PPCISelLowering.cpp revision d752e0f7e64585839cb3a458ef52456eaebbea3c
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPerfectShuffle.h"
17#include "PPCTargetMachine.h"
18#include "MCTargetDesc/PPCPredicates.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29#include "llvm/CallingConv.h"
30#include "llvm/Constants.h"
31#include "llvm/Function.h"
32#include "llvm/Intrinsics.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/DerivedTypes.h"
39using namespace llvm;
40
41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
42                                     CCValAssign::LocInfo &LocInfo,
43                                     ISD::ArgFlagsTy &ArgFlags,
44                                     CCState &State);
45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
46                                            MVT &LocVT,
47                                            CCValAssign::LocInfo &LocInfo,
48                                            ISD::ArgFlagsTy &ArgFlags,
49                                            CCState &State);
50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
51                                              MVT &LocVT,
52                                              CCValAssign::LocInfo &LocInfo,
53                                              ISD::ArgFlagsTy &ArgFlags,
54                                              CCState &State);
55
56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                     cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63
64  return new TargetLoweringObjectFileELF();
65}
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69
70  setPow2DivIsCheap();
71
72  // Use _setjmp/_longjmp instead of setjmp/longjmp.
73  setUseUnderscoreSetJmp(true);
74  setUseUnderscoreLongJmp(true);
75
76  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
77  // arguments are at least 4/8 bytes aligned.
78  setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4);
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
82  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
83  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
84
85  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
86  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
87  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
88
89  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
90
91  // PowerPC has pre-inc load and store's.
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
93  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
94  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
95  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
96  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
98  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
99  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
100  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
101  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
102
103  // This is used in the ppcf128->int sequence.  Note it has different semantics
104  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
105  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
106
107  // PowerPC has no SREM/UREM instructions
108  setOperationAction(ISD::SREM, MVT::i32, Expand);
109  setOperationAction(ISD::UREM, MVT::i32, Expand);
110  setOperationAction(ISD::SREM, MVT::i64, Expand);
111  setOperationAction(ISD::UREM, MVT::i64, Expand);
112
113  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
114  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
115  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
116  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
117  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
118  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
119  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
120  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
121  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
122
123  // We don't support sin/cos/sqrt/fmod/pow
124  setOperationAction(ISD::FSIN , MVT::f64, Expand);
125  setOperationAction(ISD::FCOS , MVT::f64, Expand);
126  setOperationAction(ISD::FREM , MVT::f64, Expand);
127  setOperationAction(ISD::FPOW , MVT::f64, Expand);
128  setOperationAction(ISD::FMA  , MVT::f64, Expand);
129  setOperationAction(ISD::FSIN , MVT::f32, Expand);
130  setOperationAction(ISD::FCOS , MVT::f32, Expand);
131  setOperationAction(ISD::FREM , MVT::f32, Expand);
132  setOperationAction(ISD::FPOW , MVT::f32, Expand);
133  setOperationAction(ISD::FMA  , MVT::f32, Expand);
134
135  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
136
137  // If we're enabling GP optimizations, use hardware square root
138  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
139    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
140    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
141  }
142
143  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
144  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
145
146  // PowerPC does not have BSWAP, CTPOP or CTTZ
147  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
148  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
149  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
150  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
151  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
152  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
153
154  // PowerPC does not have ROTR
155  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
156  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
157
158  // PowerPC does not have Select
159  setOperationAction(ISD::SELECT, MVT::i32, Expand);
160  setOperationAction(ISD::SELECT, MVT::i64, Expand);
161  setOperationAction(ISD::SELECT, MVT::f32, Expand);
162  setOperationAction(ISD::SELECT, MVT::f64, Expand);
163
164  // PowerPC wants to turn select_cc of FP into fsel when possible.
165  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
166  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
167
168  // PowerPC wants to optimize integer setcc a bit
169  setOperationAction(ISD::SETCC, MVT::i32, Custom);
170
171  // PowerPC does not have BRCOND which requires SetCC
172  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
173
174  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
175
176  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
177  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
178
179  // PowerPC does not have [U|S]INT_TO_FP
180  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
181  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
182
183  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
184  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
185  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
186  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
187
188  // We cannot sextinreg(i1).  Expand to shifts.
189  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
190
191  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
192  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
193  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
194  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
195
196
197  // We want to legalize GlobalAddress and ConstantPool nodes into the
198  // appropriate instructions to materialize the address.
199  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
200  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
201  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
202  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
203  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
204  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
205  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
206  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
207  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
208  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
209
210  // TRAP is legal.
211  setOperationAction(ISD::TRAP, MVT::Other, Legal);
212
213  // TRAMPOLINE is custom lowered.
214  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
215  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
216
217  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
218  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
219
220  // VAARG is custom lowered with the 32-bit SVR4 ABI.
221  if (TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
222      && !TM.getSubtarget<PPCSubtarget>().isPPC64()) {
223    setOperationAction(ISD::VAARG, MVT::Other, Custom);
224    setOperationAction(ISD::VAARG, MVT::i64, Custom);
225  } else
226    setOperationAction(ISD::VAARG, MVT::Other, Expand);
227
228  // Use the default implementation.
229  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
230  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
231  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
232  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
233  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
234  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
235
236  // We want to custom lower some of our intrinsics.
237  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
238
239  // Comparisons that require checking two conditions.
240  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
243  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
244  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
247  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
248  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
249  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
250  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
251  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
252
253  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
254    // They also have instructions for converting between i64 and fp.
255    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
256    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
257    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
258    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
259    // This is just the low 32 bits of a (signed) fp->i64 conversion.
260    // We cannot do this with Promote because i64 is not a legal type.
261    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
262
263    // FIXME: disable this lowered code.  This generates 64-bit register values,
264    // and we don't model the fact that the top part is clobbered by calls.  We
265    // need to flag these together so that the value isn't live across a call.
266    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
267  } else {
268    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
269    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
270  }
271
272  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
273    // 64-bit PowerPC implementations can support i64 types directly
274    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
275    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
276    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
277    // 64-bit PowerPC wants to expand i128 shifts itself.
278    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
279    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
280    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
281  } else {
282    // 32-bit PowerPC wants to expand i64 shifts itself.
283    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
284    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
285    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
286  }
287
288  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
289    // First set operation action for all vector types to expand. Then we
290    // will selectively turn on ones that can be effectively codegen'd.
291    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
292         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
293      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
294
295      // add/sub are legal for all supported vector VT's.
296      setOperationAction(ISD::ADD , VT, Legal);
297      setOperationAction(ISD::SUB , VT, Legal);
298
299      // We promote all shuffles to v16i8.
300      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
301      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
302
303      // We promote all non-typed operations to v4i32.
304      setOperationAction(ISD::AND   , VT, Promote);
305      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
306      setOperationAction(ISD::OR    , VT, Promote);
307      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
308      setOperationAction(ISD::XOR   , VT, Promote);
309      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
310      setOperationAction(ISD::LOAD  , VT, Promote);
311      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
312      setOperationAction(ISD::SELECT, VT, Promote);
313      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
314      setOperationAction(ISD::STORE, VT, Promote);
315      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
316
317      // No other operations are legal.
318      setOperationAction(ISD::MUL , VT, Expand);
319      setOperationAction(ISD::SDIV, VT, Expand);
320      setOperationAction(ISD::SREM, VT, Expand);
321      setOperationAction(ISD::UDIV, VT, Expand);
322      setOperationAction(ISD::UREM, VT, Expand);
323      setOperationAction(ISD::FDIV, VT, Expand);
324      setOperationAction(ISD::FNEG, VT, Expand);
325      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
326      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
327      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
328      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
329      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
330      setOperationAction(ISD::UDIVREM, VT, Expand);
331      setOperationAction(ISD::SDIVREM, VT, Expand);
332      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
333      setOperationAction(ISD::FPOW, VT, Expand);
334      setOperationAction(ISD::CTPOP, VT, Expand);
335      setOperationAction(ISD::CTLZ, VT, Expand);
336      setOperationAction(ISD::CTTZ, VT, Expand);
337    }
338
339    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
340    // with merges, splats, etc.
341    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
342
343    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
344    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
345    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
346    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
347    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
348    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
349
350    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
351    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
352    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
353    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
354
355    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
356    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
357    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
358    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
359
360    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
361    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
362
363    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
364    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
365    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
366    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
367  }
368
369  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
370  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
371
372  setBooleanContents(ZeroOrOneBooleanContent);
373  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
374
375  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
376    setStackPointerRegisterToSaveRestore(PPC::X1);
377    setExceptionPointerRegister(PPC::X3);
378    setExceptionSelectorRegister(PPC::X4);
379  } else {
380    setStackPointerRegisterToSaveRestore(PPC::R1);
381    setExceptionPointerRegister(PPC::R3);
382    setExceptionSelectorRegister(PPC::R4);
383  }
384
385  // We have target-specific dag combine patterns for the following nodes:
386  setTargetDAGCombine(ISD::SINT_TO_FP);
387  setTargetDAGCombine(ISD::STORE);
388  setTargetDAGCombine(ISD::BR_CC);
389  setTargetDAGCombine(ISD::BSWAP);
390
391  // Darwin long double math library functions have $LDBL128 appended.
392  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
393    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
394    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
395    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
396    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
397    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
398    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
399    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
400    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
401    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
402    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
403  }
404
405  setMinFunctionAlignment(2);
406  if (PPCSubTarget.isDarwin())
407    setPrefFunctionAlignment(4);
408
409  setInsertFencesForAtomic(true);
410
411  computeRegisterProperties();
412}
413
414/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
415/// function arguments in the caller parameter area.
416unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
417  const TargetMachine &TM = getTargetMachine();
418  // Darwin passes everything on 4 byte boundary.
419  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
420    return 4;
421  // FIXME SVR4 TBD
422  return 4;
423}
424
425const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
426  switch (Opcode) {
427  default: return 0;
428  case PPCISD::FSEL:            return "PPCISD::FSEL";
429  case PPCISD::FCFID:           return "PPCISD::FCFID";
430  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
431  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
432  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
433  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
434  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
435  case PPCISD::VPERM:           return "PPCISD::VPERM";
436  case PPCISD::Hi:              return "PPCISD::Hi";
437  case PPCISD::Lo:              return "PPCISD::Lo";
438  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
439  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
440  case PPCISD::LOAD:            return "PPCISD::LOAD";
441  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
442  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
443  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
444  case PPCISD::SRL:             return "PPCISD::SRL";
445  case PPCISD::SRA:             return "PPCISD::SRA";
446  case PPCISD::SHL:             return "PPCISD::SHL";
447  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
448  case PPCISD::STD_32:          return "PPCISD::STD_32";
449  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
450  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
451  case PPCISD::NOP:             return "PPCISD::NOP";
452  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
453  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
454  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
455  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
456  case PPCISD::MFCR:            return "PPCISD::MFCR";
457  case PPCISD::VCMP:            return "PPCISD::VCMP";
458  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
459  case PPCISD::LBRX:            return "PPCISD::LBRX";
460  case PPCISD::STBRX:           return "PPCISD::STBRX";
461  case PPCISD::LARX:            return "PPCISD::LARX";
462  case PPCISD::STCX:            return "PPCISD::STCX";
463  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
464  case PPCISD::MFFS:            return "PPCISD::MFFS";
465  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
466  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
467  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
468  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
469  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
470  }
471}
472
473EVT PPCTargetLowering::getSetCCResultType(EVT VT) const {
474  return MVT::i32;
475}
476
477//===----------------------------------------------------------------------===//
478// Node matching predicates, for use by the tblgen matching code.
479//===----------------------------------------------------------------------===//
480
481/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
482static bool isFloatingPointZero(SDValue Op) {
483  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
484    return CFP->getValueAPF().isZero();
485  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
486    // Maybe this has already been legalized into the constant pool?
487    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
488      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
489        return CFP->getValueAPF().isZero();
490  }
491  return false;
492}
493
494/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
495/// true if Op is undef or if it matches the specified value.
496static bool isConstantOrUndef(int Op, int Val) {
497  return Op < 0 || Op == Val;
498}
499
500/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
501/// VPKUHUM instruction.
502bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
503  if (!isUnary) {
504    for (unsigned i = 0; i != 16; ++i)
505      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
506        return false;
507  } else {
508    for (unsigned i = 0; i != 8; ++i)
509      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
510          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
511        return false;
512  }
513  return true;
514}
515
516/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
517/// VPKUWUM instruction.
518bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
519  if (!isUnary) {
520    for (unsigned i = 0; i != 16; i += 2)
521      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
522          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
523        return false;
524  } else {
525    for (unsigned i = 0; i != 8; i += 2)
526      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
527          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
528          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
529          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
530        return false;
531  }
532  return true;
533}
534
535/// isVMerge - Common function, used to match vmrg* shuffles.
536///
537static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
538                     unsigned LHSStart, unsigned RHSStart) {
539  assert(N->getValueType(0) == MVT::v16i8 &&
540         "PPC only supports shuffles by bytes!");
541  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
542         "Unsupported merge size!");
543
544  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
545    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
546      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
547                             LHSStart+j+i*UnitSize) ||
548          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
549                             RHSStart+j+i*UnitSize))
550        return false;
551    }
552  return true;
553}
554
555/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
556/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
557bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
558                             bool isUnary) {
559  if (!isUnary)
560    return isVMerge(N, UnitSize, 8, 24);
561  return isVMerge(N, UnitSize, 8, 8);
562}
563
564/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
565/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
566bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
567                             bool isUnary) {
568  if (!isUnary)
569    return isVMerge(N, UnitSize, 0, 16);
570  return isVMerge(N, UnitSize, 0, 0);
571}
572
573
574/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
575/// amount, otherwise return -1.
576int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
577  assert(N->getValueType(0) == MVT::v16i8 &&
578         "PPC only supports shuffles by bytes!");
579
580  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
581
582  // Find the first non-undef value in the shuffle mask.
583  unsigned i;
584  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
585    /*search*/;
586
587  if (i == 16) return -1;  // all undef.
588
589  // Otherwise, check to see if the rest of the elements are consecutively
590  // numbered from this value.
591  unsigned ShiftAmt = SVOp->getMaskElt(i);
592  if (ShiftAmt < i) return -1;
593  ShiftAmt -= i;
594
595  if (!isUnary) {
596    // Check the rest of the elements to see if they are consecutive.
597    for (++i; i != 16; ++i)
598      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
599        return -1;
600  } else {
601    // Check the rest of the elements to see if they are consecutive.
602    for (++i; i != 16; ++i)
603      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
604        return -1;
605  }
606  return ShiftAmt;
607}
608
609/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
610/// specifies a splat of a single element that is suitable for input to
611/// VSPLTB/VSPLTH/VSPLTW.
612bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
613  assert(N->getValueType(0) == MVT::v16i8 &&
614         (EltSize == 1 || EltSize == 2 || EltSize == 4));
615
616  // This is a splat operation if each element of the permute is the same, and
617  // if the value doesn't reference the second vector.
618  unsigned ElementBase = N->getMaskElt(0);
619
620  // FIXME: Handle UNDEF elements too!
621  if (ElementBase >= 16)
622    return false;
623
624  // Check that the indices are consecutive, in the case of a multi-byte element
625  // splatted with a v16i8 mask.
626  for (unsigned i = 1; i != EltSize; ++i)
627    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
628      return false;
629
630  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
631    if (N->getMaskElt(i) < 0) continue;
632    for (unsigned j = 0; j != EltSize; ++j)
633      if (N->getMaskElt(i+j) != N->getMaskElt(j))
634        return false;
635  }
636  return true;
637}
638
639/// isAllNegativeZeroVector - Returns true if all elements of build_vector
640/// are -0.0.
641bool PPC::isAllNegativeZeroVector(SDNode *N) {
642  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
643
644  APInt APVal, APUndef;
645  unsigned BitSize;
646  bool HasAnyUndefs;
647
648  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
649    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
650      return CFP->getValueAPF().isNegZero();
651
652  return false;
653}
654
655/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
656/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
657unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
658  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
659  assert(isSplatShuffleMask(SVOp, EltSize));
660  return SVOp->getMaskElt(0) / EltSize;
661}
662
663/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
664/// by using a vspltis[bhw] instruction of the specified element size, return
665/// the constant being splatted.  The ByteSize field indicates the number of
666/// bytes of each element [124] -> [bhw].
667SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
668  SDValue OpVal(0, 0);
669
670  // If ByteSize of the splat is bigger than the element size of the
671  // build_vector, then we have a case where we are checking for a splat where
672  // multiple elements of the buildvector are folded together into a single
673  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
674  unsigned EltSize = 16/N->getNumOperands();
675  if (EltSize < ByteSize) {
676    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
677    SDValue UniquedVals[4];
678    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
679
680    // See if all of the elements in the buildvector agree across.
681    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
682      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
683      // If the element isn't a constant, bail fully out.
684      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
685
686
687      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
688        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
689      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
690        return SDValue();  // no match.
691    }
692
693    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
694    // either constant or undef values that are identical for each chunk.  See
695    // if these chunks can form into a larger vspltis*.
696
697    // Check to see if all of the leading entries are either 0 or -1.  If
698    // neither, then this won't fit into the immediate field.
699    bool LeadingZero = true;
700    bool LeadingOnes = true;
701    for (unsigned i = 0; i != Multiple-1; ++i) {
702      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
703
704      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
705      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
706    }
707    // Finally, check the least significant entry.
708    if (LeadingZero) {
709      if (UniquedVals[Multiple-1].getNode() == 0)
710        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
711      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
712      if (Val < 16)
713        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
714    }
715    if (LeadingOnes) {
716      if (UniquedVals[Multiple-1].getNode() == 0)
717        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
718      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
719      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
720        return DAG.getTargetConstant(Val, MVT::i32);
721    }
722
723    return SDValue();
724  }
725
726  // Check to see if this buildvec has a single non-undef value in its elements.
727  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
728    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
729    if (OpVal.getNode() == 0)
730      OpVal = N->getOperand(i);
731    else if (OpVal != N->getOperand(i))
732      return SDValue();
733  }
734
735  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
736
737  unsigned ValSizeInBytes = EltSize;
738  uint64_t Value = 0;
739  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
740    Value = CN->getZExtValue();
741  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
742    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
743    Value = FloatToBits(CN->getValueAPF().convertToFloat());
744  }
745
746  // If the splat value is larger than the element value, then we can never do
747  // this splat.  The only case that we could fit the replicated bits into our
748  // immediate field for would be zero, and we prefer to use vxor for it.
749  if (ValSizeInBytes < ByteSize) return SDValue();
750
751  // If the element value is larger than the splat value, cut it in half and
752  // check to see if the two halves are equal.  Continue doing this until we
753  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
754  while (ValSizeInBytes > ByteSize) {
755    ValSizeInBytes >>= 1;
756
757    // If the top half equals the bottom half, we're still ok.
758    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
759         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
760      return SDValue();
761  }
762
763  // Properly sign extend the value.
764  int ShAmt = (4-ByteSize)*8;
765  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
766
767  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
768  if (MaskVal == 0) return SDValue();
769
770  // Finally, if this value fits in a 5 bit sext field, return it
771  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
772    return DAG.getTargetConstant(MaskVal, MVT::i32);
773  return SDValue();
774}
775
776//===----------------------------------------------------------------------===//
777//  Addressing Mode Selection
778//===----------------------------------------------------------------------===//
779
780/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
781/// or 64-bit immediate, and if the value can be accurately represented as a
782/// sign extension from a 16-bit value.  If so, this returns true and the
783/// immediate.
784static bool isIntS16Immediate(SDNode *N, short &Imm) {
785  if (N->getOpcode() != ISD::Constant)
786    return false;
787
788  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
789  if (N->getValueType(0) == MVT::i32)
790    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
791  else
792    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
793}
794static bool isIntS16Immediate(SDValue Op, short &Imm) {
795  return isIntS16Immediate(Op.getNode(), Imm);
796}
797
798
799/// SelectAddressRegReg - Given the specified addressed, check to see if it
800/// can be represented as an indexed [r+r] operation.  Returns false if it
801/// can be more efficiently represented with [r+imm].
802bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
803                                            SDValue &Index,
804                                            SelectionDAG &DAG) const {
805  short imm = 0;
806  if (N.getOpcode() == ISD::ADD) {
807    if (isIntS16Immediate(N.getOperand(1), imm))
808      return false;    // r+i
809    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
810      return false;    // r+i
811
812    Base = N.getOperand(0);
813    Index = N.getOperand(1);
814    return true;
815  } else if (N.getOpcode() == ISD::OR) {
816    if (isIntS16Immediate(N.getOperand(1), imm))
817      return false;    // r+i can fold it if we can.
818
819    // If this is an or of disjoint bitfields, we can codegen this as an add
820    // (for better address arithmetic) if the LHS and RHS of the OR are provably
821    // disjoint.
822    APInt LHSKnownZero, LHSKnownOne;
823    APInt RHSKnownZero, RHSKnownOne;
824    DAG.ComputeMaskedBits(N.getOperand(0),
825                          APInt::getAllOnesValue(N.getOperand(0)
826                            .getValueSizeInBits()),
827                          LHSKnownZero, LHSKnownOne);
828
829    if (LHSKnownZero.getBoolValue()) {
830      DAG.ComputeMaskedBits(N.getOperand(1),
831                            APInt::getAllOnesValue(N.getOperand(1)
832                              .getValueSizeInBits()),
833                            RHSKnownZero, RHSKnownOne);
834      // If all of the bits are known zero on the LHS or RHS, the add won't
835      // carry.
836      if (~(LHSKnownZero | RHSKnownZero) == 0) {
837        Base = N.getOperand(0);
838        Index = N.getOperand(1);
839        return true;
840      }
841    }
842  }
843
844  return false;
845}
846
847/// Returns true if the address N can be represented by a base register plus
848/// a signed 16-bit displacement [r+imm], and if it is not better
849/// represented as reg+reg.
850bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
851                                            SDValue &Base,
852                                            SelectionDAG &DAG) const {
853  // FIXME dl should come from parent load or store, not from address
854  DebugLoc dl = N.getDebugLoc();
855  // If this can be more profitably realized as r+r, fail.
856  if (SelectAddressRegReg(N, Disp, Base, DAG))
857    return false;
858
859  if (N.getOpcode() == ISD::ADD) {
860    short imm = 0;
861    if (isIntS16Immediate(N.getOperand(1), imm)) {
862      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
863      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
864        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
865      } else {
866        Base = N.getOperand(0);
867      }
868      return true; // [r+i]
869    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
870      // Match LOAD (ADD (X, Lo(G))).
871     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
872             && "Cannot handle constant offsets yet!");
873      Disp = N.getOperand(1).getOperand(0);  // The global address.
874      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
875             Disp.getOpcode() == ISD::TargetConstantPool ||
876             Disp.getOpcode() == ISD::TargetJumpTable);
877      Base = N.getOperand(0);
878      return true;  // [&g+r]
879    }
880  } else if (N.getOpcode() == ISD::OR) {
881    short imm = 0;
882    if (isIntS16Immediate(N.getOperand(1), imm)) {
883      // If this is an or of disjoint bitfields, we can codegen this as an add
884      // (for better address arithmetic) if the LHS and RHS of the OR are
885      // provably disjoint.
886      APInt LHSKnownZero, LHSKnownOne;
887      DAG.ComputeMaskedBits(N.getOperand(0),
888                            APInt::getAllOnesValue(N.getOperand(0)
889                                                   .getValueSizeInBits()),
890                            LHSKnownZero, LHSKnownOne);
891
892      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
893        // If all of the bits are known zero on the LHS or RHS, the add won't
894        // carry.
895        Base = N.getOperand(0);
896        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
897        return true;
898      }
899    }
900  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
901    // Loading from a constant address.
902
903    // If this address fits entirely in a 16-bit sext immediate field, codegen
904    // this as "d, 0"
905    short Imm;
906    if (isIntS16Immediate(CN, Imm)) {
907      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
908      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
909                             CN->getValueType(0));
910      return true;
911    }
912
913    // Handle 32-bit sext immediates with LIS + addr mode.
914    if (CN->getValueType(0) == MVT::i32 ||
915        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
916      int Addr = (int)CN->getZExtValue();
917
918      // Otherwise, break this down into an LIS + disp.
919      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
920
921      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
922      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
923      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
924      return true;
925    }
926  }
927
928  Disp = DAG.getTargetConstant(0, getPointerTy());
929  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
930    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
931  else
932    Base = N;
933  return true;      // [r+0]
934}
935
936/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
937/// represented as an indexed [r+r] operation.
938bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
939                                                SDValue &Index,
940                                                SelectionDAG &DAG) const {
941  // Check to see if we can easily represent this as an [r+r] address.  This
942  // will fail if it thinks that the address is more profitably represented as
943  // reg+imm, e.g. where imm = 0.
944  if (SelectAddressRegReg(N, Base, Index, DAG))
945    return true;
946
947  // If the operand is an addition, always emit this as [r+r], since this is
948  // better (for code size, and execution, as the memop does the add for free)
949  // than emitting an explicit add.
950  if (N.getOpcode() == ISD::ADD) {
951    Base = N.getOperand(0);
952    Index = N.getOperand(1);
953    return true;
954  }
955
956  // Otherwise, do it the hard way, using R0 as the base register.
957  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
958                         N.getValueType());
959  Index = N;
960  return true;
961}
962
963/// SelectAddressRegImmShift - Returns true if the address N can be
964/// represented by a base register plus a signed 14-bit displacement
965/// [r+imm*4].  Suitable for use by STD and friends.
966bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
967                                                 SDValue &Base,
968                                                 SelectionDAG &DAG) const {
969  // FIXME dl should come from the parent load or store, not the address
970  DebugLoc dl = N.getDebugLoc();
971  // If this can be more profitably realized as r+r, fail.
972  if (SelectAddressRegReg(N, Disp, Base, DAG))
973    return false;
974
975  if (N.getOpcode() == ISD::ADD) {
976    short imm = 0;
977    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
978      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
979      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
980        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
981      } else {
982        Base = N.getOperand(0);
983      }
984      return true; // [r+i]
985    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
986      // Match LOAD (ADD (X, Lo(G))).
987     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
988             && "Cannot handle constant offsets yet!");
989      Disp = N.getOperand(1).getOperand(0);  // The global address.
990      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
991             Disp.getOpcode() == ISD::TargetConstantPool ||
992             Disp.getOpcode() == ISD::TargetJumpTable);
993      Base = N.getOperand(0);
994      return true;  // [&g+r]
995    }
996  } else if (N.getOpcode() == ISD::OR) {
997    short imm = 0;
998    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
999      // If this is an or of disjoint bitfields, we can codegen this as an add
1000      // (for better address arithmetic) if the LHS and RHS of the OR are
1001      // provably disjoint.
1002      APInt LHSKnownZero, LHSKnownOne;
1003      DAG.ComputeMaskedBits(N.getOperand(0),
1004                            APInt::getAllOnesValue(N.getOperand(0)
1005                                                   .getValueSizeInBits()),
1006                            LHSKnownZero, LHSKnownOne);
1007      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1008        // If all of the bits are known zero on the LHS or RHS, the add won't
1009        // carry.
1010        Base = N.getOperand(0);
1011        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1012        return true;
1013      }
1014    }
1015  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1016    // Loading from a constant address.  Verify low two bits are clear.
1017    if ((CN->getZExtValue() & 3) == 0) {
1018      // If this address fits entirely in a 14-bit sext immediate field, codegen
1019      // this as "d, 0"
1020      short Imm;
1021      if (isIntS16Immediate(CN, Imm)) {
1022        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1023        Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1024                               CN->getValueType(0));
1025        return true;
1026      }
1027
1028      // Fold the low-part of 32-bit absolute addresses into addr mode.
1029      if (CN->getValueType(0) == MVT::i32 ||
1030          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1031        int Addr = (int)CN->getZExtValue();
1032
1033        // Otherwise, break this down into an LIS + disp.
1034        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1035        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1036        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1037        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1038        return true;
1039      }
1040    }
1041  }
1042
1043  Disp = DAG.getTargetConstant(0, getPointerTy());
1044  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1045    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1046  else
1047    Base = N;
1048  return true;      // [r+0]
1049}
1050
1051
1052/// getPreIndexedAddressParts - returns true by value, base pointer and
1053/// offset pointer and addressing mode by reference if the node's address
1054/// can be legally represented as pre-indexed load / store address.
1055bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1056                                                  SDValue &Offset,
1057                                                  ISD::MemIndexedMode &AM,
1058                                                  SelectionDAG &DAG) const {
1059  // Disabled by default for now.
1060  if (!EnablePPCPreinc) return false;
1061
1062  SDValue Ptr;
1063  EVT VT;
1064  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1065    Ptr = LD->getBasePtr();
1066    VT = LD->getMemoryVT();
1067
1068  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1069    Ptr = ST->getBasePtr();
1070    VT  = ST->getMemoryVT();
1071  } else
1072    return false;
1073
1074  // PowerPC doesn't have preinc load/store instructions for vectors.
1075  if (VT.isVector())
1076    return false;
1077
1078  // TODO: Check reg+reg first.
1079
1080  // LDU/STU use reg+imm*4, others use reg+imm.
1081  if (VT != MVT::i64) {
1082    // reg + imm
1083    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1084      return false;
1085  } else {
1086    // reg + imm * 4.
1087    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1088      return false;
1089  }
1090
1091  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1092    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1093    // sext i32 to i64 when addr mode is r+i.
1094    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1095        LD->getExtensionType() == ISD::SEXTLOAD &&
1096        isa<ConstantSDNode>(Offset))
1097      return false;
1098  }
1099
1100  AM = ISD::PRE_INC;
1101  return true;
1102}
1103
1104//===----------------------------------------------------------------------===//
1105//  LowerOperation implementation
1106//===----------------------------------------------------------------------===//
1107
1108/// GetLabelAccessInfo - Return true if we should reference labels using a
1109/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1110static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1111                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1112  HiOpFlags = PPCII::MO_HA16;
1113  LoOpFlags = PPCII::MO_LO16;
1114
1115  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1116  // non-darwin platform.  We don't support PIC on other platforms yet.
1117  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1118               TM.getSubtarget<PPCSubtarget>().isDarwin();
1119  if (isPIC) {
1120    HiOpFlags |= PPCII::MO_PIC_FLAG;
1121    LoOpFlags |= PPCII::MO_PIC_FLAG;
1122  }
1123
1124  // If this is a reference to a global value that requires a non-lazy-ptr, make
1125  // sure that instruction lowering adds it.
1126  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1127    HiOpFlags |= PPCII::MO_NLP_FLAG;
1128    LoOpFlags |= PPCII::MO_NLP_FLAG;
1129
1130    if (GV->hasHiddenVisibility()) {
1131      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1132      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1133    }
1134  }
1135
1136  return isPIC;
1137}
1138
1139static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1140                             SelectionDAG &DAG) {
1141  EVT PtrVT = HiPart.getValueType();
1142  SDValue Zero = DAG.getConstant(0, PtrVT);
1143  DebugLoc DL = HiPart.getDebugLoc();
1144
1145  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1146  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1147
1148  // With PIC, the first instruction is actually "GR+hi(&G)".
1149  if (isPIC)
1150    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1151                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1152
1153  // Generate non-pic code that has direct accesses to the constant pool.
1154  // The address of the global is just (hi(&g)+lo(&g)).
1155  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1156}
1157
1158SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1159                                             SelectionDAG &DAG) const {
1160  EVT PtrVT = Op.getValueType();
1161  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1162  const Constant *C = CP->getConstVal();
1163
1164  unsigned MOHiFlag, MOLoFlag;
1165  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1166  SDValue CPIHi =
1167    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1168  SDValue CPILo =
1169    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1170  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1171}
1172
1173SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1174  EVT PtrVT = Op.getValueType();
1175  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1176
1177  unsigned MOHiFlag, MOLoFlag;
1178  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1179  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1180  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1181  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1182}
1183
1184SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1185                                             SelectionDAG &DAG) const {
1186  EVT PtrVT = Op.getValueType();
1187
1188  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1189
1190  unsigned MOHiFlag, MOLoFlag;
1191  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1192  SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag);
1193  SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag);
1194  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1195}
1196
1197SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1198                                              SelectionDAG &DAG) const {
1199  EVT PtrVT = Op.getValueType();
1200  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1201  DebugLoc DL = GSDN->getDebugLoc();
1202  const GlobalValue *GV = GSDN->getGlobal();
1203
1204  // 64-bit SVR4 ABI code is always position-independent.
1205  // The actual address of the GlobalValue is stored in the TOC.
1206  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1207    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1208    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1209                       DAG.getRegister(PPC::X2, MVT::i64));
1210  }
1211
1212  unsigned MOHiFlag, MOLoFlag;
1213  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1214
1215  SDValue GAHi =
1216    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1217  SDValue GALo =
1218    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1219
1220  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1221
1222  // If the global reference is actually to a non-lazy-pointer, we have to do an
1223  // extra load to get the address of the global.
1224  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1225    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1226                      false, false, false, 0);
1227  return Ptr;
1228}
1229
1230SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1231  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1232  DebugLoc dl = Op.getDebugLoc();
1233
1234  // If we're comparing for equality to zero, expose the fact that this is
1235  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1236  // fold the new nodes.
1237  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1238    if (C->isNullValue() && CC == ISD::SETEQ) {
1239      EVT VT = Op.getOperand(0).getValueType();
1240      SDValue Zext = Op.getOperand(0);
1241      if (VT.bitsLT(MVT::i32)) {
1242        VT = MVT::i32;
1243        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1244      }
1245      unsigned Log2b = Log2_32(VT.getSizeInBits());
1246      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1247      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1248                                DAG.getConstant(Log2b, MVT::i32));
1249      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1250    }
1251    // Leave comparisons against 0 and -1 alone for now, since they're usually
1252    // optimized.  FIXME: revisit this when we can custom lower all setcc
1253    // optimizations.
1254    if (C->isAllOnesValue() || C->isNullValue())
1255      return SDValue();
1256  }
1257
1258  // If we have an integer seteq/setne, turn it into a compare against zero
1259  // by xor'ing the rhs with the lhs, which is faster than setting a
1260  // condition register, reading it back out, and masking the correct bit.  The
1261  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1262  // the result to other bit-twiddling opportunities.
1263  EVT LHSVT = Op.getOperand(0).getValueType();
1264  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1265    EVT VT = Op.getValueType();
1266    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1267                                Op.getOperand(1));
1268    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1269  }
1270  return SDValue();
1271}
1272
1273SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1274                                      const PPCSubtarget &Subtarget) const {
1275  SDNode *Node = Op.getNode();
1276  EVT VT = Node->getValueType(0);
1277  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1278  SDValue InChain = Node->getOperand(0);
1279  SDValue VAListPtr = Node->getOperand(1);
1280  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1281  DebugLoc dl = Node->getDebugLoc();
1282
1283  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1284
1285  // gpr_index
1286  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1287                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
1288                                    false, false, 0);
1289  InChain = GprIndex.getValue(1);
1290
1291  if (VT == MVT::i64) {
1292    // Check if GprIndex is even
1293    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1294                                 DAG.getConstant(1, MVT::i32));
1295    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1296                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
1297    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1298                                          DAG.getConstant(1, MVT::i32));
1299    // Align GprIndex to be even if it isn't
1300    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1301                           GprIndex);
1302  }
1303
1304  // fpr index is 1 byte after gpr
1305  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1306                               DAG.getConstant(1, MVT::i32));
1307
1308  // fpr
1309  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1310                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
1311                                    false, false, 0);
1312  InChain = FprIndex.getValue(1);
1313
1314  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1315                                       DAG.getConstant(8, MVT::i32));
1316
1317  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1318                                        DAG.getConstant(4, MVT::i32));
1319
1320  // areas
1321  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1322                                     MachinePointerInfo(), false, false,
1323                                     false, 0);
1324  InChain = OverflowArea.getValue(1);
1325
1326  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1327                                    MachinePointerInfo(), false, false,
1328                                    false, 0);
1329  InChain = RegSaveArea.getValue(1);
1330
1331  // select overflow_area if index > 8
1332  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1333                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
1334
1335  // adjustment constant gpr_index * 4/8
1336  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1337                                    VT.isInteger() ? GprIndex : FprIndex,
1338                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
1339                                                    MVT::i32));
1340
1341  // OurReg = RegSaveArea + RegConstant
1342  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1343                               RegConstant);
1344
1345  // Floating types are 32 bytes into RegSaveArea
1346  if (VT.isFloatingPoint())
1347    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1348                         DAG.getConstant(32, MVT::i32));
1349
1350  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1351  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1352                                   VT.isInteger() ? GprIndex : FprIndex,
1353                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1354                                                   MVT::i32));
1355
1356  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1357                              VT.isInteger() ? VAListPtr : FprPtr,
1358                              MachinePointerInfo(SV),
1359                              MVT::i8, false, false, 0);
1360
1361  // determine if we should load from reg_save_area or overflow_area
1362  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1363
1364  // increase overflow_area by 4/8 if gpr/fpr > 8
1365  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1366                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
1367                                          MVT::i32));
1368
1369  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1370                             OverflowAreaPlusN);
1371
1372  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1373                              OverflowAreaPtr,
1374                              MachinePointerInfo(),
1375                              MVT::i32, false, false, 0);
1376
1377  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1378                     false, false, false, 0);
1379}
1380
1381SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1382                                                  SelectionDAG &DAG) const {
1383  return Op.getOperand(0);
1384}
1385
1386SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1387                                                SelectionDAG &DAG) const {
1388  SDValue Chain = Op.getOperand(0);
1389  SDValue Trmp = Op.getOperand(1); // trampoline
1390  SDValue FPtr = Op.getOperand(2); // nested function
1391  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1392  DebugLoc dl = Op.getDebugLoc();
1393
1394  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1395  bool isPPC64 = (PtrVT == MVT::i64);
1396  Type *IntPtrTy =
1397    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1398                                                             *DAG.getContext());
1399
1400  TargetLowering::ArgListTy Args;
1401  TargetLowering::ArgListEntry Entry;
1402
1403  Entry.Ty = IntPtrTy;
1404  Entry.Node = Trmp; Args.push_back(Entry);
1405
1406  // TrampSize == (isPPC64 ? 48 : 40);
1407  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1408                               isPPC64 ? MVT::i64 : MVT::i32);
1409  Args.push_back(Entry);
1410
1411  Entry.Node = FPtr; Args.push_back(Entry);
1412  Entry.Node = Nest; Args.push_back(Entry);
1413
1414  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1415  std::pair<SDValue, SDValue> CallResult =
1416    LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
1417                false, false, false, false, 0, CallingConv::C, false,
1418                /*isReturnValueUsed=*/true,
1419                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1420                Args, DAG, dl);
1421
1422  return CallResult.second;
1423}
1424
1425SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1426                                        const PPCSubtarget &Subtarget) const {
1427  MachineFunction &MF = DAG.getMachineFunction();
1428  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1429
1430  DebugLoc dl = Op.getDebugLoc();
1431
1432  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1433    // vastart just stores the address of the VarArgsFrameIndex slot into the
1434    // memory location argument.
1435    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1436    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1437    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1438    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1439                        MachinePointerInfo(SV),
1440                        false, false, 0);
1441  }
1442
1443  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1444  // We suppose the given va_list is already allocated.
1445  //
1446  // typedef struct {
1447  //  char gpr;     /* index into the array of 8 GPRs
1448  //                 * stored in the register save area
1449  //                 * gpr=0 corresponds to r3,
1450  //                 * gpr=1 to r4, etc.
1451  //                 */
1452  //  char fpr;     /* index into the array of 8 FPRs
1453  //                 * stored in the register save area
1454  //                 * fpr=0 corresponds to f1,
1455  //                 * fpr=1 to f2, etc.
1456  //                 */
1457  //  char *overflow_arg_area;
1458  //                /* location on stack that holds
1459  //                 * the next overflow argument
1460  //                 */
1461  //  char *reg_save_area;
1462  //               /* where r3:r10 and f1:f8 (if saved)
1463  //                * are stored
1464  //                */
1465  // } va_list[1];
1466
1467
1468  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1469  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1470
1471
1472  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1473
1474  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1475                                            PtrVT);
1476  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1477                                 PtrVT);
1478
1479  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1480  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1481
1482  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1483  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1484
1485  uint64_t FPROffset = 1;
1486  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1487
1488  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1489
1490  // Store first byte : number of int regs
1491  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1492                                         Op.getOperand(1),
1493                                         MachinePointerInfo(SV),
1494                                         MVT::i8, false, false, 0);
1495  uint64_t nextOffset = FPROffset;
1496  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1497                                  ConstFPROffset);
1498
1499  // Store second byte : number of float regs
1500  SDValue secondStore =
1501    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1502                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1503                      false, false, 0);
1504  nextOffset += StackOffset;
1505  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1506
1507  // Store second word : arguments given on stack
1508  SDValue thirdStore =
1509    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1510                 MachinePointerInfo(SV, nextOffset),
1511                 false, false, 0);
1512  nextOffset += FrameOffset;
1513  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1514
1515  // Store third word : arguments given in registers
1516  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1517                      MachinePointerInfo(SV, nextOffset),
1518                      false, false, 0);
1519
1520}
1521
1522#include "PPCGenCallingConv.inc"
1523
1524static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1525                                     CCValAssign::LocInfo &LocInfo,
1526                                     ISD::ArgFlagsTy &ArgFlags,
1527                                     CCState &State) {
1528  return true;
1529}
1530
1531static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1532                                            MVT &LocVT,
1533                                            CCValAssign::LocInfo &LocInfo,
1534                                            ISD::ArgFlagsTy &ArgFlags,
1535                                            CCState &State) {
1536  static const unsigned ArgRegs[] = {
1537    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1538    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1539  };
1540  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1541
1542  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1543
1544  // Skip one register if the first unallocated register has an even register
1545  // number and there are still argument registers available which have not been
1546  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1547  // need to skip a register if RegNum is odd.
1548  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1549    State.AllocateReg(ArgRegs[RegNum]);
1550  }
1551
1552  // Always return false here, as this function only makes sure that the first
1553  // unallocated register has an odd register number and does not actually
1554  // allocate a register for the current argument.
1555  return false;
1556}
1557
1558static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1559                                              MVT &LocVT,
1560                                              CCValAssign::LocInfo &LocInfo,
1561                                              ISD::ArgFlagsTy &ArgFlags,
1562                                              CCState &State) {
1563  static const unsigned ArgRegs[] = {
1564    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1565    PPC::F8
1566  };
1567
1568  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1569
1570  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1571
1572  // If there is only one Floating-point register left we need to put both f64
1573  // values of a split ppc_fp128 value on the stack.
1574  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1575    State.AllocateReg(ArgRegs[RegNum]);
1576  }
1577
1578  // Always return false here, as this function only makes sure that the two f64
1579  // values a ppc_fp128 value is split into are both passed in registers or both
1580  // passed on the stack and does not actually allocate a register for the
1581  // current argument.
1582  return false;
1583}
1584
1585/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1586/// on Darwin.
1587static const unsigned *GetFPR() {
1588  static const unsigned FPR[] = {
1589    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1590    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1591  };
1592
1593  return FPR;
1594}
1595
1596/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1597/// the stack.
1598static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1599                                       unsigned PtrByteSize) {
1600  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1601  if (Flags.isByVal())
1602    ArgSize = Flags.getByValSize();
1603  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1604
1605  return ArgSize;
1606}
1607
1608SDValue
1609PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1610                                        CallingConv::ID CallConv, bool isVarArg,
1611                                        const SmallVectorImpl<ISD::InputArg>
1612                                          &Ins,
1613                                        DebugLoc dl, SelectionDAG &DAG,
1614                                        SmallVectorImpl<SDValue> &InVals)
1615                                          const {
1616  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1617    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1618                                     dl, DAG, InVals);
1619  } else {
1620    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1621                                       dl, DAG, InVals);
1622  }
1623}
1624
1625SDValue
1626PPCTargetLowering::LowerFormalArguments_SVR4(
1627                                      SDValue Chain,
1628                                      CallingConv::ID CallConv, bool isVarArg,
1629                                      const SmallVectorImpl<ISD::InputArg>
1630                                        &Ins,
1631                                      DebugLoc dl, SelectionDAG &DAG,
1632                                      SmallVectorImpl<SDValue> &InVals) const {
1633
1634  // 32-bit SVR4 ABI Stack Frame Layout:
1635  //              +-----------------------------------+
1636  //        +-->  |            Back chain             |
1637  //        |     +-----------------------------------+
1638  //        |     | Floating-point register save area |
1639  //        |     +-----------------------------------+
1640  //        |     |    General register save area     |
1641  //        |     +-----------------------------------+
1642  //        |     |          CR save word             |
1643  //        |     +-----------------------------------+
1644  //        |     |         VRSAVE save word          |
1645  //        |     +-----------------------------------+
1646  //        |     |         Alignment padding         |
1647  //        |     +-----------------------------------+
1648  //        |     |     Vector register save area     |
1649  //        |     +-----------------------------------+
1650  //        |     |       Local variable space        |
1651  //        |     +-----------------------------------+
1652  //        |     |        Parameter list area        |
1653  //        |     +-----------------------------------+
1654  //        |     |           LR save word            |
1655  //        |     +-----------------------------------+
1656  // SP-->  +---  |            Back chain             |
1657  //              +-----------------------------------+
1658  //
1659  // Specifications:
1660  //   System V Application Binary Interface PowerPC Processor Supplement
1661  //   AltiVec Technology Programming Interface Manual
1662
1663  MachineFunction &MF = DAG.getMachineFunction();
1664  MachineFrameInfo *MFI = MF.getFrameInfo();
1665  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1666
1667  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1668  // Potential tail calls could cause overwriting of argument stack slots.
1669  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1670  unsigned PtrByteSize = 4;
1671
1672  // Assign locations to all of the incoming arguments.
1673  SmallVector<CCValAssign, 16> ArgLocs;
1674  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1675		 getTargetMachine(), ArgLocs, *DAG.getContext());
1676
1677  // Reserve space for the linkage area on the stack.
1678  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1679
1680  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1681
1682  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1683    CCValAssign &VA = ArgLocs[i];
1684
1685    // Arguments stored in registers.
1686    if (VA.isRegLoc()) {
1687      TargetRegisterClass *RC;
1688      EVT ValVT = VA.getValVT();
1689
1690      switch (ValVT.getSimpleVT().SimpleTy) {
1691        default:
1692          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1693        case MVT::i32:
1694          RC = PPC::GPRCRegisterClass;
1695          break;
1696        case MVT::f32:
1697          RC = PPC::F4RCRegisterClass;
1698          break;
1699        case MVT::f64:
1700          RC = PPC::F8RCRegisterClass;
1701          break;
1702        case MVT::v16i8:
1703        case MVT::v8i16:
1704        case MVT::v4i32:
1705        case MVT::v4f32:
1706          RC = PPC::VRRCRegisterClass;
1707          break;
1708      }
1709
1710      // Transform the arguments stored in physical registers into virtual ones.
1711      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1712      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1713
1714      InVals.push_back(ArgValue);
1715    } else {
1716      // Argument stored in memory.
1717      assert(VA.isMemLoc());
1718
1719      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1720      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1721                                      isImmutable);
1722
1723      // Create load nodes to retrieve arguments from the stack.
1724      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1725      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1726                                   MachinePointerInfo(),
1727                                   false, false, false, 0));
1728    }
1729  }
1730
1731  // Assign locations to all of the incoming aggregate by value arguments.
1732  // Aggregates passed by value are stored in the local variable space of the
1733  // caller's stack frame, right above the parameter list area.
1734  SmallVector<CCValAssign, 16> ByValArgLocs;
1735  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1736		      getTargetMachine(), ByValArgLocs, *DAG.getContext());
1737
1738  // Reserve stack space for the allocations in CCInfo.
1739  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1740
1741  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1742
1743  // Area that is at least reserved in the caller of this function.
1744  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1745
1746  // Set the size that is at least reserved in caller of this function.  Tail
1747  // call optimized function's reserved stack space needs to be aligned so that
1748  // taking the difference between two stack areas will result in an aligned
1749  // stack.
1750  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1751
1752  MinReservedArea =
1753    std::max(MinReservedArea,
1754             PPCFrameLowering::getMinCallFrameSize(false, false));
1755
1756  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
1757    getStackAlignment();
1758  unsigned AlignMask = TargetAlign-1;
1759  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1760
1761  FI->setMinReservedArea(MinReservedArea);
1762
1763  SmallVector<SDValue, 8> MemOps;
1764
1765  // If the function takes variable number of arguments, make a frame index for
1766  // the start of the first vararg value... for expansion of llvm.va_start.
1767  if (isVarArg) {
1768    static const unsigned GPArgRegs[] = {
1769      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1770      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1771    };
1772    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1773
1774    static const unsigned FPArgRegs[] = {
1775      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1776      PPC::F8
1777    };
1778    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1779
1780    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
1781                                                          NumGPArgRegs));
1782    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
1783                                                          NumFPArgRegs));
1784
1785    // Make room for NumGPArgRegs and NumFPArgRegs.
1786    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1787                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1788
1789    FuncInfo->setVarArgsStackOffset(
1790      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1791                             CCInfo.getNextStackOffset(), true));
1792
1793    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
1794    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1795
1796    // The fixed integer arguments of a variadic function are stored to the
1797    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1798    // the result of va_next.
1799    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1800      // Get an existing live-in vreg, or add a new one.
1801      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
1802      if (!VReg)
1803        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1804
1805      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1806      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1807                                   MachinePointerInfo(), false, false, 0);
1808      MemOps.push_back(Store);
1809      // Increment the address by four for the next argument to store
1810      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1811      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1812    }
1813
1814    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1815    // is set.
1816    // The double arguments are stored to the VarArgsFrameIndex
1817    // on the stack.
1818    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1819      // Get an existing live-in vreg, or add a new one.
1820      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
1821      if (!VReg)
1822        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1823
1824      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1825      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1826                                   MachinePointerInfo(), false, false, 0);
1827      MemOps.push_back(Store);
1828      // Increment the address by eight for the next argument to store
1829      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1830                                         PtrVT);
1831      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1832    }
1833  }
1834
1835  if (!MemOps.empty())
1836    Chain = DAG.getNode(ISD::TokenFactor, dl,
1837                        MVT::Other, &MemOps[0], MemOps.size());
1838
1839  return Chain;
1840}
1841
1842SDValue
1843PPCTargetLowering::LowerFormalArguments_Darwin(
1844                                      SDValue Chain,
1845                                      CallingConv::ID CallConv, bool isVarArg,
1846                                      const SmallVectorImpl<ISD::InputArg>
1847                                        &Ins,
1848                                      DebugLoc dl, SelectionDAG &DAG,
1849                                      SmallVectorImpl<SDValue> &InVals) const {
1850  // TODO: add description of PPC stack frame format, or at least some docs.
1851  //
1852  MachineFunction &MF = DAG.getMachineFunction();
1853  MachineFrameInfo *MFI = MF.getFrameInfo();
1854  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1855
1856  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1857  bool isPPC64 = PtrVT == MVT::i64;
1858  // Potential tail calls could cause overwriting of argument stack slots.
1859  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1860  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1861
1862  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
1863  // Area that is at least reserved in caller of this function.
1864  unsigned MinReservedArea = ArgOffset;
1865
1866  static const unsigned GPR_32[] = {           // 32-bit registers.
1867    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1868    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1869  };
1870  static const unsigned GPR_64[] = {           // 64-bit registers.
1871    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1872    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1873  };
1874
1875  static const unsigned *FPR = GetFPR();
1876
1877  static const unsigned VR[] = {
1878    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1879    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1880  };
1881
1882  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1883  const unsigned Num_FPR_Regs = 13;
1884  const unsigned Num_VR_Regs  = array_lengthof( VR);
1885
1886  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1887
1888  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1889
1890  // In 32-bit non-varargs functions, the stack space for vectors is after the
1891  // stack space for non-vectors.  We do not use this space unless we have
1892  // too many vectors to fit in registers, something that only occurs in
1893  // constructed examples:), but we have to walk the arglist to figure
1894  // that out...for the pathological case, compute VecArgOffset as the
1895  // start of the vector parameter area.  Computing VecArgOffset is the
1896  // entire point of the following loop.
1897  unsigned VecArgOffset = ArgOffset;
1898  if (!isVarArg && !isPPC64) {
1899    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1900         ++ArgNo) {
1901      EVT ObjectVT = Ins[ArgNo].VT;
1902      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1903      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1904
1905      if (Flags.isByVal()) {
1906        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1907        ObjSize = Flags.getByValSize();
1908        unsigned ArgSize =
1909                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1910        VecArgOffset += ArgSize;
1911        continue;
1912      }
1913
1914      switch(ObjectVT.getSimpleVT().SimpleTy) {
1915      default: llvm_unreachable("Unhandled argument type!");
1916      case MVT::i32:
1917      case MVT::f32:
1918        VecArgOffset += isPPC64 ? 8 : 4;
1919        break;
1920      case MVT::i64:  // PPC64
1921      case MVT::f64:
1922        VecArgOffset += 8;
1923        break;
1924      case MVT::v4f32:
1925      case MVT::v4i32:
1926      case MVT::v8i16:
1927      case MVT::v16i8:
1928        // Nothing to do, we're only looking at Nonvector args here.
1929        break;
1930      }
1931    }
1932  }
1933  // We've found where the vector parameter area in memory is.  Skip the
1934  // first 12 parameters; these don't use that memory.
1935  VecArgOffset = ((VecArgOffset+15)/16)*16;
1936  VecArgOffset += 12*16;
1937
1938  // Add DAG nodes to load the arguments or copy them out of registers.  On
1939  // entry to a function on PPC, the arguments start after the linkage area,
1940  // although the first ones are often in registers.
1941
1942  SmallVector<SDValue, 8> MemOps;
1943  unsigned nAltivecParamsAtEnd = 0;
1944  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1945    SDValue ArgVal;
1946    bool needsLoad = false;
1947    EVT ObjectVT = Ins[ArgNo].VT;
1948    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1949    unsigned ArgSize = ObjSize;
1950    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1951
1952    unsigned CurArgOffset = ArgOffset;
1953
1954    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1955    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1956        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1957      if (isVarArg || isPPC64) {
1958        MinReservedArea = ((MinReservedArea+15)/16)*16;
1959        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1960                                                  Flags,
1961                                                  PtrByteSize);
1962      } else  nAltivecParamsAtEnd++;
1963    } else
1964      // Calculate min reserved area.
1965      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1966                                                Flags,
1967                                                PtrByteSize);
1968
1969    // FIXME the codegen can be much improved in some cases.
1970    // We do not have to keep everything in memory.
1971    if (Flags.isByVal()) {
1972      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1973      ObjSize = Flags.getByValSize();
1974      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1975      // Objects of size 1 and 2 are right justified, everything else is
1976      // left justified.  This means the memory address is adjusted forwards.
1977      if (ObjSize==1 || ObjSize==2) {
1978        CurArgOffset = CurArgOffset + (4 - ObjSize);
1979      }
1980      // The value of the object is its address.
1981      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
1982      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1983      InVals.push_back(FIN);
1984      if (ObjSize==1 || ObjSize==2) {
1985        if (GPR_idx != Num_GPR_Regs) {
1986          unsigned VReg;
1987          if (isPPC64)
1988            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1989          else
1990            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1991          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1992          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1993                                            MachinePointerInfo(),
1994                                            ObjSize==1 ? MVT::i8 : MVT::i16,
1995                                            false, false, 0);
1996          MemOps.push_back(Store);
1997          ++GPR_idx;
1998        }
1999
2000        ArgOffset += PtrByteSize;
2001
2002        continue;
2003      }
2004      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2005        // Store whatever pieces of the object are in registers
2006        // to memory.  ArgVal will be address of the beginning of
2007        // the object.
2008        if (GPR_idx != Num_GPR_Regs) {
2009          unsigned VReg;
2010          if (isPPC64)
2011            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2012          else
2013            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2014          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2015          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2016          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2017          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2018                                       MachinePointerInfo(),
2019                                       false, false, 0);
2020          MemOps.push_back(Store);
2021          ++GPR_idx;
2022          ArgOffset += PtrByteSize;
2023        } else {
2024          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2025          break;
2026        }
2027      }
2028      continue;
2029    }
2030
2031    switch (ObjectVT.getSimpleVT().SimpleTy) {
2032    default: llvm_unreachable("Unhandled argument type!");
2033    case MVT::i32:
2034      if (!isPPC64) {
2035        if (GPR_idx != Num_GPR_Regs) {
2036          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2037          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2038          ++GPR_idx;
2039        } else {
2040          needsLoad = true;
2041          ArgSize = PtrByteSize;
2042        }
2043        // All int arguments reserve stack space in the Darwin ABI.
2044        ArgOffset += PtrByteSize;
2045        break;
2046      }
2047      // FALLTHROUGH
2048    case MVT::i64:  // PPC64
2049      if (GPR_idx != Num_GPR_Regs) {
2050        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2051        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2052
2053        if (ObjectVT == MVT::i32) {
2054          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2055          // value to MVT::i64 and then truncate to the correct register size.
2056          if (Flags.isSExt())
2057            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2058                                 DAG.getValueType(ObjectVT));
2059          else if (Flags.isZExt())
2060            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2061                                 DAG.getValueType(ObjectVT));
2062
2063          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2064        }
2065
2066        ++GPR_idx;
2067      } else {
2068        needsLoad = true;
2069        ArgSize = PtrByteSize;
2070      }
2071      // All int arguments reserve stack space in the Darwin ABI.
2072      ArgOffset += 8;
2073      break;
2074
2075    case MVT::f32:
2076    case MVT::f64:
2077      // Every 4 bytes of argument space consumes one of the GPRs available for
2078      // argument passing.
2079      if (GPR_idx != Num_GPR_Regs) {
2080        ++GPR_idx;
2081        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2082          ++GPR_idx;
2083      }
2084      if (FPR_idx != Num_FPR_Regs) {
2085        unsigned VReg;
2086
2087        if (ObjectVT == MVT::f32)
2088          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2089        else
2090          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2091
2092        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2093        ++FPR_idx;
2094      } else {
2095        needsLoad = true;
2096      }
2097
2098      // All FP arguments reserve stack space in the Darwin ABI.
2099      ArgOffset += isPPC64 ? 8 : ObjSize;
2100      break;
2101    case MVT::v4f32:
2102    case MVT::v4i32:
2103    case MVT::v8i16:
2104    case MVT::v16i8:
2105      // Note that vector arguments in registers don't reserve stack space,
2106      // except in varargs functions.
2107      if (VR_idx != Num_VR_Regs) {
2108        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2109        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2110        if (isVarArg) {
2111          while ((ArgOffset % 16) != 0) {
2112            ArgOffset += PtrByteSize;
2113            if (GPR_idx != Num_GPR_Regs)
2114              GPR_idx++;
2115          }
2116          ArgOffset += 16;
2117          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2118        }
2119        ++VR_idx;
2120      } else {
2121        if (!isVarArg && !isPPC64) {
2122          // Vectors go after all the nonvectors.
2123          CurArgOffset = VecArgOffset;
2124          VecArgOffset += 16;
2125        } else {
2126          // Vectors are aligned.
2127          ArgOffset = ((ArgOffset+15)/16)*16;
2128          CurArgOffset = ArgOffset;
2129          ArgOffset += 16;
2130        }
2131        needsLoad = true;
2132      }
2133      break;
2134    }
2135
2136    // We need to load the argument to a virtual register if we determined above
2137    // that we ran out of physical registers of the appropriate type.
2138    if (needsLoad) {
2139      int FI = MFI->CreateFixedObject(ObjSize,
2140                                      CurArgOffset + (ArgSize - ObjSize),
2141                                      isImmutable);
2142      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2143      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2144                           false, false, false, 0);
2145    }
2146
2147    InVals.push_back(ArgVal);
2148  }
2149
2150  // Set the size that is at least reserved in caller of this function.  Tail
2151  // call optimized function's reserved stack space needs to be aligned so that
2152  // taking the difference between two stack areas will result in an aligned
2153  // stack.
2154  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2155  // Add the Altivec parameters at the end, if needed.
2156  if (nAltivecParamsAtEnd) {
2157    MinReservedArea = ((MinReservedArea+15)/16)*16;
2158    MinReservedArea += 16*nAltivecParamsAtEnd;
2159  }
2160  MinReservedArea =
2161    std::max(MinReservedArea,
2162             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2163  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2164    getStackAlignment();
2165  unsigned AlignMask = TargetAlign-1;
2166  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2167  FI->setMinReservedArea(MinReservedArea);
2168
2169  // If the function takes variable number of arguments, make a frame index for
2170  // the start of the first vararg value... for expansion of llvm.va_start.
2171  if (isVarArg) {
2172    int Depth = ArgOffset;
2173
2174    FuncInfo->setVarArgsFrameIndex(
2175      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2176                             Depth, true));
2177    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2178
2179    // If this function is vararg, store any remaining integer argument regs
2180    // to their spots on the stack so that they may be loaded by deferencing the
2181    // result of va_next.
2182    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2183      unsigned VReg;
2184
2185      if (isPPC64)
2186        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2187      else
2188        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2189
2190      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2191      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2192                                   MachinePointerInfo(), false, false, 0);
2193      MemOps.push_back(Store);
2194      // Increment the address by four for the next argument to store
2195      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2196      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2197    }
2198  }
2199
2200  if (!MemOps.empty())
2201    Chain = DAG.getNode(ISD::TokenFactor, dl,
2202                        MVT::Other, &MemOps[0], MemOps.size());
2203
2204  return Chain;
2205}
2206
2207/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2208/// linkage area for the Darwin ABI.
2209static unsigned
2210CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2211                                     bool isPPC64,
2212                                     bool isVarArg,
2213                                     unsigned CC,
2214                                     const SmallVectorImpl<ISD::OutputArg>
2215                                       &Outs,
2216                                     const SmallVectorImpl<SDValue> &OutVals,
2217                                     unsigned &nAltivecParamsAtEnd) {
2218  // Count how many bytes are to be pushed on the stack, including the linkage
2219  // area, and parameter passing area.  We start with 24/48 bytes, which is
2220  // prereserved space for [SP][CR][LR][3 x unused].
2221  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2222  unsigned NumOps = Outs.size();
2223  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2224
2225  // Add up all the space actually used.
2226  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2227  // they all go in registers, but we must reserve stack space for them for
2228  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2229  // assigned stack space in order, with padding so Altivec parameters are
2230  // 16-byte aligned.
2231  nAltivecParamsAtEnd = 0;
2232  for (unsigned i = 0; i != NumOps; ++i) {
2233    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2234    EVT ArgVT = Outs[i].VT;
2235    // Varargs Altivec parameters are padded to a 16 byte boundary.
2236    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2237        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2238      if (!isVarArg && !isPPC64) {
2239        // Non-varargs Altivec parameters go after all the non-Altivec
2240        // parameters; handle those later so we know how much padding we need.
2241        nAltivecParamsAtEnd++;
2242        continue;
2243      }
2244      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2245      NumBytes = ((NumBytes+15)/16)*16;
2246    }
2247    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2248  }
2249
2250   // Allow for Altivec parameters at the end, if needed.
2251  if (nAltivecParamsAtEnd) {
2252    NumBytes = ((NumBytes+15)/16)*16;
2253    NumBytes += 16*nAltivecParamsAtEnd;
2254  }
2255
2256  // The prolog code of the callee may store up to 8 GPR argument registers to
2257  // the stack, allowing va_start to index over them in memory if its varargs.
2258  // Because we cannot tell if this is needed on the caller side, we have to
2259  // conservatively assume that it is needed.  As such, make sure we have at
2260  // least enough stack space for the caller to store the 8 GPRs.
2261  NumBytes = std::max(NumBytes,
2262                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2263
2264  // Tail call needs the stack to be aligned.
2265  if (CC==CallingConv::Fast && GuaranteedTailCallOpt) {
2266    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2267      getStackAlignment();
2268    unsigned AlignMask = TargetAlign-1;
2269    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2270  }
2271
2272  return NumBytes;
2273}
2274
2275/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2276/// adjusted to accommodate the arguments for the tailcall.
2277static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2278                                   unsigned ParamSize) {
2279
2280  if (!isTailCall) return 0;
2281
2282  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2283  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2284  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2285  // Remember only if the new adjustement is bigger.
2286  if (SPDiff < FI->getTailCallSPDelta())
2287    FI->setTailCallSPDelta(SPDiff);
2288
2289  return SPDiff;
2290}
2291
2292/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2293/// for tail call optimization. Targets which want to do tail call
2294/// optimization should implement this function.
2295bool
2296PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2297                                                     CallingConv::ID CalleeCC,
2298                                                     bool isVarArg,
2299                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2300                                                     SelectionDAG& DAG) const {
2301  if (!GuaranteedTailCallOpt)
2302    return false;
2303
2304  // Variable argument functions are not supported.
2305  if (isVarArg)
2306    return false;
2307
2308  MachineFunction &MF = DAG.getMachineFunction();
2309  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2310  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2311    // Functions containing by val parameters are not supported.
2312    for (unsigned i = 0; i != Ins.size(); i++) {
2313       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2314       if (Flags.isByVal()) return false;
2315    }
2316
2317    // Non PIC/GOT  tail calls are supported.
2318    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2319      return true;
2320
2321    // At the moment we can only do local tail calls (in same module, hidden
2322    // or protected) if we are generating PIC.
2323    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2324      return G->getGlobal()->hasHiddenVisibility()
2325          || G->getGlobal()->hasProtectedVisibility();
2326  }
2327
2328  return false;
2329}
2330
2331/// isCallCompatibleAddress - Return the immediate to use if the specified
2332/// 32-bit value is representable in the immediate field of a BxA instruction.
2333static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2334  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2335  if (!C) return 0;
2336
2337  int Addr = C->getZExtValue();
2338  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2339      (Addr << 6 >> 6) != Addr)
2340    return 0;  // Top 6 bits have to be sext of immediate.
2341
2342  return DAG.getConstant((int)C->getZExtValue() >> 2,
2343                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2344}
2345
2346namespace {
2347
2348struct TailCallArgumentInfo {
2349  SDValue Arg;
2350  SDValue FrameIdxOp;
2351  int       FrameIdx;
2352
2353  TailCallArgumentInfo() : FrameIdx(0) {}
2354};
2355
2356}
2357
2358/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2359static void
2360StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2361                                           SDValue Chain,
2362                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2363                   SmallVector<SDValue, 8> &MemOpChains,
2364                   DebugLoc dl) {
2365  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2366    SDValue Arg = TailCallArgs[i].Arg;
2367    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2368    int FI = TailCallArgs[i].FrameIdx;
2369    // Store relative to framepointer.
2370    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2371                                       MachinePointerInfo::getFixedStack(FI),
2372                                       false, false, 0));
2373  }
2374}
2375
2376/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2377/// the appropriate stack slot for the tail call optimized function call.
2378static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2379                                               MachineFunction &MF,
2380                                               SDValue Chain,
2381                                               SDValue OldRetAddr,
2382                                               SDValue OldFP,
2383                                               int SPDiff,
2384                                               bool isPPC64,
2385                                               bool isDarwinABI,
2386                                               DebugLoc dl) {
2387  if (SPDiff) {
2388    // Calculate the new stack slot for the return address.
2389    int SlotSize = isPPC64 ? 8 : 4;
2390    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2391                                                                   isDarwinABI);
2392    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2393                                                          NewRetAddrLoc, true);
2394    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2395    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2396    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2397                         MachinePointerInfo::getFixedStack(NewRetAddr),
2398                         false, false, 0);
2399
2400    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2401    // slot as the FP is never overwritten.
2402    if (isDarwinABI) {
2403      int NewFPLoc =
2404        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2405      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2406                                                          true);
2407      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2408      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2409                           MachinePointerInfo::getFixedStack(NewFPIdx),
2410                           false, false, 0);
2411    }
2412  }
2413  return Chain;
2414}
2415
2416/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2417/// the position of the argument.
2418static void
2419CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2420                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2421                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2422  int Offset = ArgOffset + SPDiff;
2423  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2424  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2425  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2426  SDValue FIN = DAG.getFrameIndex(FI, VT);
2427  TailCallArgumentInfo Info;
2428  Info.Arg = Arg;
2429  Info.FrameIdxOp = FIN;
2430  Info.FrameIdx = FI;
2431  TailCallArguments.push_back(Info);
2432}
2433
2434/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2435/// stack slot. Returns the chain as result and the loaded frame pointers in
2436/// LROpOut/FPOpout. Used when tail calling.
2437SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2438                                                        int SPDiff,
2439                                                        SDValue Chain,
2440                                                        SDValue &LROpOut,
2441                                                        SDValue &FPOpOut,
2442                                                        bool isDarwinABI,
2443                                                        DebugLoc dl) const {
2444  if (SPDiff) {
2445    // Load the LR and FP stack slot for later adjusting.
2446    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2447    LROpOut = getReturnAddrFrameIndex(DAG);
2448    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2449                          false, false, false, 0);
2450    Chain = SDValue(LROpOut.getNode(), 1);
2451
2452    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2453    // slot as the FP is never overwritten.
2454    if (isDarwinABI) {
2455      FPOpOut = getFramePointerFrameIndex(DAG);
2456      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2457                            false, false, false, 0);
2458      Chain = SDValue(FPOpOut.getNode(), 1);
2459    }
2460  }
2461  return Chain;
2462}
2463
2464/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2465/// by "Src" to address "Dst" of size "Size".  Alignment information is
2466/// specified by the specific parameter attribute. The copy will be passed as
2467/// a byval function parameter.
2468/// Sometimes what we are copying is the end of a larger object, the part that
2469/// does not fit in registers.
2470static SDValue
2471CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2472                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2473                          DebugLoc dl) {
2474  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2475  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2476                       false, false, MachinePointerInfo(0),
2477                       MachinePointerInfo(0));
2478}
2479
2480/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2481/// tail calls.
2482static void
2483LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2484                 SDValue Arg, SDValue PtrOff, int SPDiff,
2485                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2486                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2487                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
2488                 DebugLoc dl) {
2489  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2490  if (!isTailCall) {
2491    if (isVector) {
2492      SDValue StackPtr;
2493      if (isPPC64)
2494        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2495      else
2496        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2497      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2498                           DAG.getConstant(ArgOffset, PtrVT));
2499    }
2500    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2501                                       MachinePointerInfo(), false, false, 0));
2502  // Calculate and remember argument location.
2503  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2504                                  TailCallArguments);
2505}
2506
2507static
2508void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2509                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2510                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2511                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2512  MachineFunction &MF = DAG.getMachineFunction();
2513
2514  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2515  // might overwrite each other in case of tail call optimization.
2516  SmallVector<SDValue, 8> MemOpChains2;
2517  // Do not flag preceding copytoreg stuff together with the following stuff.
2518  InFlag = SDValue();
2519  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2520                                    MemOpChains2, dl);
2521  if (!MemOpChains2.empty())
2522    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2523                        &MemOpChains2[0], MemOpChains2.size());
2524
2525  // Store the return address to the appropriate stack slot.
2526  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2527                                        isPPC64, isDarwinABI, dl);
2528
2529  // Emit callseq_end just before tailcall node.
2530  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2531                             DAG.getIntPtrConstant(0, true), InFlag);
2532  InFlag = Chain.getValue(1);
2533}
2534
2535static
2536unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2537                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2538                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2539                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2540                     const PPCSubtarget &PPCSubTarget) {
2541
2542  bool isPPC64 = PPCSubTarget.isPPC64();
2543  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
2544
2545  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2546  NodeTys.push_back(MVT::Other);   // Returns a chain
2547  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
2548
2549  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2550
2551  bool needIndirectCall = true;
2552  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
2553    // If this is an absolute destination address, use the munged value.
2554    Callee = SDValue(Dest, 0);
2555    needIndirectCall = false;
2556  }
2557
2558  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2559    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2560    // Use indirect calls for ALL functions calls in JIT mode, since the
2561    // far-call stubs may be outside relocation limits for a BL instruction.
2562    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
2563      unsigned OpFlags = 0;
2564      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2565          (PPCSubTarget.getTargetTriple().isMacOSX() &&
2566           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
2567          (G->getGlobal()->isDeclaration() ||
2568           G->getGlobal()->isWeakForLinker())) {
2569        // PC-relative references to external symbols should go through $stub,
2570        // unless we're building with the leopard linker or later, which
2571        // automatically synthesizes these stubs.
2572        OpFlags = PPCII::MO_DARWIN_STUB;
2573      }
2574
2575      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
2576      // every direct call is) turn it into a TargetGlobalAddress /
2577      // TargetExternalSymbol node so that legalize doesn't hack it.
2578      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2579                                          Callee.getValueType(),
2580                                          0, OpFlags);
2581      needIndirectCall = false;
2582    }
2583  }
2584
2585  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2586    unsigned char OpFlags = 0;
2587
2588    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2589        (PPCSubTarget.getTargetTriple().isMacOSX() &&
2590         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
2591      // PC-relative references to external symbols should go through $stub,
2592      // unless we're building with the leopard linker or later, which
2593      // automatically synthesizes these stubs.
2594      OpFlags = PPCII::MO_DARWIN_STUB;
2595    }
2596
2597    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
2598                                         OpFlags);
2599    needIndirectCall = false;
2600  }
2601
2602  if (needIndirectCall) {
2603    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2604    // to do the call, we can't use PPCISD::CALL.
2605    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2606
2607    if (isSVR4ABI && isPPC64) {
2608      // Function pointers in the 64-bit SVR4 ABI do not point to the function
2609      // entry point, but to the function descriptor (the function entry point
2610      // address is part of the function descriptor though).
2611      // The function descriptor is a three doubleword structure with the
2612      // following fields: function entry point, TOC base address and
2613      // environment pointer.
2614      // Thus for a call through a function pointer, the following actions need
2615      // to be performed:
2616      //   1. Save the TOC of the caller in the TOC save area of its stack
2617      //      frame (this is done in LowerCall_Darwin()).
2618      //   2. Load the address of the function entry point from the function
2619      //      descriptor.
2620      //   3. Load the TOC of the callee from the function descriptor into r2.
2621      //   4. Load the environment pointer from the function descriptor into
2622      //      r11.
2623      //   5. Branch to the function entry point address.
2624      //   6. On return of the callee, the TOC of the caller needs to be
2625      //      restored (this is done in FinishCall()).
2626      //
2627      // All those operations are flagged together to ensure that no other
2628      // operations can be scheduled in between. E.g. without flagging the
2629      // operations together, a TOC access in the caller could be scheduled
2630      // between the load of the callee TOC and the branch to the callee, which
2631      // results in the TOC access going through the TOC of the callee instead
2632      // of going through the TOC of the caller, which leads to incorrect code.
2633
2634      // Load the address of the function entry point from the function
2635      // descriptor.
2636      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
2637      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2638                                        InFlag.getNode() ? 3 : 2);
2639      Chain = LoadFuncPtr.getValue(1);
2640      InFlag = LoadFuncPtr.getValue(2);
2641
2642      // Load environment pointer into r11.
2643      // Offset of the environment pointer within the function descriptor.
2644      SDValue PtrOff = DAG.getIntPtrConstant(16);
2645
2646      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2647      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2648                                       InFlag);
2649      Chain = LoadEnvPtr.getValue(1);
2650      InFlag = LoadEnvPtr.getValue(2);
2651
2652      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2653                                        InFlag);
2654      Chain = EnvVal.getValue(0);
2655      InFlag = EnvVal.getValue(1);
2656
2657      // Load TOC of the callee into r2. We are using a target-specific load
2658      // with r2 hard coded, because the result of a target-independent load
2659      // would never go directly into r2, since r2 is a reserved register (which
2660      // prevents the register allocator from allocating it), resulting in an
2661      // additional register being allocated and an unnecessary move instruction
2662      // being generated.
2663      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2664      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2665                                       Callee, InFlag);
2666      Chain = LoadTOCPtr.getValue(0);
2667      InFlag = LoadTOCPtr.getValue(1);
2668
2669      MTCTROps[0] = Chain;
2670      MTCTROps[1] = LoadFuncPtr;
2671      MTCTROps[2] = InFlag;
2672    }
2673
2674    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2675                        2 + (InFlag.getNode() != 0));
2676    InFlag = Chain.getValue(1);
2677
2678    NodeTys.clear();
2679    NodeTys.push_back(MVT::Other);
2680    NodeTys.push_back(MVT::Glue);
2681    Ops.push_back(Chain);
2682    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2683    Callee.setNode(0);
2684    // Add CTR register as callee so a bctr can be emitted later.
2685    if (isTailCall)
2686      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
2687  }
2688
2689  // If this is a direct call, pass the chain and the callee.
2690  if (Callee.getNode()) {
2691    Ops.push_back(Chain);
2692    Ops.push_back(Callee);
2693  }
2694  // If this is a tail call add stack pointer delta.
2695  if (isTailCall)
2696    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2697
2698  // Add argument registers to the end of the list so that they are known live
2699  // into the call.
2700  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2701    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2702                                  RegsToPass[i].second.getValueType()));
2703
2704  return CallOpc;
2705}
2706
2707SDValue
2708PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2709                                   CallingConv::ID CallConv, bool isVarArg,
2710                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2711                                   DebugLoc dl, SelectionDAG &DAG,
2712                                   SmallVectorImpl<SDValue> &InVals) const {
2713
2714  SmallVector<CCValAssign, 16> RVLocs;
2715  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2716		    getTargetMachine(), RVLocs, *DAG.getContext());
2717  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2718
2719  // Copy all of the result registers out of their specified physreg.
2720  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2721    CCValAssign &VA = RVLocs[i];
2722    EVT VT = VA.getValVT();
2723    assert(VA.isRegLoc() && "Can only return in registers!");
2724    Chain = DAG.getCopyFromReg(Chain, dl,
2725                               VA.getLocReg(), VT, InFlag).getValue(1);
2726    InVals.push_back(Chain.getValue(0));
2727    InFlag = Chain.getValue(2);
2728  }
2729
2730  return Chain;
2731}
2732
2733SDValue
2734PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2735                              bool isTailCall, bool isVarArg,
2736                              SelectionDAG &DAG,
2737                              SmallVector<std::pair<unsigned, SDValue>, 8>
2738                                &RegsToPass,
2739                              SDValue InFlag, SDValue Chain,
2740                              SDValue &Callee,
2741                              int SPDiff, unsigned NumBytes,
2742                              const SmallVectorImpl<ISD::InputArg> &Ins,
2743                              SmallVectorImpl<SDValue> &InVals) const {
2744  std::vector<EVT> NodeTys;
2745  SmallVector<SDValue, 8> Ops;
2746  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2747                                 isTailCall, RegsToPass, Ops, NodeTys,
2748                                 PPCSubTarget);
2749
2750  // When performing tail call optimization the callee pops its arguments off
2751  // the stack. Account for this here so these bytes can be pushed back on in
2752  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2753  int BytesCalleePops =
2754    (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0;
2755
2756  if (InFlag.getNode())
2757    Ops.push_back(InFlag);
2758
2759  // Emit tail call.
2760  if (isTailCall) {
2761    // If this is the first return lowered for this function, add the regs
2762    // to the liveout set for the function.
2763    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2764      SmallVector<CCValAssign, 16> RVLocs;
2765      CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2766		     getTargetMachine(), RVLocs, *DAG.getContext());
2767      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2768      for (unsigned i = 0; i != RVLocs.size(); ++i)
2769        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2770    }
2771
2772    assert(((Callee.getOpcode() == ISD::Register &&
2773             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2774            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2775            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2776            isa<ConstantSDNode>(Callee)) &&
2777    "Expecting an global address, external symbol, absolute value or register");
2778
2779    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2780  }
2781
2782  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2783  InFlag = Chain.getValue(1);
2784
2785  // Add a NOP immediately after the branch instruction when using the 64-bit
2786  // SVR4 ABI. At link time, if caller and callee are in a different module and
2787  // thus have a different TOC, the call will be replaced with a call to a stub
2788  // function which saves the current TOC, loads the TOC of the callee and
2789  // branches to the callee. The NOP will be replaced with a load instruction
2790  // which restores the TOC of the caller from the TOC save slot of the current
2791  // stack frame. If caller and callee belong to the same module (and have the
2792  // same TOC), the NOP will remain unchanged.
2793  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2794    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2795    if (CallOpc == PPCISD::BCTRL_SVR4) {
2796      // This is a call through a function pointer.
2797      // Restore the caller TOC from the save area into R2.
2798      // See PrepareCall() for more information about calls through function
2799      // pointers in the 64-bit SVR4 ABI.
2800      // We are using a target-specific load with r2 hard coded, because the
2801      // result of a target-independent load would never go directly into r2,
2802      // since r2 is a reserved register (which prevents the register allocator
2803      // from allocating it), resulting in an additional register being
2804      // allocated and an unnecessary move instruction being generated.
2805      Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2806      InFlag = Chain.getValue(1);
2807    } else {
2808      // Otherwise insert NOP.
2809      InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Glue, InFlag);
2810    }
2811  }
2812
2813  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2814                             DAG.getIntPtrConstant(BytesCalleePops, true),
2815                             InFlag);
2816  if (!Ins.empty())
2817    InFlag = Chain.getValue(1);
2818
2819  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2820                         Ins, dl, DAG, InVals);
2821}
2822
2823SDValue
2824PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2825                             CallingConv::ID CallConv, bool isVarArg,
2826                             bool &isTailCall,
2827                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2828                             const SmallVectorImpl<SDValue> &OutVals,
2829                             const SmallVectorImpl<ISD::InputArg> &Ins,
2830                             DebugLoc dl, SelectionDAG &DAG,
2831                             SmallVectorImpl<SDValue> &InVals) const {
2832  if (isTailCall)
2833    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2834                                                   Ins, DAG);
2835
2836  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
2837    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2838                          isTailCall, Outs, OutVals, Ins,
2839                          dl, DAG, InVals);
2840
2841  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2842                          isTailCall, Outs, OutVals, Ins,
2843                          dl, DAG, InVals);
2844}
2845
2846SDValue
2847PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2848                                  CallingConv::ID CallConv, bool isVarArg,
2849                                  bool isTailCall,
2850                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2851                                  const SmallVectorImpl<SDValue> &OutVals,
2852                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2853                                  DebugLoc dl, SelectionDAG &DAG,
2854                                  SmallVectorImpl<SDValue> &InVals) const {
2855  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2856  // of the 32-bit SVR4 ABI stack frame layout.
2857
2858  assert((CallConv == CallingConv::C ||
2859          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2860
2861  unsigned PtrByteSize = 4;
2862
2863  MachineFunction &MF = DAG.getMachineFunction();
2864
2865  // Mark this function as potentially containing a function that contains a
2866  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2867  // and restoring the callers stack pointer in this functions epilog. This is
2868  // done because by tail calling the called function might overwrite the value
2869  // in this function's (MF) stack pointer stack slot 0(SP).
2870  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2871    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2872
2873  // Count how many bytes are to be pushed on the stack, including the linkage
2874  // area, parameter list area and the part of the local variable space which
2875  // contains copies of aggregates which are passed by value.
2876
2877  // Assign locations to all of the outgoing arguments.
2878  SmallVector<CCValAssign, 16> ArgLocs;
2879  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2880		 getTargetMachine(), ArgLocs, *DAG.getContext());
2881
2882  // Reserve space for the linkage area on the stack.
2883  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
2884
2885  if (isVarArg) {
2886    // Handle fixed and variable vector arguments differently.
2887    // Fixed vector arguments go into registers as long as registers are
2888    // available. Variable vector arguments always go into memory.
2889    unsigned NumArgs = Outs.size();
2890
2891    for (unsigned i = 0; i != NumArgs; ++i) {
2892      MVT ArgVT = Outs[i].VT;
2893      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2894      bool Result;
2895
2896      if (Outs[i].IsFixed) {
2897        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2898                             CCInfo);
2899      } else {
2900        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2901                                    ArgFlags, CCInfo);
2902      }
2903
2904      if (Result) {
2905#ifndef NDEBUG
2906        errs() << "Call operand #" << i << " has unhandled type "
2907             << EVT(ArgVT).getEVTString() << "\n";
2908#endif
2909        llvm_unreachable(0);
2910      }
2911    }
2912  } else {
2913    // All arguments are treated the same.
2914    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2915  }
2916
2917  // Assign locations to all of the outgoing aggregate by value arguments.
2918  SmallVector<CCValAssign, 16> ByValArgLocs;
2919  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2920		      getTargetMachine(), ByValArgLocs, *DAG.getContext());
2921
2922  // Reserve stack space for the allocations in CCInfo.
2923  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2924
2925  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2926
2927  // Size of the linkage area, parameter list area and the part of the local
2928  // space variable where copies of aggregates which are passed by value are
2929  // stored.
2930  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2931
2932  // Calculate by how many bytes the stack has to be adjusted in case of tail
2933  // call optimization.
2934  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2935
2936  // Adjust the stack pointer for the new arguments...
2937  // These operations are automatically eliminated by the prolog/epilog pass
2938  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2939  SDValue CallSeqStart = Chain;
2940
2941  // Load the return address and frame pointer so it can be moved somewhere else
2942  // later.
2943  SDValue LROp, FPOp;
2944  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2945                                       dl);
2946
2947  // Set up a copy of the stack pointer for use loading and storing any
2948  // arguments that may not fit in the registers available for argument
2949  // passing.
2950  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2951
2952  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2953  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2954  SmallVector<SDValue, 8> MemOpChains;
2955
2956  bool seenFloatArg = false;
2957  // Walk the register/memloc assignments, inserting copies/loads.
2958  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2959       i != e;
2960       ++i) {
2961    CCValAssign &VA = ArgLocs[i];
2962    SDValue Arg = OutVals[i];
2963    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2964
2965    if (Flags.isByVal()) {
2966      // Argument is an aggregate which is passed by value, thus we need to
2967      // create a copy of it in the local variable space of the current stack
2968      // frame (which is the stack frame of the caller) and pass the address of
2969      // this copy to the callee.
2970      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2971      CCValAssign &ByValVA = ByValArgLocs[j++];
2972      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2973
2974      // Memory reserved in the local variable space of the callers stack frame.
2975      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2976
2977      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2978      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2979
2980      // Create a copy of the argument in the local area of the current
2981      // stack frame.
2982      SDValue MemcpyCall =
2983        CreateCopyOfByValArgument(Arg, PtrOff,
2984                                  CallSeqStart.getNode()->getOperand(0),
2985                                  Flags, DAG, dl);
2986
2987      // This must go outside the CALLSEQ_START..END.
2988      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2989                           CallSeqStart.getNode()->getOperand(1));
2990      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2991                             NewCallSeqStart.getNode());
2992      Chain = CallSeqStart = NewCallSeqStart;
2993
2994      // Pass the address of the aggregate copy on the stack either in a
2995      // physical register or in the parameter list area of the current stack
2996      // frame to the callee.
2997      Arg = PtrOff;
2998    }
2999
3000    if (VA.isRegLoc()) {
3001      seenFloatArg |= VA.getLocVT().isFloatingPoint();
3002      // Put argument in a physical register.
3003      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3004    } else {
3005      // Put argument in the parameter list area of the current stack frame.
3006      assert(VA.isMemLoc());
3007      unsigned LocMemOffset = VA.getLocMemOffset();
3008
3009      if (!isTailCall) {
3010        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3011        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3012
3013        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3014                                           MachinePointerInfo(),
3015                                           false, false, 0));
3016      } else {
3017        // Calculate and remember argument location.
3018        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3019                                 TailCallArguments);
3020      }
3021    }
3022  }
3023
3024  if (!MemOpChains.empty())
3025    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3026                        &MemOpChains[0], MemOpChains.size());
3027
3028  // Set CR6 to true if this is a vararg call with floating args passed in
3029  // registers.
3030  if (isVarArg) {
3031    SDValue SetCR(DAG.getMachineNode(seenFloatArg ? PPC::CRSET : PPC::CRUNSET,
3032                                     dl, MVT::i32), 0);
3033    RegsToPass.push_back(std::make_pair(unsigned(PPC::CR1EQ), SetCR));
3034  }
3035
3036  // Build a sequence of copy-to-reg nodes chained together with token chain
3037  // and flag operands which copy the outgoing args into the appropriate regs.
3038  SDValue InFlag;
3039  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3040    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3041                             RegsToPass[i].second, InFlag);
3042    InFlag = Chain.getValue(1);
3043  }
3044
3045  if (isTailCall)
3046    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3047                    false, TailCallArguments);
3048
3049  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3050                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3051                    Ins, InVals);
3052}
3053
3054SDValue
3055PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
3056                                    CallingConv::ID CallConv, bool isVarArg,
3057                                    bool isTailCall,
3058                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3059                                    const SmallVectorImpl<SDValue> &OutVals,
3060                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3061                                    DebugLoc dl, SelectionDAG &DAG,
3062                                    SmallVectorImpl<SDValue> &InVals) const {
3063
3064  unsigned NumOps  = Outs.size();
3065
3066  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3067  bool isPPC64 = PtrVT == MVT::i64;
3068  unsigned PtrByteSize = isPPC64 ? 8 : 4;
3069
3070  MachineFunction &MF = DAG.getMachineFunction();
3071
3072  // Mark this function as potentially containing a function that contains a
3073  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3074  // and restoring the callers stack pointer in this functions epilog. This is
3075  // done because by tail calling the called function might overwrite the value
3076  // in this function's (MF) stack pointer stack slot 0(SP).
3077  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
3078    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3079
3080  unsigned nAltivecParamsAtEnd = 0;
3081
3082  // Count how many bytes are to be pushed on the stack, including the linkage
3083  // area, and parameter passing area.  We start with 24/48 bytes, which is
3084  // prereserved space for [SP][CR][LR][3 x unused].
3085  unsigned NumBytes =
3086    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
3087                                         Outs, OutVals,
3088                                         nAltivecParamsAtEnd);
3089
3090  // Calculate by how many bytes the stack has to be adjusted in case of tail
3091  // call optimization.
3092  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3093
3094  // To protect arguments on the stack from being clobbered in a tail call,
3095  // force all the loads to happen before doing any other lowering.
3096  if (isTailCall)
3097    Chain = DAG.getStackArgumentTokenFactor(Chain);
3098
3099  // Adjust the stack pointer for the new arguments...
3100  // These operations are automatically eliminated by the prolog/epilog pass
3101  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3102  SDValue CallSeqStart = Chain;
3103
3104  // Load the return address and frame pointer so it can be move somewhere else
3105  // later.
3106  SDValue LROp, FPOp;
3107  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3108                                       dl);
3109
3110  // Set up a copy of the stack pointer for use loading and storing any
3111  // arguments that may not fit in the registers available for argument
3112  // passing.
3113  SDValue StackPtr;
3114  if (isPPC64)
3115    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3116  else
3117    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3118
3119  // Figure out which arguments are going to go in registers, and which in
3120  // memory.  Also, if this is a vararg function, floating point operations
3121  // must be stored to our stack, and loaded into integer regs as well, if
3122  // any integer regs are available for argument passing.
3123  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
3124  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3125
3126  static const unsigned GPR_32[] = {           // 32-bit registers.
3127    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3128    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3129  };
3130  static const unsigned GPR_64[] = {           // 64-bit registers.
3131    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3132    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3133  };
3134  static const unsigned *FPR = GetFPR();
3135
3136  static const unsigned VR[] = {
3137    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3138    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3139  };
3140  const unsigned NumGPRs = array_lengthof(GPR_32);
3141  const unsigned NumFPRs = 13;
3142  const unsigned NumVRs  = array_lengthof(VR);
3143
3144  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
3145
3146  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3147  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3148
3149  SmallVector<SDValue, 8> MemOpChains;
3150  for (unsigned i = 0; i != NumOps; ++i) {
3151    SDValue Arg = OutVals[i];
3152    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3153
3154    // PtrOff will be used to store the current argument to the stack if a
3155    // register cannot be found for it.
3156    SDValue PtrOff;
3157
3158    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3159
3160    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3161
3162    // On PPC64, promote integers to 64-bit values.
3163    if (isPPC64 && Arg.getValueType() == MVT::i32) {
3164      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3165      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3166      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3167    }
3168
3169    // FIXME memcpy is used way more than necessary.  Correctness first.
3170    if (Flags.isByVal()) {
3171      unsigned Size = Flags.getByValSize();
3172      if (Size==1 || Size==2) {
3173        // Very small objects are passed right-justified.
3174        // Everything else is passed left-justified.
3175        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3176        if (GPR_idx != NumGPRs) {
3177          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3178                                        MachinePointerInfo(), VT,
3179                                        false, false, 0);
3180          MemOpChains.push_back(Load.getValue(1));
3181          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3182
3183          ArgOffset += PtrByteSize;
3184        } else {
3185          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3186          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3187          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3188                                CallSeqStart.getNode()->getOperand(0),
3189                                Flags, DAG, dl);
3190          // This must go outside the CALLSEQ_START..END.
3191          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3192                               CallSeqStart.getNode()->getOperand(1));
3193          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3194                                 NewCallSeqStart.getNode());
3195          Chain = CallSeqStart = NewCallSeqStart;
3196          ArgOffset += PtrByteSize;
3197        }
3198        continue;
3199      }
3200      // Copy entire object into memory.  There are cases where gcc-generated
3201      // code assumes it is there, even if it could be put entirely into
3202      // registers.  (This is not what the doc says.)
3203      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3204                            CallSeqStart.getNode()->getOperand(0),
3205                            Flags, DAG, dl);
3206      // This must go outside the CALLSEQ_START..END.
3207      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3208                           CallSeqStart.getNode()->getOperand(1));
3209      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3210      Chain = CallSeqStart = NewCallSeqStart;
3211      // And copy the pieces of it that fit into registers.
3212      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3213        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3214        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3215        if (GPR_idx != NumGPRs) {
3216          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3217                                     MachinePointerInfo(),
3218                                     false, false, false, 0);
3219          MemOpChains.push_back(Load.getValue(1));
3220          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3221          ArgOffset += PtrByteSize;
3222        } else {
3223          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3224          break;
3225        }
3226      }
3227      continue;
3228    }
3229
3230    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3231    default: llvm_unreachable("Unexpected ValueType for argument!");
3232    case MVT::i32:
3233    case MVT::i64:
3234      if (GPR_idx != NumGPRs) {
3235        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3236      } else {
3237        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3238                         isPPC64, isTailCall, false, MemOpChains,
3239                         TailCallArguments, dl);
3240      }
3241      ArgOffset += PtrByteSize;
3242      break;
3243    case MVT::f32:
3244    case MVT::f64:
3245      if (FPR_idx != NumFPRs) {
3246        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3247
3248        if (isVarArg) {
3249          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3250                                       MachinePointerInfo(), false, false, 0);
3251          MemOpChains.push_back(Store);
3252
3253          // Float varargs are always shadowed in available integer registers
3254          if (GPR_idx != NumGPRs) {
3255            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3256                                       MachinePointerInfo(), false, false,
3257                                       false, 0);
3258            MemOpChains.push_back(Load.getValue(1));
3259            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3260          }
3261          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3262            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3263            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3264            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3265                                       MachinePointerInfo(),
3266                                       false, false, false, 0);
3267            MemOpChains.push_back(Load.getValue(1));
3268            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3269          }
3270        } else {
3271          // If we have any FPRs remaining, we may also have GPRs remaining.
3272          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3273          // GPRs.
3274          if (GPR_idx != NumGPRs)
3275            ++GPR_idx;
3276          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3277              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3278            ++GPR_idx;
3279        }
3280      } else {
3281        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3282                         isPPC64, isTailCall, false, MemOpChains,
3283                         TailCallArguments, dl);
3284      }
3285      if (isPPC64)
3286        ArgOffset += 8;
3287      else
3288        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3289      break;
3290    case MVT::v4f32:
3291    case MVT::v4i32:
3292    case MVT::v8i16:
3293    case MVT::v16i8:
3294      if (isVarArg) {
3295        // These go aligned on the stack, or in the corresponding R registers
3296        // when within range.  The Darwin PPC ABI doc claims they also go in
3297        // V registers; in fact gcc does this only for arguments that are
3298        // prototyped, not for those that match the ...  We do it for all
3299        // arguments, seems to work.
3300        while (ArgOffset % 16 !=0) {
3301          ArgOffset += PtrByteSize;
3302          if (GPR_idx != NumGPRs)
3303            GPR_idx++;
3304        }
3305        // We could elide this store in the case where the object fits
3306        // entirely in R registers.  Maybe later.
3307        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3308                            DAG.getConstant(ArgOffset, PtrVT));
3309        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3310                                     MachinePointerInfo(), false, false, 0);
3311        MemOpChains.push_back(Store);
3312        if (VR_idx != NumVRs) {
3313          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3314                                     MachinePointerInfo(),
3315                                     false, false, false, 0);
3316          MemOpChains.push_back(Load.getValue(1));
3317          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3318        }
3319        ArgOffset += 16;
3320        for (unsigned i=0; i<16; i+=PtrByteSize) {
3321          if (GPR_idx == NumGPRs)
3322            break;
3323          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3324                                  DAG.getConstant(i, PtrVT));
3325          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3326                                     false, false, false, 0);
3327          MemOpChains.push_back(Load.getValue(1));
3328          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3329        }
3330        break;
3331      }
3332
3333      // Non-varargs Altivec params generally go in registers, but have
3334      // stack space allocated at the end.
3335      if (VR_idx != NumVRs) {
3336        // Doesn't have GPR space allocated.
3337        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3338      } else if (nAltivecParamsAtEnd==0) {
3339        // We are emitting Altivec params in order.
3340        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3341                         isPPC64, isTailCall, true, MemOpChains,
3342                         TailCallArguments, dl);
3343        ArgOffset += 16;
3344      }
3345      break;
3346    }
3347  }
3348  // If all Altivec parameters fit in registers, as they usually do,
3349  // they get stack space following the non-Altivec parameters.  We
3350  // don't track this here because nobody below needs it.
3351  // If there are more Altivec parameters than fit in registers emit
3352  // the stores here.
3353  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3354    unsigned j = 0;
3355    // Offset is aligned; skip 1st 12 params which go in V registers.
3356    ArgOffset = ((ArgOffset+15)/16)*16;
3357    ArgOffset += 12*16;
3358    for (unsigned i = 0; i != NumOps; ++i) {
3359      SDValue Arg = OutVals[i];
3360      EVT ArgType = Outs[i].VT;
3361      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3362          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3363        if (++j > NumVRs) {
3364          SDValue PtrOff;
3365          // We are emitting Altivec params in order.
3366          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3367                           isPPC64, isTailCall, true, MemOpChains,
3368                           TailCallArguments, dl);
3369          ArgOffset += 16;
3370        }
3371      }
3372    }
3373  }
3374
3375  if (!MemOpChains.empty())
3376    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3377                        &MemOpChains[0], MemOpChains.size());
3378
3379  // Check if this is an indirect call (MTCTR/BCTRL).
3380  // See PrepareCall() for more information about calls through function
3381  // pointers in the 64-bit SVR4 ABI.
3382  if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3383      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3384      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3385      !isBLACompatibleAddress(Callee, DAG)) {
3386    // Load r2 into a virtual register and store it to the TOC save area.
3387    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3388    // TOC save area offset.
3389    SDValue PtrOff = DAG.getIntPtrConstant(40);
3390    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3391    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
3392                         false, false, 0);
3393  }
3394
3395  // On Darwin, R12 must contain the address of an indirect callee.  This does
3396  // not mean the MTCTR instruction must use R12; it's easier to model this as
3397  // an extra parameter, so do that.
3398  if (!isTailCall &&
3399      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3400      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3401      !isBLACompatibleAddress(Callee, DAG))
3402    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3403                                                   PPC::R12), Callee));
3404
3405  // Build a sequence of copy-to-reg nodes chained together with token chain
3406  // and flag operands which copy the outgoing args into the appropriate regs.
3407  SDValue InFlag;
3408  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3409    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3410                             RegsToPass[i].second, InFlag);
3411    InFlag = Chain.getValue(1);
3412  }
3413
3414  if (isTailCall)
3415    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3416                    FPOp, true, TailCallArguments);
3417
3418  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3419                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3420                    Ins, InVals);
3421}
3422
3423bool
3424PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3425                                  MachineFunction &MF, bool isVarArg,
3426                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
3427                                  LLVMContext &Context) const {
3428  SmallVector<CCValAssign, 16> RVLocs;
3429  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
3430                 RVLocs, Context);
3431  return CCInfo.CheckReturn(Outs, RetCC_PPC);
3432}
3433
3434SDValue
3435PPCTargetLowering::LowerReturn(SDValue Chain,
3436                               CallingConv::ID CallConv, bool isVarArg,
3437                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3438                               const SmallVectorImpl<SDValue> &OutVals,
3439                               DebugLoc dl, SelectionDAG &DAG) const {
3440
3441  SmallVector<CCValAssign, 16> RVLocs;
3442  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3443		 getTargetMachine(), RVLocs, *DAG.getContext());
3444  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3445
3446  // If this is the first return lowered for this function, add the regs to the
3447  // liveout set for the function.
3448  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3449    for (unsigned i = 0; i != RVLocs.size(); ++i)
3450      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3451  }
3452
3453  SDValue Flag;
3454
3455  // Copy the result values into the output registers.
3456  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3457    CCValAssign &VA = RVLocs[i];
3458    assert(VA.isRegLoc() && "Can only return in registers!");
3459    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3460                             OutVals[i], Flag);
3461    Flag = Chain.getValue(1);
3462  }
3463
3464  if (Flag.getNode())
3465    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3466  else
3467    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3468}
3469
3470SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3471                                   const PPCSubtarget &Subtarget) const {
3472  // When we pop the dynamic allocation we need to restore the SP link.
3473  DebugLoc dl = Op.getDebugLoc();
3474
3475  // Get the corect type for pointers.
3476  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3477
3478  // Construct the stack pointer operand.
3479  bool isPPC64 = Subtarget.isPPC64();
3480  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3481  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3482
3483  // Get the operands for the STACKRESTORE.
3484  SDValue Chain = Op.getOperand(0);
3485  SDValue SaveSP = Op.getOperand(1);
3486
3487  // Load the old link SP.
3488  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
3489                                   MachinePointerInfo(),
3490                                   false, false, false, 0);
3491
3492  // Restore the stack pointer.
3493  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3494
3495  // Store the old link SP.
3496  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
3497                      false, false, 0);
3498}
3499
3500
3501
3502SDValue
3503PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3504  MachineFunction &MF = DAG.getMachineFunction();
3505  bool isPPC64 = PPCSubTarget.isPPC64();
3506  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3507  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3508
3509  // Get current frame pointer save index.  The users of this index will be
3510  // primarily DYNALLOC instructions.
3511  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3512  int RASI = FI->getReturnAddrSaveIndex();
3513
3514  // If the frame pointer save index hasn't been defined yet.
3515  if (!RASI) {
3516    // Find out what the fix offset of the frame pointer save area.
3517    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
3518    // Allocate the frame index for frame pointer save area.
3519    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
3520    // Save the result.
3521    FI->setReturnAddrSaveIndex(RASI);
3522  }
3523  return DAG.getFrameIndex(RASI, PtrVT);
3524}
3525
3526SDValue
3527PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3528  MachineFunction &MF = DAG.getMachineFunction();
3529  bool isPPC64 = PPCSubTarget.isPPC64();
3530  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3531  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3532
3533  // Get current frame pointer save index.  The users of this index will be
3534  // primarily DYNALLOC instructions.
3535  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3536  int FPSI = FI->getFramePointerSaveIndex();
3537
3538  // If the frame pointer save index hasn't been defined yet.
3539  if (!FPSI) {
3540    // Find out what the fix offset of the frame pointer save area.
3541    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
3542                                                           isDarwinABI);
3543
3544    // Allocate the frame index for frame pointer save area.
3545    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
3546    // Save the result.
3547    FI->setFramePointerSaveIndex(FPSI);
3548  }
3549  return DAG.getFrameIndex(FPSI, PtrVT);
3550}
3551
3552SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3553                                         SelectionDAG &DAG,
3554                                         const PPCSubtarget &Subtarget) const {
3555  // Get the inputs.
3556  SDValue Chain = Op.getOperand(0);
3557  SDValue Size  = Op.getOperand(1);
3558  DebugLoc dl = Op.getDebugLoc();
3559
3560  // Get the corect type for pointers.
3561  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3562  // Negate the size.
3563  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3564                                  DAG.getConstant(0, PtrVT), Size);
3565  // Construct a node for the frame pointer save index.
3566  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3567  // Build a DYNALLOC node.
3568  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3569  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3570  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3571}
3572
3573/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3574/// possible.
3575SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3576  // Not FP? Not a fsel.
3577  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3578      !Op.getOperand(2).getValueType().isFloatingPoint())
3579    return Op;
3580
3581  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3582
3583  // Cannot handle SETEQ/SETNE.
3584  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3585
3586  EVT ResVT = Op.getValueType();
3587  EVT CmpVT = Op.getOperand(0).getValueType();
3588  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3589  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3590  DebugLoc dl = Op.getDebugLoc();
3591
3592  // If the RHS of the comparison is a 0.0, we don't need to do the
3593  // subtraction at all.
3594  if (isFloatingPointZero(RHS))
3595    switch (CC) {
3596    default: break;       // SETUO etc aren't handled by fsel.
3597    case ISD::SETULT:
3598    case ISD::SETLT:
3599      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3600    case ISD::SETOGE:
3601    case ISD::SETGE:
3602      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3603        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3604      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3605    case ISD::SETUGT:
3606    case ISD::SETGT:
3607      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3608    case ISD::SETOLE:
3609    case ISD::SETLE:
3610      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3611        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3612      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3613                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3614    }
3615
3616  SDValue Cmp;
3617  switch (CC) {
3618  default: break;       // SETUO etc aren't handled by fsel.
3619  case ISD::SETULT:
3620  case ISD::SETLT:
3621    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3622    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3623      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3624      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3625  case ISD::SETOGE:
3626  case ISD::SETGE:
3627    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3628    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3629      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3630      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3631  case ISD::SETUGT:
3632  case ISD::SETGT:
3633    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3634    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3635      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3636      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3637  case ISD::SETOLE:
3638  case ISD::SETLE:
3639    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3640    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3641      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3642      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3643  }
3644  return Op;
3645}
3646
3647// FIXME: Split this code up when LegalizeDAGTypes lands.
3648SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3649                                           DebugLoc dl) const {
3650  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3651  SDValue Src = Op.getOperand(0);
3652  if (Src.getValueType() == MVT::f32)
3653    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3654
3655  SDValue Tmp;
3656  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3657  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3658  case MVT::i32:
3659    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3660                                                         PPCISD::FCTIDZ,
3661                      dl, MVT::f64, Src);
3662    break;
3663  case MVT::i64:
3664    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3665    break;
3666  }
3667
3668  // Convert the FP value to an int value through memory.
3669  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3670
3671  // Emit a store to the stack slot.
3672  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
3673                               MachinePointerInfo(), false, false, 0);
3674
3675  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3676  // add in a bias.
3677  if (Op.getValueType() == MVT::i32)
3678    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3679                        DAG.getConstant(4, FIPtr.getValueType()));
3680  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
3681                     false, false, false, 0);
3682}
3683
3684SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
3685                                           SelectionDAG &DAG) const {
3686  DebugLoc dl = Op.getDebugLoc();
3687  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3688  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3689    return SDValue();
3690
3691  if (Op.getOperand(0).getValueType() == MVT::i64) {
3692    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0));
3693    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3694    if (Op.getValueType() == MVT::f32)
3695      FP = DAG.getNode(ISD::FP_ROUND, dl,
3696                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3697    return FP;
3698  }
3699
3700  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3701         "Unhandled SINT_TO_FP type in custom expander!");
3702  // Since we only generate this in 64-bit mode, we can take advantage of
3703  // 64-bit registers.  In particular, sign extend the input value into the
3704  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3705  // then lfd it and fcfid it.
3706  MachineFunction &MF = DAG.getMachineFunction();
3707  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3708  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3709  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3710  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3711
3712  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3713                                Op.getOperand(0));
3714
3715  // STD the extended value into the stack slot.
3716  MachineMemOperand *MMO =
3717    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
3718                            MachineMemOperand::MOStore, 8, 8);
3719  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3720  SDValue Store =
3721    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3722                            Ops, 4, MVT::i64, MMO);
3723  // Load the value as a double.
3724  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
3725                           false, false, false, 0);
3726
3727  // FCFID it and return it.
3728  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3729  if (Op.getValueType() == MVT::f32)
3730    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3731  return FP;
3732}
3733
3734SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3735                                            SelectionDAG &DAG) const {
3736  DebugLoc dl = Op.getDebugLoc();
3737  /*
3738   The rounding mode is in bits 30:31 of FPSR, and has the following
3739   settings:
3740     00 Round to nearest
3741     01 Round to 0
3742     10 Round to +inf
3743     11 Round to -inf
3744
3745  FLT_ROUNDS, on the other hand, expects the following:
3746    -1 Undefined
3747     0 Round to 0
3748     1 Round to nearest
3749     2 Round to +inf
3750     3 Round to -inf
3751
3752  To perform the conversion, we do:
3753    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3754  */
3755
3756  MachineFunction &MF = DAG.getMachineFunction();
3757  EVT VT = Op.getValueType();
3758  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3759  std::vector<EVT> NodeTys;
3760  SDValue MFFSreg, InFlag;
3761
3762  // Save FP Control Word to register
3763  NodeTys.push_back(MVT::f64);    // return register
3764  NodeTys.push_back(MVT::Glue);   // unused in this context
3765  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3766
3767  // Save FP register to stack slot
3768  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3769  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3770  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3771                               StackSlot, MachinePointerInfo(), false, false,0);
3772
3773  // Load FP Control Word from low 32 bits of stack slot.
3774  SDValue Four = DAG.getConstant(4, PtrVT);
3775  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3776  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
3777                            false, false, false, 0);
3778
3779  // Transform as necessary
3780  SDValue CWD1 =
3781    DAG.getNode(ISD::AND, dl, MVT::i32,
3782                CWD, DAG.getConstant(3, MVT::i32));
3783  SDValue CWD2 =
3784    DAG.getNode(ISD::SRL, dl, MVT::i32,
3785                DAG.getNode(ISD::AND, dl, MVT::i32,
3786                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3787                                        CWD, DAG.getConstant(3, MVT::i32)),
3788                            DAG.getConstant(3, MVT::i32)),
3789                DAG.getConstant(1, MVT::i32));
3790
3791  SDValue RetVal =
3792    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3793
3794  return DAG.getNode((VT.getSizeInBits() < 16 ?
3795                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3796}
3797
3798SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3799  EVT VT = Op.getValueType();
3800  unsigned BitWidth = VT.getSizeInBits();
3801  DebugLoc dl = Op.getDebugLoc();
3802  assert(Op.getNumOperands() == 3 &&
3803         VT == Op.getOperand(1).getValueType() &&
3804         "Unexpected SHL!");
3805
3806  // Expand into a bunch of logical ops.  Note that these ops
3807  // depend on the PPC behavior for oversized shift amounts.
3808  SDValue Lo = Op.getOperand(0);
3809  SDValue Hi = Op.getOperand(1);
3810  SDValue Amt = Op.getOperand(2);
3811  EVT AmtVT = Amt.getValueType();
3812
3813  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3814                             DAG.getConstant(BitWidth, AmtVT), Amt);
3815  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3816  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3817  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3818  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3819                             DAG.getConstant(-BitWidth, AmtVT));
3820  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3821  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3822  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3823  SDValue OutOps[] = { OutLo, OutHi };
3824  return DAG.getMergeValues(OutOps, 2, dl);
3825}
3826
3827SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3828  EVT VT = Op.getValueType();
3829  DebugLoc dl = Op.getDebugLoc();
3830  unsigned BitWidth = VT.getSizeInBits();
3831  assert(Op.getNumOperands() == 3 &&
3832         VT == Op.getOperand(1).getValueType() &&
3833         "Unexpected SRL!");
3834
3835  // Expand into a bunch of logical ops.  Note that these ops
3836  // depend on the PPC behavior for oversized shift amounts.
3837  SDValue Lo = Op.getOperand(0);
3838  SDValue Hi = Op.getOperand(1);
3839  SDValue Amt = Op.getOperand(2);
3840  EVT AmtVT = Amt.getValueType();
3841
3842  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3843                             DAG.getConstant(BitWidth, AmtVT), Amt);
3844  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3845  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3846  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3847  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3848                             DAG.getConstant(-BitWidth, AmtVT));
3849  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3850  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3851  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3852  SDValue OutOps[] = { OutLo, OutHi };
3853  return DAG.getMergeValues(OutOps, 2, dl);
3854}
3855
3856SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
3857  DebugLoc dl = Op.getDebugLoc();
3858  EVT VT = Op.getValueType();
3859  unsigned BitWidth = VT.getSizeInBits();
3860  assert(Op.getNumOperands() == 3 &&
3861         VT == Op.getOperand(1).getValueType() &&
3862         "Unexpected SRA!");
3863
3864  // Expand into a bunch of logical ops, followed by a select_cc.
3865  SDValue Lo = Op.getOperand(0);
3866  SDValue Hi = Op.getOperand(1);
3867  SDValue Amt = Op.getOperand(2);
3868  EVT AmtVT = Amt.getValueType();
3869
3870  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3871                             DAG.getConstant(BitWidth, AmtVT), Amt);
3872  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3873  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3874  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3875  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3876                             DAG.getConstant(-BitWidth, AmtVT));
3877  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3878  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3879  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3880                                  Tmp4, Tmp6, ISD::SETLE);
3881  SDValue OutOps[] = { OutLo, OutHi };
3882  return DAG.getMergeValues(OutOps, 2, dl);
3883}
3884
3885//===----------------------------------------------------------------------===//
3886// Vector related lowering.
3887//
3888
3889/// BuildSplatI - Build a canonical splati of Val with an element size of
3890/// SplatSize.  Cast the result to VT.
3891static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3892                             SelectionDAG &DAG, DebugLoc dl) {
3893  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3894
3895  static const EVT VTys[] = { // canonical VT to use for each size.
3896    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3897  };
3898
3899  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3900
3901  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3902  if (Val == -1)
3903    SplatSize = 1;
3904
3905  EVT CanonicalVT = VTys[SplatSize-1];
3906
3907  // Build a canonical splat for this value.
3908  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3909  SmallVector<SDValue, 8> Ops;
3910  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3911  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3912                              &Ops[0], Ops.size());
3913  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
3914}
3915
3916/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3917/// specified intrinsic ID.
3918static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3919                                SelectionDAG &DAG, DebugLoc dl,
3920                                EVT DestVT = MVT::Other) {
3921  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3922  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3923                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3924}
3925
3926/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3927/// specified intrinsic ID.
3928static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3929                                SDValue Op2, SelectionDAG &DAG,
3930                                DebugLoc dl, EVT DestVT = MVT::Other) {
3931  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3932  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3933                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3934}
3935
3936
3937/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3938/// amount.  The result has the specified value type.
3939static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3940                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3941  // Force LHS/RHS to be the right type.
3942  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
3943  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
3944
3945  int Ops[16];
3946  for (unsigned i = 0; i != 16; ++i)
3947    Ops[i] = i + Amt;
3948  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3949  return DAG.getNode(ISD::BITCAST, dl, VT, T);
3950}
3951
3952// If this is a case we can't handle, return null and let the default
3953// expansion code take care of it.  If we CAN select this case, and if it
3954// selects to a single instruction, return Op.  Otherwise, if we can codegen
3955// this case more efficiently than a constant pool load, lower it to the
3956// sequence of ops that should be used.
3957SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3958                                             SelectionDAG &DAG) const {
3959  DebugLoc dl = Op.getDebugLoc();
3960  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3961  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3962
3963  // Check if this is a splat of a constant value.
3964  APInt APSplatBits, APSplatUndef;
3965  unsigned SplatBitSize;
3966  bool HasAnyUndefs;
3967  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3968                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
3969    return SDValue();
3970
3971  unsigned SplatBits = APSplatBits.getZExtValue();
3972  unsigned SplatUndef = APSplatUndef.getZExtValue();
3973  unsigned SplatSize = SplatBitSize / 8;
3974
3975  // First, handle single instruction cases.
3976
3977  // All zeros?
3978  if (SplatBits == 0) {
3979    // Canonicalize all zero vectors to be v4i32.
3980    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3981      SDValue Z = DAG.getConstant(0, MVT::i32);
3982      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3983      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
3984    }
3985    return Op;
3986  }
3987
3988  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3989  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3990                    (32-SplatBitSize));
3991  if (SextVal >= -16 && SextVal <= 15)
3992    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3993
3994
3995  // Two instruction sequences.
3996
3997  // If this value is in the range [-32,30] and is even, use:
3998  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3999  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
4000    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
4001    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
4002    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4003  }
4004
4005  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
4006  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
4007  // for fneg/fabs.
4008  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
4009    // Make -1 and vspltisw -1:
4010    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
4011
4012    // Make the VSLW intrinsic, computing 0x8000_0000.
4013    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
4014                                   OnesV, DAG, dl);
4015
4016    // xor by OnesV to invert it.
4017    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
4018    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4019  }
4020
4021  // Check to see if this is a wide variety of vsplti*, binop self cases.
4022  static const signed char SplatCsts[] = {
4023    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
4024    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
4025  };
4026
4027  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
4028    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
4029    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
4030    int i = SplatCsts[idx];
4031
4032    // Figure out what shift amount will be used by altivec if shifted by i in
4033    // this splat size.
4034    unsigned TypeShiftAmt = i & (SplatBitSize-1);
4035
4036    // vsplti + shl self.
4037    if (SextVal == (i << (int)TypeShiftAmt)) {
4038      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4039      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4040        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
4041        Intrinsic::ppc_altivec_vslw
4042      };
4043      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4044      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4045    }
4046
4047    // vsplti + srl self.
4048    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
4049      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4050      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4051        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
4052        Intrinsic::ppc_altivec_vsrw
4053      };
4054      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4055      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4056    }
4057
4058    // vsplti + sra self.
4059    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
4060      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4061      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4062        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
4063        Intrinsic::ppc_altivec_vsraw
4064      };
4065      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4066      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4067    }
4068
4069    // vsplti + rol self.
4070    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
4071                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
4072      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4073      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4074        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
4075        Intrinsic::ppc_altivec_vrlw
4076      };
4077      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4078      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4079    }
4080
4081    // t = vsplti c, result = vsldoi t, t, 1
4082    if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) {
4083      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4084      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
4085    }
4086    // t = vsplti c, result = vsldoi t, t, 2
4087    if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) {
4088      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4089      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
4090    }
4091    // t = vsplti c, result = vsldoi t, t, 3
4092    if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
4093      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4094      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
4095    }
4096  }
4097
4098  // Three instruction sequences.
4099
4100  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
4101  if (SextVal >= 0 && SextVal <= 31) {
4102    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
4103    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
4104    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
4105    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
4106  }
4107  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
4108  if (SextVal >= -31 && SextVal <= 0) {
4109    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
4110    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
4111    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
4112    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
4113  }
4114
4115  return SDValue();
4116}
4117
4118/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4119/// the specified operations to build the shuffle.
4120static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4121                                      SDValue RHS, SelectionDAG &DAG,
4122                                      DebugLoc dl) {
4123  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4124  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4125  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4126
4127  enum {
4128    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4129    OP_VMRGHW,
4130    OP_VMRGLW,
4131    OP_VSPLTISW0,
4132    OP_VSPLTISW1,
4133    OP_VSPLTISW2,
4134    OP_VSPLTISW3,
4135    OP_VSLDOI4,
4136    OP_VSLDOI8,
4137    OP_VSLDOI12
4138  };
4139
4140  if (OpNum == OP_COPY) {
4141    if (LHSID == (1*9+2)*9+3) return LHS;
4142    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4143    return RHS;
4144  }
4145
4146  SDValue OpLHS, OpRHS;
4147  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4148  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4149
4150  int ShufIdxs[16];
4151  switch (OpNum) {
4152  default: llvm_unreachable("Unknown i32 permute!");
4153  case OP_VMRGHW:
4154    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
4155    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4156    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
4157    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4158    break;
4159  case OP_VMRGLW:
4160    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4161    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4162    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4163    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4164    break;
4165  case OP_VSPLTISW0:
4166    for (unsigned i = 0; i != 16; ++i)
4167      ShufIdxs[i] = (i&3)+0;
4168    break;
4169  case OP_VSPLTISW1:
4170    for (unsigned i = 0; i != 16; ++i)
4171      ShufIdxs[i] = (i&3)+4;
4172    break;
4173  case OP_VSPLTISW2:
4174    for (unsigned i = 0; i != 16; ++i)
4175      ShufIdxs[i] = (i&3)+8;
4176    break;
4177  case OP_VSPLTISW3:
4178    for (unsigned i = 0; i != 16; ++i)
4179      ShufIdxs[i] = (i&3)+12;
4180    break;
4181  case OP_VSLDOI4:
4182    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4183  case OP_VSLDOI8:
4184    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4185  case OP_VSLDOI12:
4186    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4187  }
4188  EVT VT = OpLHS.getValueType();
4189  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
4190  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
4191  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4192  return DAG.getNode(ISD::BITCAST, dl, VT, T);
4193}
4194
4195/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4196/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4197/// return the code it can be lowered into.  Worst case, it can always be
4198/// lowered into a vperm.
4199SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4200                                               SelectionDAG &DAG) const {
4201  DebugLoc dl = Op.getDebugLoc();
4202  SDValue V1 = Op.getOperand(0);
4203  SDValue V2 = Op.getOperand(1);
4204  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4205  EVT VT = Op.getValueType();
4206
4207  // Cases that are handled by instructions that take permute immediates
4208  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4209  // selected by the instruction selector.
4210  if (V2.getOpcode() == ISD::UNDEF) {
4211    if (PPC::isSplatShuffleMask(SVOp, 1) ||
4212        PPC::isSplatShuffleMask(SVOp, 2) ||
4213        PPC::isSplatShuffleMask(SVOp, 4) ||
4214        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4215        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4216        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4217        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4218        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4219        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4220        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4221        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4222        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4223      return Op;
4224    }
4225  }
4226
4227  // Altivec has a variety of "shuffle immediates" that take two vector inputs
4228  // and produce a fixed permutation.  If any of these match, do not lower to
4229  // VPERM.
4230  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4231      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4232      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4233      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4234      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4235      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4236      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4237      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4238      PPC::isVMRGHShuffleMask(SVOp, 4, false))
4239    return Op;
4240
4241  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4242  // perfect shuffle table to emit an optimal matching sequence.
4243  SmallVector<int, 16> PermMask;
4244  SVOp->getMask(PermMask);
4245
4246  unsigned PFIndexes[4];
4247  bool isFourElementShuffle = true;
4248  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4249    unsigned EltNo = 8;   // Start out undef.
4250    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4251      if (PermMask[i*4+j] < 0)
4252        continue;   // Undef, ignore it.
4253
4254      unsigned ByteSource = PermMask[i*4+j];
4255      if ((ByteSource & 3) != j) {
4256        isFourElementShuffle = false;
4257        break;
4258      }
4259
4260      if (EltNo == 8) {
4261        EltNo = ByteSource/4;
4262      } else if (EltNo != ByteSource/4) {
4263        isFourElementShuffle = false;
4264        break;
4265      }
4266    }
4267    PFIndexes[i] = EltNo;
4268  }
4269
4270  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4271  // perfect shuffle vector to determine if it is cost effective to do this as
4272  // discrete instructions, or whether we should use a vperm.
4273  if (isFourElementShuffle) {
4274    // Compute the index in the perfect shuffle table.
4275    unsigned PFTableIndex =
4276      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4277
4278    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4279    unsigned Cost  = (PFEntry >> 30);
4280
4281    // Determining when to avoid vperm is tricky.  Many things affect the cost
4282    // of vperm, particularly how many times the perm mask needs to be computed.
4283    // For example, if the perm mask can be hoisted out of a loop or is already
4284    // used (perhaps because there are multiple permutes with the same shuffle
4285    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4286    // the loop requires an extra register.
4287    //
4288    // As a compromise, we only emit discrete instructions if the shuffle can be
4289    // generated in 3 or fewer operations.  When we have loop information
4290    // available, if this block is within a loop, we should avoid using vperm
4291    // for 3-operation perms and use a constant pool load instead.
4292    if (Cost < 3)
4293      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4294  }
4295
4296  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4297  // vector that will get spilled to the constant pool.
4298  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4299
4300  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4301  // that it is in input element units, not in bytes.  Convert now.
4302  EVT EltVT = V1.getValueType().getVectorElementType();
4303  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4304
4305  SmallVector<SDValue, 16> ResultMask;
4306  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4307    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4308
4309    for (unsigned j = 0; j != BytesPerElement; ++j)
4310      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4311                                           MVT::i32));
4312  }
4313
4314  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4315                                    &ResultMask[0], ResultMask.size());
4316  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4317}
4318
4319/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4320/// altivec comparison.  If it is, return true and fill in Opc/isDot with
4321/// information about the intrinsic.
4322static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4323                                  bool &isDot) {
4324  unsigned IntrinsicID =
4325    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4326  CompareOpc = -1;
4327  isDot = false;
4328  switch (IntrinsicID) {
4329  default: return false;
4330    // Comparison predicates.
4331  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4332  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4333  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4334  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4335  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4336  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4337  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4338  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4339  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4340  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4341  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4342  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4343  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4344
4345    // Normal Comparisons.
4346  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4347  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4348  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4349  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4350  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4351  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4352  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4353  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4354  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4355  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4356  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4357  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4358  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4359  }
4360  return true;
4361}
4362
4363/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4364/// lower, do it, otherwise return null.
4365SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4366                                                   SelectionDAG &DAG) const {
4367  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4368  // opcode number of the comparison.
4369  DebugLoc dl = Op.getDebugLoc();
4370  int CompareOpc;
4371  bool isDot;
4372  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4373    return SDValue();    // Don't custom lower most intrinsics.
4374
4375  // If this is a non-dot comparison, make the VCMP node and we are done.
4376  if (!isDot) {
4377    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4378                              Op.getOperand(1), Op.getOperand(2),
4379                              DAG.getConstant(CompareOpc, MVT::i32));
4380    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
4381  }
4382
4383  // Create the PPCISD altivec 'dot' comparison node.
4384  SDValue Ops[] = {
4385    Op.getOperand(2),  // LHS
4386    Op.getOperand(3),  // RHS
4387    DAG.getConstant(CompareOpc, MVT::i32)
4388  };
4389  std::vector<EVT> VTs;
4390  VTs.push_back(Op.getOperand(2).getValueType());
4391  VTs.push_back(MVT::Glue);
4392  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4393
4394  // Now that we have the comparison, emit a copy from the CR to a GPR.
4395  // This is flagged to the above dot comparison.
4396  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4397                                DAG.getRegister(PPC::CR6, MVT::i32),
4398                                CompNode.getValue(1));
4399
4400  // Unpack the result based on how the target uses it.
4401  unsigned BitNo;   // Bit # of CR6.
4402  bool InvertBit;   // Invert result?
4403  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4404  default:  // Can't happen, don't crash on invalid number though.
4405  case 0:   // Return the value of the EQ bit of CR6.
4406    BitNo = 0; InvertBit = false;
4407    break;
4408  case 1:   // Return the inverted value of the EQ bit of CR6.
4409    BitNo = 0; InvertBit = true;
4410    break;
4411  case 2:   // Return the value of the LT bit of CR6.
4412    BitNo = 2; InvertBit = false;
4413    break;
4414  case 3:   // Return the inverted value of the LT bit of CR6.
4415    BitNo = 2; InvertBit = true;
4416    break;
4417  }
4418
4419  // Shift the bit into the low position.
4420  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4421                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4422  // Isolate the bit.
4423  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4424                      DAG.getConstant(1, MVT::i32));
4425
4426  // If we are supposed to, toggle the bit.
4427  if (InvertBit)
4428    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4429                        DAG.getConstant(1, MVT::i32));
4430  return Flags;
4431}
4432
4433SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4434                                                   SelectionDAG &DAG) const {
4435  DebugLoc dl = Op.getDebugLoc();
4436  // Create a stack slot that is 16-byte aligned.
4437  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4438  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4439  EVT PtrVT = getPointerTy();
4440  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4441
4442  // Store the input value into Value#0 of the stack slot.
4443  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4444                               Op.getOperand(0), FIdx, MachinePointerInfo(),
4445                               false, false, 0);
4446  // Load it out.
4447  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
4448                     false, false, false, 0);
4449}
4450
4451SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
4452  DebugLoc dl = Op.getDebugLoc();
4453  if (Op.getValueType() == MVT::v4i32) {
4454    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4455
4456    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4457    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4458
4459    SDValue RHSSwap =   // = vrlw RHS, 16
4460      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4461
4462    // Shrinkify inputs to v8i16.
4463    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
4464    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
4465    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
4466
4467    // Low parts multiplied together, generating 32-bit results (we ignore the
4468    // top parts).
4469    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4470                                        LHS, RHS, DAG, dl, MVT::v4i32);
4471
4472    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4473                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4474    // Shift the high parts up 16 bits.
4475    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4476                              Neg16, DAG, dl);
4477    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4478  } else if (Op.getValueType() == MVT::v8i16) {
4479    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4480
4481    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4482
4483    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4484                            LHS, RHS, Zero, DAG, dl);
4485  } else if (Op.getValueType() == MVT::v16i8) {
4486    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4487
4488    // Multiply the even 8-bit parts, producing 16-bit sums.
4489    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4490                                           LHS, RHS, DAG, dl, MVT::v8i16);
4491    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
4492
4493    // Multiply the odd 8-bit parts, producing 16-bit sums.
4494    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4495                                          LHS, RHS, DAG, dl, MVT::v8i16);
4496    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
4497
4498    // Merge the results together.
4499    int Ops[16];
4500    for (unsigned i = 0; i != 8; ++i) {
4501      Ops[i*2  ] = 2*i+1;
4502      Ops[i*2+1] = 2*i+1+16;
4503    }
4504    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4505  } else {
4506    llvm_unreachable("Unknown mul to lower!");
4507  }
4508}
4509
4510/// LowerOperation - Provide custom lowering hooks for some operations.
4511///
4512SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4513  switch (Op.getOpcode()) {
4514  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4515  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4516  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4517  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4518  case ISD::GlobalTLSAddress:   llvm_unreachable("TLS not implemented for PPC");
4519  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4520  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4521  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
4522  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
4523  case ISD::VASTART:
4524    return LowerVASTART(Op, DAG, PPCSubTarget);
4525
4526  case ISD::VAARG:
4527    return LowerVAARG(Op, DAG, PPCSubTarget);
4528
4529  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4530  case ISD::DYNAMIC_STACKALLOC:
4531    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4532
4533  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4534  case ISD::FP_TO_UINT:
4535  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4536                                                       Op.getDebugLoc());
4537  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4538  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4539
4540  // Lower 64-bit shifts.
4541  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4542  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4543  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4544
4545  // Vector-related lowering.
4546  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4547  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4548  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4549  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4550  case ISD::MUL:                return LowerMUL(Op, DAG);
4551
4552  // Frame & Return address.
4553  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4554  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4555  }
4556  return SDValue();
4557}
4558
4559void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4560                                           SmallVectorImpl<SDValue>&Results,
4561                                           SelectionDAG &DAG) const {
4562  const TargetMachine &TM = getTargetMachine();
4563  DebugLoc dl = N->getDebugLoc();
4564  switch (N->getOpcode()) {
4565  default:
4566    assert(false && "Do not know how to custom type legalize this operation!");
4567    return;
4568  case ISD::VAARG: {
4569    if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
4570        || TM.getSubtarget<PPCSubtarget>().isPPC64())
4571      return;
4572
4573    EVT VT = N->getValueType(0);
4574
4575    if (VT == MVT::i64) {
4576      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
4577
4578      Results.push_back(NewNode);
4579      Results.push_back(NewNode.getValue(1));
4580    }
4581    return;
4582  }
4583  case ISD::FP_ROUND_INREG: {
4584    assert(N->getValueType(0) == MVT::ppcf128);
4585    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4586    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4587                             MVT::f64, N->getOperand(0),
4588                             DAG.getIntPtrConstant(0));
4589    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4590                             MVT::f64, N->getOperand(0),
4591                             DAG.getIntPtrConstant(1));
4592
4593    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4594    // of the long double, and puts FPSCR back the way it was.  We do not
4595    // actually model FPSCR.
4596    std::vector<EVT> NodeTys;
4597    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4598
4599    NodeTys.push_back(MVT::f64);   // Return register
4600    NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
4601    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4602    MFFSreg = Result.getValue(0);
4603    InFlag = Result.getValue(1);
4604
4605    NodeTys.clear();
4606    NodeTys.push_back(MVT::Glue);   // Returns a flag
4607    Ops[0] = DAG.getConstant(31, MVT::i32);
4608    Ops[1] = InFlag;
4609    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4610    InFlag = Result.getValue(0);
4611
4612    NodeTys.clear();
4613    NodeTys.push_back(MVT::Glue);   // Returns a flag
4614    Ops[0] = DAG.getConstant(30, MVT::i32);
4615    Ops[1] = InFlag;
4616    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4617    InFlag = Result.getValue(0);
4618
4619    NodeTys.clear();
4620    NodeTys.push_back(MVT::f64);    // result of add
4621    NodeTys.push_back(MVT::Glue);   // Returns a flag
4622    Ops[0] = Lo;
4623    Ops[1] = Hi;
4624    Ops[2] = InFlag;
4625    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4626    FPreg = Result.getValue(0);
4627    InFlag = Result.getValue(1);
4628
4629    NodeTys.clear();
4630    NodeTys.push_back(MVT::f64);
4631    Ops[0] = DAG.getConstant(1, MVT::i32);
4632    Ops[1] = MFFSreg;
4633    Ops[2] = FPreg;
4634    Ops[3] = InFlag;
4635    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4636    FPreg = Result.getValue(0);
4637
4638    // We know the low half is about to be thrown away, so just use something
4639    // convenient.
4640    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4641                                FPreg, FPreg));
4642    return;
4643  }
4644  case ISD::FP_TO_SINT:
4645    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4646    return;
4647  }
4648}
4649
4650
4651//===----------------------------------------------------------------------===//
4652//  Other Lowering Code
4653//===----------------------------------------------------------------------===//
4654
4655MachineBasicBlock *
4656PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4657                                    bool is64bit, unsigned BinOpcode) const {
4658  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4659  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4660
4661  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4662  MachineFunction *F = BB->getParent();
4663  MachineFunction::iterator It = BB;
4664  ++It;
4665
4666  unsigned dest = MI->getOperand(0).getReg();
4667  unsigned ptrA = MI->getOperand(1).getReg();
4668  unsigned ptrB = MI->getOperand(2).getReg();
4669  unsigned incr = MI->getOperand(3).getReg();
4670  DebugLoc dl = MI->getDebugLoc();
4671
4672  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4673  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4674  F->insert(It, loopMBB);
4675  F->insert(It, exitMBB);
4676  exitMBB->splice(exitMBB->begin(), BB,
4677                  llvm::next(MachineBasicBlock::iterator(MI)),
4678                  BB->end());
4679  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4680
4681  MachineRegisterInfo &RegInfo = F->getRegInfo();
4682  unsigned TmpReg = (!BinOpcode) ? incr :
4683    RegInfo.createVirtualRegister(
4684       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4685                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4686
4687  //  thisMBB:
4688  //   ...
4689  //   fallthrough --> loopMBB
4690  BB->addSuccessor(loopMBB);
4691
4692  //  loopMBB:
4693  //   l[wd]arx dest, ptr
4694  //   add r0, dest, incr
4695  //   st[wd]cx. r0, ptr
4696  //   bne- loopMBB
4697  //   fallthrough --> exitMBB
4698  BB = loopMBB;
4699  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4700    .addReg(ptrA).addReg(ptrB);
4701  if (BinOpcode)
4702    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4703  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4704    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4705  BuildMI(BB, dl, TII->get(PPC::BCC))
4706    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4707  BB->addSuccessor(loopMBB);
4708  BB->addSuccessor(exitMBB);
4709
4710  //  exitMBB:
4711  //   ...
4712  BB = exitMBB;
4713  return BB;
4714}
4715
4716MachineBasicBlock *
4717PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4718                                            MachineBasicBlock *BB,
4719                                            bool is8bit,    // operation
4720                                            unsigned BinOpcode) const {
4721  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4722  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4723  // In 64 bit mode we have to use 64 bits for addresses, even though the
4724  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4725  // registers without caring whether they're 32 or 64, but here we're
4726  // doing actual arithmetic on the addresses.
4727  bool is64bit = PPCSubTarget.isPPC64();
4728  unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
4729
4730  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4731  MachineFunction *F = BB->getParent();
4732  MachineFunction::iterator It = BB;
4733  ++It;
4734
4735  unsigned dest = MI->getOperand(0).getReg();
4736  unsigned ptrA = MI->getOperand(1).getReg();
4737  unsigned ptrB = MI->getOperand(2).getReg();
4738  unsigned incr = MI->getOperand(3).getReg();
4739  DebugLoc dl = MI->getDebugLoc();
4740
4741  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4742  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4743  F->insert(It, loopMBB);
4744  F->insert(It, exitMBB);
4745  exitMBB->splice(exitMBB->begin(), BB,
4746                  llvm::next(MachineBasicBlock::iterator(MI)),
4747                  BB->end());
4748  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4749
4750  MachineRegisterInfo &RegInfo = F->getRegInfo();
4751  const TargetRegisterClass *RC =
4752    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4753              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4754  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4755  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4756  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4757  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4758  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4759  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4760  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4761  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4762  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4763  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4764  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4765  unsigned Ptr1Reg;
4766  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4767
4768  //  thisMBB:
4769  //   ...
4770  //   fallthrough --> loopMBB
4771  BB->addSuccessor(loopMBB);
4772
4773  // The 4-byte load must be aligned, while a char or short may be
4774  // anywhere in the word.  Hence all this nasty bookkeeping code.
4775  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4776  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4777  //   xori shift, shift1, 24 [16]
4778  //   rlwinm ptr, ptr1, 0, 0, 29
4779  //   slw incr2, incr, shift
4780  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4781  //   slw mask, mask2, shift
4782  //  loopMBB:
4783  //   lwarx tmpDest, ptr
4784  //   add tmp, tmpDest, incr2
4785  //   andc tmp2, tmpDest, mask
4786  //   and tmp3, tmp, mask
4787  //   or tmp4, tmp3, tmp2
4788  //   stwcx. tmp4, ptr
4789  //   bne- loopMBB
4790  //   fallthrough --> exitMBB
4791  //   srw dest, tmpDest, shift
4792  if (ptrA != ZeroReg) {
4793    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4794    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4795      .addReg(ptrA).addReg(ptrB);
4796  } else {
4797    Ptr1Reg = ptrB;
4798  }
4799  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4800      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4801  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4802      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4803  if (is64bit)
4804    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4805      .addReg(Ptr1Reg).addImm(0).addImm(61);
4806  else
4807    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4808      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4809  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4810      .addReg(incr).addReg(ShiftReg);
4811  if (is8bit)
4812    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4813  else {
4814    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4815    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4816  }
4817  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4818      .addReg(Mask2Reg).addReg(ShiftReg);
4819
4820  BB = loopMBB;
4821  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4822    .addReg(ZeroReg).addReg(PtrReg);
4823  if (BinOpcode)
4824    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4825      .addReg(Incr2Reg).addReg(TmpDestReg);
4826  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4827    .addReg(TmpDestReg).addReg(MaskReg);
4828  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4829    .addReg(TmpReg).addReg(MaskReg);
4830  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4831    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4832  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4833    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
4834  BuildMI(BB, dl, TII->get(PPC::BCC))
4835    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4836  BB->addSuccessor(loopMBB);
4837  BB->addSuccessor(exitMBB);
4838
4839  //  exitMBB:
4840  //   ...
4841  BB = exitMBB;
4842  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
4843    .addReg(ShiftReg);
4844  return BB;
4845}
4846
4847MachineBasicBlock *
4848PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4849                                               MachineBasicBlock *BB) const {
4850  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4851
4852  // To "insert" these instructions we actually have to insert their
4853  // control-flow patterns.
4854  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4855  MachineFunction::iterator It = BB;
4856  ++It;
4857
4858  MachineFunction *F = BB->getParent();
4859
4860  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4861      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4862      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4863      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4864      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4865
4866    // The incoming instruction knows the destination vreg to set, the
4867    // condition code register to branch on, the true/false values to
4868    // select between, and a branch opcode to use.
4869
4870    //  thisMBB:
4871    //  ...
4872    //   TrueVal = ...
4873    //   cmpTY ccX, r1, r2
4874    //   bCC copy1MBB
4875    //   fallthrough --> copy0MBB
4876    MachineBasicBlock *thisMBB = BB;
4877    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4878    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4879    unsigned SelectPred = MI->getOperand(4).getImm();
4880    DebugLoc dl = MI->getDebugLoc();
4881    F->insert(It, copy0MBB);
4882    F->insert(It, sinkMBB);
4883
4884    // Transfer the remainder of BB and its successor edges to sinkMBB.
4885    sinkMBB->splice(sinkMBB->begin(), BB,
4886                    llvm::next(MachineBasicBlock::iterator(MI)),
4887                    BB->end());
4888    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4889
4890    // Next, add the true and fallthrough blocks as its successors.
4891    BB->addSuccessor(copy0MBB);
4892    BB->addSuccessor(sinkMBB);
4893
4894    BuildMI(BB, dl, TII->get(PPC::BCC))
4895      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4896
4897    //  copy0MBB:
4898    //   %FalseValue = ...
4899    //   # fallthrough to sinkMBB
4900    BB = copy0MBB;
4901
4902    // Update machine-CFG edges
4903    BB->addSuccessor(sinkMBB);
4904
4905    //  sinkMBB:
4906    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4907    //  ...
4908    BB = sinkMBB;
4909    BuildMI(*BB, BB->begin(), dl,
4910            TII->get(PPC::PHI), MI->getOperand(0).getReg())
4911      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4912      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4913  }
4914  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4915    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4916  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4917    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4918  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4919    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4920  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4921    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4922
4923  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4924    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4925  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4926    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4927  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4928    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4929  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4930    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4931
4932  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4933    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4934  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4935    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4936  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4937    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4938  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4939    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4940
4941  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4942    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4943  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4944    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4945  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4946    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4947  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4948    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4949
4950  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4951    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4952  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4953    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4954  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4955    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4956  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4957    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4958
4959  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4960    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4961  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4962    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4963  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4964    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4965  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4966    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4967
4968  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4969    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4970  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4971    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4972  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4973    BB = EmitAtomicBinary(MI, BB, false, 0);
4974  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4975    BB = EmitAtomicBinary(MI, BB, true, 0);
4976
4977  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4978           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4979    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4980
4981    unsigned dest   = MI->getOperand(0).getReg();
4982    unsigned ptrA   = MI->getOperand(1).getReg();
4983    unsigned ptrB   = MI->getOperand(2).getReg();
4984    unsigned oldval = MI->getOperand(3).getReg();
4985    unsigned newval = MI->getOperand(4).getReg();
4986    DebugLoc dl     = MI->getDebugLoc();
4987
4988    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4989    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4990    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4991    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4992    F->insert(It, loop1MBB);
4993    F->insert(It, loop2MBB);
4994    F->insert(It, midMBB);
4995    F->insert(It, exitMBB);
4996    exitMBB->splice(exitMBB->begin(), BB,
4997                    llvm::next(MachineBasicBlock::iterator(MI)),
4998                    BB->end());
4999    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5000
5001    //  thisMBB:
5002    //   ...
5003    //   fallthrough --> loopMBB
5004    BB->addSuccessor(loop1MBB);
5005
5006    // loop1MBB:
5007    //   l[wd]arx dest, ptr
5008    //   cmp[wd] dest, oldval
5009    //   bne- midMBB
5010    // loop2MBB:
5011    //   st[wd]cx. newval, ptr
5012    //   bne- loopMBB
5013    //   b exitBB
5014    // midMBB:
5015    //   st[wd]cx. dest, ptr
5016    // exitBB:
5017    BB = loop1MBB;
5018    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5019      .addReg(ptrA).addReg(ptrB);
5020    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
5021      .addReg(oldval).addReg(dest);
5022    BuildMI(BB, dl, TII->get(PPC::BCC))
5023      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5024    BB->addSuccessor(loop2MBB);
5025    BB->addSuccessor(midMBB);
5026
5027    BB = loop2MBB;
5028    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5029      .addReg(newval).addReg(ptrA).addReg(ptrB);
5030    BuildMI(BB, dl, TII->get(PPC::BCC))
5031      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5032    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5033    BB->addSuccessor(loop1MBB);
5034    BB->addSuccessor(exitMBB);
5035
5036    BB = midMBB;
5037    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5038      .addReg(dest).addReg(ptrA).addReg(ptrB);
5039    BB->addSuccessor(exitMBB);
5040
5041    //  exitMBB:
5042    //   ...
5043    BB = exitMBB;
5044  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
5045             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
5046    // We must use 64-bit registers for addresses when targeting 64-bit,
5047    // since we're actually doing arithmetic on them.  Other registers
5048    // can be 32-bit.
5049    bool is64bit = PPCSubTarget.isPPC64();
5050    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
5051
5052    unsigned dest   = MI->getOperand(0).getReg();
5053    unsigned ptrA   = MI->getOperand(1).getReg();
5054    unsigned ptrB   = MI->getOperand(2).getReg();
5055    unsigned oldval = MI->getOperand(3).getReg();
5056    unsigned newval = MI->getOperand(4).getReg();
5057    DebugLoc dl     = MI->getDebugLoc();
5058
5059    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
5060    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
5061    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
5062    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5063    F->insert(It, loop1MBB);
5064    F->insert(It, loop2MBB);
5065    F->insert(It, midMBB);
5066    F->insert(It, exitMBB);
5067    exitMBB->splice(exitMBB->begin(), BB,
5068                    llvm::next(MachineBasicBlock::iterator(MI)),
5069                    BB->end());
5070    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5071
5072    MachineRegisterInfo &RegInfo = F->getRegInfo();
5073    const TargetRegisterClass *RC =
5074      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5075                (const TargetRegisterClass *) &PPC::GPRCRegClass;
5076    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5077    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5078    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5079    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
5080    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
5081    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
5082    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
5083    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5084    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5085    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5086    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5087    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5088    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5089    unsigned Ptr1Reg;
5090    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
5091    unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
5092    //  thisMBB:
5093    //   ...
5094    //   fallthrough --> loopMBB
5095    BB->addSuccessor(loop1MBB);
5096
5097    // The 4-byte load must be aligned, while a char or short may be
5098    // anywhere in the word.  Hence all this nasty bookkeeping code.
5099    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5100    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5101    //   xori shift, shift1, 24 [16]
5102    //   rlwinm ptr, ptr1, 0, 0, 29
5103    //   slw newval2, newval, shift
5104    //   slw oldval2, oldval,shift
5105    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5106    //   slw mask, mask2, shift
5107    //   and newval3, newval2, mask
5108    //   and oldval3, oldval2, mask
5109    // loop1MBB:
5110    //   lwarx tmpDest, ptr
5111    //   and tmp, tmpDest, mask
5112    //   cmpw tmp, oldval3
5113    //   bne- midMBB
5114    // loop2MBB:
5115    //   andc tmp2, tmpDest, mask
5116    //   or tmp4, tmp2, newval3
5117    //   stwcx. tmp4, ptr
5118    //   bne- loop1MBB
5119    //   b exitBB
5120    // midMBB:
5121    //   stwcx. tmpDest, ptr
5122    // exitBB:
5123    //   srw dest, tmpDest, shift
5124    if (ptrA != ZeroReg) {
5125      Ptr1Reg = RegInfo.createVirtualRegister(RC);
5126      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5127        .addReg(ptrA).addReg(ptrB);
5128    } else {
5129      Ptr1Reg = ptrB;
5130    }
5131    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5132        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5133    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5134        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5135    if (is64bit)
5136      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5137        .addReg(Ptr1Reg).addImm(0).addImm(61);
5138    else
5139      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5140        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5141    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
5142        .addReg(newval).addReg(ShiftReg);
5143    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
5144        .addReg(oldval).addReg(ShiftReg);
5145    if (is8bit)
5146      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5147    else {
5148      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5149      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
5150        .addReg(Mask3Reg).addImm(65535);
5151    }
5152    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5153        .addReg(Mask2Reg).addReg(ShiftReg);
5154    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
5155        .addReg(NewVal2Reg).addReg(MaskReg);
5156    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
5157        .addReg(OldVal2Reg).addReg(MaskReg);
5158
5159    BB = loop1MBB;
5160    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5161        .addReg(ZeroReg).addReg(PtrReg);
5162    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
5163        .addReg(TmpDestReg).addReg(MaskReg);
5164    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
5165        .addReg(TmpReg).addReg(OldVal3Reg);
5166    BuildMI(BB, dl, TII->get(PPC::BCC))
5167        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5168    BB->addSuccessor(loop2MBB);
5169    BB->addSuccessor(midMBB);
5170
5171    BB = loop2MBB;
5172    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5173        .addReg(TmpDestReg).addReg(MaskReg);
5174    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5175        .addReg(Tmp2Reg).addReg(NewVal3Reg);
5176    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5177        .addReg(ZeroReg).addReg(PtrReg);
5178    BuildMI(BB, dl, TII->get(PPC::BCC))
5179      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5180    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5181    BB->addSuccessor(loop1MBB);
5182    BB->addSuccessor(exitMBB);
5183
5184    BB = midMBB;
5185    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5186      .addReg(ZeroReg).addReg(PtrReg);
5187    BB->addSuccessor(exitMBB);
5188
5189    //  exitMBB:
5190    //   ...
5191    BB = exitMBB;
5192    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
5193      .addReg(ShiftReg);
5194  } else {
5195    llvm_unreachable("Unexpected instr type to insert");
5196  }
5197
5198  MI->eraseFromParent();   // The pseudo instruction is gone now.
5199  return BB;
5200}
5201
5202//===----------------------------------------------------------------------===//
5203// Target Optimization Hooks
5204//===----------------------------------------------------------------------===//
5205
5206SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5207                                             DAGCombinerInfo &DCI) const {
5208  const TargetMachine &TM = getTargetMachine();
5209  SelectionDAG &DAG = DCI.DAG;
5210  DebugLoc dl = N->getDebugLoc();
5211  switch (N->getOpcode()) {
5212  default: break;
5213  case PPCISD::SHL:
5214    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5215      if (C->isNullValue())   // 0 << V -> 0.
5216        return N->getOperand(0);
5217    }
5218    break;
5219  case PPCISD::SRL:
5220    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5221      if (C->isNullValue())   // 0 >>u V -> 0.
5222        return N->getOperand(0);
5223    }
5224    break;
5225  case PPCISD::SRA:
5226    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5227      if (C->isNullValue() ||   //  0 >>s V -> 0.
5228          C->isAllOnesValue())    // -1 >>s V -> -1.
5229        return N->getOperand(0);
5230    }
5231    break;
5232
5233  case ISD::SINT_TO_FP:
5234    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5235      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5236        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5237        // We allow the src/dst to be either f32/f64, but the intermediate
5238        // type must be i64.
5239        if (N->getOperand(0).getValueType() == MVT::i64 &&
5240            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5241          SDValue Val = N->getOperand(0).getOperand(0);
5242          if (Val.getValueType() == MVT::f32) {
5243            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5244            DCI.AddToWorklist(Val.getNode());
5245          }
5246
5247          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5248          DCI.AddToWorklist(Val.getNode());
5249          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5250          DCI.AddToWorklist(Val.getNode());
5251          if (N->getValueType(0) == MVT::f32) {
5252            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5253                              DAG.getIntPtrConstant(0));
5254            DCI.AddToWorklist(Val.getNode());
5255          }
5256          return Val;
5257        } else if (N->getOperand(0).getValueType() == MVT::i32) {
5258          // If the intermediate type is i32, we can avoid the load/store here
5259          // too.
5260        }
5261      }
5262    }
5263    break;
5264  case ISD::STORE:
5265    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5266    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5267        !cast<StoreSDNode>(N)->isTruncatingStore() &&
5268        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5269        N->getOperand(1).getValueType() == MVT::i32 &&
5270        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5271      SDValue Val = N->getOperand(1).getOperand(0);
5272      if (Val.getValueType() == MVT::f32) {
5273        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5274        DCI.AddToWorklist(Val.getNode());
5275      }
5276      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5277      DCI.AddToWorklist(Val.getNode());
5278
5279      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5280                        N->getOperand(2), N->getOperand(3));
5281      DCI.AddToWorklist(Val.getNode());
5282      return Val;
5283    }
5284
5285    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5286    if (cast<StoreSDNode>(N)->isUnindexed() &&
5287        N->getOperand(1).getOpcode() == ISD::BSWAP &&
5288        N->getOperand(1).getNode()->hasOneUse() &&
5289        (N->getOperand(1).getValueType() == MVT::i32 ||
5290         N->getOperand(1).getValueType() == MVT::i16)) {
5291      SDValue BSwapOp = N->getOperand(1).getOperand(0);
5292      // Do an any-extend to 32-bits if this is a half-word input.
5293      if (BSwapOp.getValueType() == MVT::i16)
5294        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5295
5296      SDValue Ops[] = {
5297        N->getOperand(0), BSwapOp, N->getOperand(2),
5298        DAG.getValueType(N->getOperand(1).getValueType())
5299      };
5300      return
5301        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5302                                Ops, array_lengthof(Ops),
5303                                cast<StoreSDNode>(N)->getMemoryVT(),
5304                                cast<StoreSDNode>(N)->getMemOperand());
5305    }
5306    break;
5307  case ISD::BSWAP:
5308    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5309    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5310        N->getOperand(0).hasOneUse() &&
5311        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5312      SDValue Load = N->getOperand(0);
5313      LoadSDNode *LD = cast<LoadSDNode>(Load);
5314      // Create the byte-swapping load.
5315      SDValue Ops[] = {
5316        LD->getChain(),    // Chain
5317        LD->getBasePtr(),  // Ptr
5318        DAG.getValueType(N->getValueType(0)) // VT
5319      };
5320      SDValue BSLoad =
5321        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5322                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5323                                LD->getMemoryVT(), LD->getMemOperand());
5324
5325      // If this is an i16 load, insert the truncate.
5326      SDValue ResVal = BSLoad;
5327      if (N->getValueType(0) == MVT::i16)
5328        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5329
5330      // First, combine the bswap away.  This makes the value produced by the
5331      // load dead.
5332      DCI.CombineTo(N, ResVal);
5333
5334      // Next, combine the load away, we give it a bogus result value but a real
5335      // chain result.  The result value is dead because the bswap is dead.
5336      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5337
5338      // Return N so it doesn't get rechecked!
5339      return SDValue(N, 0);
5340    }
5341
5342    break;
5343  case PPCISD::VCMP: {
5344    // If a VCMPo node already exists with exactly the same operands as this
5345    // node, use its result instead of this node (VCMPo computes both a CR6 and
5346    // a normal output).
5347    //
5348    if (!N->getOperand(0).hasOneUse() &&
5349        !N->getOperand(1).hasOneUse() &&
5350        !N->getOperand(2).hasOneUse()) {
5351
5352      // Scan all of the users of the LHS, looking for VCMPo's that match.
5353      SDNode *VCMPoNode = 0;
5354
5355      SDNode *LHSN = N->getOperand(0).getNode();
5356      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5357           UI != E; ++UI)
5358        if (UI->getOpcode() == PPCISD::VCMPo &&
5359            UI->getOperand(1) == N->getOperand(1) &&
5360            UI->getOperand(2) == N->getOperand(2) &&
5361            UI->getOperand(0) == N->getOperand(0)) {
5362          VCMPoNode = *UI;
5363          break;
5364        }
5365
5366      // If there is no VCMPo node, or if the flag value has a single use, don't
5367      // transform this.
5368      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5369        break;
5370
5371      // Look at the (necessarily single) use of the flag value.  If it has a
5372      // chain, this transformation is more complex.  Note that multiple things
5373      // could use the value result, which we should ignore.
5374      SDNode *FlagUser = 0;
5375      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5376           FlagUser == 0; ++UI) {
5377        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5378        SDNode *User = *UI;
5379        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5380          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5381            FlagUser = User;
5382            break;
5383          }
5384        }
5385      }
5386
5387      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5388      // give up for right now.
5389      if (FlagUser->getOpcode() == PPCISD::MFCR)
5390        return SDValue(VCMPoNode, 0);
5391    }
5392    break;
5393  }
5394  case ISD::BR_CC: {
5395    // If this is a branch on an altivec predicate comparison, lower this so
5396    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5397    // lowering is done pre-legalize, because the legalizer lowers the predicate
5398    // compare down to code that is difficult to reassemble.
5399    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5400    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5401    int CompareOpc;
5402    bool isDot;
5403
5404    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5405        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5406        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5407      assert(isDot && "Can't compare against a vector result!");
5408
5409      // If this is a comparison against something other than 0/1, then we know
5410      // that the condition is never/always true.
5411      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5412      if (Val != 0 && Val != 1) {
5413        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5414          return N->getOperand(0);
5415        // Always !=, turn it into an unconditional branch.
5416        return DAG.getNode(ISD::BR, dl, MVT::Other,
5417                           N->getOperand(0), N->getOperand(4));
5418      }
5419
5420      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5421
5422      // Create the PPCISD altivec 'dot' comparison node.
5423      std::vector<EVT> VTs;
5424      SDValue Ops[] = {
5425        LHS.getOperand(2),  // LHS of compare
5426        LHS.getOperand(3),  // RHS of compare
5427        DAG.getConstant(CompareOpc, MVT::i32)
5428      };
5429      VTs.push_back(LHS.getOperand(2).getValueType());
5430      VTs.push_back(MVT::Glue);
5431      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5432
5433      // Unpack the result based on how the target uses it.
5434      PPC::Predicate CompOpc;
5435      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5436      default:  // Can't happen, don't crash on invalid number though.
5437      case 0:   // Branch on the value of the EQ bit of CR6.
5438        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5439        break;
5440      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5441        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5442        break;
5443      case 2:   // Branch on the value of the LT bit of CR6.
5444        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5445        break;
5446      case 3:   // Branch on the inverted value of the LT bit of CR6.
5447        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5448        break;
5449      }
5450
5451      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5452                         DAG.getConstant(CompOpc, MVT::i32),
5453                         DAG.getRegister(PPC::CR6, MVT::i32),
5454                         N->getOperand(4), CompNode.getValue(1));
5455    }
5456    break;
5457  }
5458  }
5459
5460  return SDValue();
5461}
5462
5463//===----------------------------------------------------------------------===//
5464// Inline Assembly Support
5465//===----------------------------------------------------------------------===//
5466
5467void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5468                                                       const APInt &Mask,
5469                                                       APInt &KnownZero,
5470                                                       APInt &KnownOne,
5471                                                       const SelectionDAG &DAG,
5472                                                       unsigned Depth) const {
5473  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5474  switch (Op.getOpcode()) {
5475  default: break;
5476  case PPCISD::LBRX: {
5477    // lhbrx is known to have the top bits cleared out.
5478    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5479      KnownZero = 0xFFFF0000;
5480    break;
5481  }
5482  case ISD::INTRINSIC_WO_CHAIN: {
5483    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5484    default: break;
5485    case Intrinsic::ppc_altivec_vcmpbfp_p:
5486    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5487    case Intrinsic::ppc_altivec_vcmpequb_p:
5488    case Intrinsic::ppc_altivec_vcmpequh_p:
5489    case Intrinsic::ppc_altivec_vcmpequw_p:
5490    case Intrinsic::ppc_altivec_vcmpgefp_p:
5491    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5492    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5493    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5494    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5495    case Intrinsic::ppc_altivec_vcmpgtub_p:
5496    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5497    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5498      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5499      break;
5500    }
5501  }
5502  }
5503}
5504
5505
5506/// getConstraintType - Given a constraint, return the type of
5507/// constraint it is for this target.
5508PPCTargetLowering::ConstraintType
5509PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5510  if (Constraint.size() == 1) {
5511    switch (Constraint[0]) {
5512    default: break;
5513    case 'b':
5514    case 'r':
5515    case 'f':
5516    case 'v':
5517    case 'y':
5518      return C_RegisterClass;
5519    }
5520  }
5521  return TargetLowering::getConstraintType(Constraint);
5522}
5523
5524/// Examine constraint type and operand type and determine a weight value.
5525/// This object must already have been set up with the operand type
5526/// and the current alternative constraint selected.
5527TargetLowering::ConstraintWeight
5528PPCTargetLowering::getSingleConstraintMatchWeight(
5529    AsmOperandInfo &info, const char *constraint) const {
5530  ConstraintWeight weight = CW_Invalid;
5531  Value *CallOperandVal = info.CallOperandVal;
5532    // If we don't have a value, we can't do a match,
5533    // but allow it at the lowest weight.
5534  if (CallOperandVal == NULL)
5535    return CW_Default;
5536  Type *type = CallOperandVal->getType();
5537  // Look at the constraint type.
5538  switch (*constraint) {
5539  default:
5540    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5541    break;
5542  case 'b':
5543    if (type->isIntegerTy())
5544      weight = CW_Register;
5545    break;
5546  case 'f':
5547    if (type->isFloatTy())
5548      weight = CW_Register;
5549    break;
5550  case 'd':
5551    if (type->isDoubleTy())
5552      weight = CW_Register;
5553    break;
5554  case 'v':
5555    if (type->isVectorTy())
5556      weight = CW_Register;
5557    break;
5558  case 'y':
5559    weight = CW_Register;
5560    break;
5561  }
5562  return weight;
5563}
5564
5565std::pair<unsigned, const TargetRegisterClass*>
5566PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5567                                                EVT VT) const {
5568  if (Constraint.size() == 1) {
5569    // GCC RS6000 Constraint Letters
5570    switch (Constraint[0]) {
5571    case 'b':   // R1-R31
5572    case 'r':   // R0-R31
5573      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5574        return std::make_pair(0U, PPC::G8RCRegisterClass);
5575      return std::make_pair(0U, PPC::GPRCRegisterClass);
5576    case 'f':
5577      if (VT == MVT::f32)
5578        return std::make_pair(0U, PPC::F4RCRegisterClass);
5579      else if (VT == MVT::f64)
5580        return std::make_pair(0U, PPC::F8RCRegisterClass);
5581      break;
5582    case 'v':
5583      return std::make_pair(0U, PPC::VRRCRegisterClass);
5584    case 'y':   // crrc
5585      return std::make_pair(0U, PPC::CRRCRegisterClass);
5586    }
5587  }
5588
5589  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5590}
5591
5592
5593/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5594/// vector.  If it is invalid, don't add anything to Ops.
5595void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5596                                                     std::string &Constraint,
5597                                                     std::vector<SDValue>&Ops,
5598                                                     SelectionDAG &DAG) const {
5599  SDValue Result(0,0);
5600
5601  // Only support length 1 constraints.
5602  if (Constraint.length() > 1) return;
5603
5604  char Letter = Constraint[0];
5605  switch (Letter) {
5606  default: break;
5607  case 'I':
5608  case 'J':
5609  case 'K':
5610  case 'L':
5611  case 'M':
5612  case 'N':
5613  case 'O':
5614  case 'P': {
5615    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5616    if (!CST) return; // Must be an immediate to match.
5617    unsigned Value = CST->getZExtValue();
5618    switch (Letter) {
5619    default: llvm_unreachable("Unknown constraint letter!");
5620    case 'I':  // "I" is a signed 16-bit constant.
5621      if ((short)Value == (int)Value)
5622        Result = DAG.getTargetConstant(Value, Op.getValueType());
5623      break;
5624    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5625    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5626      if ((short)Value == 0)
5627        Result = DAG.getTargetConstant(Value, Op.getValueType());
5628      break;
5629    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5630      if ((Value >> 16) == 0)
5631        Result = DAG.getTargetConstant(Value, Op.getValueType());
5632      break;
5633    case 'M':  // "M" is a constant that is greater than 31.
5634      if (Value > 31)
5635        Result = DAG.getTargetConstant(Value, Op.getValueType());
5636      break;
5637    case 'N':  // "N" is a positive constant that is an exact power of two.
5638      if ((int)Value > 0 && isPowerOf2_32(Value))
5639        Result = DAG.getTargetConstant(Value, Op.getValueType());
5640      break;
5641    case 'O':  // "O" is the constant zero.
5642      if (Value == 0)
5643        Result = DAG.getTargetConstant(Value, Op.getValueType());
5644      break;
5645    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5646      if ((short)-Value == (int)-Value)
5647        Result = DAG.getTargetConstant(Value, Op.getValueType());
5648      break;
5649    }
5650    break;
5651  }
5652  }
5653
5654  if (Result.getNode()) {
5655    Ops.push_back(Result);
5656    return;
5657  }
5658
5659  // Handle standard constraint letters.
5660  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5661}
5662
5663// isLegalAddressingMode - Return true if the addressing mode represented
5664// by AM is legal for this target, for a load/store of the specified type.
5665bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5666                                              Type *Ty) const {
5667  // FIXME: PPC does not allow r+i addressing modes for vectors!
5668
5669  // PPC allows a sign-extended 16-bit immediate field.
5670  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5671    return false;
5672
5673  // No global is ever allowed as a base.
5674  if (AM.BaseGV)
5675    return false;
5676
5677  // PPC only support r+r,
5678  switch (AM.Scale) {
5679  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5680    break;
5681  case 1:
5682    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5683      return false;
5684    // Otherwise we have r+r or r+i.
5685    break;
5686  case 2:
5687    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5688      return false;
5689    // Allow 2*r as r+r.
5690    break;
5691  default:
5692    // No other scales are supported.
5693    return false;
5694  }
5695
5696  return true;
5697}
5698
5699/// isLegalAddressImmediate - Return true if the integer value can be used
5700/// as the offset of the target addressing mode for load / store of the
5701/// given type.
5702bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{
5703  // PPC allows a sign-extended 16-bit immediate field.
5704  return (V > -(1 << 16) && V < (1 << 16)-1);
5705}
5706
5707bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5708  return false;
5709}
5710
5711SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
5712                                           SelectionDAG &DAG) const {
5713  MachineFunction &MF = DAG.getMachineFunction();
5714  MachineFrameInfo *MFI = MF.getFrameInfo();
5715  MFI->setReturnAddressIsTaken(true);
5716
5717  DebugLoc dl = Op.getDebugLoc();
5718  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5719
5720  // Make sure the function does not optimize away the store of the RA to
5721  // the stack.
5722  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5723  FuncInfo->setLRStoreRequired();
5724  bool isPPC64 = PPCSubTarget.isPPC64();
5725  bool isDarwinABI = PPCSubTarget.isDarwinABI();
5726
5727  if (Depth > 0) {
5728    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5729    SDValue Offset =
5730
5731      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
5732                      isPPC64? MVT::i64 : MVT::i32);
5733    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5734                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
5735                                   FrameAddr, Offset),
5736                       MachinePointerInfo(), false, false, false, 0);
5737  }
5738
5739  // Just load the return address off the stack.
5740  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5741  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5742                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
5743}
5744
5745SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
5746                                          SelectionDAG &DAG) const {
5747  DebugLoc dl = Op.getDebugLoc();
5748  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5749
5750  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5751  bool isPPC64 = PtrVT == MVT::i64;
5752
5753  MachineFunction &MF = DAG.getMachineFunction();
5754  MachineFrameInfo *MFI = MF.getFrameInfo();
5755  MFI->setFrameAddressIsTaken(true);
5756  bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) &&
5757                  MFI->getStackSize() &&
5758                  !MF.getFunction()->hasFnAttr(Attribute::Naked);
5759  unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
5760                                (is31 ? PPC::R31 : PPC::R1);
5761  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
5762                                         PtrVT);
5763  while (Depth--)
5764    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
5765                            FrameAddr, MachinePointerInfo(), false, false,
5766                            false, 0);
5767  return FrameAddr;
5768}
5769
5770bool
5771PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5772  // The PowerPC target isn't yet aware of offsets.
5773  return false;
5774}
5775
5776/// getOptimalMemOpType - Returns the target specific optimal type for load
5777/// and store operations as a result of memset, memcpy, and memmove
5778/// lowering. If DstAlign is zero that means it's safe to destination
5779/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5780/// means there isn't a need to check it against alignment requirement,
5781/// probably because the source does not need to be loaded. If
5782/// 'IsZeroVal' is true, that means it's safe to return a
5783/// non-scalar-integer type, e.g. empty string source, constant, or loaded
5784/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
5785/// constant so it does not need to be loaded.
5786/// It returns EVT::Other if the type should be determined using generic
5787/// target-independent logic.
5788EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
5789                                           unsigned DstAlign, unsigned SrcAlign,
5790                                           bool IsZeroVal,
5791                                           bool MemcpyStrSrc,
5792                                           MachineFunction &MF) const {
5793  if (this->PPCSubTarget.isPPC64()) {
5794    return MVT::i64;
5795  } else {
5796    return MVT::i32;
5797  }
5798}
5799