constraint letter, return the type of
3006/// constraint it is for this target.
3007PPCTargetLowering::ConstraintType
3008PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
3009  switch (ConstraintLetter) {
3010  default: break;
3011  case 'b':
3012  case 'r':
3013  case 'f':
3014  case 'v':
3015  case 'y':
3016    return C_RegisterClass;
3017  }
3018  return TargetLowering::getConstraintType(ConstraintLetter);
3019}
3020
3021std::pair<unsigned, const TargetRegisterClass*>
3022PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3023                                                MVT::ValueType VT) const {
3024  if (Constraint.size() == 1) {
3025    // GCC RS6000 Constraint Letters
3026    switch (Constraint[0]) {
3027    case 'b':   // R1-R31
3028    case 'r':   // R0-R31
3029      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3030        return std::make_pair(0U, PPC::G8RCRegisterClass);
3031      return std::make_pair(0U, PPC::GPRCRegisterClass);
3032    case 'f':
3033      if (VT == MVT::f32)
3034        return std::make_pair(0U, PPC::F4RCRegisterClass);
3035      else if (VT == MVT::f64)
3036        return std::make_pair(0U, PPC::F8RCRegisterClass);
3037      break;
3038    case 'v':
3039      return std::make_pair(0U, PPC::VRRCRegisterClass);
3040    case 'y':   // crrc
3041      return std::make_pair(0U, PPC::CRRCRegisterClass);
3042    }
3043  }
3044
3045  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3046}
3047
3048
3049// isOperandValidForConstraint
3050SDOperand PPCTargetLowering::
3051isOperandValidForConstraint(SDOperand Op, char Letter, SelectionDAG &DAG) {
3052  switch (Letter) {
3053  default: break;
3054  case 'I':
3055  case 'J':
3056  case 'K':
3057  case 'L':
3058  case 'M':
3059  case 'N':
3060  case 'O':
3061  case 'P': {
3062    if (!isa<ConstantSDNode>(Op)) return SDOperand(0,0);// Must be an immediate.
3063    unsigned Value = cast<ConstantSDNode>(Op)->getValue();
3064    switch (Letter) {
3065    default: assert(0 && "Unknown constraint letter!");
3066    case 'I':  // "I" is a signed 16-bit constant.
3067      if ((short)Value == (int)Value) return Op;
3068      break;
3069    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
3070    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
3071      if ((short)Value == 0) return Op;
3072      break;
3073    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
3074      if ((Value >> 16) == 0) return Op;
3075      break;
3076    case 'M':  // "M" is a constant that is greater than 31.
3077      if (Value > 31) return Op;
3078      break;
3079    case 'N':  // "N" is a positive constant that is an exact power of two.
3080      if ((int)Value > 0 && isPowerOf2_32(Value)) return Op;
3081      break;
3082    case 'O':  // "O" is the constant zero.
3083      if (Value == 0) return Op;
3084      break;
3085    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
3086      if ((short)-Value == (int)-Value) return Op;
3087      break;
3088    }
3089    break;
3090  }
3091  }
3092
3093  // Handle standard constraint letters.
3094  return TargetLowering::isOperandValidForConstraint(Op, Letter, DAG);
3095}
3096
3097/// isLegalAddressImmediate - Return true if the integer value can be used
3098/// as the offset of the target addressing mode.
3099bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
3100  // PPC allows a sign-extended 16-bit immediate field.
3101  return (V > -(1 << 16) && V < (1 << 16)-1);
3102}
3103
3104bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3105  return TargetLowering::isLegalAddressImmediate(GV);
3106}
3107