PPCISelLowering.cpp revision d3f7766f2363862b9c8586d2f78bc413223240d3
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPCMachineFunctionInfo.h"
17#include "PPCPerfectShuffle.h"
18#include "PPCTargetMachine.h"
19#include "PPCTargetObjectFile.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Target/TargetOptions.h"
38using namespace llvm;
39
40static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
41cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
42
43static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
44cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
45
46static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
47cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
48
49static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
50  if (TM.getSubtargetImpl()->isDarwin())
51    return new TargetLoweringObjectFileMachO();
52
53  if (TM.getSubtargetImpl()->isSVR4ABI())
54    return new PPC64LinuxTargetObjectFile();
55
56  return new TargetLoweringObjectFileELF();
57}
58
59PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
60  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
61  const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
62
63  setPow2DivIsCheap();
64
65  // Use _setjmp/_longjmp instead of setjmp/longjmp.
66  setUseUnderscoreSetJmp(true);
67  setUseUnderscoreLongJmp(true);
68
69  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
70  // arguments are at least 4/8 bytes aligned.
71  bool isPPC64 = Subtarget->isPPC64();
72  setMinStackArgumentAlignment(isPPC64 ? 8:4);
73
74  // Set up the register classes.
75  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
76  addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
77  addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
78
79  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
80  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
81  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
82
83  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
84
85  // PowerPC has pre-inc load and store's.
86  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
87  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
88  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
89  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
90  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
91  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
92  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
93  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
94  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
95  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
96
97  // This is used in the ppcf128->int sequence.  Note it has different semantics
98  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
99  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
100
101  // We do not currently implement these libm ops for PowerPC.
102  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
103  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
104  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
105  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
106  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
107  setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
108
109  // PowerPC has no SREM/UREM instructions
110  setOperationAction(ISD::SREM, MVT::i32, Expand);
111  setOperationAction(ISD::UREM, MVT::i32, Expand);
112  setOperationAction(ISD::SREM, MVT::i64, Expand);
113  setOperationAction(ISD::UREM, MVT::i64, Expand);
114
115  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
116  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
117  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
118  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
119  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
120  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
121  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
122  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
123  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
124
125  // We don't support sin/cos/sqrt/fmod/pow
126  setOperationAction(ISD::FSIN , MVT::f64, Expand);
127  setOperationAction(ISD::FCOS , MVT::f64, Expand);
128  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
129  setOperationAction(ISD::FREM , MVT::f64, Expand);
130  setOperationAction(ISD::FPOW , MVT::f64, Expand);
131  setOperationAction(ISD::FMA  , MVT::f64, Legal);
132  setOperationAction(ISD::FSIN , MVT::f32, Expand);
133  setOperationAction(ISD::FCOS , MVT::f32, Expand);
134  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
135  setOperationAction(ISD::FREM , MVT::f32, Expand);
136  setOperationAction(ISD::FPOW , MVT::f32, Expand);
137  setOperationAction(ISD::FMA  , MVT::f32, Legal);
138
139  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
140
141  // If we're enabling GP optimizations, use hardware square root
142  if (!Subtarget->hasFSQRT() &&
143      !(TM.Options.UnsafeFPMath &&
144        Subtarget->hasFRSQRTE() && Subtarget->hasFRE()))
145    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
146
147  if (!Subtarget->hasFSQRT() &&
148      !(TM.Options.UnsafeFPMath &&
149        Subtarget->hasFRSQRTES() && Subtarget->hasFRES()))
150    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
151
152  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
153  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
154
155  if (Subtarget->hasFPRND()) {
156    setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
157    setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
158    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
159
160    setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
161    setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
162    setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
163
164    // frin does not implement "ties to even." Thus, this is safe only in
165    // fast-math mode.
166    if (TM.Options.UnsafeFPMath) {
167      setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
168      setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
169
170      // These need to set FE_INEXACT, and use a custom inserter.
171      setOperationAction(ISD::FRINT, MVT::f64, Legal);
172      setOperationAction(ISD::FRINT, MVT::f32, Legal);
173    }
174  }
175
176  // PowerPC does not have BSWAP, CTPOP or CTTZ
177  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
178  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
179  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
180  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
181  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
182  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
183  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
184  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
185
186  if (Subtarget->hasPOPCNTD()) {
187    setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
188    setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
189  } else {
190    setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
191    setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
192  }
193
194  // PowerPC does not have ROTR
195  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
196  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
197
198  // PowerPC does not have Select
199  setOperationAction(ISD::SELECT, MVT::i32, Expand);
200  setOperationAction(ISD::SELECT, MVT::i64, Expand);
201  setOperationAction(ISD::SELECT, MVT::f32, Expand);
202  setOperationAction(ISD::SELECT, MVT::f64, Expand);
203
204  // PowerPC wants to turn select_cc of FP into fsel when possible.
205  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
206  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
207
208  // PowerPC wants to optimize integer setcc a bit
209  setOperationAction(ISD::SETCC, MVT::i32, Custom);
210
211  // PowerPC does not have BRCOND which requires SetCC
212  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
213
214  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
215
216  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
217  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
218
219  // PowerPC does not have [U|S]INT_TO_FP
220  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
221  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
222
223  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
224  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
225  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
226  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
227
228  // We cannot sextinreg(i1).  Expand to shifts.
229  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
230
231  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
232  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
233  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
234  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
235
236  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
237  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
238  // support continuation, user-level threading, and etc.. As a result, no
239  // other SjLj exception interfaces are implemented and please don't build
240  // your own exception handling based on them.
241  // LLVM/Clang supports zero-cost DWARF exception handling.
242  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
243  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
244
245  // We want to legalize GlobalAddress and ConstantPool nodes into the
246  // appropriate instructions to materialize the address.
247  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
248  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
249  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
250  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
251  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
252  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
253  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
254  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
255  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
256  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
257
258  // TRAP is legal.
259  setOperationAction(ISD::TRAP, MVT::Other, Legal);
260
261  // TRAMPOLINE is custom lowered.
262  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
263  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
264
265  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
266  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
267
268  if (Subtarget->isSVR4ABI()) {
269    if (isPPC64) {
270      // VAARG always uses double-word chunks, so promote anything smaller.
271      setOperationAction(ISD::VAARG, MVT::i1, Promote);
272      AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
273      setOperationAction(ISD::VAARG, MVT::i8, Promote);
274      AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
275      setOperationAction(ISD::VAARG, MVT::i16, Promote);
276      AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
277      setOperationAction(ISD::VAARG, MVT::i32, Promote);
278      AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
279      setOperationAction(ISD::VAARG, MVT::Other, Expand);
280    } else {
281      // VAARG is custom lowered with the 32-bit SVR4 ABI.
282      setOperationAction(ISD::VAARG, MVT::Other, Custom);
283      setOperationAction(ISD::VAARG, MVT::i64, Custom);
284    }
285  } else
286    setOperationAction(ISD::VAARG, MVT::Other, Expand);
287
288  // Use the default implementation.
289  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
290  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
291  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
292  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
293  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
294  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
295
296  // We want to custom lower some of our intrinsics.
297  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
298
299  // To handle counter-based loop conditions.
300  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
301
302  // Comparisons that require checking two conditions.
303  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
304  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
305  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
306  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
307  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
308  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
309  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
310  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
311  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
312  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
313  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
314  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
315
316  if (Subtarget->has64BitSupport()) {
317    // They also have instructions for converting between i64 and fp.
318    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
319    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
320    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
321    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
322    // This is just the low 32 bits of a (signed) fp->i64 conversion.
323    // We cannot do this with Promote because i64 is not a legal type.
324    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
325
326    if (PPCSubTarget.hasLFIWAX() || Subtarget->isPPC64())
327      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
328  } else {
329    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
330    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
331  }
332
333  // With the instructions enabled under FPCVT, we can do everything.
334  if (PPCSubTarget.hasFPCVT()) {
335    if (Subtarget->has64BitSupport()) {
336      setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
337      setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
338      setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
339      setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
340    }
341
342    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
343    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
344    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
345    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
346  }
347
348  if (Subtarget->use64BitRegs()) {
349    // 64-bit PowerPC implementations can support i64 types directly
350    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
351    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
352    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
353    // 64-bit PowerPC wants to expand i128 shifts itself.
354    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
355    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
356    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
357  } else {
358    // 32-bit PowerPC wants to expand i64 shifts itself.
359    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
360    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
361    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
362  }
363
364  if (Subtarget->hasAltivec()) {
365    // First set operation action for all vector types to expand. Then we
366    // will selectively turn on ones that can be effectively codegen'd.
367    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
368         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
369      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
370
371      // add/sub are legal for all supported vector VT's.
372      setOperationAction(ISD::ADD , VT, Legal);
373      setOperationAction(ISD::SUB , VT, Legal);
374
375      // We promote all shuffles to v16i8.
376      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
377      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
378
379      // We promote all non-typed operations to v4i32.
380      setOperationAction(ISD::AND   , VT, Promote);
381      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
382      setOperationAction(ISD::OR    , VT, Promote);
383      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
384      setOperationAction(ISD::XOR   , VT, Promote);
385      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
386      setOperationAction(ISD::LOAD  , VT, Promote);
387      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
388      setOperationAction(ISD::SELECT, VT, Promote);
389      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
390      setOperationAction(ISD::STORE, VT, Promote);
391      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
392
393      // No other operations are legal.
394      setOperationAction(ISD::MUL , VT, Expand);
395      setOperationAction(ISD::SDIV, VT, Expand);
396      setOperationAction(ISD::SREM, VT, Expand);
397      setOperationAction(ISD::UDIV, VT, Expand);
398      setOperationAction(ISD::UREM, VT, Expand);
399      setOperationAction(ISD::FDIV, VT, Expand);
400      setOperationAction(ISD::FNEG, VT, Expand);
401      setOperationAction(ISD::FSQRT, VT, Expand);
402      setOperationAction(ISD::FLOG, VT, Expand);
403      setOperationAction(ISD::FLOG10, VT, Expand);
404      setOperationAction(ISD::FLOG2, VT, Expand);
405      setOperationAction(ISD::FEXP, VT, Expand);
406      setOperationAction(ISD::FEXP2, VT, Expand);
407      setOperationAction(ISD::FSIN, VT, Expand);
408      setOperationAction(ISD::FCOS, VT, Expand);
409      setOperationAction(ISD::FABS, VT, Expand);
410      setOperationAction(ISD::FPOWI, VT, Expand);
411      setOperationAction(ISD::FFLOOR, VT, Expand);
412      setOperationAction(ISD::FCEIL,  VT, Expand);
413      setOperationAction(ISD::FTRUNC, VT, Expand);
414      setOperationAction(ISD::FRINT,  VT, Expand);
415      setOperationAction(ISD::FNEARBYINT, VT, Expand);
416      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
417      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
418      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
419      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
420      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
421      setOperationAction(ISD::UDIVREM, VT, Expand);
422      setOperationAction(ISD::SDIVREM, VT, Expand);
423      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
424      setOperationAction(ISD::FPOW, VT, Expand);
425      setOperationAction(ISD::CTPOP, VT, Expand);
426      setOperationAction(ISD::CTLZ, VT, Expand);
427      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
428      setOperationAction(ISD::CTTZ, VT, Expand);
429      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
430      setOperationAction(ISD::VSELECT, VT, Expand);
431      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
432
433      for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
434           j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
435        MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
436        setTruncStoreAction(VT, InnerVT, Expand);
437      }
438      setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
439      setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
440      setLoadExtAction(ISD::EXTLOAD, VT, Expand);
441    }
442
443    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
444    // with merges, splats, etc.
445    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
446
447    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
448    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
449    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
450    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
451    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
452    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
453    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
454    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
455    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
456    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
457    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
458    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
459    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
460    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
461
462    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
463    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
464    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
465    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
466
467    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
468    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
469
470    if (TM.Options.UnsafeFPMath) {
471      setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
472      setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
473    }
474
475    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
476    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
477    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
478
479    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
480    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
481
482    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
483    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
484    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
485    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
486
487    // Altivec does not contain unordered floating-point compare instructions
488    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
489    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
490    setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
491    setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
492    setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
493    setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
494  }
495
496  if (Subtarget->has64BitSupport()) {
497    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
498    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
499  }
500
501  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
502  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
503  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
504  setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
505
506  setBooleanContents(ZeroOrOneBooleanContent);
507  // Altivec instructions set fields to all zeros or all ones.
508  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
509
510  if (isPPC64) {
511    setStackPointerRegisterToSaveRestore(PPC::X1);
512    setExceptionPointerRegister(PPC::X3);
513    setExceptionSelectorRegister(PPC::X4);
514  } else {
515    setStackPointerRegisterToSaveRestore(PPC::R1);
516    setExceptionPointerRegister(PPC::R3);
517    setExceptionSelectorRegister(PPC::R4);
518  }
519
520  // We have target-specific dag combine patterns for the following nodes:
521  setTargetDAGCombine(ISD::SINT_TO_FP);
522  setTargetDAGCombine(ISD::LOAD);
523  setTargetDAGCombine(ISD::STORE);
524  setTargetDAGCombine(ISD::BR_CC);
525  setTargetDAGCombine(ISD::BSWAP);
526  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
527
528  // Use reciprocal estimates.
529  if (TM.Options.UnsafeFPMath) {
530    setTargetDAGCombine(ISD::FDIV);
531    setTargetDAGCombine(ISD::FSQRT);
532  }
533
534  // Darwin long double math library functions have $LDBL128 appended.
535  if (Subtarget->isDarwin()) {
536    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
537    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
538    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
539    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
540    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
541    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
542    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
543    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
544    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
545    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
546  }
547
548  setMinFunctionAlignment(2);
549  if (PPCSubTarget.isDarwin())
550    setPrefFunctionAlignment(4);
551
552  if (isPPC64 && Subtarget->isJITCodeModel())
553    // Temporary workaround for the inability of PPC64 JIT to handle jump
554    // tables.
555    setSupportJumpTables(false);
556
557  setInsertFencesForAtomic(true);
558
559  setSchedulingPreference(Sched::Hybrid);
560
561  computeRegisterProperties();
562
563  // The Freescale cores does better with aggressive inlining of memcpy and
564  // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
565  if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
566      Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
567    MaxStoresPerMemset = 32;
568    MaxStoresPerMemsetOptSize = 16;
569    MaxStoresPerMemcpy = 32;
570    MaxStoresPerMemcpyOptSize = 8;
571    MaxStoresPerMemmove = 32;
572    MaxStoresPerMemmoveOptSize = 8;
573
574    setPrefFunctionAlignment(4);
575  }
576}
577
578/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
579/// function arguments in the caller parameter area.
580unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
581  const TargetMachine &TM = getTargetMachine();
582  // Darwin passes everything on 4 byte boundary.
583  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
584    return 4;
585
586  // 16byte and wider vectors are passed on 16byte boundary.
587  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
588    if (VTy->getBitWidth() >= 128)
589      return 16;
590
591  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
592   if (PPCSubTarget.isPPC64())
593     return 8;
594
595  return 4;
596}
597
598const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
599  switch (Opcode) {
600  default: return 0;
601  case PPCISD::FSEL:            return "PPCISD::FSEL";
602  case PPCISD::FCFID:           return "PPCISD::FCFID";
603  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
604  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
605  case PPCISD::FRE:             return "PPCISD::FRE";
606  case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
607  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
608  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
609  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
610  case PPCISD::VPERM:           return "PPCISD::VPERM";
611  case PPCISD::Hi:              return "PPCISD::Hi";
612  case PPCISD::Lo:              return "PPCISD::Lo";
613  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
614  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
615  case PPCISD::LOAD:            return "PPCISD::LOAD";
616  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
617  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
618  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
619  case PPCISD::SRL:             return "PPCISD::SRL";
620  case PPCISD::SRA:             return "PPCISD::SRA";
621  case PPCISD::SHL:             return "PPCISD::SHL";
622  case PPCISD::CALL:            return "PPCISD::CALL";
623  case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
624  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
625  case PPCISD::BCTRL:           return "PPCISD::BCTRL";
626  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
627  case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
628  case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
629  case PPCISD::MFCR:            return "PPCISD::MFCR";
630  case PPCISD::VCMP:            return "PPCISD::VCMP";
631  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
632  case PPCISD::LBRX:            return "PPCISD::LBRX";
633  case PPCISD::STBRX:           return "PPCISD::STBRX";
634  case PPCISD::LARX:            return "PPCISD::LARX";
635  case PPCISD::STCX:            return "PPCISD::STCX";
636  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
637  case PPCISD::BDNZ:            return "PPCISD::BDNZ";
638  case PPCISD::BDZ:             return "PPCISD::BDZ";
639  case PPCISD::MFFS:            return "PPCISD::MFFS";
640  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
641  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
642  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
643  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
644  case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA";
645  case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L";
646  case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L";
647  case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
648  case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
649  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
650  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
651  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
652  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
653  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
654  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
655  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
656  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
657  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
658  case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
659  case PPCISD::SC:              return "PPCISD::SC";
660  }
661}
662
663EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
664  if (!VT.isVector())
665    return MVT::i32;
666  return VT.changeVectorElementTypeToInteger();
667}
668
669//===----------------------------------------------------------------------===//
670// Node matching predicates, for use by the tblgen matching code.
671//===----------------------------------------------------------------------===//
672
673/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
674static bool isFloatingPointZero(SDValue Op) {
675  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
676    return CFP->getValueAPF().isZero();
677  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
678    // Maybe this has already been legalized into the constant pool?
679    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
680      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
681        return CFP->getValueAPF().isZero();
682  }
683  return false;
684}
685
686/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
687/// true if Op is undef or if it matches the specified value.
688static bool isConstantOrUndef(int Op, int Val) {
689  return Op < 0 || Op == Val;
690}
691
692/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
693/// VPKUHUM instruction.
694bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
695  if (!isUnary) {
696    for (unsigned i = 0; i != 16; ++i)
697      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
698        return false;
699  } else {
700    for (unsigned i = 0; i != 8; ++i)
701      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
702          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
703        return false;
704  }
705  return true;
706}
707
708/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
709/// VPKUWUM instruction.
710bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
711  if (!isUnary) {
712    for (unsigned i = 0; i != 16; i += 2)
713      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
714          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
715        return false;
716  } else {
717    for (unsigned i = 0; i != 8; i += 2)
718      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
719          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
720          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
721          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
722        return false;
723  }
724  return true;
725}
726
727/// isVMerge - Common function, used to match vmrg* shuffles.
728///
729static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
730                     unsigned LHSStart, unsigned RHSStart) {
731  assert(N->getValueType(0) == MVT::v16i8 &&
732         "PPC only supports shuffles by bytes!");
733  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
734         "Unsupported merge size!");
735
736  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
737    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
738      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
739                             LHSStart+j+i*UnitSize) ||
740          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
741                             RHSStart+j+i*UnitSize))
742        return false;
743    }
744  return true;
745}
746
747/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
748/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
749bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
750                             bool isUnary) {
751  if (!isUnary)
752    return isVMerge(N, UnitSize, 8, 24);
753  return isVMerge(N, UnitSize, 8, 8);
754}
755
756/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
757/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
758bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
759                             bool isUnary) {
760  if (!isUnary)
761    return isVMerge(N, UnitSize, 0, 16);
762  return isVMerge(N, UnitSize, 0, 0);
763}
764
765
766/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
767/// amount, otherwise return -1.
768int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
769  assert(N->getValueType(0) == MVT::v16i8 &&
770         "PPC only supports shuffles by bytes!");
771
772  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
773
774  // Find the first non-undef value in the shuffle mask.
775  unsigned i;
776  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
777    /*search*/;
778
779  if (i == 16) return -1;  // all undef.
780
781  // Otherwise, check to see if the rest of the elements are consecutively
782  // numbered from this value.
783  unsigned ShiftAmt = SVOp->getMaskElt(i);
784  if (ShiftAmt < i) return -1;
785  ShiftAmt -= i;
786
787  if (!isUnary) {
788    // Check the rest of the elements to see if they are consecutive.
789    for (++i; i != 16; ++i)
790      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
791        return -1;
792  } else {
793    // Check the rest of the elements to see if they are consecutive.
794    for (++i; i != 16; ++i)
795      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
796        return -1;
797  }
798  return ShiftAmt;
799}
800
801/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
802/// specifies a splat of a single element that is suitable for input to
803/// VSPLTB/VSPLTH/VSPLTW.
804bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
805  assert(N->getValueType(0) == MVT::v16i8 &&
806         (EltSize == 1 || EltSize == 2 || EltSize == 4));
807
808  // This is a splat operation if each element of the permute is the same, and
809  // if the value doesn't reference the second vector.
810  unsigned ElementBase = N->getMaskElt(0);
811
812  // FIXME: Handle UNDEF elements too!
813  if (ElementBase >= 16)
814    return false;
815
816  // Check that the indices are consecutive, in the case of a multi-byte element
817  // splatted with a v16i8 mask.
818  for (unsigned i = 1; i != EltSize; ++i)
819    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
820      return false;
821
822  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
823    if (N->getMaskElt(i) < 0) continue;
824    for (unsigned j = 0; j != EltSize; ++j)
825      if (N->getMaskElt(i+j) != N->getMaskElt(j))
826        return false;
827  }
828  return true;
829}
830
831/// isAllNegativeZeroVector - Returns true if all elements of build_vector
832/// are -0.0.
833bool PPC::isAllNegativeZeroVector(SDNode *N) {
834  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
835
836  APInt APVal, APUndef;
837  unsigned BitSize;
838  bool HasAnyUndefs;
839
840  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
841    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
842      return CFP->getValueAPF().isNegZero();
843
844  return false;
845}
846
847/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
848/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
849unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
850  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
851  assert(isSplatShuffleMask(SVOp, EltSize));
852  return SVOp->getMaskElt(0) / EltSize;
853}
854
855/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
856/// by using a vspltis[bhw] instruction of the specified element size, return
857/// the constant being splatted.  The ByteSize field indicates the number of
858/// bytes of each element [124] -> [bhw].
859SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
860  SDValue OpVal(0, 0);
861
862  // If ByteSize of the splat is bigger than the element size of the
863  // build_vector, then we have a case where we are checking for a splat where
864  // multiple elements of the buildvector are folded together into a single
865  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
866  unsigned EltSize = 16/N->getNumOperands();
867  if (EltSize < ByteSize) {
868    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
869    SDValue UniquedVals[4];
870    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
871
872    // See if all of the elements in the buildvector agree across.
873    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
874      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
875      // If the element isn't a constant, bail fully out.
876      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
877
878
879      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
880        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
881      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
882        return SDValue();  // no match.
883    }
884
885    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
886    // either constant or undef values that are identical for each chunk.  See
887    // if these chunks can form into a larger vspltis*.
888
889    // Check to see if all of the leading entries are either 0 or -1.  If
890    // neither, then this won't fit into the immediate field.
891    bool LeadingZero = true;
892    bool LeadingOnes = true;
893    for (unsigned i = 0; i != Multiple-1; ++i) {
894      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
895
896      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
897      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
898    }
899    // Finally, check the least significant entry.
900    if (LeadingZero) {
901      if (UniquedVals[Multiple-1].getNode() == 0)
902        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
903      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
904      if (Val < 16)
905        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
906    }
907    if (LeadingOnes) {
908      if (UniquedVals[Multiple-1].getNode() == 0)
909        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
910      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
911      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
912        return DAG.getTargetConstant(Val, MVT::i32);
913    }
914
915    return SDValue();
916  }
917
918  // Check to see if this buildvec has a single non-undef value in its elements.
919  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
920    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
921    if (OpVal.getNode() == 0)
922      OpVal = N->getOperand(i);
923    else if (OpVal != N->getOperand(i))
924      return SDValue();
925  }
926
927  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
928
929  unsigned ValSizeInBytes = EltSize;
930  uint64_t Value = 0;
931  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
932    Value = CN->getZExtValue();
933  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
934    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
935    Value = FloatToBits(CN->getValueAPF().convertToFloat());
936  }
937
938  // If the splat value is larger than the element value, then we can never do
939  // this splat.  The only case that we could fit the replicated bits into our
940  // immediate field for would be zero, and we prefer to use vxor for it.
941  if (ValSizeInBytes < ByteSize) return SDValue();
942
943  // If the element value is larger than the splat value, cut it in half and
944  // check to see if the two halves are equal.  Continue doing this until we
945  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
946  while (ValSizeInBytes > ByteSize) {
947    ValSizeInBytes >>= 1;
948
949    // If the top half equals the bottom half, we're still ok.
950    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
951         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
952      return SDValue();
953  }
954
955  // Properly sign extend the value.
956  int MaskVal = SignExtend32(Value, ByteSize * 8);
957
958  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
959  if (MaskVal == 0) return SDValue();
960
961  // Finally, if this value fits in a 5 bit sext field, return it
962  if (SignExtend32<5>(MaskVal) == MaskVal)
963    return DAG.getTargetConstant(MaskVal, MVT::i32);
964  return SDValue();
965}
966
967//===----------------------------------------------------------------------===//
968//  Addressing Mode Selection
969//===----------------------------------------------------------------------===//
970
971/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
972/// or 64-bit immediate, and if the value can be accurately represented as a
973/// sign extension from a 16-bit value.  If so, this returns true and the
974/// immediate.
975static bool isIntS16Immediate(SDNode *N, short &Imm) {
976  if (N->getOpcode() != ISD::Constant)
977    return false;
978
979  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
980  if (N->getValueType(0) == MVT::i32)
981    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
982  else
983    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
984}
985static bool isIntS16Immediate(SDValue Op, short &Imm) {
986  return isIntS16Immediate(Op.getNode(), Imm);
987}
988
989
990/// SelectAddressRegReg - Given the specified addressed, check to see if it
991/// can be represented as an indexed [r+r] operation.  Returns false if it
992/// can be more efficiently represented with [r+imm].
993bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
994                                            SDValue &Index,
995                                            SelectionDAG &DAG) const {
996  short imm = 0;
997  if (N.getOpcode() == ISD::ADD) {
998    if (isIntS16Immediate(N.getOperand(1), imm))
999      return false;    // r+i
1000    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
1001      return false;    // r+i
1002
1003    Base = N.getOperand(0);
1004    Index = N.getOperand(1);
1005    return true;
1006  } else if (N.getOpcode() == ISD::OR) {
1007    if (isIntS16Immediate(N.getOperand(1), imm))
1008      return false;    // r+i can fold it if we can.
1009
1010    // If this is an or of disjoint bitfields, we can codegen this as an add
1011    // (for better address arithmetic) if the LHS and RHS of the OR are provably
1012    // disjoint.
1013    APInt LHSKnownZero, LHSKnownOne;
1014    APInt RHSKnownZero, RHSKnownOne;
1015    DAG.ComputeMaskedBits(N.getOperand(0),
1016                          LHSKnownZero, LHSKnownOne);
1017
1018    if (LHSKnownZero.getBoolValue()) {
1019      DAG.ComputeMaskedBits(N.getOperand(1),
1020                            RHSKnownZero, RHSKnownOne);
1021      // If all of the bits are known zero on the LHS or RHS, the add won't
1022      // carry.
1023      if (~(LHSKnownZero | RHSKnownZero) == 0) {
1024        Base = N.getOperand(0);
1025        Index = N.getOperand(1);
1026        return true;
1027      }
1028    }
1029  }
1030
1031  return false;
1032}
1033
1034/// Returns true if the address N can be represented by a base register plus
1035/// a signed 16-bit displacement [r+imm], and if it is not better
1036/// represented as reg+reg.  If Aligned is true, only accept displacements
1037/// suitable for STD and friends, i.e. multiples of 4.
1038bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1039                                            SDValue &Base,
1040                                            SelectionDAG &DAG,
1041                                            bool Aligned) const {
1042  // FIXME dl should come from parent load or store, not from address
1043  SDLoc dl(N);
1044  // If this can be more profitably realized as r+r, fail.
1045  if (SelectAddressRegReg(N, Disp, Base, DAG))
1046    return false;
1047
1048  if (N.getOpcode() == ISD::ADD) {
1049    short imm = 0;
1050    if (isIntS16Immediate(N.getOperand(1), imm) &&
1051        (!Aligned || (imm & 3) == 0)) {
1052      Disp = DAG.getTargetConstant(imm, N.getValueType());
1053      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1054        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1055      } else {
1056        Base = N.getOperand(0);
1057      }
1058      return true; // [r+i]
1059    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1060      // Match LOAD (ADD (X, Lo(G))).
1061      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1062             && "Cannot handle constant offsets yet!");
1063      Disp = N.getOperand(1).getOperand(0);  // The global address.
1064      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1065             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1066             Disp.getOpcode() == ISD::TargetConstantPool ||
1067             Disp.getOpcode() == ISD::TargetJumpTable);
1068      Base = N.getOperand(0);
1069      return true;  // [&g+r]
1070    }
1071  } else if (N.getOpcode() == ISD::OR) {
1072    short imm = 0;
1073    if (isIntS16Immediate(N.getOperand(1), imm) &&
1074        (!Aligned || (imm & 3) == 0)) {
1075      // If this is an or of disjoint bitfields, we can codegen this as an add
1076      // (for better address arithmetic) if the LHS and RHS of the OR are
1077      // provably disjoint.
1078      APInt LHSKnownZero, LHSKnownOne;
1079      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1080
1081      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1082        // If all of the bits are known zero on the LHS or RHS, the add won't
1083        // carry.
1084        Base = N.getOperand(0);
1085        Disp = DAG.getTargetConstant(imm, N.getValueType());
1086        return true;
1087      }
1088    }
1089  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1090    // Loading from a constant address.
1091
1092    // If this address fits entirely in a 16-bit sext immediate field, codegen
1093    // this as "d, 0"
1094    short Imm;
1095    if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
1096      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
1097      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1098                             CN->getValueType(0));
1099      return true;
1100    }
1101
1102    // Handle 32-bit sext immediates with LIS + addr mode.
1103    if ((CN->getValueType(0) == MVT::i32 ||
1104         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
1105        (!Aligned || (CN->getZExtValue() & 3) == 0)) {
1106      int Addr = (int)CN->getZExtValue();
1107
1108      // Otherwise, break this down into an LIS + disp.
1109      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
1110
1111      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
1112      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1113      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1114      return true;
1115    }
1116  }
1117
1118  Disp = DAG.getTargetConstant(0, getPointerTy());
1119  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1120    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1121  else
1122    Base = N;
1123  return true;      // [r+0]
1124}
1125
1126/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1127/// represented as an indexed [r+r] operation.
1128bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1129                                                SDValue &Index,
1130                                                SelectionDAG &DAG) const {
1131  // Check to see if we can easily represent this as an [r+r] address.  This
1132  // will fail if it thinks that the address is more profitably represented as
1133  // reg+imm, e.g. where imm = 0.
1134  if (SelectAddressRegReg(N, Base, Index, DAG))
1135    return true;
1136
1137  // If the operand is an addition, always emit this as [r+r], since this is
1138  // better (for code size, and execution, as the memop does the add for free)
1139  // than emitting an explicit add.
1140  if (N.getOpcode() == ISD::ADD) {
1141    Base = N.getOperand(0);
1142    Index = N.getOperand(1);
1143    return true;
1144  }
1145
1146  // Otherwise, do it the hard way, using R0 as the base register.
1147  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1148                         N.getValueType());
1149  Index = N;
1150  return true;
1151}
1152
1153/// getPreIndexedAddressParts - returns true by value, base pointer and
1154/// offset pointer and addressing mode by reference if the node's address
1155/// can be legally represented as pre-indexed load / store address.
1156bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1157                                                  SDValue &Offset,
1158                                                  ISD::MemIndexedMode &AM,
1159                                                  SelectionDAG &DAG) const {
1160  if (DisablePPCPreinc) return false;
1161
1162  bool isLoad = true;
1163  SDValue Ptr;
1164  EVT VT;
1165  unsigned Alignment;
1166  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1167    Ptr = LD->getBasePtr();
1168    VT = LD->getMemoryVT();
1169    Alignment = LD->getAlignment();
1170  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1171    Ptr = ST->getBasePtr();
1172    VT  = ST->getMemoryVT();
1173    Alignment = ST->getAlignment();
1174    isLoad = false;
1175  } else
1176    return false;
1177
1178  // PowerPC doesn't have preinc load/store instructions for vectors.
1179  if (VT.isVector())
1180    return false;
1181
1182  if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
1183
1184    // Common code will reject creating a pre-inc form if the base pointer
1185    // is a frame index, or if N is a store and the base pointer is either
1186    // the same as or a predecessor of the value being stored.  Check for
1187    // those situations here, and try with swapped Base/Offset instead.
1188    bool Swap = false;
1189
1190    if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
1191      Swap = true;
1192    else if (!isLoad) {
1193      SDValue Val = cast<StoreSDNode>(N)->getValue();
1194      if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
1195        Swap = true;
1196    }
1197
1198    if (Swap)
1199      std::swap(Base, Offset);
1200
1201    AM = ISD::PRE_INC;
1202    return true;
1203  }
1204
1205  // LDU/STU can only handle immediates that are a multiple of 4.
1206  if (VT != MVT::i64) {
1207    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
1208      return false;
1209  } else {
1210    // LDU/STU need an address with at least 4-byte alignment.
1211    if (Alignment < 4)
1212      return false;
1213
1214    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
1215      return false;
1216  }
1217
1218  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1219    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1220    // sext i32 to i64 when addr mode is r+i.
1221    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1222        LD->getExtensionType() == ISD::SEXTLOAD &&
1223        isa<ConstantSDNode>(Offset))
1224      return false;
1225  }
1226
1227  AM = ISD::PRE_INC;
1228  return true;
1229}
1230
1231//===----------------------------------------------------------------------===//
1232//  LowerOperation implementation
1233//===----------------------------------------------------------------------===//
1234
1235/// GetLabelAccessInfo - Return true if we should reference labels using a
1236/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1237static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1238                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1239  HiOpFlags = PPCII::MO_HA16;
1240  LoOpFlags = PPCII::MO_LO16;
1241
1242  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1243  // non-darwin platform.  We don't support PIC on other platforms yet.
1244  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1245               TM.getSubtarget<PPCSubtarget>().isDarwin();
1246  if (isPIC) {
1247    HiOpFlags |= PPCII::MO_PIC_FLAG;
1248    LoOpFlags |= PPCII::MO_PIC_FLAG;
1249  }
1250
1251  // If this is a reference to a global value that requires a non-lazy-ptr, make
1252  // sure that instruction lowering adds it.
1253  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1254    HiOpFlags |= PPCII::MO_NLP_FLAG;
1255    LoOpFlags |= PPCII::MO_NLP_FLAG;
1256
1257    if (GV->hasHiddenVisibility()) {
1258      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1259      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1260    }
1261  }
1262
1263  return isPIC;
1264}
1265
1266static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1267                             SelectionDAG &DAG) {
1268  EVT PtrVT = HiPart.getValueType();
1269  SDValue Zero = DAG.getConstant(0, PtrVT);
1270  SDLoc DL(HiPart);
1271
1272  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1273  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1274
1275  // With PIC, the first instruction is actually "GR+hi(&G)".
1276  if (isPIC)
1277    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1278                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1279
1280  // Generate non-pic code that has direct accesses to the constant pool.
1281  // The address of the global is just (hi(&g)+lo(&g)).
1282  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1283}
1284
1285SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1286                                             SelectionDAG &DAG) const {
1287  EVT PtrVT = Op.getValueType();
1288  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1289  const Constant *C = CP->getConstVal();
1290
1291  // 64-bit SVR4 ABI code is always position-independent.
1292  // The actual address of the GlobalValue is stored in the TOC.
1293  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1294    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
1295    return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA,
1296                       DAG.getRegister(PPC::X2, MVT::i64));
1297  }
1298
1299  unsigned MOHiFlag, MOLoFlag;
1300  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1301  SDValue CPIHi =
1302    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1303  SDValue CPILo =
1304    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1305  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1306}
1307
1308SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1309  EVT PtrVT = Op.getValueType();
1310  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1311
1312  // 64-bit SVR4 ABI code is always position-independent.
1313  // The actual address of the GlobalValue is stored in the TOC.
1314  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1315    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1316    return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA,
1317                       DAG.getRegister(PPC::X2, MVT::i64));
1318  }
1319
1320  unsigned MOHiFlag, MOLoFlag;
1321  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1322  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1323  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1324  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1325}
1326
1327SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1328                                             SelectionDAG &DAG) const {
1329  EVT PtrVT = Op.getValueType();
1330
1331  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1332
1333  unsigned MOHiFlag, MOLoFlag;
1334  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1335  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
1336  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
1337  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1338}
1339
1340SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1341                                              SelectionDAG &DAG) const {
1342
1343  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1344  SDLoc dl(GA);
1345  const GlobalValue *GV = GA->getGlobal();
1346  EVT PtrVT = getPointerTy();
1347  bool is64bit = PPCSubTarget.isPPC64();
1348
1349  TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
1350
1351  if (Model == TLSModel::LocalExec) {
1352    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1353                                               PPCII::MO_TPREL16_HA);
1354    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1355                                               PPCII::MO_TPREL16_LO);
1356    SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
1357                                     is64bit ? MVT::i64 : MVT::i32);
1358    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
1359    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
1360  }
1361
1362  if (!is64bit)
1363    llvm_unreachable("only local-exec is currently supported for ppc32");
1364
1365  if (Model == TLSModel::InitialExec) {
1366    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1367    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1368    SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
1369                                     PtrVT, GOTReg, TGA);
1370    SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
1371                                   PtrVT, TGA, TPOffsetHi);
1372    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGA);
1373  }
1374
1375  if (Model == TLSModel::GeneralDynamic) {
1376    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1377    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1378    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
1379                                     GOTReg, TGA);
1380    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
1381                                   GOTEntryHi, TGA);
1382
1383    // We need a chain node, and don't have one handy.  The underlying
1384    // call has no side effects, so using the function entry node
1385    // suffices.
1386    SDValue Chain = DAG.getEntryNode();
1387    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1388    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1389    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
1390                                  PtrVT, ParmReg, TGA);
1391    // The return value from GET_TLS_ADDR really is in X3 already, but
1392    // some hacks are needed here to tie everything together.  The extra
1393    // copies dissolve during subsequent transforms.
1394    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1395    return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
1396  }
1397
1398  if (Model == TLSModel::LocalDynamic) {
1399    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1400    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1401    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
1402                                     GOTReg, TGA);
1403    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
1404                                   GOTEntryHi, TGA);
1405
1406    // We need a chain node, and don't have one handy.  The underlying
1407    // call has no side effects, so using the function entry node
1408    // suffices.
1409    SDValue Chain = DAG.getEntryNode();
1410    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1411    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1412    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
1413                                  PtrVT, ParmReg, TGA);
1414    // The return value from GET_TLSLD_ADDR really is in X3 already, but
1415    // some hacks are needed here to tie everything together.  The extra
1416    // copies dissolve during subsequent transforms.
1417    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1418    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
1419                                      Chain, ParmReg, TGA);
1420    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
1421  }
1422
1423  llvm_unreachable("Unknown TLS model!");
1424}
1425
1426SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1427                                              SelectionDAG &DAG) const {
1428  EVT PtrVT = Op.getValueType();
1429  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1430  SDLoc DL(GSDN);
1431  const GlobalValue *GV = GSDN->getGlobal();
1432
1433  // 64-bit SVR4 ABI code is always position-independent.
1434  // The actual address of the GlobalValue is stored in the TOC.
1435  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1436    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1437    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1438                       DAG.getRegister(PPC::X2, MVT::i64));
1439  }
1440
1441  unsigned MOHiFlag, MOLoFlag;
1442  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1443
1444  SDValue GAHi =
1445    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1446  SDValue GALo =
1447    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1448
1449  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1450
1451  // If the global reference is actually to a non-lazy-pointer, we have to do an
1452  // extra load to get the address of the global.
1453  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1454    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1455                      false, false, false, 0);
1456  return Ptr;
1457}
1458
1459SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1460  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1461  SDLoc dl(Op);
1462
1463  // If we're comparing for equality to zero, expose the fact that this is
1464  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1465  // fold the new nodes.
1466  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1467    if (C->isNullValue() && CC == ISD::SETEQ) {
1468      EVT VT = Op.getOperand(0).getValueType();
1469      SDValue Zext = Op.getOperand(0);
1470      if (VT.bitsLT(MVT::i32)) {
1471        VT = MVT::i32;
1472        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1473      }
1474      unsigned Log2b = Log2_32(VT.getSizeInBits());
1475      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1476      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1477                                DAG.getConstant(Log2b, MVT::i32));
1478      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1479    }
1480    // Leave comparisons against 0 and -1 alone for now, since they're usually
1481    // optimized.  FIXME: revisit this when we can custom lower all setcc
1482    // optimizations.
1483    if (C->isAllOnesValue() || C->isNullValue())
1484      return SDValue();
1485  }
1486
1487  // If we have an integer seteq/setne, turn it into a compare against zero
1488  // by xor'ing the rhs with the lhs, which is faster than setting a
1489  // condition register, reading it back out, and masking the correct bit.  The
1490  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1491  // the result to other bit-twiddling opportunities.
1492  EVT LHSVT = Op.getOperand(0).getValueType();
1493  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1494    EVT VT = Op.getValueType();
1495    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1496                                Op.getOperand(1));
1497    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1498  }
1499  return SDValue();
1500}
1501
1502SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1503                                      const PPCSubtarget &Subtarget) const {
1504  SDNode *Node = Op.getNode();
1505  EVT VT = Node->getValueType(0);
1506  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1507  SDValue InChain = Node->getOperand(0);
1508  SDValue VAListPtr = Node->getOperand(1);
1509  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1510  SDLoc dl(Node);
1511
1512  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1513
1514  // gpr_index
1515  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1516                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
1517                                    false, false, 0);
1518  InChain = GprIndex.getValue(1);
1519
1520  if (VT == MVT::i64) {
1521    // Check if GprIndex is even
1522    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1523                                 DAG.getConstant(1, MVT::i32));
1524    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1525                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
1526    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1527                                          DAG.getConstant(1, MVT::i32));
1528    // Align GprIndex to be even if it isn't
1529    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1530                           GprIndex);
1531  }
1532
1533  // fpr index is 1 byte after gpr
1534  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1535                               DAG.getConstant(1, MVT::i32));
1536
1537  // fpr
1538  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1539                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
1540                                    false, false, 0);
1541  InChain = FprIndex.getValue(1);
1542
1543  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1544                                       DAG.getConstant(8, MVT::i32));
1545
1546  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1547                                        DAG.getConstant(4, MVT::i32));
1548
1549  // areas
1550  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1551                                     MachinePointerInfo(), false, false,
1552                                     false, 0);
1553  InChain = OverflowArea.getValue(1);
1554
1555  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1556                                    MachinePointerInfo(), false, false,
1557                                    false, 0);
1558  InChain = RegSaveArea.getValue(1);
1559
1560  // select overflow_area if index > 8
1561  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1562                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
1563
1564  // adjustment constant gpr_index * 4/8
1565  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1566                                    VT.isInteger() ? GprIndex : FprIndex,
1567                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
1568                                                    MVT::i32));
1569
1570  // OurReg = RegSaveArea + RegConstant
1571  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1572                               RegConstant);
1573
1574  // Floating types are 32 bytes into RegSaveArea
1575  if (VT.isFloatingPoint())
1576    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1577                         DAG.getConstant(32, MVT::i32));
1578
1579  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1580  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1581                                   VT.isInteger() ? GprIndex : FprIndex,
1582                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1583                                                   MVT::i32));
1584
1585  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1586                              VT.isInteger() ? VAListPtr : FprPtr,
1587                              MachinePointerInfo(SV),
1588                              MVT::i8, false, false, 0);
1589
1590  // determine if we should load from reg_save_area or overflow_area
1591  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1592
1593  // increase overflow_area by 4/8 if gpr/fpr > 8
1594  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1595                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
1596                                          MVT::i32));
1597
1598  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1599                             OverflowAreaPlusN);
1600
1601  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1602                              OverflowAreaPtr,
1603                              MachinePointerInfo(),
1604                              MVT::i32, false, false, 0);
1605
1606  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1607                     false, false, false, 0);
1608}
1609
1610SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1611                                                  SelectionDAG &DAG) const {
1612  return Op.getOperand(0);
1613}
1614
1615SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1616                                                SelectionDAG &DAG) const {
1617  SDValue Chain = Op.getOperand(0);
1618  SDValue Trmp = Op.getOperand(1); // trampoline
1619  SDValue FPtr = Op.getOperand(2); // nested function
1620  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1621  SDLoc dl(Op);
1622
1623  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1624  bool isPPC64 = (PtrVT == MVT::i64);
1625  Type *IntPtrTy =
1626    DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
1627                                                             *DAG.getContext());
1628
1629  TargetLowering::ArgListTy Args;
1630  TargetLowering::ArgListEntry Entry;
1631
1632  Entry.Ty = IntPtrTy;
1633  Entry.Node = Trmp; Args.push_back(Entry);
1634
1635  // TrampSize == (isPPC64 ? 48 : 40);
1636  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1637                               isPPC64 ? MVT::i64 : MVT::i32);
1638  Args.push_back(Entry);
1639
1640  Entry.Node = FPtr; Args.push_back(Entry);
1641  Entry.Node = Nest; Args.push_back(Entry);
1642
1643  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1644  TargetLowering::CallLoweringInfo CLI(Chain,
1645                                       Type::getVoidTy(*DAG.getContext()),
1646                                       false, false, false, false, 0,
1647                                       CallingConv::C,
1648                /*isTailCall=*/false,
1649                                       /*doesNotRet=*/false,
1650                                       /*isReturnValueUsed=*/true,
1651                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1652                Args, DAG, dl);
1653  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1654
1655  return CallResult.second;
1656}
1657
1658SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1659                                        const PPCSubtarget &Subtarget) const {
1660  MachineFunction &MF = DAG.getMachineFunction();
1661  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1662
1663  SDLoc dl(Op);
1664
1665  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1666    // vastart just stores the address of the VarArgsFrameIndex slot into the
1667    // memory location argument.
1668    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1669    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1670    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1671    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1672                        MachinePointerInfo(SV),
1673                        false, false, 0);
1674  }
1675
1676  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1677  // We suppose the given va_list is already allocated.
1678  //
1679  // typedef struct {
1680  //  char gpr;     /* index into the array of 8 GPRs
1681  //                 * stored in the register save area
1682  //                 * gpr=0 corresponds to r3,
1683  //                 * gpr=1 to r4, etc.
1684  //                 */
1685  //  char fpr;     /* index into the array of 8 FPRs
1686  //                 * stored in the register save area
1687  //                 * fpr=0 corresponds to f1,
1688  //                 * fpr=1 to f2, etc.
1689  //                 */
1690  //  char *overflow_arg_area;
1691  //                /* location on stack that holds
1692  //                 * the next overflow argument
1693  //                 */
1694  //  char *reg_save_area;
1695  //               /* where r3:r10 and f1:f8 (if saved)
1696  //                * are stored
1697  //                */
1698  // } va_list[1];
1699
1700
1701  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1702  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1703
1704
1705  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1706
1707  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1708                                            PtrVT);
1709  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1710                                 PtrVT);
1711
1712  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1713  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1714
1715  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1716  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1717
1718  uint64_t FPROffset = 1;
1719  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1720
1721  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1722
1723  // Store first byte : number of int regs
1724  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1725                                         Op.getOperand(1),
1726                                         MachinePointerInfo(SV),
1727                                         MVT::i8, false, false, 0);
1728  uint64_t nextOffset = FPROffset;
1729  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1730                                  ConstFPROffset);
1731
1732  // Store second byte : number of float regs
1733  SDValue secondStore =
1734    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1735                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1736                      false, false, 0);
1737  nextOffset += StackOffset;
1738  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1739
1740  // Store second word : arguments given on stack
1741  SDValue thirdStore =
1742    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1743                 MachinePointerInfo(SV, nextOffset),
1744                 false, false, 0);
1745  nextOffset += FrameOffset;
1746  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1747
1748  // Store third word : arguments given in registers
1749  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1750                      MachinePointerInfo(SV, nextOffset),
1751                      false, false, 0);
1752
1753}
1754
1755#include "PPCGenCallingConv.inc"
1756
1757bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1758                                      CCValAssign::LocInfo &LocInfo,
1759                                      ISD::ArgFlagsTy &ArgFlags,
1760                                      CCState &State) {
1761  return true;
1762}
1763
1764bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1765                                             MVT &LocVT,
1766                                             CCValAssign::LocInfo &LocInfo,
1767                                             ISD::ArgFlagsTy &ArgFlags,
1768                                             CCState &State) {
1769  static const uint16_t ArgRegs[] = {
1770    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1771    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1772  };
1773  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1774
1775  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1776
1777  // Skip one register if the first unallocated register has an even register
1778  // number and there are still argument registers available which have not been
1779  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1780  // need to skip a register if RegNum is odd.
1781  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1782    State.AllocateReg(ArgRegs[RegNum]);
1783  }
1784
1785  // Always return false here, as this function only makes sure that the first
1786  // unallocated register has an odd register number and does not actually
1787  // allocate a register for the current argument.
1788  return false;
1789}
1790
1791bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1792                                               MVT &LocVT,
1793                                               CCValAssign::LocInfo &LocInfo,
1794                                               ISD::ArgFlagsTy &ArgFlags,
1795                                               CCState &State) {
1796  static const uint16_t ArgRegs[] = {
1797    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1798    PPC::F8
1799  };
1800
1801  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1802
1803  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1804
1805  // If there is only one Floating-point register left we need to put both f64
1806  // values of a split ppc_fp128 value on the stack.
1807  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1808    State.AllocateReg(ArgRegs[RegNum]);
1809  }
1810
1811  // Always return false here, as this function only makes sure that the two f64
1812  // values a ppc_fp128 value is split into are both passed in registers or both
1813  // passed on the stack and does not actually allocate a register for the
1814  // current argument.
1815  return false;
1816}
1817
1818/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1819/// on Darwin.
1820static const uint16_t *GetFPR() {
1821  static const uint16_t FPR[] = {
1822    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1823    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1824  };
1825
1826  return FPR;
1827}
1828
1829/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1830/// the stack.
1831static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1832                                       unsigned PtrByteSize) {
1833  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1834  if (Flags.isByVal())
1835    ArgSize = Flags.getByValSize();
1836  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1837
1838  return ArgSize;
1839}
1840
1841SDValue
1842PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1843                                        CallingConv::ID CallConv, bool isVarArg,
1844                                        const SmallVectorImpl<ISD::InputArg>
1845                                          &Ins,
1846                                        SDLoc dl, SelectionDAG &DAG,
1847                                        SmallVectorImpl<SDValue> &InVals)
1848                                          const {
1849  if (PPCSubTarget.isSVR4ABI()) {
1850    if (PPCSubTarget.isPPC64())
1851      return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
1852                                         dl, DAG, InVals);
1853    else
1854      return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
1855                                         dl, DAG, InVals);
1856  } else {
1857    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1858                                       dl, DAG, InVals);
1859  }
1860}
1861
1862SDValue
1863PPCTargetLowering::LowerFormalArguments_32SVR4(
1864                                      SDValue Chain,
1865                                      CallingConv::ID CallConv, bool isVarArg,
1866                                      const SmallVectorImpl<ISD::InputArg>
1867                                        &Ins,
1868                                      SDLoc dl, SelectionDAG &DAG,
1869                                      SmallVectorImpl<SDValue> &InVals) const {
1870
1871  // 32-bit SVR4 ABI Stack Frame Layout:
1872  //              +-----------------------------------+
1873  //        +-->  |            Back chain             |
1874  //        |     +-----------------------------------+
1875  //        |     | Floating-point register save area |
1876  //        |     +-----------------------------------+
1877  //        |     |    General register save area     |
1878  //        |     +-----------------------------------+
1879  //        |     |          CR save word             |
1880  //        |     +-----------------------------------+
1881  //        |     |         VRSAVE save word          |
1882  //        |     +-----------------------------------+
1883  //        |     |         Alignment padding         |
1884  //        |     +-----------------------------------+
1885  //        |     |     Vector register save area     |
1886  //        |     +-----------------------------------+
1887  //        |     |       Local variable space        |
1888  //        |     +-----------------------------------+
1889  //        |     |        Parameter list area        |
1890  //        |     +-----------------------------------+
1891  //        |     |           LR save word            |
1892  //        |     +-----------------------------------+
1893  // SP-->  +---  |            Back chain             |
1894  //              +-----------------------------------+
1895  //
1896  // Specifications:
1897  //   System V Application Binary Interface PowerPC Processor Supplement
1898  //   AltiVec Technology Programming Interface Manual
1899
1900  MachineFunction &MF = DAG.getMachineFunction();
1901  MachineFrameInfo *MFI = MF.getFrameInfo();
1902  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1903
1904  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1905  // Potential tail calls could cause overwriting of argument stack slots.
1906  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1907                       (CallConv == CallingConv::Fast));
1908  unsigned PtrByteSize = 4;
1909
1910  // Assign locations to all of the incoming arguments.
1911  SmallVector<CCValAssign, 16> ArgLocs;
1912  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1913                 getTargetMachine(), ArgLocs, *DAG.getContext());
1914
1915  // Reserve space for the linkage area on the stack.
1916  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1917
1918  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
1919
1920  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1921    CCValAssign &VA = ArgLocs[i];
1922
1923    // Arguments stored in registers.
1924    if (VA.isRegLoc()) {
1925      const TargetRegisterClass *RC;
1926      EVT ValVT = VA.getValVT();
1927
1928      switch (ValVT.getSimpleVT().SimpleTy) {
1929        default:
1930          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1931        case MVT::i32:
1932          RC = &PPC::GPRCRegClass;
1933          break;
1934        case MVT::f32:
1935          RC = &PPC::F4RCRegClass;
1936          break;
1937        case MVT::f64:
1938          RC = &PPC::F8RCRegClass;
1939          break;
1940        case MVT::v16i8:
1941        case MVT::v8i16:
1942        case MVT::v4i32:
1943        case MVT::v4f32:
1944          RC = &PPC::VRRCRegClass;
1945          break;
1946      }
1947
1948      // Transform the arguments stored in physical registers into virtual ones.
1949      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1950      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1951
1952      InVals.push_back(ArgValue);
1953    } else {
1954      // Argument stored in memory.
1955      assert(VA.isMemLoc());
1956
1957      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1958      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1959                                      isImmutable);
1960
1961      // Create load nodes to retrieve arguments from the stack.
1962      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1963      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1964                                   MachinePointerInfo(),
1965                                   false, false, false, 0));
1966    }
1967  }
1968
1969  // Assign locations to all of the incoming aggregate by value arguments.
1970  // Aggregates passed by value are stored in the local variable space of the
1971  // caller's stack frame, right above the parameter list area.
1972  SmallVector<CCValAssign, 16> ByValArgLocs;
1973  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1974                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
1975
1976  // Reserve stack space for the allocations in CCInfo.
1977  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1978
1979  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
1980
1981  // Area that is at least reserved in the caller of this function.
1982  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1983
1984  // Set the size that is at least reserved in caller of this function.  Tail
1985  // call optimized function's reserved stack space needs to be aligned so that
1986  // taking the difference between two stack areas will result in an aligned
1987  // stack.
1988  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1989
1990  MinReservedArea =
1991    std::max(MinReservedArea,
1992             PPCFrameLowering::getMinCallFrameSize(false, false));
1993
1994  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
1995    getStackAlignment();
1996  unsigned AlignMask = TargetAlign-1;
1997  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1998
1999  FI->setMinReservedArea(MinReservedArea);
2000
2001  SmallVector<SDValue, 8> MemOps;
2002
2003  // If the function takes variable number of arguments, make a frame index for
2004  // the start of the first vararg value... for expansion of llvm.va_start.
2005  if (isVarArg) {
2006    static const uint16_t GPArgRegs[] = {
2007      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2008      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2009    };
2010    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2011
2012    static const uint16_t FPArgRegs[] = {
2013      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2014      PPC::F8
2015    };
2016    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2017
2018    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
2019                                                          NumGPArgRegs));
2020    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
2021                                                          NumFPArgRegs));
2022
2023    // Make room for NumGPArgRegs and NumFPArgRegs.
2024    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2025                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
2026
2027    FuncInfo->setVarArgsStackOffset(
2028      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2029                             CCInfo.getNextStackOffset(), true));
2030
2031    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2032    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2033
2034    // The fixed integer arguments of a variadic function are stored to the
2035    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2036    // the result of va_next.
2037    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2038      // Get an existing live-in vreg, or add a new one.
2039      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2040      if (!VReg)
2041        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2042
2043      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2044      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2045                                   MachinePointerInfo(), false, false, 0);
2046      MemOps.push_back(Store);
2047      // Increment the address by four for the next argument to store
2048      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2049      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2050    }
2051
2052    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2053    // is set.
2054    // The double arguments are stored to the VarArgsFrameIndex
2055    // on the stack.
2056    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2057      // Get an existing live-in vreg, or add a new one.
2058      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
2059      if (!VReg)
2060        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
2061
2062      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
2063      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2064                                   MachinePointerInfo(), false, false, 0);
2065      MemOps.push_back(Store);
2066      // Increment the address by eight for the next argument to store
2067      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
2068                                         PtrVT);
2069      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2070    }
2071  }
2072
2073  if (!MemOps.empty())
2074    Chain = DAG.getNode(ISD::TokenFactor, dl,
2075                        MVT::Other, &MemOps[0], MemOps.size());
2076
2077  return Chain;
2078}
2079
2080// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2081// value to MVT::i64 and then truncate to the correct register size.
2082SDValue
2083PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
2084                                     SelectionDAG &DAG, SDValue ArgVal,
2085                                     SDLoc dl) const {
2086  if (Flags.isSExt())
2087    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2088                         DAG.getValueType(ObjectVT));
2089  else if (Flags.isZExt())
2090    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2091                         DAG.getValueType(ObjectVT));
2092
2093  return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2094}
2095
2096// Set the size that is at least reserved in caller of this function.  Tail
2097// call optimized functions' reserved stack space needs to be aligned so that
2098// taking the difference between two stack areas will result in an aligned
2099// stack.
2100void
2101PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
2102                                      unsigned nAltivecParamsAtEnd,
2103                                      unsigned MinReservedArea,
2104                                      bool isPPC64) const {
2105  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2106  // Add the Altivec parameters at the end, if needed.
2107  if (nAltivecParamsAtEnd) {
2108    MinReservedArea = ((MinReservedArea+15)/16)*16;
2109    MinReservedArea += 16*nAltivecParamsAtEnd;
2110  }
2111  MinReservedArea =
2112    std::max(MinReservedArea,
2113             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2114  unsigned TargetAlign
2115    = DAG.getMachineFunction().getTarget().getFrameLowering()->
2116        getStackAlignment();
2117  unsigned AlignMask = TargetAlign-1;
2118  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2119  FI->setMinReservedArea(MinReservedArea);
2120}
2121
2122SDValue
2123PPCTargetLowering::LowerFormalArguments_64SVR4(
2124                                      SDValue Chain,
2125                                      CallingConv::ID CallConv, bool isVarArg,
2126                                      const SmallVectorImpl<ISD::InputArg>
2127                                        &Ins,
2128                                      SDLoc dl, SelectionDAG &DAG,
2129                                      SmallVectorImpl<SDValue> &InVals) const {
2130  // TODO: add description of PPC stack frame format, or at least some docs.
2131  //
2132  MachineFunction &MF = DAG.getMachineFunction();
2133  MachineFrameInfo *MFI = MF.getFrameInfo();
2134  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2135
2136  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2137  // Potential tail calls could cause overwriting of argument stack slots.
2138  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2139                       (CallConv == CallingConv::Fast));
2140  unsigned PtrByteSize = 8;
2141
2142  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
2143  // Area that is at least reserved in caller of this function.
2144  unsigned MinReservedArea = ArgOffset;
2145
2146  static const uint16_t GPR[] = {
2147    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2148    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2149  };
2150
2151  static const uint16_t *FPR = GetFPR();
2152
2153  static const uint16_t VR[] = {
2154    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2155    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2156  };
2157
2158  const unsigned Num_GPR_Regs = array_lengthof(GPR);
2159  const unsigned Num_FPR_Regs = 13;
2160  const unsigned Num_VR_Regs  = array_lengthof(VR);
2161
2162  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2163
2164  // Add DAG nodes to load the arguments or copy them out of registers.  On
2165  // entry to a function on PPC, the arguments start after the linkage area,
2166  // although the first ones are often in registers.
2167
2168  SmallVector<SDValue, 8> MemOps;
2169  unsigned nAltivecParamsAtEnd = 0;
2170  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2171  unsigned CurArgIdx = 0;
2172  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2173    SDValue ArgVal;
2174    bool needsLoad = false;
2175    EVT ObjectVT = Ins[ArgNo].VT;
2176    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2177    unsigned ArgSize = ObjSize;
2178    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2179    std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2180    CurArgIdx = Ins[ArgNo].OrigArgIndex;
2181
2182    unsigned CurArgOffset = ArgOffset;
2183
2184    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2185    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2186        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2187      if (isVarArg) {
2188        MinReservedArea = ((MinReservedArea+15)/16)*16;
2189        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2190                                                  Flags,
2191                                                  PtrByteSize);
2192      } else
2193        nAltivecParamsAtEnd++;
2194    } else
2195      // Calculate min reserved area.
2196      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2197                                                Flags,
2198                                                PtrByteSize);
2199
2200    // FIXME the codegen can be much improved in some cases.
2201    // We do not have to keep everything in memory.
2202    if (Flags.isByVal()) {
2203      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2204      ObjSize = Flags.getByValSize();
2205      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2206      // Empty aggregate parameters do not take up registers.  Examples:
2207      //   struct { } a;
2208      //   union  { } b;
2209      //   int c[0];
2210      // etc.  However, we have to provide a place-holder in InVals, so
2211      // pretend we have an 8-byte item at the current address for that
2212      // purpose.
2213      if (!ObjSize) {
2214        int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2215        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2216        InVals.push_back(FIN);
2217        continue;
2218      }
2219      // All aggregates smaller than 8 bytes must be passed right-justified.
2220      if (ObjSize < PtrByteSize)
2221        CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
2222      // The value of the object is its address.
2223      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2224      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2225      InVals.push_back(FIN);
2226
2227      if (ObjSize < 8) {
2228        if (GPR_idx != Num_GPR_Regs) {
2229          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2230          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2231          SDValue Store;
2232
2233          if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
2234            EVT ObjType = (ObjSize == 1 ? MVT::i8 :
2235                           (ObjSize == 2 ? MVT::i16 : MVT::i32));
2236            Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2237                                      MachinePointerInfo(FuncArg, CurArgOffset),
2238                                      ObjType, false, false, 0);
2239          } else {
2240            // For sizes that don't fit a truncating store (3, 5, 6, 7),
2241            // store the whole register as-is to the parameter save area
2242            // slot.  The address of the parameter was already calculated
2243            // above (InVals.push_back(FIN)) to be the right-justified
2244            // offset within the slot.  For this store, we need a new
2245            // frame index that points at the beginning of the slot.
2246            int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2247            SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2248            Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2249                                 MachinePointerInfo(FuncArg, ArgOffset),
2250                                 false, false, 0);
2251          }
2252
2253          MemOps.push_back(Store);
2254          ++GPR_idx;
2255        }
2256        // Whether we copied from a register or not, advance the offset
2257        // into the parameter save area by a full doubleword.
2258        ArgOffset += PtrByteSize;
2259        continue;
2260      }
2261
2262      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2263        // Store whatever pieces of the object are in registers
2264        // to memory.  ArgOffset will be the address of the beginning
2265        // of the object.
2266        if (GPR_idx != Num_GPR_Regs) {
2267          unsigned VReg;
2268          VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2269          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2270          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2271          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2272          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2273                                       MachinePointerInfo(FuncArg, ArgOffset),
2274                                       false, false, 0);
2275          MemOps.push_back(Store);
2276          ++GPR_idx;
2277          ArgOffset += PtrByteSize;
2278        } else {
2279          ArgOffset += ArgSize - j;
2280          break;
2281        }
2282      }
2283      continue;
2284    }
2285
2286    switch (ObjectVT.getSimpleVT().SimpleTy) {
2287    default: llvm_unreachable("Unhandled argument type!");
2288    case MVT::i32:
2289    case MVT::i64:
2290      if (GPR_idx != Num_GPR_Regs) {
2291        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2292        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2293
2294        if (ObjectVT == MVT::i32)
2295          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2296          // value to MVT::i64 and then truncate to the correct register size.
2297          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2298
2299        ++GPR_idx;
2300      } else {
2301        needsLoad = true;
2302        ArgSize = PtrByteSize;
2303      }
2304      ArgOffset += 8;
2305      break;
2306
2307    case MVT::f32:
2308    case MVT::f64:
2309      // Every 8 bytes of argument space consumes one of the GPRs available for
2310      // argument passing.
2311      if (GPR_idx != Num_GPR_Regs) {
2312        ++GPR_idx;
2313      }
2314      if (FPR_idx != Num_FPR_Regs) {
2315        unsigned VReg;
2316
2317        if (ObjectVT == MVT::f32)
2318          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2319        else
2320          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2321
2322        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2323        ++FPR_idx;
2324      } else {
2325        needsLoad = true;
2326        ArgSize = PtrByteSize;
2327      }
2328
2329      ArgOffset += 8;
2330      break;
2331    case MVT::v4f32:
2332    case MVT::v4i32:
2333    case MVT::v8i16:
2334    case MVT::v16i8:
2335      // Note that vector arguments in registers don't reserve stack space,
2336      // except in varargs functions.
2337      if (VR_idx != Num_VR_Regs) {
2338        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2339        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2340        if (isVarArg) {
2341          while ((ArgOffset % 16) != 0) {
2342            ArgOffset += PtrByteSize;
2343            if (GPR_idx != Num_GPR_Regs)
2344              GPR_idx++;
2345          }
2346          ArgOffset += 16;
2347          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2348        }
2349        ++VR_idx;
2350      } else {
2351        // Vectors are aligned.
2352        ArgOffset = ((ArgOffset+15)/16)*16;
2353        CurArgOffset = ArgOffset;
2354        ArgOffset += 16;
2355        needsLoad = true;
2356      }
2357      break;
2358    }
2359
2360    // We need to load the argument to a virtual register if we determined
2361    // above that we ran out of physical registers of the appropriate type.
2362    if (needsLoad) {
2363      int FI = MFI->CreateFixedObject(ObjSize,
2364                                      CurArgOffset + (ArgSize - ObjSize),
2365                                      isImmutable);
2366      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2367      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2368                           false, false, false, 0);
2369    }
2370
2371    InVals.push_back(ArgVal);
2372  }
2373
2374  // Set the size that is at least reserved in caller of this function.  Tail
2375  // call optimized functions' reserved stack space needs to be aligned so that
2376  // taking the difference between two stack areas will result in an aligned
2377  // stack.
2378  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
2379
2380  // If the function takes variable number of arguments, make a frame index for
2381  // the start of the first vararg value... for expansion of llvm.va_start.
2382  if (isVarArg) {
2383    int Depth = ArgOffset;
2384
2385    FuncInfo->setVarArgsFrameIndex(
2386      MFI->CreateFixedObject(PtrByteSize, Depth, true));
2387    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2388
2389    // If this function is vararg, store any remaining integer argument regs
2390    // to their spots on the stack so that they may be loaded by deferencing the
2391    // result of va_next.
2392    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2393      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2394      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2395      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2396                                   MachinePointerInfo(), false, false, 0);
2397      MemOps.push_back(Store);
2398      // Increment the address by four for the next argument to store
2399      SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
2400      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2401    }
2402  }
2403
2404  if (!MemOps.empty())
2405    Chain = DAG.getNode(ISD::TokenFactor, dl,
2406                        MVT::Other, &MemOps[0], MemOps.size());
2407
2408  return Chain;
2409}
2410
2411SDValue
2412PPCTargetLowering::LowerFormalArguments_Darwin(
2413                                      SDValue Chain,
2414                                      CallingConv::ID CallConv, bool isVarArg,
2415                                      const SmallVectorImpl<ISD::InputArg>
2416                                        &Ins,
2417                                      SDLoc dl, SelectionDAG &DAG,
2418                                      SmallVectorImpl<SDValue> &InVals) const {
2419  // TODO: add description of PPC stack frame format, or at least some docs.
2420  //
2421  MachineFunction &MF = DAG.getMachineFunction();
2422  MachineFrameInfo *MFI = MF.getFrameInfo();
2423  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2424
2425  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2426  bool isPPC64 = PtrVT == MVT::i64;
2427  // Potential tail calls could cause overwriting of argument stack slots.
2428  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2429                       (CallConv == CallingConv::Fast));
2430  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2431
2432  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
2433  // Area that is at least reserved in caller of this function.
2434  unsigned MinReservedArea = ArgOffset;
2435
2436  static const uint16_t GPR_32[] = {           // 32-bit registers.
2437    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2438    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2439  };
2440  static const uint16_t GPR_64[] = {           // 64-bit registers.
2441    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2442    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2443  };
2444
2445  static const uint16_t *FPR = GetFPR();
2446
2447  static const uint16_t VR[] = {
2448    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2449    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2450  };
2451
2452  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
2453  const unsigned Num_FPR_Regs = 13;
2454  const unsigned Num_VR_Regs  = array_lengthof( VR);
2455
2456  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2457
2458  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
2459
2460  // In 32-bit non-varargs functions, the stack space for vectors is after the
2461  // stack space for non-vectors.  We do not use this space unless we have
2462  // too many vectors to fit in registers, something that only occurs in
2463  // constructed examples:), but we have to walk the arglist to figure
2464  // that out...for the pathological case, compute VecArgOffset as the
2465  // start of the vector parameter area.  Computing VecArgOffset is the
2466  // entire point of the following loop.
2467  unsigned VecArgOffset = ArgOffset;
2468  if (!isVarArg && !isPPC64) {
2469    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
2470         ++ArgNo) {
2471      EVT ObjectVT = Ins[ArgNo].VT;
2472      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2473
2474      if (Flags.isByVal()) {
2475        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
2476        unsigned ObjSize = Flags.getByValSize();
2477        unsigned ArgSize =
2478                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2479        VecArgOffset += ArgSize;
2480        continue;
2481      }
2482
2483      switch(ObjectVT.getSimpleVT().SimpleTy) {
2484      default: llvm_unreachable("Unhandled argument type!");
2485      case MVT::i32:
2486      case MVT::f32:
2487        VecArgOffset += 4;
2488        break;
2489      case MVT::i64:  // PPC64
2490      case MVT::f64:
2491        // FIXME: We are guaranteed to be !isPPC64 at this point.
2492        // Does MVT::i64 apply?
2493        VecArgOffset += 8;
2494        break;
2495      case MVT::v4f32:
2496      case MVT::v4i32:
2497      case MVT::v8i16:
2498      case MVT::v16i8:
2499        // Nothing to do, we're only looking at Nonvector args here.
2500        break;
2501      }
2502    }
2503  }
2504  // We've found where the vector parameter area in memory is.  Skip the
2505  // first 12 parameters; these don't use that memory.
2506  VecArgOffset = ((VecArgOffset+15)/16)*16;
2507  VecArgOffset += 12*16;
2508
2509  // Add DAG nodes to load the arguments or copy them out of registers.  On
2510  // entry to a function on PPC, the arguments start after the linkage area,
2511  // although the first ones are often in registers.
2512
2513  SmallVector<SDValue, 8> MemOps;
2514  unsigned nAltivecParamsAtEnd = 0;
2515  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2516  unsigned CurArgIdx = 0;
2517  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2518    SDValue ArgVal;
2519    bool needsLoad = false;
2520    EVT ObjectVT = Ins[ArgNo].VT;
2521    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2522    unsigned ArgSize = ObjSize;
2523    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2524    std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2525    CurArgIdx = Ins[ArgNo].OrigArgIndex;
2526
2527    unsigned CurArgOffset = ArgOffset;
2528
2529    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2530    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2531        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2532      if (isVarArg || isPPC64) {
2533        MinReservedArea = ((MinReservedArea+15)/16)*16;
2534        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2535                                                  Flags,
2536                                                  PtrByteSize);
2537      } else  nAltivecParamsAtEnd++;
2538    } else
2539      // Calculate min reserved area.
2540      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2541                                                Flags,
2542                                                PtrByteSize);
2543
2544    // FIXME the codegen can be much improved in some cases.
2545    // We do not have to keep everything in memory.
2546    if (Flags.isByVal()) {
2547      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2548      ObjSize = Flags.getByValSize();
2549      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2550      // Objects of size 1 and 2 are right justified, everything else is
2551      // left justified.  This means the memory address is adjusted forwards.
2552      if (ObjSize==1 || ObjSize==2) {
2553        CurArgOffset = CurArgOffset + (4 - ObjSize);
2554      }
2555      // The value of the object is its address.
2556      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2557      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2558      InVals.push_back(FIN);
2559      if (ObjSize==1 || ObjSize==2) {
2560        if (GPR_idx != Num_GPR_Regs) {
2561          unsigned VReg;
2562          if (isPPC64)
2563            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2564          else
2565            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2566          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2567          EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
2568          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2569                                            MachinePointerInfo(FuncArg,
2570                                              CurArgOffset),
2571                                            ObjType, false, false, 0);
2572          MemOps.push_back(Store);
2573          ++GPR_idx;
2574        }
2575
2576        ArgOffset += PtrByteSize;
2577
2578        continue;
2579      }
2580      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2581        // Store whatever pieces of the object are in registers
2582        // to memory.  ArgOffset will be the address of the beginning
2583        // of the object.
2584        if (GPR_idx != Num_GPR_Regs) {
2585          unsigned VReg;
2586          if (isPPC64)
2587            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2588          else
2589            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2590          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2591          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2592          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2593          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2594                                       MachinePointerInfo(FuncArg, ArgOffset),
2595                                       false, false, 0);
2596          MemOps.push_back(Store);
2597          ++GPR_idx;
2598          ArgOffset += PtrByteSize;
2599        } else {
2600          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2601          break;
2602        }
2603      }
2604      continue;
2605    }
2606
2607    switch (ObjectVT.getSimpleVT().SimpleTy) {
2608    default: llvm_unreachable("Unhandled argument type!");
2609    case MVT::i32:
2610      if (!isPPC64) {
2611        if (GPR_idx != Num_GPR_Regs) {
2612          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2613          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2614          ++GPR_idx;
2615        } else {
2616          needsLoad = true;
2617          ArgSize = PtrByteSize;
2618        }
2619        // All int arguments reserve stack space in the Darwin ABI.
2620        ArgOffset += PtrByteSize;
2621        break;
2622      }
2623      // FALLTHROUGH
2624    case MVT::i64:  // PPC64
2625      if (GPR_idx != Num_GPR_Regs) {
2626        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2627        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2628
2629        if (ObjectVT == MVT::i32)
2630          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2631          // value to MVT::i64 and then truncate to the correct register size.
2632          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2633
2634        ++GPR_idx;
2635      } else {
2636        needsLoad = true;
2637        ArgSize = PtrByteSize;
2638      }
2639      // All int arguments reserve stack space in the Darwin ABI.
2640      ArgOffset += 8;
2641      break;
2642
2643    case MVT::f32:
2644    case MVT::f64:
2645      // Every 4 bytes of argument space consumes one of the GPRs available for
2646      // argument passing.
2647      if (GPR_idx != Num_GPR_Regs) {
2648        ++GPR_idx;
2649        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2650          ++GPR_idx;
2651      }
2652      if (FPR_idx != Num_FPR_Regs) {
2653        unsigned VReg;
2654
2655        if (ObjectVT == MVT::f32)
2656          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2657        else
2658          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2659
2660        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2661        ++FPR_idx;
2662      } else {
2663        needsLoad = true;
2664      }
2665
2666      // All FP arguments reserve stack space in the Darwin ABI.
2667      ArgOffset += isPPC64 ? 8 : ObjSize;
2668      break;
2669    case MVT::v4f32:
2670    case MVT::v4i32:
2671    case MVT::v8i16:
2672    case MVT::v16i8:
2673      // Note that vector arguments in registers don't reserve stack space,
2674      // except in varargs functions.
2675      if (VR_idx != Num_VR_Regs) {
2676        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2677        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2678        if (isVarArg) {
2679          while ((ArgOffset % 16) != 0) {
2680            ArgOffset += PtrByteSize;
2681            if (GPR_idx != Num_GPR_Regs)
2682              GPR_idx++;
2683          }
2684          ArgOffset += 16;
2685          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2686        }
2687        ++VR_idx;
2688      } else {
2689        if (!isVarArg && !isPPC64) {
2690          // Vectors go after all the nonvectors.
2691          CurArgOffset = VecArgOffset;
2692          VecArgOffset += 16;
2693        } else {
2694          // Vectors are aligned.
2695          ArgOffset = ((ArgOffset+15)/16)*16;
2696          CurArgOffset = ArgOffset;
2697          ArgOffset += 16;
2698        }
2699        needsLoad = true;
2700      }
2701      break;
2702    }
2703
2704    // We need to load the argument to a virtual register if we determined above
2705    // that we ran out of physical registers of the appropriate type.
2706    if (needsLoad) {
2707      int FI = MFI->CreateFixedObject(ObjSize,
2708                                      CurArgOffset + (ArgSize - ObjSize),
2709                                      isImmutable);
2710      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2711      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2712                           false, false, false, 0);
2713    }
2714
2715    InVals.push_back(ArgVal);
2716  }
2717
2718  // Set the size that is at least reserved in caller of this function.  Tail
2719  // call optimized functions' reserved stack space needs to be aligned so that
2720  // taking the difference between two stack areas will result in an aligned
2721  // stack.
2722  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
2723
2724  // If the function takes variable number of arguments, make a frame index for
2725  // the start of the first vararg value... for expansion of llvm.va_start.
2726  if (isVarArg) {
2727    int Depth = ArgOffset;
2728
2729    FuncInfo->setVarArgsFrameIndex(
2730      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2731                             Depth, true));
2732    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2733
2734    // If this function is vararg, store any remaining integer argument regs
2735    // to their spots on the stack so that they may be loaded by deferencing the
2736    // result of va_next.
2737    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2738      unsigned VReg;
2739
2740      if (isPPC64)
2741        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2742      else
2743        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2744
2745      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2746      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2747                                   MachinePointerInfo(), false, false, 0);
2748      MemOps.push_back(Store);
2749      // Increment the address by four for the next argument to store
2750      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2751      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2752    }
2753  }
2754
2755  if (!MemOps.empty())
2756    Chain = DAG.getNode(ISD::TokenFactor, dl,
2757                        MVT::Other, &MemOps[0], MemOps.size());
2758
2759  return Chain;
2760}
2761
2762/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
2763/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
2764static unsigned
2765CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2766                                     bool isPPC64,
2767                                     bool isVarArg,
2768                                     unsigned CC,
2769                                     const SmallVectorImpl<ISD::OutputArg>
2770                                       &Outs,
2771                                     const SmallVectorImpl<SDValue> &OutVals,
2772                                     unsigned &nAltivecParamsAtEnd) {
2773  // Count how many bytes are to be pushed on the stack, including the linkage
2774  // area, and parameter passing area.  We start with 24/48 bytes, which is
2775  // prereserved space for [SP][CR][LR][3 x unused].
2776  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2777  unsigned NumOps = Outs.size();
2778  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2779
2780  // Add up all the space actually used.
2781  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2782  // they all go in registers, but we must reserve stack space for them for
2783  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2784  // assigned stack space in order, with padding so Altivec parameters are
2785  // 16-byte aligned.
2786  nAltivecParamsAtEnd = 0;
2787  for (unsigned i = 0; i != NumOps; ++i) {
2788    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2789    EVT ArgVT = Outs[i].VT;
2790    // Varargs Altivec parameters are padded to a 16 byte boundary.
2791    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2792        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2793      if (!isVarArg && !isPPC64) {
2794        // Non-varargs Altivec parameters go after all the non-Altivec
2795        // parameters; handle those later so we know how much padding we need.
2796        nAltivecParamsAtEnd++;
2797        continue;
2798      }
2799      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2800      NumBytes = ((NumBytes+15)/16)*16;
2801    }
2802    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2803  }
2804
2805   // Allow for Altivec parameters at the end, if needed.
2806  if (nAltivecParamsAtEnd) {
2807    NumBytes = ((NumBytes+15)/16)*16;
2808    NumBytes += 16*nAltivecParamsAtEnd;
2809  }
2810
2811  // The prolog code of the callee may store up to 8 GPR argument registers to
2812  // the stack, allowing va_start to index over them in memory if its varargs.
2813  // Because we cannot tell if this is needed on the caller side, we have to
2814  // conservatively assume that it is needed.  As such, make sure we have at
2815  // least enough stack space for the caller to store the 8 GPRs.
2816  NumBytes = std::max(NumBytes,
2817                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2818
2819  // Tail call needs the stack to be aligned.
2820  if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
2821    unsigned TargetAlign = DAG.getMachineFunction().getTarget().
2822      getFrameLowering()->getStackAlignment();
2823    unsigned AlignMask = TargetAlign-1;
2824    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2825  }
2826
2827  return NumBytes;
2828}
2829
2830/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2831/// adjusted to accommodate the arguments for the tailcall.
2832static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2833                                   unsigned ParamSize) {
2834
2835  if (!isTailCall) return 0;
2836
2837  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2838  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2839  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2840  // Remember only if the new adjustement is bigger.
2841  if (SPDiff < FI->getTailCallSPDelta())
2842    FI->setTailCallSPDelta(SPDiff);
2843
2844  return SPDiff;
2845}
2846
2847/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2848/// for tail call optimization. Targets which want to do tail call
2849/// optimization should implement this function.
2850bool
2851PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2852                                                     CallingConv::ID CalleeCC,
2853                                                     bool isVarArg,
2854                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2855                                                     SelectionDAG& DAG) const {
2856  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
2857    return false;
2858
2859  // Variable argument functions are not supported.
2860  if (isVarArg)
2861    return false;
2862
2863  MachineFunction &MF = DAG.getMachineFunction();
2864  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2865  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2866    // Functions containing by val parameters are not supported.
2867    for (unsigned i = 0; i != Ins.size(); i++) {
2868       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2869       if (Flags.isByVal()) return false;
2870    }
2871
2872    // Non PIC/GOT  tail calls are supported.
2873    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2874      return true;
2875
2876    // At the moment we can only do local tail calls (in same module, hidden
2877    // or protected) if we are generating PIC.
2878    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2879      return G->getGlobal()->hasHiddenVisibility()
2880          || G->getGlobal()->hasProtectedVisibility();
2881  }
2882
2883  return false;
2884}
2885
2886/// isCallCompatibleAddress - Return the immediate to use if the specified
2887/// 32-bit value is representable in the immediate field of a BxA instruction.
2888static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2889  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2890  if (!C) return 0;
2891
2892  int Addr = C->getZExtValue();
2893  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2894      SignExtend32<26>(Addr) != Addr)
2895    return 0;  // Top 6 bits have to be sext of immediate.
2896
2897  return DAG.getConstant((int)C->getZExtValue() >> 2,
2898                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2899}
2900
2901namespace {
2902
2903struct TailCallArgumentInfo {
2904  SDValue Arg;
2905  SDValue FrameIdxOp;
2906  int       FrameIdx;
2907
2908  TailCallArgumentInfo() : FrameIdx(0) {}
2909};
2910
2911}
2912
2913/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2914static void
2915StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2916                                           SDValue Chain,
2917                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2918                   SmallVector<SDValue, 8> &MemOpChains,
2919                   SDLoc dl) {
2920  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2921    SDValue Arg = TailCallArgs[i].Arg;
2922    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2923    int FI = TailCallArgs[i].FrameIdx;
2924    // Store relative to framepointer.
2925    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2926                                       MachinePointerInfo::getFixedStack(FI),
2927                                       false, false, 0));
2928  }
2929}
2930
2931/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2932/// the appropriate stack slot for the tail call optimized function call.
2933static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2934                                               MachineFunction &MF,
2935                                               SDValue Chain,
2936                                               SDValue OldRetAddr,
2937                                               SDValue OldFP,
2938                                               int SPDiff,
2939                                               bool isPPC64,
2940                                               bool isDarwinABI,
2941                                               SDLoc dl) {
2942  if (SPDiff) {
2943    // Calculate the new stack slot for the return address.
2944    int SlotSize = isPPC64 ? 8 : 4;
2945    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2946                                                                   isDarwinABI);
2947    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2948                                                          NewRetAddrLoc, true);
2949    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2950    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2951    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2952                         MachinePointerInfo::getFixedStack(NewRetAddr),
2953                         false, false, 0);
2954
2955    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2956    // slot as the FP is never overwritten.
2957    if (isDarwinABI) {
2958      int NewFPLoc =
2959        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2960      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2961                                                          true);
2962      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2963      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2964                           MachinePointerInfo::getFixedStack(NewFPIdx),
2965                           false, false, 0);
2966    }
2967  }
2968  return Chain;
2969}
2970
2971/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2972/// the position of the argument.
2973static void
2974CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2975                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2976                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2977  int Offset = ArgOffset + SPDiff;
2978  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2979  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2980  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2981  SDValue FIN = DAG.getFrameIndex(FI, VT);
2982  TailCallArgumentInfo Info;
2983  Info.Arg = Arg;
2984  Info.FrameIdxOp = FIN;
2985  Info.FrameIdx = FI;
2986  TailCallArguments.push_back(Info);
2987}
2988
2989/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2990/// stack slot. Returns the chain as result and the loaded frame pointers in
2991/// LROpOut/FPOpout. Used when tail calling.
2992SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2993                                                        int SPDiff,
2994                                                        SDValue Chain,
2995                                                        SDValue &LROpOut,
2996                                                        SDValue &FPOpOut,
2997                                                        bool isDarwinABI,
2998                                                        SDLoc dl) const {
2999  if (SPDiff) {
3000    // Load the LR and FP stack slot for later adjusting.
3001    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
3002    LROpOut = getReturnAddrFrameIndex(DAG);
3003    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
3004                          false, false, false, 0);
3005    Chain = SDValue(LROpOut.getNode(), 1);
3006
3007    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
3008    // slot as the FP is never overwritten.
3009    if (isDarwinABI) {
3010      FPOpOut = getFramePointerFrameIndex(DAG);
3011      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
3012                            false, false, false, 0);
3013      Chain = SDValue(FPOpOut.getNode(), 1);
3014    }
3015  }
3016  return Chain;
3017}
3018
3019/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
3020/// by "Src" to address "Dst" of size "Size".  Alignment information is
3021/// specified by the specific parameter attribute. The copy will be passed as
3022/// a byval function parameter.
3023/// Sometimes what we are copying is the end of a larger object, the part that
3024/// does not fit in registers.
3025static SDValue
3026CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
3027                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
3028                          SDLoc dl) {
3029  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
3030  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
3031                       false, false, MachinePointerInfo(0),
3032                       MachinePointerInfo(0));
3033}
3034
3035/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
3036/// tail calls.
3037static void
3038LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
3039                 SDValue Arg, SDValue PtrOff, int SPDiff,
3040                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
3041                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
3042                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
3043                 SDLoc dl) {
3044  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3045  if (!isTailCall) {
3046    if (isVector) {
3047      SDValue StackPtr;
3048      if (isPPC64)
3049        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3050      else
3051        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3052      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3053                           DAG.getConstant(ArgOffset, PtrVT));
3054    }
3055    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3056                                       MachinePointerInfo(), false, false, 0));
3057  // Calculate and remember argument location.
3058  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
3059                                  TailCallArguments);
3060}
3061
3062static
3063void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
3064                     SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
3065                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
3066                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
3067  MachineFunction &MF = DAG.getMachineFunction();
3068
3069  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
3070  // might overwrite each other in case of tail call optimization.
3071  SmallVector<SDValue, 8> MemOpChains2;
3072  // Do not flag preceding copytoreg stuff together with the following stuff.
3073  InFlag = SDValue();
3074  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
3075                                    MemOpChains2, dl);
3076  if (!MemOpChains2.empty())
3077    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3078                        &MemOpChains2[0], MemOpChains2.size());
3079
3080  // Store the return address to the appropriate stack slot.
3081  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
3082                                        isPPC64, isDarwinABI, dl);
3083
3084  // Emit callseq_end just before tailcall node.
3085  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3086                             DAG.getIntPtrConstant(0, true), InFlag, dl);
3087  InFlag = Chain.getValue(1);
3088}
3089
3090static
3091unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
3092                     SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall,
3093                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
3094                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
3095                     const PPCSubtarget &PPCSubTarget) {
3096
3097  bool isPPC64 = PPCSubTarget.isPPC64();
3098  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
3099
3100  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3101  NodeTys.push_back(MVT::Other);   // Returns a chain
3102  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
3103
3104  unsigned CallOpc = PPCISD::CALL;
3105
3106  bool needIndirectCall = true;
3107  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
3108    // If this is an absolute destination address, use the munged value.
3109    Callee = SDValue(Dest, 0);
3110    needIndirectCall = false;
3111  }
3112
3113  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3114    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
3115    // Use indirect calls for ALL functions calls in JIT mode, since the
3116    // far-call stubs may be outside relocation limits for a BL instruction.
3117    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
3118      unsigned OpFlags = 0;
3119      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3120          (PPCSubTarget.getTargetTriple().isMacOSX() &&
3121           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
3122          (G->getGlobal()->isDeclaration() ||
3123           G->getGlobal()->isWeakForLinker())) {
3124        // PC-relative references to external symbols should go through $stub,
3125        // unless we're building with the leopard linker or later, which
3126        // automatically synthesizes these stubs.
3127        OpFlags = PPCII::MO_DARWIN_STUB;
3128      }
3129
3130      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
3131      // every direct call is) turn it into a TargetGlobalAddress /
3132      // TargetExternalSymbol node so that legalize doesn't hack it.
3133      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
3134                                          Callee.getValueType(),
3135                                          0, OpFlags);
3136      needIndirectCall = false;
3137    }
3138  }
3139
3140  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3141    unsigned char OpFlags = 0;
3142
3143    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3144        (PPCSubTarget.getTargetTriple().isMacOSX() &&
3145         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
3146      // PC-relative references to external symbols should go through $stub,
3147      // unless we're building with the leopard linker or later, which
3148      // automatically synthesizes these stubs.
3149      OpFlags = PPCII::MO_DARWIN_STUB;
3150    }
3151
3152    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
3153                                         OpFlags);
3154    needIndirectCall = false;
3155  }
3156
3157  if (needIndirectCall) {
3158    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
3159    // to do the call, we can't use PPCISD::CALL.
3160    SDValue MTCTROps[] = {Chain, Callee, InFlag};
3161
3162    if (isSVR4ABI && isPPC64) {
3163      // Function pointers in the 64-bit SVR4 ABI do not point to the function
3164      // entry point, but to the function descriptor (the function entry point
3165      // address is part of the function descriptor though).
3166      // The function descriptor is a three doubleword structure with the
3167      // following fields: function entry point, TOC base address and
3168      // environment pointer.
3169      // Thus for a call through a function pointer, the following actions need
3170      // to be performed:
3171      //   1. Save the TOC of the caller in the TOC save area of its stack
3172      //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
3173      //   2. Load the address of the function entry point from the function
3174      //      descriptor.
3175      //   3. Load the TOC of the callee from the function descriptor into r2.
3176      //   4. Load the environment pointer from the function descriptor into
3177      //      r11.
3178      //   5. Branch to the function entry point address.
3179      //   6. On return of the callee, the TOC of the caller needs to be
3180      //      restored (this is done in FinishCall()).
3181      //
3182      // All those operations are flagged together to ensure that no other
3183      // operations can be scheduled in between. E.g. without flagging the
3184      // operations together, a TOC access in the caller could be scheduled
3185      // between the load of the callee TOC and the branch to the callee, which
3186      // results in the TOC access going through the TOC of the callee instead
3187      // of going through the TOC of the caller, which leads to incorrect code.
3188
3189      // Load the address of the function entry point from the function
3190      // descriptor.
3191      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
3192      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
3193                                        InFlag.getNode() ? 3 : 2);
3194      Chain = LoadFuncPtr.getValue(1);
3195      InFlag = LoadFuncPtr.getValue(2);
3196
3197      // Load environment pointer into r11.
3198      // Offset of the environment pointer within the function descriptor.
3199      SDValue PtrOff = DAG.getIntPtrConstant(16);
3200
3201      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
3202      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
3203                                       InFlag);
3204      Chain = LoadEnvPtr.getValue(1);
3205      InFlag = LoadEnvPtr.getValue(2);
3206
3207      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
3208                                        InFlag);
3209      Chain = EnvVal.getValue(0);
3210      InFlag = EnvVal.getValue(1);
3211
3212      // Load TOC of the callee into r2. We are using a target-specific load
3213      // with r2 hard coded, because the result of a target-independent load
3214      // would never go directly into r2, since r2 is a reserved register (which
3215      // prevents the register allocator from allocating it), resulting in an
3216      // additional register being allocated and an unnecessary move instruction
3217      // being generated.
3218      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3219      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
3220                                       Callee, InFlag);
3221      Chain = LoadTOCPtr.getValue(0);
3222      InFlag = LoadTOCPtr.getValue(1);
3223
3224      MTCTROps[0] = Chain;
3225      MTCTROps[1] = LoadFuncPtr;
3226      MTCTROps[2] = InFlag;
3227    }
3228
3229    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
3230                        2 + (InFlag.getNode() != 0));
3231    InFlag = Chain.getValue(1);
3232
3233    NodeTys.clear();
3234    NodeTys.push_back(MVT::Other);
3235    NodeTys.push_back(MVT::Glue);
3236    Ops.push_back(Chain);
3237    CallOpc = PPCISD::BCTRL;
3238    Callee.setNode(0);
3239    // Add use of X11 (holding environment pointer)
3240    if (isSVR4ABI && isPPC64)
3241      Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
3242    // Add CTR register as callee so a bctr can be emitted later.
3243    if (isTailCall)
3244      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
3245  }
3246
3247  // If this is a direct call, pass the chain and the callee.
3248  if (Callee.getNode()) {
3249    Ops.push_back(Chain);
3250    Ops.push_back(Callee);
3251  }
3252  // If this is a tail call add stack pointer delta.
3253  if (isTailCall)
3254    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
3255
3256  // Add argument registers to the end of the list so that they are known live
3257  // into the call.
3258  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3259    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3260                                  RegsToPass[i].second.getValueType()));
3261
3262  return CallOpc;
3263}
3264
3265static
3266bool isLocalCall(const SDValue &Callee)
3267{
3268  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3269    return !G->getGlobal()->isDeclaration() &&
3270           !G->getGlobal()->isWeakForLinker();
3271  return false;
3272}
3273
3274SDValue
3275PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3276                                   CallingConv::ID CallConv, bool isVarArg,
3277                                   const SmallVectorImpl<ISD::InputArg> &Ins,
3278                                   SDLoc dl, SelectionDAG &DAG,
3279                                   SmallVectorImpl<SDValue> &InVals) const {
3280
3281  SmallVector<CCValAssign, 16> RVLocs;
3282  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3283                    getTargetMachine(), RVLocs, *DAG.getContext());
3284  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3285
3286  // Copy all of the result registers out of their specified physreg.
3287  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3288    CCValAssign &VA = RVLocs[i];
3289    assert(VA.isRegLoc() && "Can only return in registers!");
3290
3291    SDValue Val = DAG.getCopyFromReg(Chain, dl,
3292                                     VA.getLocReg(), VA.getLocVT(), InFlag);
3293    Chain = Val.getValue(1);
3294    InFlag = Val.getValue(2);
3295
3296    switch (VA.getLocInfo()) {
3297    default: llvm_unreachable("Unknown loc info!");
3298    case CCValAssign::Full: break;
3299    case CCValAssign::AExt:
3300      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3301      break;
3302    case CCValAssign::ZExt:
3303      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
3304                        DAG.getValueType(VA.getValVT()));
3305      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3306      break;
3307    case CCValAssign::SExt:
3308      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
3309                        DAG.getValueType(VA.getValVT()));
3310      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3311      break;
3312    }
3313
3314    InVals.push_back(Val);
3315  }
3316
3317  return Chain;
3318}
3319
3320SDValue
3321PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
3322                              bool isTailCall, bool isVarArg,
3323                              SelectionDAG &DAG,
3324                              SmallVector<std::pair<unsigned, SDValue>, 8>
3325                                &RegsToPass,
3326                              SDValue InFlag, SDValue Chain,
3327                              SDValue &Callee,
3328                              int SPDiff, unsigned NumBytes,
3329                              const SmallVectorImpl<ISD::InputArg> &Ins,
3330                              SmallVectorImpl<SDValue> &InVals) const {
3331  std::vector<EVT> NodeTys;
3332  SmallVector<SDValue, 8> Ops;
3333  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
3334                                 isTailCall, RegsToPass, Ops, NodeTys,
3335                                 PPCSubTarget);
3336
3337  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
3338  if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
3339    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
3340
3341  // When performing tail call optimization the callee pops its arguments off
3342  // the stack. Account for this here so these bytes can be pushed back on in
3343  // PPCFrameLowering::eliminateCallFramePseudoInstr.
3344  int BytesCalleePops =
3345    (CallConv == CallingConv::Fast &&
3346     getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
3347
3348  // Add a register mask operand representing the call-preserved registers.
3349  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3350  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3351  assert(Mask && "Missing call preserved mask for calling convention");
3352  Ops.push_back(DAG.getRegisterMask(Mask));
3353
3354  if (InFlag.getNode())
3355    Ops.push_back(InFlag);
3356
3357  // Emit tail call.
3358  if (isTailCall) {
3359    assert(((Callee.getOpcode() == ISD::Register &&
3360             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
3361            Callee.getOpcode() == ISD::TargetExternalSymbol ||
3362            Callee.getOpcode() == ISD::TargetGlobalAddress ||
3363            isa<ConstantSDNode>(Callee)) &&
3364    "Expecting an global address, external symbol, absolute value or register");
3365
3366    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
3367  }
3368
3369  // Add a NOP immediately after the branch instruction when using the 64-bit
3370  // SVR4 ABI. At link time, if caller and callee are in a different module and
3371  // thus have a different TOC, the call will be replaced with a call to a stub
3372  // function which saves the current TOC, loads the TOC of the callee and
3373  // branches to the callee. The NOP will be replaced with a load instruction
3374  // which restores the TOC of the caller from the TOC save slot of the current
3375  // stack frame. If caller and callee belong to the same module (and have the
3376  // same TOC), the NOP will remain unchanged.
3377
3378  bool needsTOCRestore = false;
3379  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
3380    if (CallOpc == PPCISD::BCTRL) {
3381      // This is a call through a function pointer.
3382      // Restore the caller TOC from the save area into R2.
3383      // See PrepareCall() for more information about calls through function
3384      // pointers in the 64-bit SVR4 ABI.
3385      // We are using a target-specific load with r2 hard coded, because the
3386      // result of a target-independent load would never go directly into r2,
3387      // since r2 is a reserved register (which prevents the register allocator
3388      // from allocating it), resulting in an additional register being
3389      // allocated and an unnecessary move instruction being generated.
3390      needsTOCRestore = true;
3391    } else if ((CallOpc == PPCISD::CALL) && !isLocalCall(Callee)) {
3392      // Otherwise insert NOP for non-local calls.
3393      CallOpc = PPCISD::CALL_NOP;
3394    }
3395  }
3396
3397  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
3398  InFlag = Chain.getValue(1);
3399
3400  if (needsTOCRestore) {
3401    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3402    Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
3403    InFlag = Chain.getValue(1);
3404  }
3405
3406  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3407                             DAG.getIntPtrConstant(BytesCalleePops, true),
3408                             InFlag, dl);
3409  if (!Ins.empty())
3410    InFlag = Chain.getValue(1);
3411
3412  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3413                         Ins, dl, DAG, InVals);
3414}
3415
3416SDValue
3417PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3418                             SmallVectorImpl<SDValue> &InVals) const {
3419  SelectionDAG &DAG                     = CLI.DAG;
3420  SDLoc &dl                          = CLI.DL;
3421  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3422  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
3423  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
3424  SDValue Chain                         = CLI.Chain;
3425  SDValue Callee                        = CLI.Callee;
3426  bool &isTailCall                      = CLI.IsTailCall;
3427  CallingConv::ID CallConv              = CLI.CallConv;
3428  bool isVarArg                         = CLI.IsVarArg;
3429
3430  if (isTailCall)
3431    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
3432                                                   Ins, DAG);
3433
3434  if (PPCSubTarget.isSVR4ABI()) {
3435    if (PPCSubTarget.isPPC64())
3436      return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
3437                              isTailCall, Outs, OutVals, Ins,
3438                              dl, DAG, InVals);
3439    else
3440      return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
3441                              isTailCall, Outs, OutVals, Ins,
3442                              dl, DAG, InVals);
3443  }
3444
3445  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
3446                          isTailCall, Outs, OutVals, Ins,
3447                          dl, DAG, InVals);
3448}
3449
3450SDValue
3451PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
3452                                    CallingConv::ID CallConv, bool isVarArg,
3453                                    bool isTailCall,
3454                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3455                                    const SmallVectorImpl<SDValue> &OutVals,
3456                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3457                                    SDLoc dl, SelectionDAG &DAG,
3458                                    SmallVectorImpl<SDValue> &InVals) const {
3459  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
3460  // of the 32-bit SVR4 ABI stack frame layout.
3461
3462  assert((CallConv == CallingConv::C ||
3463          CallConv == CallingConv::Fast) && "Unknown calling convention!");
3464
3465  unsigned PtrByteSize = 4;
3466
3467  MachineFunction &MF = DAG.getMachineFunction();
3468
3469  // Mark this function as potentially containing a function that contains a
3470  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3471  // and restoring the callers stack pointer in this functions epilog. This is
3472  // done because by tail calling the called function might overwrite the value
3473  // in this function's (MF) stack pointer stack slot 0(SP).
3474  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3475      CallConv == CallingConv::Fast)
3476    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3477
3478  // Count how many bytes are to be pushed on the stack, including the linkage
3479  // area, parameter list area and the part of the local variable space which
3480  // contains copies of aggregates which are passed by value.
3481
3482  // Assign locations to all of the outgoing arguments.
3483  SmallVector<CCValAssign, 16> ArgLocs;
3484  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3485                 getTargetMachine(), ArgLocs, *DAG.getContext());
3486
3487  // Reserve space for the linkage area on the stack.
3488  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
3489
3490  if (isVarArg) {
3491    // Handle fixed and variable vector arguments differently.
3492    // Fixed vector arguments go into registers as long as registers are
3493    // available. Variable vector arguments always go into memory.
3494    unsigned NumArgs = Outs.size();
3495
3496    for (unsigned i = 0; i != NumArgs; ++i) {
3497      MVT ArgVT = Outs[i].VT;
3498      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3499      bool Result;
3500
3501      if (Outs[i].IsFixed) {
3502        Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
3503                               CCInfo);
3504      } else {
3505        Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
3506                                      ArgFlags, CCInfo);
3507      }
3508
3509      if (Result) {
3510#ifndef NDEBUG
3511        errs() << "Call operand #" << i << " has unhandled type "
3512             << EVT(ArgVT).getEVTString() << "\n";
3513#endif
3514        llvm_unreachable(0);
3515      }
3516    }
3517  } else {
3518    // All arguments are treated the same.
3519    CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
3520  }
3521
3522  // Assign locations to all of the outgoing aggregate by value arguments.
3523  SmallVector<CCValAssign, 16> ByValArgLocs;
3524  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3525                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
3526
3527  // Reserve stack space for the allocations in CCInfo.
3528  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3529
3530  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
3531
3532  // Size of the linkage area, parameter list area and the part of the local
3533  // space variable where copies of aggregates which are passed by value are
3534  // stored.
3535  unsigned NumBytes = CCByValInfo.getNextStackOffset();
3536
3537  // Calculate by how many bytes the stack has to be adjusted in case of tail
3538  // call optimization.
3539  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3540
3541  // Adjust the stack pointer for the new arguments...
3542  // These operations are automatically eliminated by the prolog/epilog pass
3543  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
3544                               dl);
3545  SDValue CallSeqStart = Chain;
3546
3547  // Load the return address and frame pointer so it can be moved somewhere else
3548  // later.
3549  SDValue LROp, FPOp;
3550  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
3551                                       dl);
3552
3553  // Set up a copy of the stack pointer for use loading and storing any
3554  // arguments that may not fit in the registers available for argument
3555  // passing.
3556  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3557
3558  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3559  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3560  SmallVector<SDValue, 8> MemOpChains;
3561
3562  bool seenFloatArg = false;
3563  // Walk the register/memloc assignments, inserting copies/loads.
3564  for (unsigned i = 0, j = 0, e = ArgLocs.size();
3565       i != e;
3566       ++i) {
3567    CCValAssign &VA = ArgLocs[i];
3568    SDValue Arg = OutVals[i];
3569    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3570
3571    if (Flags.isByVal()) {
3572      // Argument is an aggregate which is passed by value, thus we need to
3573      // create a copy of it in the local variable space of the current stack
3574      // frame (which is the stack frame of the caller) and pass the address of
3575      // this copy to the callee.
3576      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3577      CCValAssign &ByValVA = ByValArgLocs[j++];
3578      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3579
3580      // Memory reserved in the local variable space of the callers stack frame.
3581      unsigned LocMemOffset = ByValVA.getLocMemOffset();
3582
3583      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3584      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3585
3586      // Create a copy of the argument in the local area of the current
3587      // stack frame.
3588      SDValue MemcpyCall =
3589        CreateCopyOfByValArgument(Arg, PtrOff,
3590                                  CallSeqStart.getNode()->getOperand(0),
3591                                  Flags, DAG, dl);
3592
3593      // This must go outside the CALLSEQ_START..END.
3594      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3595                           CallSeqStart.getNode()->getOperand(1),
3596                           SDLoc(MemcpyCall));
3597      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3598                             NewCallSeqStart.getNode());
3599      Chain = CallSeqStart = NewCallSeqStart;
3600
3601      // Pass the address of the aggregate copy on the stack either in a
3602      // physical register or in the parameter list area of the current stack
3603      // frame to the callee.
3604      Arg = PtrOff;
3605    }
3606
3607    if (VA.isRegLoc()) {
3608      seenFloatArg |= VA.getLocVT().isFloatingPoint();
3609      // Put argument in a physical register.
3610      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3611    } else {
3612      // Put argument in the parameter list area of the current stack frame.
3613      assert(VA.isMemLoc());
3614      unsigned LocMemOffset = VA.getLocMemOffset();
3615
3616      if (!isTailCall) {
3617        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3618        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3619
3620        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3621                                           MachinePointerInfo(),
3622                                           false, false, 0));
3623      } else {
3624        // Calculate and remember argument location.
3625        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3626                                 TailCallArguments);
3627      }
3628    }
3629  }
3630
3631  if (!MemOpChains.empty())
3632    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3633                        &MemOpChains[0], MemOpChains.size());
3634
3635  // Build a sequence of copy-to-reg nodes chained together with token chain
3636  // and flag operands which copy the outgoing args into the appropriate regs.
3637  SDValue InFlag;
3638  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3639    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3640                             RegsToPass[i].second, InFlag);
3641    InFlag = Chain.getValue(1);
3642  }
3643
3644  // Set CR bit 6 to true if this is a vararg call with floating args passed in
3645  // registers.
3646  if (isVarArg) {
3647    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3648    SDValue Ops[] = { Chain, InFlag };
3649
3650    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
3651                        dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
3652
3653    InFlag = Chain.getValue(1);
3654  }
3655
3656  if (isTailCall)
3657    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3658                    false, TailCallArguments);
3659
3660  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3661                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3662                    Ins, InVals);
3663}
3664
3665// Copy an argument into memory, being careful to do this outside the
3666// call sequence for the call to which the argument belongs.
3667SDValue
3668PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
3669                                              SDValue CallSeqStart,
3670                                              ISD::ArgFlagsTy Flags,
3671                                              SelectionDAG &DAG,
3672                                              SDLoc dl) const {
3673  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3674                        CallSeqStart.getNode()->getOperand(0),
3675                        Flags, DAG, dl);
3676  // The MEMCPY must go outside the CALLSEQ_START..END.
3677  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3678                             CallSeqStart.getNode()->getOperand(1),
3679                             SDLoc(MemcpyCall));
3680  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3681                         NewCallSeqStart.getNode());
3682  return NewCallSeqStart;
3683}
3684
3685SDValue
3686PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
3687                                    CallingConv::ID CallConv, bool isVarArg,
3688                                    bool isTailCall,
3689                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3690                                    const SmallVectorImpl<SDValue> &OutVals,
3691                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3692                                    SDLoc dl, SelectionDAG &DAG,
3693                                    SmallVectorImpl<SDValue> &InVals) const {
3694
3695  unsigned NumOps = Outs.size();
3696
3697  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3698  unsigned PtrByteSize = 8;
3699
3700  MachineFunction &MF = DAG.getMachineFunction();
3701
3702  // Mark this function as potentially containing a function that contains a
3703  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3704  // and restoring the callers stack pointer in this functions epilog. This is
3705  // done because by tail calling the called function might overwrite the value
3706  // in this function's (MF) stack pointer stack slot 0(SP).
3707  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3708      CallConv == CallingConv::Fast)
3709    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3710
3711  unsigned nAltivecParamsAtEnd = 0;
3712
3713  // Count how many bytes are to be pushed on the stack, including the linkage
3714  // area, and parameter passing area.  We start with at least 48 bytes, which
3715  // is reserved space for [SP][CR][LR][3 x unused].
3716  // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
3717  // of this call.
3718  unsigned NumBytes =
3719    CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
3720                                         Outs, OutVals, nAltivecParamsAtEnd);
3721
3722  // Calculate by how many bytes the stack has to be adjusted in case of tail
3723  // call optimization.
3724  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3725
3726  // To protect arguments on the stack from being clobbered in a tail call,
3727  // force all the loads to happen before doing any other lowering.
3728  if (isTailCall)
3729    Chain = DAG.getStackArgumentTokenFactor(Chain);
3730
3731  // Adjust the stack pointer for the new arguments...
3732  // These operations are automatically eliminated by the prolog/epilog pass
3733  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
3734                               dl);
3735  SDValue CallSeqStart = Chain;
3736
3737  // Load the return address and frame pointer so it can be move somewhere else
3738  // later.
3739  SDValue LROp, FPOp;
3740  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3741                                       dl);
3742
3743  // Set up a copy of the stack pointer for use loading and storing any
3744  // arguments that may not fit in the registers available for argument
3745  // passing.
3746  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3747
3748  // Figure out which arguments are going to go in registers, and which in
3749  // memory.  Also, if this is a vararg function, floating point operations
3750  // must be stored to our stack, and loaded into integer regs as well, if
3751  // any integer regs are available for argument passing.
3752  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
3753  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3754
3755  static const uint16_t GPR[] = {
3756    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3757    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3758  };
3759  static const uint16_t *FPR = GetFPR();
3760
3761  static const uint16_t VR[] = {
3762    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3763    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3764  };
3765  const unsigned NumGPRs = array_lengthof(GPR);
3766  const unsigned NumFPRs = 13;
3767  const unsigned NumVRs  = array_lengthof(VR);
3768
3769  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3770  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3771
3772  SmallVector<SDValue, 8> MemOpChains;
3773  for (unsigned i = 0; i != NumOps; ++i) {
3774    SDValue Arg = OutVals[i];
3775    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3776
3777    // PtrOff will be used to store the current argument to the stack if a
3778    // register cannot be found for it.
3779    SDValue PtrOff;
3780
3781    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3782
3783    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3784
3785    // Promote integers to 64-bit values.
3786    if (Arg.getValueType() == MVT::i32) {
3787      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3788      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3789      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3790    }
3791
3792    // FIXME memcpy is used way more than necessary.  Correctness first.
3793    // Note: "by value" is code for passing a structure by value, not
3794    // basic types.
3795    if (Flags.isByVal()) {
3796      // Note: Size includes alignment padding, so
3797      //   struct x { short a; char b; }
3798      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
3799      // These are the proper values we need for right-justifying the
3800      // aggregate in a parameter register.
3801      unsigned Size = Flags.getByValSize();
3802
3803      // An empty aggregate parameter takes up no storage and no
3804      // registers.
3805      if (Size == 0)
3806        continue;
3807
3808      // All aggregates smaller than 8 bytes must be passed right-justified.
3809      if (Size==1 || Size==2 || Size==4) {
3810        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
3811        if (GPR_idx != NumGPRs) {
3812          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3813                                        MachinePointerInfo(), VT,
3814                                        false, false, 0);
3815          MemOpChains.push_back(Load.getValue(1));
3816          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3817
3818          ArgOffset += PtrByteSize;
3819          continue;
3820        }
3821      }
3822
3823      if (GPR_idx == NumGPRs && Size < 8) {
3824        SDValue Const = DAG.getConstant(PtrByteSize - Size,
3825                                        PtrOff.getValueType());
3826        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3827        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3828                                                          CallSeqStart,
3829                                                          Flags, DAG, dl);
3830        ArgOffset += PtrByteSize;
3831        continue;
3832      }
3833      // Copy entire object into memory.  There are cases where gcc-generated
3834      // code assumes it is there, even if it could be put entirely into
3835      // registers.  (This is not what the doc says.)
3836
3837      // FIXME: The above statement is likely due to a misunderstanding of the
3838      // documents.  All arguments must be copied into the parameter area BY
3839      // THE CALLEE in the event that the callee takes the address of any
3840      // formal argument.  That has not yet been implemented.  However, it is
3841      // reasonable to use the stack area as a staging area for the register
3842      // load.
3843
3844      // Skip this for small aggregates, as we will use the same slot for a
3845      // right-justified copy, below.
3846      if (Size >= 8)
3847        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
3848                                                          CallSeqStart,
3849                                                          Flags, DAG, dl);
3850
3851      // When a register is available, pass a small aggregate right-justified.
3852      if (Size < 8 && GPR_idx != NumGPRs) {
3853        // The easiest way to get this right-justified in a register
3854        // is to copy the structure into the rightmost portion of a
3855        // local variable slot, then load the whole slot into the
3856        // register.
3857        // FIXME: The memcpy seems to produce pretty awful code for
3858        // small aggregates, particularly for packed ones.
3859        // FIXME: It would be preferable to use the slot in the
3860        // parameter save area instead of a new local variable.
3861        SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
3862        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3863        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3864                                                          CallSeqStart,
3865                                                          Flags, DAG, dl);
3866
3867        // Load the slot into the register.
3868        SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
3869                                   MachinePointerInfo(),
3870                                   false, false, false, 0);
3871        MemOpChains.push_back(Load.getValue(1));
3872        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3873
3874        // Done with this argument.
3875        ArgOffset += PtrByteSize;
3876        continue;
3877      }
3878
3879      // For aggregates larger than PtrByteSize, copy the pieces of the
3880      // object that fit into registers from the parameter save area.
3881      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3882        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3883        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3884        if (GPR_idx != NumGPRs) {
3885          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3886                                     MachinePointerInfo(),
3887                                     false, false, false, 0);
3888          MemOpChains.push_back(Load.getValue(1));
3889          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3890          ArgOffset += PtrByteSize;
3891        } else {
3892          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3893          break;
3894        }
3895      }
3896      continue;
3897    }
3898
3899    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3900    default: llvm_unreachable("Unexpected ValueType for argument!");
3901    case MVT::i32:
3902    case MVT::i64:
3903      if (GPR_idx != NumGPRs) {
3904        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3905      } else {
3906        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3907                         true, isTailCall, false, MemOpChains,
3908                         TailCallArguments, dl);
3909      }
3910      ArgOffset += PtrByteSize;
3911      break;
3912    case MVT::f32:
3913    case MVT::f64:
3914      if (FPR_idx != NumFPRs) {
3915        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3916
3917        if (isVarArg) {
3918          // A single float or an aggregate containing only a single float
3919          // must be passed right-justified in the stack doubleword, and
3920          // in the GPR, if one is available.
3921          SDValue StoreOff;
3922          if (Arg.getValueType().getSimpleVT().SimpleTy == MVT::f32) {
3923            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3924            StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3925          } else
3926            StoreOff = PtrOff;
3927
3928          SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
3929                                       MachinePointerInfo(), false, false, 0);
3930          MemOpChains.push_back(Store);
3931
3932          // Float varargs are always shadowed in available integer registers
3933          if (GPR_idx != NumGPRs) {
3934            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3935                                       MachinePointerInfo(), false, false,
3936                                       false, 0);
3937            MemOpChains.push_back(Load.getValue(1));
3938            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3939          }
3940        } else if (GPR_idx != NumGPRs)
3941          // If we have any FPRs remaining, we may also have GPRs remaining.
3942          ++GPR_idx;
3943      } else {
3944        // Single-precision floating-point values are mapped to the
3945        // second (rightmost) word of the stack doubleword.
3946        if (Arg.getValueType() == MVT::f32) {
3947          SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3948          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3949        }
3950
3951        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3952                         true, isTailCall, false, MemOpChains,
3953                         TailCallArguments, dl);
3954      }
3955      ArgOffset += 8;
3956      break;
3957    case MVT::v4f32:
3958    case MVT::v4i32:
3959    case MVT::v8i16:
3960    case MVT::v16i8:
3961      if (isVarArg) {
3962        // These go aligned on the stack, or in the corresponding R registers
3963        // when within range.  The Darwin PPC ABI doc claims they also go in
3964        // V registers; in fact gcc does this only for arguments that are
3965        // prototyped, not for those that match the ...  We do it for all
3966        // arguments, seems to work.
3967        while (ArgOffset % 16 !=0) {
3968          ArgOffset += PtrByteSize;
3969          if (GPR_idx != NumGPRs)
3970            GPR_idx++;
3971        }
3972        // We could elide this store in the case where the object fits
3973        // entirely in R registers.  Maybe later.
3974        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3975                            DAG.getConstant(ArgOffset, PtrVT));
3976        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3977                                     MachinePointerInfo(), false, false, 0);
3978        MemOpChains.push_back(Store);
3979        if (VR_idx != NumVRs) {
3980          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3981                                     MachinePointerInfo(),
3982                                     false, false, false, 0);
3983          MemOpChains.push_back(Load.getValue(1));
3984          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3985        }
3986        ArgOffset += 16;
3987        for (unsigned i=0; i<16; i+=PtrByteSize) {
3988          if (GPR_idx == NumGPRs)
3989            break;
3990          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3991                                  DAG.getConstant(i, PtrVT));
3992          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3993                                     false, false, false, 0);
3994          MemOpChains.push_back(Load.getValue(1));
3995          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3996        }
3997        break;
3998      }
3999
4000      // Non-varargs Altivec params generally go in registers, but have
4001      // stack space allocated at the end.
4002      if (VR_idx != NumVRs) {
4003        // Doesn't have GPR space allocated.
4004        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4005      } else {
4006        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4007                         true, isTailCall, true, MemOpChains,
4008                         TailCallArguments, dl);
4009        ArgOffset += 16;
4010      }
4011      break;
4012    }
4013  }
4014
4015  if (!MemOpChains.empty())
4016    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4017                        &MemOpChains[0], MemOpChains.size());
4018
4019  // Check if this is an indirect call (MTCTR/BCTRL).
4020  // See PrepareCall() for more information about calls through function
4021  // pointers in the 64-bit SVR4 ABI.
4022  if (!isTailCall &&
4023      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4024      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4025      !isBLACompatibleAddress(Callee, DAG)) {
4026    // Load r2 into a virtual register and store it to the TOC save area.
4027    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
4028    // TOC save area offset.
4029    SDValue PtrOff = DAG.getIntPtrConstant(40);
4030    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4031    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
4032                         false, false, 0);
4033    // R12 must contain the address of an indirect callee.  This does not
4034    // mean the MTCTR instruction must use R12; it's easier to model this
4035    // as an extra parameter, so do that.
4036    RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
4037  }
4038
4039  // Build a sequence of copy-to-reg nodes chained together with token chain
4040  // and flag operands which copy the outgoing args into the appropriate regs.
4041  SDValue InFlag;
4042  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4043    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4044                             RegsToPass[i].second, InFlag);
4045    InFlag = Chain.getValue(1);
4046  }
4047
4048  if (isTailCall)
4049    PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
4050                    FPOp, true, TailCallArguments);
4051
4052  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4053                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4054                    Ins, InVals);
4055}
4056
4057SDValue
4058PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
4059                                    CallingConv::ID CallConv, bool isVarArg,
4060                                    bool isTailCall,
4061                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
4062                                    const SmallVectorImpl<SDValue> &OutVals,
4063                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4064                                    SDLoc dl, SelectionDAG &DAG,
4065                                    SmallVectorImpl<SDValue> &InVals) const {
4066
4067  unsigned NumOps = Outs.size();
4068
4069  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4070  bool isPPC64 = PtrVT == MVT::i64;
4071  unsigned PtrByteSize = isPPC64 ? 8 : 4;
4072
4073  MachineFunction &MF = DAG.getMachineFunction();
4074
4075  // Mark this function as potentially containing a function that contains a
4076  // tail call. As a consequence the frame pointer will be used for dynamicalloc
4077  // and restoring the callers stack pointer in this functions epilog. This is
4078  // done because by tail calling the called function might overwrite the value
4079  // in this function's (MF) stack pointer stack slot 0(SP).
4080  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4081      CallConv == CallingConv::Fast)
4082    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4083
4084  unsigned nAltivecParamsAtEnd = 0;
4085
4086  // Count how many bytes are to be pushed on the stack, including the linkage
4087  // area, and parameter passing area.  We start with 24/48 bytes, which is
4088  // prereserved space for [SP][CR][LR][3 x unused].
4089  unsigned NumBytes =
4090    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
4091                                         Outs, OutVals,
4092                                         nAltivecParamsAtEnd);
4093
4094  // Calculate by how many bytes the stack has to be adjusted in case of tail
4095  // call optimization.
4096  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4097
4098  // To protect arguments on the stack from being clobbered in a tail call,
4099  // force all the loads to happen before doing any other lowering.
4100  if (isTailCall)
4101    Chain = DAG.getStackArgumentTokenFactor(Chain);
4102
4103  // Adjust the stack pointer for the new arguments...
4104  // These operations are automatically eliminated by the prolog/epilog pass
4105  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
4106                               dl);
4107  SDValue CallSeqStart = Chain;
4108
4109  // Load the return address and frame pointer so it can be move somewhere else
4110  // later.
4111  SDValue LROp, FPOp;
4112  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4113                                       dl);
4114
4115  // Set up a copy of the stack pointer for use loading and storing any
4116  // arguments that may not fit in the registers available for argument
4117  // passing.
4118  SDValue StackPtr;
4119  if (isPPC64)
4120    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4121  else
4122    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4123
4124  // Figure out which arguments are going to go in registers, and which in
4125  // memory.  Also, if this is a vararg function, floating point operations
4126  // must be stored to our stack, and loaded into integer regs as well, if
4127  // any integer regs are available for argument passing.
4128  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
4129  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4130
4131  static const uint16_t GPR_32[] = {           // 32-bit registers.
4132    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4133    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4134  };
4135  static const uint16_t GPR_64[] = {           // 64-bit registers.
4136    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4137    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4138  };
4139  static const uint16_t *FPR = GetFPR();
4140
4141  static const uint16_t VR[] = {
4142    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4143    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4144  };
4145  const unsigned NumGPRs = array_lengthof(GPR_32);
4146  const unsigned NumFPRs = 13;
4147  const unsigned NumVRs  = array_lengthof(VR);
4148
4149  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
4150
4151  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4152  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4153
4154  SmallVector<SDValue, 8> MemOpChains;
4155  for (unsigned i = 0; i != NumOps; ++i) {
4156    SDValue Arg = OutVals[i];
4157    ISD::ArgFlagsTy Flags = Outs[i].Flags;
4158
4159    // PtrOff will be used to store the current argument to the stack if a
4160    // register cannot be found for it.
4161    SDValue PtrOff;
4162
4163    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4164
4165    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4166
4167    // On PPC64, promote integers to 64-bit values.
4168    if (isPPC64 && Arg.getValueType() == MVT::i32) {
4169      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4170      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4171      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4172    }
4173
4174    // FIXME memcpy is used way more than necessary.  Correctness first.
4175    // Note: "by value" is code for passing a structure by value, not
4176    // basic types.
4177    if (Flags.isByVal()) {
4178      unsigned Size = Flags.getByValSize();
4179      // Very small objects are passed right-justified.  Everything else is
4180      // passed left-justified.
4181      if (Size==1 || Size==2) {
4182        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
4183        if (GPR_idx != NumGPRs) {
4184          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4185                                        MachinePointerInfo(), VT,
4186                                        false, false, 0);
4187          MemOpChains.push_back(Load.getValue(1));
4188          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4189
4190          ArgOffset += PtrByteSize;
4191        } else {
4192          SDValue Const = DAG.getConstant(PtrByteSize - Size,
4193                                          PtrOff.getValueType());
4194          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4195          Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4196                                                            CallSeqStart,
4197                                                            Flags, DAG, dl);
4198          ArgOffset += PtrByteSize;
4199        }
4200        continue;
4201      }
4202      // Copy entire object into memory.  There are cases where gcc-generated
4203      // code assumes it is there, even if it could be put entirely into
4204      // registers.  (This is not what the doc says.)
4205      Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4206                                                        CallSeqStart,
4207                                                        Flags, DAG, dl);
4208
4209      // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
4210      // copy the pieces of the object that fit into registers from the
4211      // parameter save area.
4212      for (unsigned j=0; j<Size; j+=PtrByteSize) {
4213        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4214        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4215        if (GPR_idx != NumGPRs) {
4216          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4217                                     MachinePointerInfo(),
4218                                     false, false, false, 0);
4219          MemOpChains.push_back(Load.getValue(1));
4220          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4221          ArgOffset += PtrByteSize;
4222        } else {
4223          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4224          break;
4225        }
4226      }
4227      continue;
4228    }
4229
4230    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
4231    default: llvm_unreachable("Unexpected ValueType for argument!");
4232    case MVT::i32:
4233    case MVT::i64:
4234      if (GPR_idx != NumGPRs) {
4235        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
4236      } else {
4237        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4238                         isPPC64, isTailCall, false, MemOpChains,
4239                         TailCallArguments, dl);
4240      }
4241      ArgOffset += PtrByteSize;
4242      break;
4243    case MVT::f32:
4244    case MVT::f64:
4245      if (FPR_idx != NumFPRs) {
4246        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4247
4248        if (isVarArg) {
4249          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4250                                       MachinePointerInfo(), false, false, 0);
4251          MemOpChains.push_back(Store);
4252
4253          // Float varargs are always shadowed in available integer registers
4254          if (GPR_idx != NumGPRs) {
4255            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4256                                       MachinePointerInfo(), false, false,
4257                                       false, 0);
4258            MemOpChains.push_back(Load.getValue(1));
4259            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4260          }
4261          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
4262            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4263            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4264            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4265                                       MachinePointerInfo(),
4266                                       false, false, false, 0);
4267            MemOpChains.push_back(Load.getValue(1));
4268            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4269          }
4270        } else {
4271          // If we have any FPRs remaining, we may also have GPRs remaining.
4272          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
4273          // GPRs.
4274          if (GPR_idx != NumGPRs)
4275            ++GPR_idx;
4276          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
4277              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
4278            ++GPR_idx;
4279        }
4280      } else
4281        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4282                         isPPC64, isTailCall, false, MemOpChains,
4283                         TailCallArguments, dl);
4284      if (isPPC64)
4285        ArgOffset += 8;
4286      else
4287        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
4288      break;
4289    case MVT::v4f32:
4290    case MVT::v4i32:
4291    case MVT::v8i16:
4292    case MVT::v16i8:
4293      if (isVarArg) {
4294        // These go aligned on the stack, or in the corresponding R registers
4295        // when within range.  The Darwin PPC ABI doc claims they also go in
4296        // V registers; in fact gcc does this only for arguments that are
4297        // prototyped, not for those that match the ...  We do it for all
4298        // arguments, seems to work.
4299        while (ArgOffset % 16 !=0) {
4300          ArgOffset += PtrByteSize;
4301          if (GPR_idx != NumGPRs)
4302            GPR_idx++;
4303        }
4304        // We could elide this store in the case where the object fits
4305        // entirely in R registers.  Maybe later.
4306        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4307                            DAG.getConstant(ArgOffset, PtrVT));
4308        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4309                                     MachinePointerInfo(), false, false, 0);
4310        MemOpChains.push_back(Store);
4311        if (VR_idx != NumVRs) {
4312          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4313                                     MachinePointerInfo(),
4314                                     false, false, false, 0);
4315          MemOpChains.push_back(Load.getValue(1));
4316          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4317        }
4318        ArgOffset += 16;
4319        for (unsigned i=0; i<16; i+=PtrByteSize) {
4320          if (GPR_idx == NumGPRs)
4321            break;
4322          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4323                                  DAG.getConstant(i, PtrVT));
4324          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4325                                     false, false, false, 0);
4326          MemOpChains.push_back(Load.getValue(1));
4327          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4328        }
4329        break;
4330      }
4331
4332      // Non-varargs Altivec params generally go in registers, but have
4333      // stack space allocated at the end.
4334      if (VR_idx != NumVRs) {
4335        // Doesn't have GPR space allocated.
4336        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4337      } else if (nAltivecParamsAtEnd==0) {
4338        // We are emitting Altivec params in order.
4339        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4340                         isPPC64, isTailCall, true, MemOpChains,
4341                         TailCallArguments, dl);
4342        ArgOffset += 16;
4343      }
4344      break;
4345    }
4346  }
4347  // If all Altivec parameters fit in registers, as they usually do,
4348  // they get stack space following the non-Altivec parameters.  We
4349  // don't track this here because nobody below needs it.
4350  // If there are more Altivec parameters than fit in registers emit
4351  // the stores here.
4352  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
4353    unsigned j = 0;
4354    // Offset is aligned; skip 1st 12 params which go in V registers.
4355    ArgOffset = ((ArgOffset+15)/16)*16;
4356    ArgOffset += 12*16;
4357    for (unsigned i = 0; i != NumOps; ++i) {
4358      SDValue Arg = OutVals[i];
4359      EVT ArgType = Outs[i].VT;
4360      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
4361          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
4362        if (++j > NumVRs) {
4363          SDValue PtrOff;
4364          // We are emitting Altivec params in order.
4365          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4366                           isPPC64, isTailCall, true, MemOpChains,
4367                           TailCallArguments, dl);
4368          ArgOffset += 16;
4369        }
4370      }
4371    }
4372  }
4373
4374  if (!MemOpChains.empty())
4375    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4376                        &MemOpChains[0], MemOpChains.size());
4377
4378  // On Darwin, R12 must contain the address of an indirect callee.  This does
4379  // not mean the MTCTR instruction must use R12; it's easier to model this as
4380  // an extra parameter, so do that.
4381  if (!isTailCall &&
4382      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4383      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4384      !isBLACompatibleAddress(Callee, DAG))
4385    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
4386                                                   PPC::R12), Callee));
4387
4388  // Build a sequence of copy-to-reg nodes chained together with token chain
4389  // and flag operands which copy the outgoing args into the appropriate regs.
4390  SDValue InFlag;
4391  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4392    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4393                             RegsToPass[i].second, InFlag);
4394    InFlag = Chain.getValue(1);
4395  }
4396
4397  if (isTailCall)
4398    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
4399                    FPOp, true, TailCallArguments);
4400
4401  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4402                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4403                    Ins, InVals);
4404}
4405
4406bool
4407PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
4408                                  MachineFunction &MF, bool isVarArg,
4409                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
4410                                  LLVMContext &Context) const {
4411  SmallVector<CCValAssign, 16> RVLocs;
4412  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
4413                 RVLocs, Context);
4414  return CCInfo.CheckReturn(Outs, RetCC_PPC);
4415}
4416
4417SDValue
4418PPCTargetLowering::LowerReturn(SDValue Chain,
4419                               CallingConv::ID CallConv, bool isVarArg,
4420                               const SmallVectorImpl<ISD::OutputArg> &Outs,
4421                               const SmallVectorImpl<SDValue> &OutVals,
4422                               SDLoc dl, SelectionDAG &DAG) const {
4423
4424  SmallVector<CCValAssign, 16> RVLocs;
4425  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4426                 getTargetMachine(), RVLocs, *DAG.getContext());
4427  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
4428
4429  SDValue Flag;
4430  SmallVector<SDValue, 4> RetOps(1, Chain);
4431
4432  // Copy the result values into the output registers.
4433  for (unsigned i = 0; i != RVLocs.size(); ++i) {
4434    CCValAssign &VA = RVLocs[i];
4435    assert(VA.isRegLoc() && "Can only return in registers!");
4436
4437    SDValue Arg = OutVals[i];
4438
4439    switch (VA.getLocInfo()) {
4440    default: llvm_unreachable("Unknown loc info!");
4441    case CCValAssign::Full: break;
4442    case CCValAssign::AExt:
4443      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
4444      break;
4445    case CCValAssign::ZExt:
4446      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
4447      break;
4448    case CCValAssign::SExt:
4449      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
4450      break;
4451    }
4452
4453    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
4454    Flag = Chain.getValue(1);
4455    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
4456  }
4457
4458  RetOps[0] = Chain;  // Update chain.
4459
4460  // Add the flag if we have it.
4461  if (Flag.getNode())
4462    RetOps.push_back(Flag);
4463
4464  return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other,
4465                     &RetOps[0], RetOps.size());
4466}
4467
4468SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
4469                                   const PPCSubtarget &Subtarget) const {
4470  // When we pop the dynamic allocation we need to restore the SP link.
4471  SDLoc dl(Op);
4472
4473  // Get the corect type for pointers.
4474  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4475
4476  // Construct the stack pointer operand.
4477  bool isPPC64 = Subtarget.isPPC64();
4478  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
4479  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
4480
4481  // Get the operands for the STACKRESTORE.
4482  SDValue Chain = Op.getOperand(0);
4483  SDValue SaveSP = Op.getOperand(1);
4484
4485  // Load the old link SP.
4486  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
4487                                   MachinePointerInfo(),
4488                                   false, false, false, 0);
4489
4490  // Restore the stack pointer.
4491  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
4492
4493  // Store the old link SP.
4494  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
4495                      false, false, 0);
4496}
4497
4498
4499
4500SDValue
4501PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
4502  MachineFunction &MF = DAG.getMachineFunction();
4503  bool isPPC64 = PPCSubTarget.isPPC64();
4504  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4505  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4506
4507  // Get current frame pointer save index.  The users of this index will be
4508  // primarily DYNALLOC instructions.
4509  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4510  int RASI = FI->getReturnAddrSaveIndex();
4511
4512  // If the frame pointer save index hasn't been defined yet.
4513  if (!RASI) {
4514    // Find out what the fix offset of the frame pointer save area.
4515    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
4516    // Allocate the frame index for frame pointer save area.
4517    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
4518    // Save the result.
4519    FI->setReturnAddrSaveIndex(RASI);
4520  }
4521  return DAG.getFrameIndex(RASI, PtrVT);
4522}
4523
4524SDValue
4525PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
4526  MachineFunction &MF = DAG.getMachineFunction();
4527  bool isPPC64 = PPCSubTarget.isPPC64();
4528  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4529  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4530
4531  // Get current frame pointer save index.  The users of this index will be
4532  // primarily DYNALLOC instructions.
4533  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4534  int FPSI = FI->getFramePointerSaveIndex();
4535
4536  // If the frame pointer save index hasn't been defined yet.
4537  if (!FPSI) {
4538    // Find out what the fix offset of the frame pointer save area.
4539    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
4540                                                           isDarwinABI);
4541
4542    // Allocate the frame index for frame pointer save area.
4543    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
4544    // Save the result.
4545    FI->setFramePointerSaveIndex(FPSI);
4546  }
4547  return DAG.getFrameIndex(FPSI, PtrVT);
4548}
4549
4550SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
4551                                         SelectionDAG &DAG,
4552                                         const PPCSubtarget &Subtarget) const {
4553  // Get the inputs.
4554  SDValue Chain = Op.getOperand(0);
4555  SDValue Size  = Op.getOperand(1);
4556  SDLoc dl(Op);
4557
4558  // Get the corect type for pointers.
4559  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4560  // Negate the size.
4561  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
4562                                  DAG.getConstant(0, PtrVT), Size);
4563  // Construct a node for the frame pointer save index.
4564  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
4565  // Build a DYNALLOC node.
4566  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
4567  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
4568  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
4569}
4570
4571SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
4572                                               SelectionDAG &DAG) const {
4573  SDLoc DL(Op);
4574  return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
4575                     DAG.getVTList(MVT::i32, MVT::Other),
4576                     Op.getOperand(0), Op.getOperand(1));
4577}
4578
4579SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
4580                                                SelectionDAG &DAG) const {
4581  SDLoc DL(Op);
4582  return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
4583                     Op.getOperand(0), Op.getOperand(1));
4584}
4585
4586/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
4587/// possible.
4588SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4589  // Not FP? Not a fsel.
4590  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
4591      !Op.getOperand(2).getValueType().isFloatingPoint())
4592    return Op;
4593
4594  // We might be able to do better than this under some circumstances, but in
4595  // general, fsel-based lowering of select is a finite-math-only optimization.
4596  // For more information, see section F.3 of the 2.06 ISA specification.
4597  if (!DAG.getTarget().Options.NoInfsFPMath ||
4598      !DAG.getTarget().Options.NoNaNsFPMath)
4599    return Op;
4600
4601  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4602
4603  EVT ResVT = Op.getValueType();
4604  EVT CmpVT = Op.getOperand(0).getValueType();
4605  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4606  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
4607  SDLoc dl(Op);
4608
4609  // If the RHS of the comparison is a 0.0, we don't need to do the
4610  // subtraction at all.
4611  SDValue Sel1;
4612  if (isFloatingPointZero(RHS))
4613    switch (CC) {
4614    default: break;       // SETUO etc aren't handled by fsel.
4615    case ISD::SETNE:
4616      std::swap(TV, FV);
4617    case ISD::SETEQ:
4618      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4619        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4620      Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4621      if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
4622        Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
4623      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4624                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
4625    case ISD::SETULT:
4626    case ISD::SETLT:
4627      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4628    case ISD::SETOGE:
4629    case ISD::SETGE:
4630      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4631        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4632      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4633    case ISD::SETUGT:
4634    case ISD::SETGT:
4635      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4636    case ISD::SETOLE:
4637    case ISD::SETLE:
4638      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4639        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4640      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4641                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
4642    }
4643
4644  SDValue Cmp;
4645  switch (CC) {
4646  default: break;       // SETUO etc aren't handled by fsel.
4647  case ISD::SETNE:
4648    std::swap(TV, FV);
4649  case ISD::SETEQ:
4650    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4651    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4652      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4653    Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4654    if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
4655      Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
4656    return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4657                       DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
4658  case ISD::SETULT:
4659  case ISD::SETLT:
4660    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4661    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4662      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4663    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4664  case ISD::SETOGE:
4665  case ISD::SETGE:
4666    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4667    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4668      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4669    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4670  case ISD::SETUGT:
4671  case ISD::SETGT:
4672    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4673    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4674      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4675    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4676  case ISD::SETOLE:
4677  case ISD::SETLE:
4678    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4679    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4680      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4681    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4682  }
4683  return Op;
4684}
4685
4686// FIXME: Split this code up when LegalizeDAGTypes lands.
4687SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
4688                                           SDLoc dl) const {
4689  assert(Op.getOperand(0).getValueType().isFloatingPoint());
4690  SDValue Src = Op.getOperand(0);
4691  if (Src.getValueType() == MVT::f32)
4692    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
4693
4694  SDValue Tmp;
4695  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4696  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
4697  case MVT::i32:
4698    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
4699                        (PPCSubTarget.hasFPCVT() ? PPCISD::FCTIWUZ :
4700                                                   PPCISD::FCTIDZ),
4701                      dl, MVT::f64, Src);
4702    break;
4703  case MVT::i64:
4704    assert((Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT()) &&
4705           "i64 FP_TO_UINT is supported only with FPCVT");
4706    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
4707                                                        PPCISD::FCTIDUZ,
4708                      dl, MVT::f64, Src);
4709    break;
4710  }
4711
4712  // Convert the FP value to an int value through memory.
4713  bool i32Stack = Op.getValueType() == MVT::i32 && PPCSubTarget.hasSTFIWX() &&
4714    (Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT());
4715  SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
4716  int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
4717  MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
4718
4719  // Emit a store to the stack slot.
4720  SDValue Chain;
4721  if (i32Stack) {
4722    MachineFunction &MF = DAG.getMachineFunction();
4723    MachineMemOperand *MMO =
4724      MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
4725    SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
4726    Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
4727              DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
4728              MVT::i32, MMO);
4729  } else
4730    Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
4731                         MPI, false, false, 0);
4732
4733  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
4734  // add in a bias.
4735  if (Op.getValueType() == MVT::i32 && !i32Stack) {
4736    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
4737                        DAG.getConstant(4, FIPtr.getValueType()));
4738    MPI = MachinePointerInfo();
4739  }
4740
4741  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI,
4742                     false, false, false, 0);
4743}
4744
4745SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
4746                                           SelectionDAG &DAG) const {
4747  SDLoc dl(Op);
4748  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
4749  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
4750    return SDValue();
4751
4752  assert((Op.getOpcode() == ISD::SINT_TO_FP || PPCSubTarget.hasFPCVT()) &&
4753         "UINT_TO_FP is supported only with FPCVT");
4754
4755  // If we have FCFIDS, then use it when converting to single-precision.
4756  // Otherwise, convert to double-precision and then round.
4757  unsigned FCFOp = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
4758                   (Op.getOpcode() == ISD::UINT_TO_FP ?
4759                    PPCISD::FCFIDUS : PPCISD::FCFIDS) :
4760                   (Op.getOpcode() == ISD::UINT_TO_FP ?
4761                    PPCISD::FCFIDU : PPCISD::FCFID);
4762  MVT      FCFTy = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
4763                   MVT::f32 : MVT::f64;
4764
4765  if (Op.getOperand(0).getValueType() == MVT::i64) {
4766    SDValue SINT = Op.getOperand(0);
4767    // When converting to single-precision, we actually need to convert
4768    // to double-precision first and then round to single-precision.
4769    // To avoid double-rounding effects during that operation, we have
4770    // to prepare the input operand.  Bits that might be truncated when
4771    // converting to double-precision are replaced by a bit that won't
4772    // be lost at this stage, but is below the single-precision rounding
4773    // position.
4774    //
4775    // However, if -enable-unsafe-fp-math is in effect, accept double
4776    // rounding to avoid the extra overhead.
4777    if (Op.getValueType() == MVT::f32 &&
4778        !PPCSubTarget.hasFPCVT() &&
4779        !DAG.getTarget().Options.UnsafeFPMath) {
4780
4781      // Twiddle input to make sure the low 11 bits are zero.  (If this
4782      // is the case, we are guaranteed the value will fit into the 53 bit
4783      // mantissa of an IEEE double-precision value without rounding.)
4784      // If any of those low 11 bits were not zero originally, make sure
4785      // bit 12 (value 2048) is set instead, so that the final rounding
4786      // to single-precision gets the correct result.
4787      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4788                                  SINT, DAG.getConstant(2047, MVT::i64));
4789      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
4790                          Round, DAG.getConstant(2047, MVT::i64));
4791      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
4792      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4793                          Round, DAG.getConstant(-2048, MVT::i64));
4794
4795      // However, we cannot use that value unconditionally: if the magnitude
4796      // of the input value is small, the bit-twiddling we did above might
4797      // end up visibly changing the output.  Fortunately, in that case, we
4798      // don't need to twiddle bits since the original input will convert
4799      // exactly to double-precision floating-point already.  Therefore,
4800      // construct a conditional to use the original value if the top 11
4801      // bits are all sign-bit copies, and use the rounded value computed
4802      // above otherwise.
4803      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
4804                                 SINT, DAG.getConstant(53, MVT::i32));
4805      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
4806                         Cond, DAG.getConstant(1, MVT::i64));
4807      Cond = DAG.getSetCC(dl, MVT::i32,
4808                          Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
4809
4810      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
4811    }
4812
4813    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
4814    SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
4815
4816    if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
4817      FP = DAG.getNode(ISD::FP_ROUND, dl,
4818                       MVT::f32, FP, DAG.getIntPtrConstant(0));
4819    return FP;
4820  }
4821
4822  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
4823         "Unhandled INT_TO_FP type in custom expander!");
4824  // Since we only generate this in 64-bit mode, we can take advantage of
4825  // 64-bit registers.  In particular, sign extend the input value into the
4826  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
4827  // then lfd it and fcfid it.
4828  MachineFunction &MF = DAG.getMachineFunction();
4829  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
4830  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4831
4832  SDValue Ld;
4833  if (PPCSubTarget.hasLFIWAX() || PPCSubTarget.hasFPCVT()) {
4834    int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
4835    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4836
4837    SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
4838                                 MachinePointerInfo::getFixedStack(FrameIdx),
4839                                 false, false, 0);
4840
4841    assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
4842           "Expected an i32 store");
4843    MachineMemOperand *MMO =
4844      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
4845                              MachineMemOperand::MOLoad, 4, 4);
4846    SDValue Ops[] = { Store, FIdx };
4847    Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
4848                                   PPCISD::LFIWZX : PPCISD::LFIWAX,
4849                                 dl, DAG.getVTList(MVT::f64, MVT::Other),
4850                                 Ops, 2, MVT::i32, MMO);
4851  } else {
4852    assert(PPCSubTarget.isPPC64() &&
4853           "i32->FP without LFIWAX supported only on PPC64");
4854
4855    int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
4856    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4857
4858    SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
4859                                Op.getOperand(0));
4860
4861    // STD the extended value into the stack slot.
4862    SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
4863                                 MachinePointerInfo::getFixedStack(FrameIdx),
4864                                 false, false, 0);
4865
4866    // Load the value as a double.
4867    Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
4868                     MachinePointerInfo::getFixedStack(FrameIdx),
4869                     false, false, false, 0);
4870  }
4871
4872  // FCFID it and return it.
4873  SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
4874  if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
4875    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
4876  return FP;
4877}
4878
4879SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4880                                            SelectionDAG &DAG) const {
4881  SDLoc dl(Op);
4882  /*
4883   The rounding mode is in bits 30:31 of FPSR, and has the following
4884   settings:
4885     00 Round to nearest
4886     01 Round to 0
4887     10 Round to +inf
4888     11 Round to -inf
4889
4890  FLT_ROUNDS, on the other hand, expects the following:
4891    -1 Undefined
4892     0 Round to 0
4893     1 Round to nearest
4894     2 Round to +inf
4895     3 Round to -inf
4896
4897  To perform the conversion, we do:
4898    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
4899  */
4900
4901  MachineFunction &MF = DAG.getMachineFunction();
4902  EVT VT = Op.getValueType();
4903  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4904  SDValue MFFSreg, InFlag;
4905
4906  // Save FP Control Word to register
4907  EVT NodeTys[] = {
4908    MVT::f64,    // return register
4909    MVT::Glue    // unused in this context
4910  };
4911  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4912
4913  // Save FP register to stack slot
4914  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
4915  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
4916  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
4917                               StackSlot, MachinePointerInfo(), false, false,0);
4918
4919  // Load FP Control Word from low 32 bits of stack slot.
4920  SDValue Four = DAG.getConstant(4, PtrVT);
4921  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
4922  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
4923                            false, false, false, 0);
4924
4925  // Transform as necessary
4926  SDValue CWD1 =
4927    DAG.getNode(ISD::AND, dl, MVT::i32,
4928                CWD, DAG.getConstant(3, MVT::i32));
4929  SDValue CWD2 =
4930    DAG.getNode(ISD::SRL, dl, MVT::i32,
4931                DAG.getNode(ISD::AND, dl, MVT::i32,
4932                            DAG.getNode(ISD::XOR, dl, MVT::i32,
4933                                        CWD, DAG.getConstant(3, MVT::i32)),
4934                            DAG.getConstant(3, MVT::i32)),
4935                DAG.getConstant(1, MVT::i32));
4936
4937  SDValue RetVal =
4938    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
4939
4940  return DAG.getNode((VT.getSizeInBits() < 16 ?
4941                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
4942}
4943
4944SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4945  EVT VT = Op.getValueType();
4946  unsigned BitWidth = VT.getSizeInBits();
4947  SDLoc dl(Op);
4948  assert(Op.getNumOperands() == 3 &&
4949         VT == Op.getOperand(1).getValueType() &&
4950         "Unexpected SHL!");
4951
4952  // Expand into a bunch of logical ops.  Note that these ops
4953  // depend on the PPC behavior for oversized shift amounts.
4954  SDValue Lo = Op.getOperand(0);
4955  SDValue Hi = Op.getOperand(1);
4956  SDValue Amt = Op.getOperand(2);
4957  EVT AmtVT = Amt.getValueType();
4958
4959  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4960                             DAG.getConstant(BitWidth, AmtVT), Amt);
4961  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
4962  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
4963  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
4964  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4965                             DAG.getConstant(-BitWidth, AmtVT));
4966  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
4967  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4968  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
4969  SDValue OutOps[] = { OutLo, OutHi };
4970  return DAG.getMergeValues(OutOps, 2, dl);
4971}
4972
4973SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4974  EVT VT = Op.getValueType();
4975  SDLoc dl(Op);
4976  unsigned BitWidth = VT.getSizeInBits();
4977  assert(Op.getNumOperands() == 3 &&
4978         VT == Op.getOperand(1).getValueType() &&
4979         "Unexpected SRL!");
4980
4981  // Expand into a bunch of logical ops.  Note that these ops
4982  // depend on the PPC behavior for oversized shift amounts.
4983  SDValue Lo = Op.getOperand(0);
4984  SDValue Hi = Op.getOperand(1);
4985  SDValue Amt = Op.getOperand(2);
4986  EVT AmtVT = Amt.getValueType();
4987
4988  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4989                             DAG.getConstant(BitWidth, AmtVT), Amt);
4990  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
4991  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
4992  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
4993  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4994                             DAG.getConstant(-BitWidth, AmtVT));
4995  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
4996  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4997  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
4998  SDValue OutOps[] = { OutLo, OutHi };
4999  return DAG.getMergeValues(OutOps, 2, dl);
5000}
5001
5002SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
5003  SDLoc dl(Op);
5004  EVT VT = Op.getValueType();
5005  unsigned BitWidth = VT.getSizeInBits();
5006  assert(Op.getNumOperands() == 3 &&
5007         VT == Op.getOperand(1).getValueType() &&
5008         "Unexpected SRA!");
5009
5010  // Expand into a bunch of logical ops, followed by a select_cc.
5011  SDValue Lo = Op.getOperand(0);
5012  SDValue Hi = Op.getOperand(1);
5013  SDValue Amt = Op.getOperand(2);
5014  EVT AmtVT = Amt.getValueType();
5015
5016  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5017                             DAG.getConstant(BitWidth, AmtVT), Amt);
5018  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
5019  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
5020  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
5021  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5022                             DAG.getConstant(-BitWidth, AmtVT));
5023  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
5024  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
5025  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
5026                                  Tmp4, Tmp6, ISD::SETLE);
5027  SDValue OutOps[] = { OutLo, OutHi };
5028  return DAG.getMergeValues(OutOps, 2, dl);
5029}
5030
5031//===----------------------------------------------------------------------===//
5032// Vector related lowering.
5033//
5034
5035/// BuildSplatI - Build a canonical splati of Val with an element size of
5036/// SplatSize.  Cast the result to VT.
5037static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
5038                             SelectionDAG &DAG, SDLoc dl) {
5039  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
5040
5041  static const EVT VTys[] = { // canonical VT to use for each size.
5042    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
5043  };
5044
5045  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
5046
5047  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
5048  if (Val == -1)
5049    SplatSize = 1;
5050
5051  EVT CanonicalVT = VTys[SplatSize-1];
5052
5053  // Build a canonical splat for this value.
5054  SDValue Elt = DAG.getConstant(Val, MVT::i32);
5055  SmallVector<SDValue, 8> Ops;
5056  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
5057  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
5058                              &Ops[0], Ops.size());
5059  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
5060}
5061
5062/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
5063/// specified intrinsic ID.
5064static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
5065                                SelectionDAG &DAG, SDLoc dl,
5066                                EVT DestVT = MVT::Other) {
5067  if (DestVT == MVT::Other) DestVT = Op.getValueType();
5068  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5069                     DAG.getConstant(IID, MVT::i32), Op);
5070}
5071
5072/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
5073/// specified intrinsic ID.
5074static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
5075                                SelectionDAG &DAG, SDLoc dl,
5076                                EVT DestVT = MVT::Other) {
5077  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
5078  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5079                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
5080}
5081
5082/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
5083/// specified intrinsic ID.
5084static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
5085                                SDValue Op2, SelectionDAG &DAG,
5086                                SDLoc dl, EVT DestVT = MVT::Other) {
5087  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
5088  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5089                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
5090}
5091
5092
5093/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
5094/// amount.  The result has the specified value type.
5095static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
5096                             EVT VT, SelectionDAG &DAG, SDLoc dl) {
5097  // Force LHS/RHS to be the right type.
5098  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
5099  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
5100
5101  int Ops[16];
5102  for (unsigned i = 0; i != 16; ++i)
5103    Ops[i] = i + Amt;
5104  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
5105  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5106}
5107
5108// If this is a case we can't handle, return null and let the default
5109// expansion code take care of it.  If we CAN select this case, and if it
5110// selects to a single instruction, return Op.  Otherwise, if we can codegen
5111// this case more efficiently than a constant pool load, lower it to the
5112// sequence of ops that should be used.
5113SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
5114                                             SelectionDAG &DAG) const {
5115  SDLoc dl(Op);
5116  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5117  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
5118
5119  // Check if this is a splat of a constant value.
5120  APInt APSplatBits, APSplatUndef;
5121  unsigned SplatBitSize;
5122  bool HasAnyUndefs;
5123  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
5124                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
5125    return SDValue();
5126
5127  unsigned SplatBits = APSplatBits.getZExtValue();
5128  unsigned SplatUndef = APSplatUndef.getZExtValue();
5129  unsigned SplatSize = SplatBitSize / 8;
5130
5131  // First, handle single instruction cases.
5132
5133  // All zeros?
5134  if (SplatBits == 0) {
5135    // Canonicalize all zero vectors to be v4i32.
5136    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
5137      SDValue Z = DAG.getConstant(0, MVT::i32);
5138      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
5139      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
5140    }
5141    return Op;
5142  }
5143
5144  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
5145  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
5146                    (32-SplatBitSize));
5147  if (SextVal >= -16 && SextVal <= 15)
5148    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
5149
5150
5151  // Two instruction sequences.
5152
5153  // If this value is in the range [-32,30] and is even, use:
5154  //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
5155  // If this value is in the range [17,31] and is odd, use:
5156  //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
5157  // If this value is in the range [-31,-17] and is odd, use:
5158  //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
5159  // Note the last two are three-instruction sequences.
5160  if (SextVal >= -32 && SextVal <= 31) {
5161    // To avoid having these optimizations undone by constant folding,
5162    // we convert to a pseudo that will be expanded later into one of
5163    // the above forms.
5164    SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
5165    EVT VT = Op.getValueType();
5166    int Size = VT == MVT::v16i8 ? 1 : (VT == MVT::v8i16 ? 2 : 4);
5167    SDValue EltSize = DAG.getConstant(Size, MVT::i32);
5168    return DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
5169  }
5170
5171  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
5172  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
5173  // for fneg/fabs.
5174  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
5175    // Make -1 and vspltisw -1:
5176    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
5177
5178    // Make the VSLW intrinsic, computing 0x8000_0000.
5179    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
5180                                   OnesV, DAG, dl);
5181
5182    // xor by OnesV to invert it.
5183    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
5184    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5185  }
5186
5187  // Check to see if this is a wide variety of vsplti*, binop self cases.
5188  static const signed char SplatCsts[] = {
5189    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
5190    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
5191  };
5192
5193  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
5194    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
5195    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
5196    int i = SplatCsts[idx];
5197
5198    // Figure out what shift amount will be used by altivec if shifted by i in
5199    // this splat size.
5200    unsigned TypeShiftAmt = i & (SplatBitSize-1);
5201
5202    // vsplti + shl self.
5203    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
5204      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5205      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5206        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
5207        Intrinsic::ppc_altivec_vslw
5208      };
5209      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5210      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5211    }
5212
5213    // vsplti + srl self.
5214    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5215      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5216      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5217        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
5218        Intrinsic::ppc_altivec_vsrw
5219      };
5220      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5221      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5222    }
5223
5224    // vsplti + sra self.
5225    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5226      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5227      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5228        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
5229        Intrinsic::ppc_altivec_vsraw
5230      };
5231      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5232      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5233    }
5234
5235    // vsplti + rol self.
5236    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
5237                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
5238      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5239      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5240        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
5241        Intrinsic::ppc_altivec_vrlw
5242      };
5243      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5244      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5245    }
5246
5247    // t = vsplti c, result = vsldoi t, t, 1
5248    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
5249      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5250      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
5251    }
5252    // t = vsplti c, result = vsldoi t, t, 2
5253    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
5254      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5255      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
5256    }
5257    // t = vsplti c, result = vsldoi t, t, 3
5258    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
5259      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5260      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
5261    }
5262  }
5263
5264  return SDValue();
5265}
5266
5267/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5268/// the specified operations to build the shuffle.
5269static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5270                                      SDValue RHS, SelectionDAG &DAG,
5271                                      SDLoc dl) {
5272  unsigned OpNum = (PFEntry >> 26) & 0x0F;
5273  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5274  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
5275
5276  enum {
5277    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5278    OP_VMRGHW,
5279    OP_VMRGLW,
5280    OP_VSPLTISW0,
5281    OP_VSPLTISW1,
5282    OP_VSPLTISW2,
5283    OP_VSPLTISW3,
5284    OP_VSLDOI4,
5285    OP_VSLDOI8,
5286    OP_VSLDOI12
5287  };
5288
5289  if (OpNum == OP_COPY) {
5290    if (LHSID == (1*9+2)*9+3) return LHS;
5291    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5292    return RHS;
5293  }
5294
5295  SDValue OpLHS, OpRHS;
5296  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5297  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5298
5299  int ShufIdxs[16];
5300  switch (OpNum) {
5301  default: llvm_unreachable("Unknown i32 permute!");
5302  case OP_VMRGHW:
5303    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
5304    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
5305    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
5306    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
5307    break;
5308  case OP_VMRGLW:
5309    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
5310    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
5311    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
5312    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
5313    break;
5314  case OP_VSPLTISW0:
5315    for (unsigned i = 0; i != 16; ++i)
5316      ShufIdxs[i] = (i&3)+0;
5317    break;
5318  case OP_VSPLTISW1:
5319    for (unsigned i = 0; i != 16; ++i)
5320      ShufIdxs[i] = (i&3)+4;
5321    break;
5322  case OP_VSPLTISW2:
5323    for (unsigned i = 0; i != 16; ++i)
5324      ShufIdxs[i] = (i&3)+8;
5325    break;
5326  case OP_VSPLTISW3:
5327    for (unsigned i = 0; i != 16; ++i)
5328      ShufIdxs[i] = (i&3)+12;
5329    break;
5330  case OP_VSLDOI4:
5331    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
5332  case OP_VSLDOI8:
5333    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
5334  case OP_VSLDOI12:
5335    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
5336  }
5337  EVT VT = OpLHS.getValueType();
5338  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
5339  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
5340  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
5341  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5342}
5343
5344/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
5345/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
5346/// return the code it can be lowered into.  Worst case, it can always be
5347/// lowered into a vperm.
5348SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5349                                               SelectionDAG &DAG) const {
5350  SDLoc dl(Op);
5351  SDValue V1 = Op.getOperand(0);
5352  SDValue V2 = Op.getOperand(1);
5353  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5354  EVT VT = Op.getValueType();
5355
5356  // Cases that are handled by instructions that take permute immediates
5357  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
5358  // selected by the instruction selector.
5359  if (V2.getOpcode() == ISD::UNDEF) {
5360    if (PPC::isSplatShuffleMask(SVOp, 1) ||
5361        PPC::isSplatShuffleMask(SVOp, 2) ||
5362        PPC::isSplatShuffleMask(SVOp, 4) ||
5363        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
5364        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
5365        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
5366        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
5367        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
5368        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
5369        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
5370        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
5371        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
5372      return Op;
5373    }
5374  }
5375
5376  // Altivec has a variety of "shuffle immediates" that take two vector inputs
5377  // and produce a fixed permutation.  If any of these match, do not lower to
5378  // VPERM.
5379  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
5380      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
5381      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
5382      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
5383      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
5384      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
5385      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
5386      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
5387      PPC::isVMRGHShuffleMask(SVOp, 4, false))
5388    return Op;
5389
5390  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
5391  // perfect shuffle table to emit an optimal matching sequence.
5392  ArrayRef<int> PermMask = SVOp->getMask();
5393
5394  unsigned PFIndexes[4];
5395  bool isFourElementShuffle = true;
5396  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
5397    unsigned EltNo = 8;   // Start out undef.
5398    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
5399      if (PermMask[i*4+j] < 0)
5400        continue;   // Undef, ignore it.
5401
5402      unsigned ByteSource = PermMask[i*4+j];
5403      if ((ByteSource & 3) != j) {
5404        isFourElementShuffle = false;
5405        break;
5406      }
5407
5408      if (EltNo == 8) {
5409        EltNo = ByteSource/4;
5410      } else if (EltNo != ByteSource/4) {
5411        isFourElementShuffle = false;
5412        break;
5413      }
5414    }
5415    PFIndexes[i] = EltNo;
5416  }
5417
5418  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
5419  // perfect shuffle vector to determine if it is cost effective to do this as
5420  // discrete instructions, or whether we should use a vperm.
5421  if (isFourElementShuffle) {
5422    // Compute the index in the perfect shuffle table.
5423    unsigned PFTableIndex =
5424      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5425
5426    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5427    unsigned Cost  = (PFEntry >> 30);
5428
5429    // Determining when to avoid vperm is tricky.  Many things affect the cost
5430    // of vperm, particularly how many times the perm mask needs to be computed.
5431    // For example, if the perm mask can be hoisted out of a loop or is already
5432    // used (perhaps because there are multiple permutes with the same shuffle
5433    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
5434    // the loop requires an extra register.
5435    //
5436    // As a compromise, we only emit discrete instructions if the shuffle can be
5437    // generated in 3 or fewer operations.  When we have loop information
5438    // available, if this block is within a loop, we should avoid using vperm
5439    // for 3-operation perms and use a constant pool load instead.
5440    if (Cost < 3)
5441      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5442  }
5443
5444  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
5445  // vector that will get spilled to the constant pool.
5446  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
5447
5448  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
5449  // that it is in input element units, not in bytes.  Convert now.
5450  EVT EltVT = V1.getValueType().getVectorElementType();
5451  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
5452
5453  SmallVector<SDValue, 16> ResultMask;
5454  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5455    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
5456
5457    for (unsigned j = 0; j != BytesPerElement; ++j)
5458      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
5459                                           MVT::i32));
5460  }
5461
5462  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
5463                                    &ResultMask[0], ResultMask.size());
5464  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
5465}
5466
5467/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
5468/// altivec comparison.  If it is, return true and fill in Opc/isDot with
5469/// information about the intrinsic.
5470static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
5471                                  bool &isDot) {
5472  unsigned IntrinsicID =
5473    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
5474  CompareOpc = -1;
5475  isDot = false;
5476  switch (IntrinsicID) {
5477  default: return false;
5478    // Comparison predicates.
5479  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
5480  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
5481  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
5482  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
5483  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
5484  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
5485  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
5486  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
5487  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
5488  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
5489  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
5490  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
5491  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
5492
5493    // Normal Comparisons.
5494  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
5495  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
5496  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
5497  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
5498  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
5499  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
5500  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
5501  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
5502  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
5503  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
5504  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
5505  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
5506  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
5507  }
5508  return true;
5509}
5510
5511/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
5512/// lower, do it, otherwise return null.
5513SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5514                                                   SelectionDAG &DAG) const {
5515  // If this is a lowered altivec predicate compare, CompareOpc is set to the
5516  // opcode number of the comparison.
5517  SDLoc dl(Op);
5518  int CompareOpc;
5519  bool isDot;
5520  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
5521    return SDValue();    // Don't custom lower most intrinsics.
5522
5523  // If this is a non-dot comparison, make the VCMP node and we are done.
5524  if (!isDot) {
5525    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
5526                              Op.getOperand(1), Op.getOperand(2),
5527                              DAG.getConstant(CompareOpc, MVT::i32));
5528    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
5529  }
5530
5531  // Create the PPCISD altivec 'dot' comparison node.
5532  SDValue Ops[] = {
5533    Op.getOperand(2),  // LHS
5534    Op.getOperand(3),  // RHS
5535    DAG.getConstant(CompareOpc, MVT::i32)
5536  };
5537  EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
5538  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5539
5540  // Now that we have the comparison, emit a copy from the CR to a GPR.
5541  // This is flagged to the above dot comparison.
5542  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
5543                                DAG.getRegister(PPC::CR6, MVT::i32),
5544                                CompNode.getValue(1));
5545
5546  // Unpack the result based on how the target uses it.
5547  unsigned BitNo;   // Bit # of CR6.
5548  bool InvertBit;   // Invert result?
5549  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
5550  default:  // Can't happen, don't crash on invalid number though.
5551  case 0:   // Return the value of the EQ bit of CR6.
5552    BitNo = 0; InvertBit = false;
5553    break;
5554  case 1:   // Return the inverted value of the EQ bit of CR6.
5555    BitNo = 0; InvertBit = true;
5556    break;
5557  case 2:   // Return the value of the LT bit of CR6.
5558    BitNo = 2; InvertBit = false;
5559    break;
5560  case 3:   // Return the inverted value of the LT bit of CR6.
5561    BitNo = 2; InvertBit = true;
5562    break;
5563  }
5564
5565  // Shift the bit into the low position.
5566  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
5567                      DAG.getConstant(8-(3-BitNo), MVT::i32));
5568  // Isolate the bit.
5569  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
5570                      DAG.getConstant(1, MVT::i32));
5571
5572  // If we are supposed to, toggle the bit.
5573  if (InvertBit)
5574    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
5575                        DAG.getConstant(1, MVT::i32));
5576  return Flags;
5577}
5578
5579SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
5580                                                   SelectionDAG &DAG) const {
5581  SDLoc dl(Op);
5582  // Create a stack slot that is 16-byte aligned.
5583  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
5584  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
5585  EVT PtrVT = getPointerTy();
5586  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5587
5588  // Store the input value into Value#0 of the stack slot.
5589  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
5590                               Op.getOperand(0), FIdx, MachinePointerInfo(),
5591                               false, false, 0);
5592  // Load it out.
5593  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
5594                     false, false, false, 0);
5595}
5596
5597SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
5598  SDLoc dl(Op);
5599  if (Op.getValueType() == MVT::v4i32) {
5600    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5601
5602    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
5603    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
5604
5605    SDValue RHSSwap =   // = vrlw RHS, 16
5606      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
5607
5608    // Shrinkify inputs to v8i16.
5609    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
5610    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
5611    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
5612
5613    // Low parts multiplied together, generating 32-bit results (we ignore the
5614    // top parts).
5615    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
5616                                        LHS, RHS, DAG, dl, MVT::v4i32);
5617
5618    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
5619                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
5620    // Shift the high parts up 16 bits.
5621    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
5622                              Neg16, DAG, dl);
5623    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
5624  } else if (Op.getValueType() == MVT::v8i16) {
5625    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5626
5627    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
5628
5629    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
5630                            LHS, RHS, Zero, DAG, dl);
5631  } else if (Op.getValueType() == MVT::v16i8) {
5632    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5633
5634    // Multiply the even 8-bit parts, producing 16-bit sums.
5635    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
5636                                           LHS, RHS, DAG, dl, MVT::v8i16);
5637    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
5638
5639    // Multiply the odd 8-bit parts, producing 16-bit sums.
5640    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
5641                                          LHS, RHS, DAG, dl, MVT::v8i16);
5642    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
5643
5644    // Merge the results together.
5645    int Ops[16];
5646    for (unsigned i = 0; i != 8; ++i) {
5647      Ops[i*2  ] = 2*i+1;
5648      Ops[i*2+1] = 2*i+1+16;
5649    }
5650    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
5651  } else {
5652    llvm_unreachable("Unknown mul to lower!");
5653  }
5654}
5655
5656/// LowerOperation - Provide custom lowering hooks for some operations.
5657///
5658SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5659  switch (Op.getOpcode()) {
5660  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
5661  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5662  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
5663  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5664  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5665  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5666  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5667  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
5668  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
5669  case ISD::VASTART:
5670    return LowerVASTART(Op, DAG, PPCSubTarget);
5671
5672  case ISD::VAARG:
5673    return LowerVAARG(Op, DAG, PPCSubTarget);
5674
5675  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
5676  case ISD::DYNAMIC_STACKALLOC:
5677    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
5678
5679  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
5680  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
5681
5682  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
5683  case ISD::FP_TO_UINT:
5684  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
5685                                                       SDLoc(Op));
5686  case ISD::UINT_TO_FP:
5687  case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
5688  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5689
5690  // Lower 64-bit shifts.
5691  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
5692  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
5693  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
5694
5695  // Vector-related lowering.
5696  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5697  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5698  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5699  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5700  case ISD::MUL:                return LowerMUL(Op, DAG);
5701
5702  // For counter-based loop handling.
5703  case ISD::INTRINSIC_W_CHAIN:  return SDValue();
5704
5705  // Frame & Return address.
5706  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5707  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5708  }
5709}
5710
5711void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
5712                                           SmallVectorImpl<SDValue>&Results,
5713                                           SelectionDAG &DAG) const {
5714  const TargetMachine &TM = getTargetMachine();
5715  SDLoc dl(N);
5716  switch (N->getOpcode()) {
5717  default:
5718    llvm_unreachable("Do not know how to custom type legalize this operation!");
5719  case ISD::INTRINSIC_W_CHAIN: {
5720    if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
5721        Intrinsic::ppc_is_decremented_ctr_nonzero)
5722      break;
5723
5724    assert(N->getValueType(0) == MVT::i1 &&
5725           "Unexpected result type for CTR decrement intrinsic");
5726    EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0));
5727    SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
5728    SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
5729                                 N->getOperand(1));
5730
5731    Results.push_back(NewInt);
5732    Results.push_back(NewInt.getValue(1));
5733    break;
5734  }
5735  case ISD::VAARG: {
5736    if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
5737        || TM.getSubtarget<PPCSubtarget>().isPPC64())
5738      return;
5739
5740    EVT VT = N->getValueType(0);
5741
5742    if (VT == MVT::i64) {
5743      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
5744
5745      Results.push_back(NewNode);
5746      Results.push_back(NewNode.getValue(1));
5747    }
5748    return;
5749  }
5750  case ISD::FP_ROUND_INREG: {
5751    assert(N->getValueType(0) == MVT::ppcf128);
5752    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
5753    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5754                             MVT::f64, N->getOperand(0),
5755                             DAG.getIntPtrConstant(0));
5756    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5757                             MVT::f64, N->getOperand(0),
5758                             DAG.getIntPtrConstant(1));
5759
5760    // Add the two halves of the long double in round-to-zero mode.
5761    SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
5762
5763    // We know the low half is about to be thrown away, so just use something
5764    // convenient.
5765    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
5766                                FPreg, FPreg));
5767    return;
5768  }
5769  case ISD::FP_TO_SINT:
5770    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
5771    return;
5772  }
5773}
5774
5775
5776//===----------------------------------------------------------------------===//
5777//  Other Lowering Code
5778//===----------------------------------------------------------------------===//
5779
5780MachineBasicBlock *
5781PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5782                                    bool is64bit, unsigned BinOpcode) const {
5783  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5784  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5785
5786  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5787  MachineFunction *F = BB->getParent();
5788  MachineFunction::iterator It = BB;
5789  ++It;
5790
5791  unsigned dest = MI->getOperand(0).getReg();
5792  unsigned ptrA = MI->getOperand(1).getReg();
5793  unsigned ptrB = MI->getOperand(2).getReg();
5794  unsigned incr = MI->getOperand(3).getReg();
5795  DebugLoc dl = MI->getDebugLoc();
5796
5797  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5798  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5799  F->insert(It, loopMBB);
5800  F->insert(It, exitMBB);
5801  exitMBB->splice(exitMBB->begin(), BB,
5802                  llvm::next(MachineBasicBlock::iterator(MI)),
5803                  BB->end());
5804  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5805
5806  MachineRegisterInfo &RegInfo = F->getRegInfo();
5807  unsigned TmpReg = (!BinOpcode) ? incr :
5808    RegInfo.createVirtualRegister(
5809       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5810                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
5811
5812  //  thisMBB:
5813  //   ...
5814  //   fallthrough --> loopMBB
5815  BB->addSuccessor(loopMBB);
5816
5817  //  loopMBB:
5818  //   l[wd]arx dest, ptr
5819  //   add r0, dest, incr
5820  //   st[wd]cx. r0, ptr
5821  //   bne- loopMBB
5822  //   fallthrough --> exitMBB
5823  BB = loopMBB;
5824  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5825    .addReg(ptrA).addReg(ptrB);
5826  if (BinOpcode)
5827    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
5828  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5829    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
5830  BuildMI(BB, dl, TII->get(PPC::BCC))
5831    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5832  BB->addSuccessor(loopMBB);
5833  BB->addSuccessor(exitMBB);
5834
5835  //  exitMBB:
5836  //   ...
5837  BB = exitMBB;
5838  return BB;
5839}
5840
5841MachineBasicBlock *
5842PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
5843                                            MachineBasicBlock *BB,
5844                                            bool is8bit,    // operation
5845                                            unsigned BinOpcode) const {
5846  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5847  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5848  // In 64 bit mode we have to use 64 bits for addresses, even though the
5849  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
5850  // registers without caring whether they're 32 or 64, but here we're
5851  // doing actual arithmetic on the addresses.
5852  bool is64bit = PPCSubTarget.isPPC64();
5853  unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
5854
5855  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5856  MachineFunction *F = BB->getParent();
5857  MachineFunction::iterator It = BB;
5858  ++It;
5859
5860  unsigned dest = MI->getOperand(0).getReg();
5861  unsigned ptrA = MI->getOperand(1).getReg();
5862  unsigned ptrB = MI->getOperand(2).getReg();
5863  unsigned incr = MI->getOperand(3).getReg();
5864  DebugLoc dl = MI->getDebugLoc();
5865
5866  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5867  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5868  F->insert(It, loopMBB);
5869  F->insert(It, exitMBB);
5870  exitMBB->splice(exitMBB->begin(), BB,
5871                  llvm::next(MachineBasicBlock::iterator(MI)),
5872                  BB->end());
5873  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5874
5875  MachineRegisterInfo &RegInfo = F->getRegInfo();
5876  const TargetRegisterClass *RC =
5877    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5878              (const TargetRegisterClass *) &PPC::GPRCRegClass;
5879  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5880  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5881  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5882  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
5883  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5884  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5885  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5886  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5887  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
5888  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5889  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5890  unsigned Ptr1Reg;
5891  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
5892
5893  //  thisMBB:
5894  //   ...
5895  //   fallthrough --> loopMBB
5896  BB->addSuccessor(loopMBB);
5897
5898  // The 4-byte load must be aligned, while a char or short may be
5899  // anywhere in the word.  Hence all this nasty bookkeeping code.
5900  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5901  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5902  //   xori shift, shift1, 24 [16]
5903  //   rlwinm ptr, ptr1, 0, 0, 29
5904  //   slw incr2, incr, shift
5905  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5906  //   slw mask, mask2, shift
5907  //  loopMBB:
5908  //   lwarx tmpDest, ptr
5909  //   add tmp, tmpDest, incr2
5910  //   andc tmp2, tmpDest, mask
5911  //   and tmp3, tmp, mask
5912  //   or tmp4, tmp3, tmp2
5913  //   stwcx. tmp4, ptr
5914  //   bne- loopMBB
5915  //   fallthrough --> exitMBB
5916  //   srw dest, tmpDest, shift
5917  if (ptrA != ZeroReg) {
5918    Ptr1Reg = RegInfo.createVirtualRegister(RC);
5919    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5920      .addReg(ptrA).addReg(ptrB);
5921  } else {
5922    Ptr1Reg = ptrB;
5923  }
5924  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5925      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5926  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5927      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5928  if (is64bit)
5929    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5930      .addReg(Ptr1Reg).addImm(0).addImm(61);
5931  else
5932    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5933      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5934  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
5935      .addReg(incr).addReg(ShiftReg);
5936  if (is8bit)
5937    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5938  else {
5939    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5940    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
5941  }
5942  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5943      .addReg(Mask2Reg).addReg(ShiftReg);
5944
5945  BB = loopMBB;
5946  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5947    .addReg(ZeroReg).addReg(PtrReg);
5948  if (BinOpcode)
5949    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
5950      .addReg(Incr2Reg).addReg(TmpDestReg);
5951  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
5952    .addReg(TmpDestReg).addReg(MaskReg);
5953  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
5954    .addReg(TmpReg).addReg(MaskReg);
5955  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
5956    .addReg(Tmp3Reg).addReg(Tmp2Reg);
5957  BuildMI(BB, dl, TII->get(PPC::STWCX))
5958    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
5959  BuildMI(BB, dl, TII->get(PPC::BCC))
5960    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5961  BB->addSuccessor(loopMBB);
5962  BB->addSuccessor(exitMBB);
5963
5964  //  exitMBB:
5965  //   ...
5966  BB = exitMBB;
5967  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
5968    .addReg(ShiftReg);
5969  return BB;
5970}
5971
5972llvm::MachineBasicBlock*
5973PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
5974                                    MachineBasicBlock *MBB) const {
5975  DebugLoc DL = MI->getDebugLoc();
5976  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5977
5978  MachineFunction *MF = MBB->getParent();
5979  MachineRegisterInfo &MRI = MF->getRegInfo();
5980
5981  const BasicBlock *BB = MBB->getBasicBlock();
5982  MachineFunction::iterator I = MBB;
5983  ++I;
5984
5985  // Memory Reference
5986  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
5987  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
5988
5989  unsigned DstReg = MI->getOperand(0).getReg();
5990  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
5991  assert(RC->hasType(MVT::i32) && "Invalid destination!");
5992  unsigned mainDstReg = MRI.createVirtualRegister(RC);
5993  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
5994
5995  MVT PVT = getPointerTy();
5996  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
5997         "Invalid Pointer Size!");
5998  // For v = setjmp(buf), we generate
5999  //
6000  // thisMBB:
6001  //  SjLjSetup mainMBB
6002  //  bl mainMBB
6003  //  v_restore = 1
6004  //  b sinkMBB
6005  //
6006  // mainMBB:
6007  //  buf[LabelOffset] = LR
6008  //  v_main = 0
6009  //
6010  // sinkMBB:
6011  //  v = phi(main, restore)
6012  //
6013
6014  MachineBasicBlock *thisMBB = MBB;
6015  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
6016  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
6017  MF->insert(I, mainMBB);
6018  MF->insert(I, sinkMBB);
6019
6020  MachineInstrBuilder MIB;
6021
6022  // Transfer the remainder of BB and its successor edges to sinkMBB.
6023  sinkMBB->splice(sinkMBB->begin(), MBB,
6024                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
6025  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
6026
6027  // Note that the structure of the jmp_buf used here is not compatible
6028  // with that used by libc, and is not designed to be. Specifically, it
6029  // stores only those 'reserved' registers that LLVM does not otherwise
6030  // understand how to spill. Also, by convention, by the time this
6031  // intrinsic is called, Clang has already stored the frame address in the
6032  // first slot of the buffer and stack address in the third. Following the
6033  // X86 target code, we'll store the jump address in the second slot. We also
6034  // need to save the TOC pointer (R2) to handle jumps between shared
6035  // libraries, and that will be stored in the fourth slot. The thread
6036  // identifier (R13) is not affected.
6037
6038  // thisMBB:
6039  const int64_t LabelOffset = 1 * PVT.getStoreSize();
6040  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
6041
6042  // Prepare IP either in reg.
6043  const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
6044  unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
6045  unsigned BufReg = MI->getOperand(1).getReg();
6046
6047  if (PPCSubTarget.isPPC64() && PPCSubTarget.isSVR4ABI()) {
6048    MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
6049            .addReg(PPC::X2)
6050            .addImm(TOCOffset)
6051            .addReg(BufReg);
6052
6053    MIB.setMemRefs(MMOBegin, MMOEnd);
6054  }
6055
6056  // Setup
6057  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
6058  const PPCRegisterInfo *TRI =
6059    static_cast<const PPCRegisterInfo*>(getTargetMachine().getRegisterInfo());
6060  MIB.addRegMask(TRI->getNoPreservedMask());
6061
6062  BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
6063
6064  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
6065          .addMBB(mainMBB);
6066  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
6067
6068  thisMBB->addSuccessor(mainMBB, /* weight */ 0);
6069  thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
6070
6071  // mainMBB:
6072  //  mainDstReg = 0
6073  MIB = BuildMI(mainMBB, DL,
6074    TII->get(PPCSubTarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
6075
6076  // Store IP
6077  if (PPCSubTarget.isPPC64()) {
6078    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
6079            .addReg(LabelReg)
6080            .addImm(LabelOffset)
6081            .addReg(BufReg);
6082  } else {
6083    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
6084            .addReg(LabelReg)
6085            .addImm(LabelOffset)
6086            .addReg(BufReg);
6087  }
6088
6089  MIB.setMemRefs(MMOBegin, MMOEnd);
6090
6091  BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
6092  mainMBB->addSuccessor(sinkMBB);
6093
6094  // sinkMBB:
6095  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
6096          TII->get(PPC::PHI), DstReg)
6097    .addReg(mainDstReg).addMBB(mainMBB)
6098    .addReg(restoreDstReg).addMBB(thisMBB);
6099
6100  MI->eraseFromParent();
6101  return sinkMBB;
6102}
6103
6104MachineBasicBlock *
6105PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
6106                                     MachineBasicBlock *MBB) const {
6107  DebugLoc DL = MI->getDebugLoc();
6108  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6109
6110  MachineFunction *MF = MBB->getParent();
6111  MachineRegisterInfo &MRI = MF->getRegInfo();
6112
6113  // Memory Reference
6114  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
6115  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
6116
6117  MVT PVT = getPointerTy();
6118  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6119         "Invalid Pointer Size!");
6120
6121  const TargetRegisterClass *RC =
6122    (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6123  unsigned Tmp = MRI.createVirtualRegister(RC);
6124  // Since FP is only updated here but NOT referenced, it's treated as GPR.
6125  unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
6126  unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
6127
6128  MachineInstrBuilder MIB;
6129
6130  const int64_t LabelOffset = 1 * PVT.getStoreSize();
6131  const int64_t SPOffset    = 2 * PVT.getStoreSize();
6132  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
6133
6134  unsigned BufReg = MI->getOperand(0).getReg();
6135
6136  // Reload FP (the jumped-to function may not have had a
6137  // frame pointer, and if so, then its r31 will be restored
6138  // as necessary).
6139  if (PVT == MVT::i64) {
6140    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
6141            .addImm(0)
6142            .addReg(BufReg);
6143  } else {
6144    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
6145            .addImm(0)
6146            .addReg(BufReg);
6147  }
6148  MIB.setMemRefs(MMOBegin, MMOEnd);
6149
6150  // Reload IP
6151  if (PVT == MVT::i64) {
6152    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
6153            .addImm(LabelOffset)
6154            .addReg(BufReg);
6155  } else {
6156    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
6157            .addImm(LabelOffset)
6158            .addReg(BufReg);
6159  }
6160  MIB.setMemRefs(MMOBegin, MMOEnd);
6161
6162  // Reload SP
6163  if (PVT == MVT::i64) {
6164    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
6165            .addImm(SPOffset)
6166            .addReg(BufReg);
6167  } else {
6168    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
6169            .addImm(SPOffset)
6170            .addReg(BufReg);
6171  }
6172  MIB.setMemRefs(MMOBegin, MMOEnd);
6173
6174  // FIXME: When we also support base pointers, that register must also be
6175  // restored here.
6176
6177  // Reload TOC
6178  if (PVT == MVT::i64 && PPCSubTarget.isSVR4ABI()) {
6179    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
6180            .addImm(TOCOffset)
6181            .addReg(BufReg);
6182
6183    MIB.setMemRefs(MMOBegin, MMOEnd);
6184  }
6185
6186  // Jump
6187  BuildMI(*MBB, MI, DL,
6188          TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
6189  BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
6190
6191  MI->eraseFromParent();
6192  return MBB;
6193}
6194
6195MachineBasicBlock *
6196PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6197                                               MachineBasicBlock *BB) const {
6198  if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
6199      MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
6200    return emitEHSjLjSetJmp(MI, BB);
6201  } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
6202             MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
6203    return emitEHSjLjLongJmp(MI, BB);
6204  }
6205
6206  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6207
6208  // To "insert" these instructions we actually have to insert their
6209  // control-flow patterns.
6210  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6211  MachineFunction::iterator It = BB;
6212  ++It;
6213
6214  MachineFunction *F = BB->getParent();
6215
6216  if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6217                                 MI->getOpcode() == PPC::SELECT_CC_I8)) {
6218    SmallVector<MachineOperand, 2> Cond;
6219    Cond.push_back(MI->getOperand(4));
6220    Cond.push_back(MI->getOperand(1));
6221
6222    DebugLoc dl = MI->getDebugLoc();
6223    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6224    TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
6225                      Cond, MI->getOperand(2).getReg(),
6226                      MI->getOperand(3).getReg());
6227  } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6228             MI->getOpcode() == PPC::SELECT_CC_I8 ||
6229             MI->getOpcode() == PPC::SELECT_CC_F4 ||
6230             MI->getOpcode() == PPC::SELECT_CC_F8 ||
6231             MI->getOpcode() == PPC::SELECT_CC_VRRC) {
6232
6233
6234    // The incoming instruction knows the destination vreg to set, the
6235    // condition code register to branch on, the true/false values to
6236    // select between, and a branch opcode to use.
6237
6238    //  thisMBB:
6239    //  ...
6240    //   TrueVal = ...
6241    //   cmpTY ccX, r1, r2
6242    //   bCC copy1MBB
6243    //   fallthrough --> copy0MBB
6244    MachineBasicBlock *thisMBB = BB;
6245    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6246    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6247    unsigned SelectPred = MI->getOperand(4).getImm();
6248    DebugLoc dl = MI->getDebugLoc();
6249    F->insert(It, copy0MBB);
6250    F->insert(It, sinkMBB);
6251
6252    // Transfer the remainder of BB and its successor edges to sinkMBB.
6253    sinkMBB->splice(sinkMBB->begin(), BB,
6254                    llvm::next(MachineBasicBlock::iterator(MI)),
6255                    BB->end());
6256    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6257
6258    // Next, add the true and fallthrough blocks as its successors.
6259    BB->addSuccessor(copy0MBB);
6260    BB->addSuccessor(sinkMBB);
6261
6262    BuildMI(BB, dl, TII->get(PPC::BCC))
6263      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
6264
6265    //  copy0MBB:
6266    //   %FalseValue = ...
6267    //   # fallthrough to sinkMBB
6268    BB = copy0MBB;
6269
6270    // Update machine-CFG edges
6271    BB->addSuccessor(sinkMBB);
6272
6273    //  sinkMBB:
6274    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6275    //  ...
6276    BB = sinkMBB;
6277    BuildMI(*BB, BB->begin(), dl,
6278            TII->get(PPC::PHI), MI->getOperand(0).getReg())
6279      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
6280      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6281  }
6282  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
6283    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
6284  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
6285    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
6286  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
6287    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
6288  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
6289    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
6290
6291  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
6292    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
6293  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
6294    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
6295  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
6296    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
6297  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
6298    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
6299
6300  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
6301    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
6302  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
6303    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
6304  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
6305    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
6306  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
6307    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
6308
6309  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
6310    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
6311  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
6312    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
6313  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
6314    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
6315  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
6316    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
6317
6318  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
6319    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
6320  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
6321    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
6322  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
6323    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
6324  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
6325    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
6326
6327  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
6328    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
6329  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
6330    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
6331  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
6332    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
6333  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
6334    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
6335
6336  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
6337    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
6338  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
6339    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
6340  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
6341    BB = EmitAtomicBinary(MI, BB, false, 0);
6342  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
6343    BB = EmitAtomicBinary(MI, BB, true, 0);
6344
6345  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
6346           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
6347    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
6348
6349    unsigned dest   = MI->getOperand(0).getReg();
6350    unsigned ptrA   = MI->getOperand(1).getReg();
6351    unsigned ptrB   = MI->getOperand(2).getReg();
6352    unsigned oldval = MI->getOperand(3).getReg();
6353    unsigned newval = MI->getOperand(4).getReg();
6354    DebugLoc dl     = MI->getDebugLoc();
6355
6356    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6357    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6358    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6359    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6360    F->insert(It, loop1MBB);
6361    F->insert(It, loop2MBB);
6362    F->insert(It, midMBB);
6363    F->insert(It, exitMBB);
6364    exitMBB->splice(exitMBB->begin(), BB,
6365                    llvm::next(MachineBasicBlock::iterator(MI)),
6366                    BB->end());
6367    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6368
6369    //  thisMBB:
6370    //   ...
6371    //   fallthrough --> loopMBB
6372    BB->addSuccessor(loop1MBB);
6373
6374    // loop1MBB:
6375    //   l[wd]arx dest, ptr
6376    //   cmp[wd] dest, oldval
6377    //   bne- midMBB
6378    // loop2MBB:
6379    //   st[wd]cx. newval, ptr
6380    //   bne- loopMBB
6381    //   b exitBB
6382    // midMBB:
6383    //   st[wd]cx. dest, ptr
6384    // exitBB:
6385    BB = loop1MBB;
6386    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
6387      .addReg(ptrA).addReg(ptrB);
6388    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
6389      .addReg(oldval).addReg(dest);
6390    BuildMI(BB, dl, TII->get(PPC::BCC))
6391      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6392    BB->addSuccessor(loop2MBB);
6393    BB->addSuccessor(midMBB);
6394
6395    BB = loop2MBB;
6396    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6397      .addReg(newval).addReg(ptrA).addReg(ptrB);
6398    BuildMI(BB, dl, TII->get(PPC::BCC))
6399      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6400    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6401    BB->addSuccessor(loop1MBB);
6402    BB->addSuccessor(exitMBB);
6403
6404    BB = midMBB;
6405    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6406      .addReg(dest).addReg(ptrA).addReg(ptrB);
6407    BB->addSuccessor(exitMBB);
6408
6409    //  exitMBB:
6410    //   ...
6411    BB = exitMBB;
6412  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
6413             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
6414    // We must use 64-bit registers for addresses when targeting 64-bit,
6415    // since we're actually doing arithmetic on them.  Other registers
6416    // can be 32-bit.
6417    bool is64bit = PPCSubTarget.isPPC64();
6418    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
6419
6420    unsigned dest   = MI->getOperand(0).getReg();
6421    unsigned ptrA   = MI->getOperand(1).getReg();
6422    unsigned ptrB   = MI->getOperand(2).getReg();
6423    unsigned oldval = MI->getOperand(3).getReg();
6424    unsigned newval = MI->getOperand(4).getReg();
6425    DebugLoc dl     = MI->getDebugLoc();
6426
6427    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6428    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6429    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6430    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6431    F->insert(It, loop1MBB);
6432    F->insert(It, loop2MBB);
6433    F->insert(It, midMBB);
6434    F->insert(It, exitMBB);
6435    exitMBB->splice(exitMBB->begin(), BB,
6436                    llvm::next(MachineBasicBlock::iterator(MI)),
6437                    BB->end());
6438    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6439
6440    MachineRegisterInfo &RegInfo = F->getRegInfo();
6441    const TargetRegisterClass *RC =
6442      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6443                (const TargetRegisterClass *) &PPC::GPRCRegClass;
6444    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
6445    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
6446    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
6447    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
6448    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
6449    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
6450    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
6451    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6452    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6453    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6454    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6455    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6456    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6457    unsigned Ptr1Reg;
6458    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
6459    unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
6460    //  thisMBB:
6461    //   ...
6462    //   fallthrough --> loopMBB
6463    BB->addSuccessor(loop1MBB);
6464
6465    // The 4-byte load must be aligned, while a char or short may be
6466    // anywhere in the word.  Hence all this nasty bookkeeping code.
6467    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
6468    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6469    //   xori shift, shift1, 24 [16]
6470    //   rlwinm ptr, ptr1, 0, 0, 29
6471    //   slw newval2, newval, shift
6472    //   slw oldval2, oldval,shift
6473    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6474    //   slw mask, mask2, shift
6475    //   and newval3, newval2, mask
6476    //   and oldval3, oldval2, mask
6477    // loop1MBB:
6478    //   lwarx tmpDest, ptr
6479    //   and tmp, tmpDest, mask
6480    //   cmpw tmp, oldval3
6481    //   bne- midMBB
6482    // loop2MBB:
6483    //   andc tmp2, tmpDest, mask
6484    //   or tmp4, tmp2, newval3
6485    //   stwcx. tmp4, ptr
6486    //   bne- loop1MBB
6487    //   b exitBB
6488    // midMBB:
6489    //   stwcx. tmpDest, ptr
6490    // exitBB:
6491    //   srw dest, tmpDest, shift
6492    if (ptrA != ZeroReg) {
6493      Ptr1Reg = RegInfo.createVirtualRegister(RC);
6494      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
6495        .addReg(ptrA).addReg(ptrB);
6496    } else {
6497      Ptr1Reg = ptrB;
6498    }
6499    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
6500        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
6501    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
6502        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
6503    if (is64bit)
6504      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
6505        .addReg(Ptr1Reg).addImm(0).addImm(61);
6506    else
6507      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
6508        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
6509    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
6510        .addReg(newval).addReg(ShiftReg);
6511    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
6512        .addReg(oldval).addReg(ShiftReg);
6513    if (is8bit)
6514      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
6515    else {
6516      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
6517      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
6518        .addReg(Mask3Reg).addImm(65535);
6519    }
6520    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
6521        .addReg(Mask2Reg).addReg(ShiftReg);
6522    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
6523        .addReg(NewVal2Reg).addReg(MaskReg);
6524    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
6525        .addReg(OldVal2Reg).addReg(MaskReg);
6526
6527    BB = loop1MBB;
6528    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
6529        .addReg(ZeroReg).addReg(PtrReg);
6530    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
6531        .addReg(TmpDestReg).addReg(MaskReg);
6532    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
6533        .addReg(TmpReg).addReg(OldVal3Reg);
6534    BuildMI(BB, dl, TII->get(PPC::BCC))
6535        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6536    BB->addSuccessor(loop2MBB);
6537    BB->addSuccessor(midMBB);
6538
6539    BB = loop2MBB;
6540    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
6541        .addReg(TmpDestReg).addReg(MaskReg);
6542    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
6543        .addReg(Tmp2Reg).addReg(NewVal3Reg);
6544    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
6545        .addReg(ZeroReg).addReg(PtrReg);
6546    BuildMI(BB, dl, TII->get(PPC::BCC))
6547      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6548    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6549    BB->addSuccessor(loop1MBB);
6550    BB->addSuccessor(exitMBB);
6551
6552    BB = midMBB;
6553    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
6554      .addReg(ZeroReg).addReg(PtrReg);
6555    BB->addSuccessor(exitMBB);
6556
6557    //  exitMBB:
6558    //   ...
6559    BB = exitMBB;
6560    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
6561      .addReg(ShiftReg);
6562  } else if (MI->getOpcode() == PPC::FADDrtz) {
6563    // This pseudo performs an FADD with rounding mode temporarily forced
6564    // to round-to-zero.  We emit this via custom inserter since the FPSCR
6565    // is not modeled at the SelectionDAG level.
6566    unsigned Dest = MI->getOperand(0).getReg();
6567    unsigned Src1 = MI->getOperand(1).getReg();
6568    unsigned Src2 = MI->getOperand(2).getReg();
6569    DebugLoc dl   = MI->getDebugLoc();
6570
6571    MachineRegisterInfo &RegInfo = F->getRegInfo();
6572    unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
6573
6574    // Save FPSCR value.
6575    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
6576
6577    // Set rounding mode to round-to-zero.
6578    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
6579    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
6580
6581    // Perform addition.
6582    BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
6583
6584    // Restore FPSCR value.
6585    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg);
6586  } else if (MI->getOpcode() == PPC::FRINDrint ||
6587             MI->getOpcode() == PPC::FRINSrint) {
6588    bool isf32 = MI->getOpcode() == PPC::FRINSrint;
6589    unsigned Dest = MI->getOperand(0).getReg();
6590    unsigned Src = MI->getOperand(1).getReg();
6591    DebugLoc dl   = MI->getDebugLoc();
6592
6593    MachineRegisterInfo &RegInfo = F->getRegInfo();
6594    unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
6595
6596    // Perform the rounding.
6597    BuildMI(*BB, MI, dl, TII->get(isf32 ? PPC::FRINS : PPC::FRIND), Dest)
6598      .addReg(Src);
6599
6600    // Compare the results.
6601    BuildMI(*BB, MI, dl, TII->get(isf32 ? PPC::FCMPUS : PPC::FCMPUD), CRReg)
6602      .addReg(Dest).addReg(Src);
6603
6604    // If the results were not equal, then set the FPSCR XX bit.
6605    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6606    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6607    F->insert(It, midMBB);
6608    F->insert(It, exitMBB);
6609    exitMBB->splice(exitMBB->begin(), BB,
6610                    llvm::next(MachineBasicBlock::iterator(MI)),
6611                    BB->end());
6612    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6613
6614    BuildMI(*BB, MI, dl, TII->get(PPC::BCC))
6615      .addImm(PPC::PRED_EQ).addReg(CRReg).addMBB(exitMBB);
6616
6617    BB->addSuccessor(midMBB);
6618    BB->addSuccessor(exitMBB);
6619
6620    BB = midMBB;
6621
6622    // Set the FPSCR XX bit (FE_INEXACT). Note that we cannot just set
6623    // the FI bit here because that will not automatically set XX also,
6624    // and XX is what libm interprets as the FE_INEXACT flag.
6625    BuildMI(BB, dl, TII->get(PPC::MTFSB1)).addImm(/* 38 - 32 = */ 6);
6626    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6627
6628    BB->addSuccessor(exitMBB);
6629
6630    BB = exitMBB;
6631  } else {
6632    llvm_unreachable("Unexpected instr type to insert");
6633  }
6634
6635  MI->eraseFromParent();   // The pseudo instruction is gone now.
6636  return BB;
6637}
6638
6639//===----------------------------------------------------------------------===//
6640// Target Optimization Hooks
6641//===----------------------------------------------------------------------===//
6642
6643SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op,
6644                                               DAGCombinerInfo &DCI) const {
6645  if (DCI.isAfterLegalizeVectorOps())
6646    return SDValue();
6647
6648  EVT VT = Op.getValueType();
6649
6650  if ((VT == MVT::f32 && PPCSubTarget.hasFRES()) ||
6651      (VT == MVT::f64 && PPCSubTarget.hasFRE())  ||
6652      (VT == MVT::v4f32 && PPCSubTarget.hasAltivec())) {
6653
6654    // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
6655    // For the reciprocal, we need to find the zero of the function:
6656    //   F(X) = A X - 1 [which has a zero at X = 1/A]
6657    //     =>
6658    //   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
6659    //     does not require additional intermediate precision]
6660
6661    // Convergence is quadratic, so we essentially double the number of digits
6662    // correct after every iteration. The minimum architected relative
6663    // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
6664    // 23 digits and double has 52 digits.
6665    int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
6666    if (VT.getScalarType() == MVT::f64)
6667      ++Iterations;
6668
6669    SelectionDAG &DAG = DCI.DAG;
6670    SDLoc dl(Op);
6671
6672    SDValue FPOne =
6673      DAG.getConstantFP(1.0, VT.getScalarType());
6674    if (VT.isVector()) {
6675      assert(VT.getVectorNumElements() == 4 &&
6676             "Unknown vector type");
6677      FPOne = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
6678                          FPOne, FPOne, FPOne, FPOne);
6679    }
6680
6681    SDValue Est = DAG.getNode(PPCISD::FRE, dl, VT, Op);
6682    DCI.AddToWorklist(Est.getNode());
6683
6684    // Newton iterations: Est = Est + Est (1 - Arg * Est)
6685    for (int i = 0; i < Iterations; ++i) {
6686      SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Op, Est);
6687      DCI.AddToWorklist(NewEst.getNode());
6688
6689      NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPOne, NewEst);
6690      DCI.AddToWorklist(NewEst.getNode());
6691
6692      NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
6693      DCI.AddToWorklist(NewEst.getNode());
6694
6695      Est = DAG.getNode(ISD::FADD, dl, VT, Est, NewEst);
6696      DCI.AddToWorklist(Est.getNode());
6697    }
6698
6699    return Est;
6700  }
6701
6702  return SDValue();
6703}
6704
6705SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op,
6706                                             DAGCombinerInfo &DCI) const {
6707  if (DCI.isAfterLegalizeVectorOps())
6708    return SDValue();
6709
6710  EVT VT = Op.getValueType();
6711
6712  if ((VT == MVT::f32 && PPCSubTarget.hasFRSQRTES()) ||
6713      (VT == MVT::f64 && PPCSubTarget.hasFRSQRTE())  ||
6714      (VT == MVT::v4f32 && PPCSubTarget.hasAltivec())) {
6715
6716    // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
6717    // For the reciprocal sqrt, we need to find the zero of the function:
6718    //   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
6719    //     =>
6720    //   X_{i+1} = X_i (1.5 - A X_i^2 / 2)
6721    // As a result, we precompute A/2 prior to the iteration loop.
6722
6723    // Convergence is quadratic, so we essentially double the number of digits
6724    // correct after every iteration. The minimum architected relative
6725    // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
6726    // 23 digits and double has 52 digits.
6727    int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
6728    if (VT.getScalarType() == MVT::f64)
6729      ++Iterations;
6730
6731    SelectionDAG &DAG = DCI.DAG;
6732    SDLoc dl(Op);
6733
6734    SDValue FPThreeHalves =
6735      DAG.getConstantFP(1.5, VT.getScalarType());
6736    if (VT.isVector()) {
6737      assert(VT.getVectorNumElements() == 4 &&
6738             "Unknown vector type");
6739      FPThreeHalves = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
6740                                  FPThreeHalves, FPThreeHalves,
6741                                  FPThreeHalves, FPThreeHalves);
6742    }
6743
6744    SDValue Est = DAG.getNode(PPCISD::FRSQRTE, dl, VT, Op);
6745    DCI.AddToWorklist(Est.getNode());
6746
6747    // We now need 0.5*Arg which we can write as (1.5*Arg - Arg) so that
6748    // this entire sequence requires only one FP constant.
6749    SDValue HalfArg = DAG.getNode(ISD::FMUL, dl, VT, FPThreeHalves, Op);
6750    DCI.AddToWorklist(HalfArg.getNode());
6751
6752    HalfArg = DAG.getNode(ISD::FSUB, dl, VT, HalfArg, Op);
6753    DCI.AddToWorklist(HalfArg.getNode());
6754
6755    // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
6756    for (int i = 0; i < Iterations; ++i) {
6757      SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, Est);
6758      DCI.AddToWorklist(NewEst.getNode());
6759
6760      NewEst = DAG.getNode(ISD::FMUL, dl, VT, HalfArg, NewEst);
6761      DCI.AddToWorklist(NewEst.getNode());
6762
6763      NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPThreeHalves, NewEst);
6764      DCI.AddToWorklist(NewEst.getNode());
6765
6766      Est = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
6767      DCI.AddToWorklist(Est.getNode());
6768    }
6769
6770    return Est;
6771  }
6772
6773  return SDValue();
6774}
6775
6776// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
6777// not enforce equality of the chain operands.
6778static bool isConsecutiveLS(LSBaseSDNode *LS, LSBaseSDNode *Base,
6779                            unsigned Bytes, int Dist,
6780                            SelectionDAG &DAG) {
6781  EVT VT = LS->getMemoryVT();
6782  if (VT.getSizeInBits() / 8 != Bytes)
6783    return false;
6784
6785  SDValue Loc = LS->getBasePtr();
6786  SDValue BaseLoc = Base->getBasePtr();
6787  if (Loc.getOpcode() == ISD::FrameIndex) {
6788    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6789      return false;
6790    const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6791    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6792    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6793    int FS  = MFI->getObjectSize(FI);
6794    int BFS = MFI->getObjectSize(BFI);
6795    if (FS != BFS || FS != (int)Bytes) return false;
6796    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6797  }
6798
6799  // Handle X+C
6800  if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6801      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6802    return true;
6803
6804  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6805  const GlobalValue *GV1 = NULL;
6806  const GlobalValue *GV2 = NULL;
6807  int64_t Offset1 = 0;
6808  int64_t Offset2 = 0;
6809  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6810  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6811  if (isGA1 && isGA2 && GV1 == GV2)
6812    return Offset1 == (Offset2 + Dist*Bytes);
6813  return false;
6814}
6815
6816// Return true is there is a nearyby consecutive load to the one provided
6817// (regardless of alignment). We search up and down the chain, looking though
6818// token factors and other loads (but nothing else). As a result, a true
6819// results indicates that it is safe to create a new consecutive load adjacent
6820// to the load provided.
6821static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
6822  SDValue Chain = LD->getChain();
6823  EVT VT = LD->getMemoryVT();
6824
6825  SmallSet<SDNode *, 16> LoadRoots;
6826  SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
6827  SmallSet<SDNode *, 16> Visited;
6828
6829  // First, search up the chain, branching to follow all token-factor operands.
6830  // If we find a consecutive load, then we're done, otherwise, record all
6831  // nodes just above the top-level loads and token factors.
6832  while (!Queue.empty()) {
6833    SDNode *ChainNext = Queue.pop_back_val();
6834    if (!Visited.insert(ChainNext))
6835      continue;
6836
6837    if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(ChainNext)) {
6838      if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
6839        return true;
6840
6841      if (!Visited.count(ChainLD->getChain().getNode()))
6842        Queue.push_back(ChainLD->getChain().getNode());
6843    } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
6844      for (SDNode::op_iterator O = ChainNext->op_begin(),
6845           OE = ChainNext->op_end(); O != OE; ++O)
6846        if (!Visited.count(O->getNode()))
6847          Queue.push_back(O->getNode());
6848    } else
6849      LoadRoots.insert(ChainNext);
6850  }
6851
6852  // Second, search down the chain, starting from the top-level nodes recorded
6853  // in the first phase. These top-level nodes are the nodes just above all
6854  // loads and token factors. Starting with their uses, recursively look though
6855  // all loads (just the chain uses) and token factors to find a consecutive
6856  // load.
6857  Visited.clear();
6858  Queue.clear();
6859
6860  for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
6861       IE = LoadRoots.end(); I != IE; ++I) {
6862    Queue.push_back(*I);
6863
6864    while (!Queue.empty()) {
6865      SDNode *LoadRoot = Queue.pop_back_val();
6866      if (!Visited.insert(LoadRoot))
6867        continue;
6868
6869      if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(LoadRoot))
6870        if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
6871          return true;
6872
6873      for (SDNode::use_iterator UI = LoadRoot->use_begin(),
6874           UE = LoadRoot->use_end(); UI != UE; ++UI)
6875        if (((isa<LoadSDNode>(*UI) &&
6876            cast<LoadSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
6877            UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
6878          Queue.push_back(*UI);
6879    }
6880  }
6881
6882  return false;
6883}
6884
6885SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
6886                                             DAGCombinerInfo &DCI) const {
6887  const TargetMachine &TM = getTargetMachine();
6888  SelectionDAG &DAG = DCI.DAG;
6889  SDLoc dl(N);
6890  switch (N->getOpcode()) {
6891  default: break;
6892  case PPCISD::SHL:
6893    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6894      if (C->isNullValue())   // 0 << V -> 0.
6895        return N->getOperand(0);
6896    }
6897    break;
6898  case PPCISD::SRL:
6899    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6900      if (C->isNullValue())   // 0 >>u V -> 0.
6901        return N->getOperand(0);
6902    }
6903    break;
6904  case PPCISD::SRA:
6905    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6906      if (C->isNullValue() ||   //  0 >>s V -> 0.
6907          C->isAllOnesValue())    // -1 >>s V -> -1.
6908        return N->getOperand(0);
6909    }
6910    break;
6911  case ISD::FDIV: {
6912    assert(TM.Options.UnsafeFPMath &&
6913           "Reciprocal estimates require UnsafeFPMath");
6914
6915    if (N->getOperand(1).getOpcode() == ISD::FSQRT) {
6916      SDValue RV =
6917        DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0), DCI);
6918      if (RV.getNode() != 0) {
6919        DCI.AddToWorklist(RV.getNode());
6920        return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
6921                           N->getOperand(0), RV);
6922      }
6923    } else if (N->getOperand(1).getOpcode() == ISD::FP_EXTEND &&
6924               N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
6925      SDValue RV =
6926        DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
6927                                 DCI);
6928      if (RV.getNode() != 0) {
6929        DCI.AddToWorklist(RV.getNode());
6930        RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N->getOperand(1)),
6931                         N->getValueType(0), RV);
6932        DCI.AddToWorklist(RV.getNode());
6933        return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
6934                           N->getOperand(0), RV);
6935      }
6936    } else if (N->getOperand(1).getOpcode() == ISD::FP_ROUND &&
6937               N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
6938      SDValue RV =
6939        DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
6940                                 DCI);
6941      if (RV.getNode() != 0) {
6942        DCI.AddToWorklist(RV.getNode());
6943        RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N->getOperand(1)),
6944                         N->getValueType(0), RV,
6945                         N->getOperand(1).getOperand(1));
6946        DCI.AddToWorklist(RV.getNode());
6947        return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
6948                           N->getOperand(0), RV);
6949      }
6950    }
6951
6952    SDValue RV = DAGCombineFastRecip(N->getOperand(1), DCI);
6953    if (RV.getNode() != 0) {
6954      DCI.AddToWorklist(RV.getNode());
6955      return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
6956                         N->getOperand(0), RV);
6957    }
6958
6959    }
6960    break;
6961  case ISD::FSQRT: {
6962    assert(TM.Options.UnsafeFPMath &&
6963           "Reciprocal estimates require UnsafeFPMath");
6964
6965    // Compute this as 1/(1/sqrt(X)), which is the reciprocal of the
6966    // reciprocal sqrt.
6967    SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(0), DCI);
6968    if (RV.getNode() != 0) {
6969      DCI.AddToWorklist(RV.getNode());
6970      RV = DAGCombineFastRecip(RV, DCI);
6971      if (RV.getNode() != 0)
6972        return RV;
6973    }
6974
6975    }
6976    break;
6977  case ISD::SINT_TO_FP:
6978    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
6979      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
6980        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
6981        // We allow the src/dst to be either f32/f64, but the intermediate
6982        // type must be i64.
6983        if (N->getOperand(0).getValueType() == MVT::i64 &&
6984            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
6985          SDValue Val = N->getOperand(0).getOperand(0);
6986          if (Val.getValueType() == MVT::f32) {
6987            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
6988            DCI.AddToWorklist(Val.getNode());
6989          }
6990
6991          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
6992          DCI.AddToWorklist(Val.getNode());
6993          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
6994          DCI.AddToWorklist(Val.getNode());
6995          if (N->getValueType(0) == MVT::f32) {
6996            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
6997                              DAG.getIntPtrConstant(0));
6998            DCI.AddToWorklist(Val.getNode());
6999          }
7000          return Val;
7001        } else if (N->getOperand(0).getValueType() == MVT::i32) {
7002          // If the intermediate type is i32, we can avoid the load/store here
7003          // too.
7004        }
7005      }
7006    }
7007    break;
7008  case ISD::STORE:
7009    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
7010    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
7011        !cast<StoreSDNode>(N)->isTruncatingStore() &&
7012        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
7013        N->getOperand(1).getValueType() == MVT::i32 &&
7014        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
7015      SDValue Val = N->getOperand(1).getOperand(0);
7016      if (Val.getValueType() == MVT::f32) {
7017        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
7018        DCI.AddToWorklist(Val.getNode());
7019      }
7020      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
7021      DCI.AddToWorklist(Val.getNode());
7022
7023      SDValue Ops[] = {
7024        N->getOperand(0), Val, N->getOperand(2),
7025        DAG.getValueType(N->getOperand(1).getValueType())
7026      };
7027
7028      Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7029              DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
7030              cast<StoreSDNode>(N)->getMemoryVT(),
7031              cast<StoreSDNode>(N)->getMemOperand());
7032      DCI.AddToWorklist(Val.getNode());
7033      return Val;
7034    }
7035
7036    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
7037    if (cast<StoreSDNode>(N)->isUnindexed() &&
7038        N->getOperand(1).getOpcode() == ISD::BSWAP &&
7039        N->getOperand(1).getNode()->hasOneUse() &&
7040        (N->getOperand(1).getValueType() == MVT::i32 ||
7041         N->getOperand(1).getValueType() == MVT::i16 ||
7042         (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
7043          TM.getSubtarget<PPCSubtarget>().isPPC64() &&
7044          N->getOperand(1).getValueType() == MVT::i64))) {
7045      SDValue BSwapOp = N->getOperand(1).getOperand(0);
7046      // Do an any-extend to 32-bits if this is a half-word input.
7047      if (BSwapOp.getValueType() == MVT::i16)
7048        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
7049
7050      SDValue Ops[] = {
7051        N->getOperand(0), BSwapOp, N->getOperand(2),
7052        DAG.getValueType(N->getOperand(1).getValueType())
7053      };
7054      return
7055        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
7056                                Ops, array_lengthof(Ops),
7057                                cast<StoreSDNode>(N)->getMemoryVT(),
7058                                cast<StoreSDNode>(N)->getMemOperand());
7059    }
7060    break;
7061  case ISD::LOAD: {
7062    LoadSDNode *LD = cast<LoadSDNode>(N);
7063    EVT VT = LD->getValueType(0);
7064    Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
7065    unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
7066    if (ISD::isNON_EXTLoad(N) && VT.isVector() &&
7067        TM.getSubtarget<PPCSubtarget>().hasAltivec() &&
7068        DCI.getDAGCombineLevel() == AfterLegalizeTypes &&
7069        LD->getAlignment() < ABIAlignment) {
7070      // This is a type-legal unaligned Altivec load.
7071      SDValue Chain = LD->getChain();
7072      SDValue Ptr = LD->getBasePtr();
7073
7074      // This implements the loading of unaligned vectors as described in
7075      // the venerable Apple Velocity Engine overview. Specifically:
7076      // https://developer.apple.com/hardwaredrivers/ve/alignment.html
7077      // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
7078      //
7079      // The general idea is to expand a sequence of one or more unaligned
7080      // loads into a alignment-based permutation-control instruction (lvsl),
7081      // a series of regular vector loads (which always truncate their
7082      // input address to an aligned address), and a series of permutations.
7083      // The results of these permutations are the requested loaded values.
7084      // The trick is that the last "extra" load is not taken from the address
7085      // you might suspect (sizeof(vector) bytes after the last requested
7086      // load), but rather sizeof(vector) - 1 bytes after the last
7087      // requested vector. The point of this is to avoid a page fault if the
7088      // base address happend to be aligned. This works because if the base
7089      // address is aligned, then adding less than a full vector length will
7090      // cause the last vector in the sequence to be (re)loaded. Otherwise,
7091      // the next vector will be fetched as you might suspect was necessary.
7092
7093      // We might be able to reuse the permutation generation from
7094      // a different base address offset from this one by an aligned amount.
7095      // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
7096      // optimization later.
7097      SDValue PermCntl = BuildIntrinsicOp(Intrinsic::ppc_altivec_lvsl, Ptr,
7098                                          DAG, dl, MVT::v16i8);
7099
7100      // Refine the alignment of the original load (a "new" load created here
7101      // which was identical to the first except for the alignment would be
7102      // merged with the existing node regardless).
7103      MachineFunction &MF = DAG.getMachineFunction();
7104      MachineMemOperand *MMO =
7105        MF.getMachineMemOperand(LD->getPointerInfo(),
7106                                LD->getMemOperand()->getFlags(),
7107                                LD->getMemoryVT().getStoreSize(),
7108                                ABIAlignment);
7109      LD->refineAlignment(MMO);
7110      SDValue BaseLoad = SDValue(LD, 0);
7111
7112      // Note that the value of IncOffset (which is provided to the next
7113      // load's pointer info offset value, and thus used to calculate the
7114      // alignment), and the value of IncValue (which is actually used to
7115      // increment the pointer value) are different! This is because we
7116      // require the next load to appear to be aligned, even though it
7117      // is actually offset from the base pointer by a lesser amount.
7118      int IncOffset = VT.getSizeInBits() / 8;
7119      int IncValue = IncOffset;
7120
7121      // Walk (both up and down) the chain looking for another load at the real
7122      // (aligned) offset (the alignment of the other load does not matter in
7123      // this case). If found, then do not use the offset reduction trick, as
7124      // that will prevent the loads from being later combined (as they would
7125      // otherwise be duplicates).
7126      if (!findConsecutiveLoad(LD, DAG))
7127        --IncValue;
7128
7129      SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
7130      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
7131
7132      SDValue ExtraLoad =
7133        DAG.getLoad(VT, dl, Chain, Ptr,
7134                    LD->getPointerInfo().getWithOffset(IncOffset),
7135                    LD->isVolatile(), LD->isNonTemporal(),
7136                    LD->isInvariant(), ABIAlignment);
7137
7138      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7139        BaseLoad.getValue(1), ExtraLoad.getValue(1));
7140
7141      if (BaseLoad.getValueType() != MVT::v4i32)
7142        BaseLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, BaseLoad);
7143
7144      if (ExtraLoad.getValueType() != MVT::v4i32)
7145        ExtraLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, ExtraLoad);
7146
7147      SDValue Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
7148                                      BaseLoad, ExtraLoad, PermCntl, DAG, dl);
7149
7150      if (VT != MVT::v4i32)
7151        Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm);
7152
7153      // Now we need to be really careful about how we update the users of the
7154      // original load. We cannot just call DCI.CombineTo (or
7155      // DAG.ReplaceAllUsesWith for that matter), because the load still has
7156      // uses created here (the permutation for example) that need to stay.
7157      SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
7158      while (UI != UE) {
7159        SDUse &Use = UI.getUse();
7160        SDNode *User = *UI;
7161        // Note: BaseLoad is checked here because it might not be N, but a
7162        // bitcast of N.
7163        if (User == Perm.getNode() || User == BaseLoad.getNode() ||
7164            User == TF.getNode() || Use.getResNo() > 1) {
7165          ++UI;
7166          continue;
7167        }
7168
7169        SDValue To = Use.getResNo() ? TF : Perm;
7170        ++UI;
7171
7172        SmallVector<SDValue, 8> Ops;
7173        for (SDNode::op_iterator O = User->op_begin(),
7174             OE = User->op_end(); O != OE; ++O) {
7175          if (*O == Use)
7176            Ops.push_back(To);
7177          else
7178            Ops.push_back(*O);
7179        }
7180
7181        DAG.UpdateNodeOperands(User, Ops.data(), Ops.size());
7182      }
7183
7184      return SDValue(N, 0);
7185    }
7186    }
7187    break;
7188  case ISD::INTRINSIC_WO_CHAIN:
7189    if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() ==
7190          Intrinsic::ppc_altivec_lvsl &&
7191        N->getOperand(1)->getOpcode() == ISD::ADD) {
7192      SDValue Add = N->getOperand(1);
7193
7194      if (DAG.MaskedValueIsZero(Add->getOperand(1),
7195            APInt::getAllOnesValue(4 /* 16 byte alignment */).zext(
7196              Add.getValueType().getScalarType().getSizeInBits()))) {
7197        SDNode *BasePtr = Add->getOperand(0).getNode();
7198        for (SDNode::use_iterator UI = BasePtr->use_begin(),
7199             UE = BasePtr->use_end(); UI != UE; ++UI) {
7200          if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
7201              cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
7202                Intrinsic::ppc_altivec_lvsl) {
7203            // We've found another LVSL, and this address if an aligned
7204            // multiple of that one. The results will be the same, so use the
7205            // one we've just found instead.
7206
7207            return SDValue(*UI, 0);
7208          }
7209        }
7210      }
7211    }
7212  case ISD::BSWAP:
7213    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
7214    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7215        N->getOperand(0).hasOneUse() &&
7216        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
7217         (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
7218          TM.getSubtarget<PPCSubtarget>().isPPC64() &&
7219          N->getValueType(0) == MVT::i64))) {
7220      SDValue Load = N->getOperand(0);
7221      LoadSDNode *LD = cast<LoadSDNode>(Load);
7222      // Create the byte-swapping load.
7223      SDValue Ops[] = {
7224        LD->getChain(),    // Chain
7225        LD->getBasePtr(),  // Ptr
7226        DAG.getValueType(N->getValueType(0)) // VT
7227      };
7228      SDValue BSLoad =
7229        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
7230                                DAG.getVTList(N->getValueType(0) == MVT::i64 ?
7231                                              MVT::i64 : MVT::i32, MVT::Other),
7232                                Ops, 3, LD->getMemoryVT(), LD->getMemOperand());
7233
7234      // If this is an i16 load, insert the truncate.
7235      SDValue ResVal = BSLoad;
7236      if (N->getValueType(0) == MVT::i16)
7237        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
7238
7239      // First, combine the bswap away.  This makes the value produced by the
7240      // load dead.
7241      DCI.CombineTo(N, ResVal);
7242
7243      // Next, combine the load away, we give it a bogus result value but a real
7244      // chain result.  The result value is dead because the bswap is dead.
7245      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
7246
7247      // Return N so it doesn't get rechecked!
7248      return SDValue(N, 0);
7249    }
7250
7251    break;
7252  case PPCISD::VCMP: {
7253    // If a VCMPo node already exists with exactly the same operands as this
7254    // node, use its result instead of this node (VCMPo computes both a CR6 and
7255    // a normal output).
7256    //
7257    if (!N->getOperand(0).hasOneUse() &&
7258        !N->getOperand(1).hasOneUse() &&
7259        !N->getOperand(2).hasOneUse()) {
7260
7261      // Scan all of the users of the LHS, looking for VCMPo's that match.
7262      SDNode *VCMPoNode = 0;
7263
7264      SDNode *LHSN = N->getOperand(0).getNode();
7265      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
7266           UI != E; ++UI)
7267        if (UI->getOpcode() == PPCISD::VCMPo &&
7268            UI->getOperand(1) == N->getOperand(1) &&
7269            UI->getOperand(2) == N->getOperand(2) &&
7270            UI->getOperand(0) == N->getOperand(0)) {
7271          VCMPoNode = *UI;
7272          break;
7273        }
7274
7275      // If there is no VCMPo node, or if the flag value has a single use, don't
7276      // transform this.
7277      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
7278        break;
7279
7280      // Look at the (necessarily single) use of the flag value.  If it has a
7281      // chain, this transformation is more complex.  Note that multiple things
7282      // could use the value result, which we should ignore.
7283      SDNode *FlagUser = 0;
7284      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
7285           FlagUser == 0; ++UI) {
7286        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
7287        SDNode *User = *UI;
7288        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
7289          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
7290            FlagUser = User;
7291            break;
7292          }
7293        }
7294      }
7295
7296      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
7297      // give up for right now.
7298      if (FlagUser->getOpcode() == PPCISD::MFCR)
7299        return SDValue(VCMPoNode, 0);
7300    }
7301    break;
7302  }
7303  case ISD::BR_CC: {
7304    // If this is a branch on an altivec predicate comparison, lower this so
7305    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
7306    // lowering is done pre-legalize, because the legalizer lowers the predicate
7307    // compare down to code that is difficult to reassemble.
7308    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
7309    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
7310
7311    // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
7312    // value. If so, pass-through the AND to get to the intrinsic.
7313    if (LHS.getOpcode() == ISD::AND &&
7314        LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
7315        cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
7316          Intrinsic::ppc_is_decremented_ctr_nonzero &&
7317        isa<ConstantSDNode>(LHS.getOperand(1)) &&
7318        !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
7319          isZero())
7320      LHS = LHS.getOperand(0);
7321
7322    if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
7323        cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
7324          Intrinsic::ppc_is_decremented_ctr_nonzero &&
7325        isa<ConstantSDNode>(RHS)) {
7326      assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
7327             "Counter decrement comparison is not EQ or NE");
7328
7329      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
7330      bool isBDNZ = (CC == ISD::SETEQ && Val) ||
7331                    (CC == ISD::SETNE && !Val);
7332
7333      // We now need to make the intrinsic dead (it cannot be instruction
7334      // selected).
7335      DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
7336      assert(LHS.getNode()->hasOneUse() &&
7337             "Counter decrement has more than one use");
7338
7339      return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
7340                         N->getOperand(0), N->getOperand(4));
7341    }
7342
7343    int CompareOpc;
7344    bool isDot;
7345
7346    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
7347        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
7348        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
7349      assert(isDot && "Can't compare against a vector result!");
7350
7351      // If this is a comparison against something other than 0/1, then we know
7352      // that the condition is never/always true.
7353      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
7354      if (Val != 0 && Val != 1) {
7355        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
7356          return N->getOperand(0);
7357        // Always !=, turn it into an unconditional branch.
7358        return DAG.getNode(ISD::BR, dl, MVT::Other,
7359                           N->getOperand(0), N->getOperand(4));
7360      }
7361
7362      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
7363
7364      // Create the PPCISD altivec 'dot' comparison node.
7365      SDValue Ops[] = {
7366        LHS.getOperand(2),  // LHS of compare
7367        LHS.getOperand(3),  // RHS of compare
7368        DAG.getConstant(CompareOpc, MVT::i32)
7369      };
7370      EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
7371      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
7372
7373      // Unpack the result based on how the target uses it.
7374      PPC::Predicate CompOpc;
7375      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
7376      default:  // Can't happen, don't crash on invalid number though.
7377      case 0:   // Branch on the value of the EQ bit of CR6.
7378        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
7379        break;
7380      case 1:   // Branch on the inverted value of the EQ bit of CR6.
7381        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
7382        break;
7383      case 2:   // Branch on the value of the LT bit of CR6.
7384        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
7385        break;
7386      case 3:   // Branch on the inverted value of the LT bit of CR6.
7387        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
7388        break;
7389      }
7390
7391      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
7392                         DAG.getConstant(CompOpc, MVT::i32),
7393                         DAG.getRegister(PPC::CR6, MVT::i32),
7394                         N->getOperand(4), CompNode.getValue(1));
7395    }
7396    break;
7397  }
7398  }
7399
7400  return SDValue();
7401}
7402
7403//===----------------------------------------------------------------------===//
7404// Inline Assembly Support
7405//===----------------------------------------------------------------------===//
7406
7407void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7408                                                       APInt &KnownZero,
7409                                                       APInt &KnownOne,
7410                                                       const SelectionDAG &DAG,
7411                                                       unsigned Depth) const {
7412  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
7413  switch (Op.getOpcode()) {
7414  default: break;
7415  case PPCISD::LBRX: {
7416    // lhbrx is known to have the top bits cleared out.
7417    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
7418      KnownZero = 0xFFFF0000;
7419    break;
7420  }
7421  case ISD::INTRINSIC_WO_CHAIN: {
7422    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
7423    default: break;
7424    case Intrinsic::ppc_altivec_vcmpbfp_p:
7425    case Intrinsic::ppc_altivec_vcmpeqfp_p:
7426    case Intrinsic::ppc_altivec_vcmpequb_p:
7427    case Intrinsic::ppc_altivec_vcmpequh_p:
7428    case Intrinsic::ppc_altivec_vcmpequw_p:
7429    case Intrinsic::ppc_altivec_vcmpgefp_p:
7430    case Intrinsic::ppc_altivec_vcmpgtfp_p:
7431    case Intrinsic::ppc_altivec_vcmpgtsb_p:
7432    case Intrinsic::ppc_altivec_vcmpgtsh_p:
7433    case Intrinsic::ppc_altivec_vcmpgtsw_p:
7434    case Intrinsic::ppc_altivec_vcmpgtub_p:
7435    case Intrinsic::ppc_altivec_vcmpgtuh_p:
7436    case Intrinsic::ppc_altivec_vcmpgtuw_p:
7437      KnownZero = ~1U;  // All bits but the low one are known to be zero.
7438      break;
7439    }
7440  }
7441  }
7442}
7443
7444
7445/// getConstraintType - Given a constraint, return the type of
7446/// constraint it is for this target.
7447PPCTargetLowering::ConstraintType
7448PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
7449  if (Constraint.size() == 1) {
7450    switch (Constraint[0]) {
7451    default: break;
7452    case 'b':
7453    case 'r':
7454    case 'f':
7455    case 'v':
7456    case 'y':
7457      return C_RegisterClass;
7458    case 'Z':
7459      // FIXME: While Z does indicate a memory constraint, it specifically
7460      // indicates an r+r address (used in conjunction with the 'y' modifier
7461      // in the replacement string). Currently, we're forcing the base
7462      // register to be r0 in the asm printer (which is interpreted as zero)
7463      // and forming the complete address in the second register. This is
7464      // suboptimal.
7465      return C_Memory;
7466    }
7467  }
7468  return TargetLowering::getConstraintType(Constraint);
7469}
7470
7471/// Examine constraint type and operand type and determine a weight value.
7472/// This object must already have been set up with the operand type
7473/// and the current alternative constraint selected.
7474TargetLowering::ConstraintWeight
7475PPCTargetLowering::getSingleConstraintMatchWeight(
7476    AsmOperandInfo &info, const char *constraint) const {
7477  ConstraintWeight weight = CW_Invalid;
7478  Value *CallOperandVal = info.CallOperandVal;
7479    // If we don't have a value, we can't do a match,
7480    // but allow it at the lowest weight.
7481  if (CallOperandVal == NULL)
7482    return CW_Default;
7483  Type *type = CallOperandVal->getType();
7484  // Look at the constraint type.
7485  switch (*constraint) {
7486  default:
7487    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
7488    break;
7489  case 'b':
7490    if (type->isIntegerTy())
7491      weight = CW_Register;
7492    break;
7493  case 'f':
7494    if (type->isFloatTy())
7495      weight = CW_Register;
7496    break;
7497  case 'd':
7498    if (type->isDoubleTy())
7499      weight = CW_Register;
7500    break;
7501  case 'v':
7502    if (type->isVectorTy())
7503      weight = CW_Register;
7504    break;
7505  case 'y':
7506    weight = CW_Register;
7507    break;
7508  case 'Z':
7509    weight = CW_Memory;
7510    break;
7511  }
7512  return weight;
7513}
7514
7515std::pair<unsigned, const TargetRegisterClass*>
7516PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7517                                                EVT VT) const {
7518  if (Constraint.size() == 1) {
7519    // GCC RS6000 Constraint Letters
7520    switch (Constraint[0]) {
7521    case 'b':   // R1-R31
7522      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
7523        return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
7524      return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
7525    case 'r':   // R0-R31
7526      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
7527        return std::make_pair(0U, &PPC::G8RCRegClass);
7528      return std::make_pair(0U, &PPC::GPRCRegClass);
7529    case 'f':
7530      if (VT == MVT::f32 || VT == MVT::i32)
7531        return std::make_pair(0U, &PPC::F4RCRegClass);
7532      if (VT == MVT::f64 || VT == MVT::i64)
7533        return std::make_pair(0U, &PPC::F8RCRegClass);
7534      break;
7535    case 'v':
7536      return std::make_pair(0U, &PPC::VRRCRegClass);
7537    case 'y':   // crrc
7538      return std::make_pair(0U, &PPC::CRRCRegClass);
7539    }
7540  }
7541
7542  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
7543}
7544
7545
7546/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7547/// vector.  If it is invalid, don't add anything to Ops.
7548void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
7549                                                     std::string &Constraint,
7550                                                     std::vector<SDValue>&Ops,
7551                                                     SelectionDAG &DAG) const {
7552  SDValue Result(0,0);
7553
7554  // Only support length 1 constraints.
7555  if (Constraint.length() > 1) return;
7556
7557  char Letter = Constraint[0];
7558  switch (Letter) {
7559  default: break;
7560  case 'I':
7561  case 'J':
7562  case 'K':
7563  case 'L':
7564  case 'M':
7565  case 'N':
7566  case 'O':
7567  case 'P': {
7568    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
7569    if (!CST) return; // Must be an immediate to match.
7570    unsigned Value = CST->getZExtValue();
7571    switch (Letter) {
7572    default: llvm_unreachable("Unknown constraint letter!");
7573    case 'I':  // "I" is a signed 16-bit constant.
7574      if ((short)Value == (int)Value)
7575        Result = DAG.getTargetConstant(Value, Op.getValueType());
7576      break;
7577    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
7578    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
7579      if ((short)Value == 0)
7580        Result = DAG.getTargetConstant(Value, Op.getValueType());
7581      break;
7582    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
7583      if ((Value >> 16) == 0)
7584        Result = DAG.getTargetConstant(Value, Op.getValueType());
7585      break;
7586    case 'M':  // "M" is a constant that is greater than 31.
7587      if (Value > 31)
7588        Result = DAG.getTargetConstant(Value, Op.getValueType());
7589      break;
7590    case 'N':  // "N" is a positive constant that is an exact power of two.
7591      if ((int)Value > 0 && isPowerOf2_32(Value))
7592        Result = DAG.getTargetConstant(Value, Op.getValueType());
7593      break;
7594    case 'O':  // "O" is the constant zero.
7595      if (Value == 0)
7596        Result = DAG.getTargetConstant(Value, Op.getValueType());
7597      break;
7598    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
7599      if ((short)-Value == (int)-Value)
7600        Result = DAG.getTargetConstant(Value, Op.getValueType());
7601      break;
7602    }
7603    break;
7604  }
7605  }
7606
7607  if (Result.getNode()) {
7608    Ops.push_back(Result);
7609    return;
7610  }
7611
7612  // Handle standard constraint letters.
7613  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7614}
7615
7616// isLegalAddressingMode - Return true if the addressing mode represented
7617// by AM is legal for this target, for a load/store of the specified type.
7618bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
7619                                              Type *Ty) const {
7620  // FIXME: PPC does not allow r+i addressing modes for vectors!
7621
7622  // PPC allows a sign-extended 16-bit immediate field.
7623  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
7624    return false;
7625
7626  // No global is ever allowed as a base.
7627  if (AM.BaseGV)
7628    return false;
7629
7630  // PPC only support r+r,
7631  switch (AM.Scale) {
7632  case 0:  // "r+i" or just "i", depending on HasBaseReg.
7633    break;
7634  case 1:
7635    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
7636      return false;
7637    // Otherwise we have r+r or r+i.
7638    break;
7639  case 2:
7640    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
7641      return false;
7642    // Allow 2*r as r+r.
7643    break;
7644  default:
7645    // No other scales are supported.
7646    return false;
7647  }
7648
7649  return true;
7650}
7651
7652SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
7653                                           SelectionDAG &DAG) const {
7654  MachineFunction &MF = DAG.getMachineFunction();
7655  MachineFrameInfo *MFI = MF.getFrameInfo();
7656  MFI->setReturnAddressIsTaken(true);
7657
7658  SDLoc dl(Op);
7659  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7660
7661  // Make sure the function does not optimize away the store of the RA to
7662  // the stack.
7663  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7664  FuncInfo->setLRStoreRequired();
7665  bool isPPC64 = PPCSubTarget.isPPC64();
7666  bool isDarwinABI = PPCSubTarget.isDarwinABI();
7667
7668  if (Depth > 0) {
7669    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7670    SDValue Offset =
7671
7672      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
7673                      isPPC64? MVT::i64 : MVT::i32);
7674    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7675                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7676                                   FrameAddr, Offset),
7677                       MachinePointerInfo(), false, false, false, 0);
7678  }
7679
7680  // Just load the return address off the stack.
7681  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
7682  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7683                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
7684}
7685
7686SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
7687                                          SelectionDAG &DAG) const {
7688  SDLoc dl(Op);
7689  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7690
7691  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
7692  bool isPPC64 = PtrVT == MVT::i64;
7693
7694  MachineFunction &MF = DAG.getMachineFunction();
7695  MachineFrameInfo *MFI = MF.getFrameInfo();
7696  MFI->setFrameAddressIsTaken(true);
7697
7698  // Naked functions never have a frame pointer, and so we use r1. For all
7699  // other functions, this decision must be delayed until during PEI.
7700  unsigned FrameReg;
7701  if (MF.getFunction()->getAttributes().hasAttribute(
7702        AttributeSet::FunctionIndex, Attribute::Naked))
7703    FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
7704  else
7705    FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
7706
7707  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
7708                                         PtrVT);
7709  while (Depth--)
7710    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
7711                            FrameAddr, MachinePointerInfo(), false, false,
7712                            false, 0);
7713  return FrameAddr;
7714}
7715
7716bool
7717PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
7718  // The PowerPC target isn't yet aware of offsets.
7719  return false;
7720}
7721
7722/// getOptimalMemOpType - Returns the target specific optimal type for load
7723/// and store operations as a result of memset, memcpy, and memmove
7724/// lowering. If DstAlign is zero that means it's safe to destination
7725/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
7726/// means there isn't a need to check it against alignment requirement,
7727/// probably because the source does not need to be loaded. If 'IsMemset' is
7728/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
7729/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
7730/// source is constant so it does not need to be loaded.
7731/// It returns EVT::Other if the type should be determined using generic
7732/// target-independent logic.
7733EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
7734                                           unsigned DstAlign, unsigned SrcAlign,
7735                                           bool IsMemset, bool ZeroMemset,
7736                                           bool MemcpyStrSrc,
7737                                           MachineFunction &MF) const {
7738  if (this->PPCSubTarget.isPPC64()) {
7739    return MVT::i64;
7740  } else {
7741    return MVT::i32;
7742  }
7743}
7744
7745bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
7746                                                      bool *Fast) const {
7747  if (DisablePPCUnaligned)
7748    return false;
7749
7750  // PowerPC supports unaligned memory access for simple non-vector types.
7751  // Although accessing unaligned addresses is not as efficient as accessing
7752  // aligned addresses, it is generally more efficient than manual expansion,
7753  // and generally only traps for software emulation when crossing page
7754  // boundaries.
7755
7756  if (!VT.isSimple())
7757    return false;
7758
7759  if (VT.getSimpleVT().isVector())
7760    return false;
7761
7762  if (VT == MVT::ppcf128)
7763    return false;
7764
7765  if (Fast)
7766    *Fast = true;
7767
7768  return true;
7769}
7770
7771/// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
7772/// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
7773/// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
7774/// is expanded to mul + add.
7775bool PPCTargetLowering::isFMAFasterThanMulAndAdd(EVT VT) const {
7776  if (!VT.isSimple())
7777    return false;
7778
7779  switch (VT.getSimpleVT().SimpleTy) {
7780  case MVT::f32:
7781  case MVT::f64:
7782  case MVT::v4f32:
7783    return true;
7784  default:
7785    break;
7786  }
7787
7788  return false;
7789}
7790
7791Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
7792  if (DisableILPPref)
7793    return TargetLowering::getSchedulingPreference(N);
7794
7795  return Sched::ILP;
7796}
7797
7798