PPCISelLowering.cpp revision d75686a471ee6ed5260e29d22d54f15152bbc9b4
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/CodeGen/SelectionDAG.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
38cl::desc("enable preincrement load/store generation on PPC (experimental)"),
39                                     cl::Hidden);
40
41PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
42  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
43
44  setPow2DivIsCheap();
45
46  // Use _setjmp/_longjmp instead of setjmp/longjmp.
47  setUseUnderscoreSetJmp(true);
48  setUseUnderscoreLongJmp(true);
49
50  // Set up the register classes.
51  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
52  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
53  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
54
55  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
56  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
57  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
58
59  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
60
61  // PowerPC has pre-inc load and store's.
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
73  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
74  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
75  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
76  // This is used in the ppcf128->int sequence.  Note it has different semantics
77  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
78  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
79
80  // PowerPC has no intrinsics for these particular operations
81  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
82  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
83  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
84  setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
85
86  // PowerPC has no SREM/UREM instructions
87  setOperationAction(ISD::SREM, MVT::i32, Expand);
88  setOperationAction(ISD::UREM, MVT::i32, Expand);
89  setOperationAction(ISD::SREM, MVT::i64, Expand);
90  setOperationAction(ISD::UREM, MVT::i64, Expand);
91
92  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
93  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
94  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
95  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
96  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
97  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
98  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
99  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
100  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
101
102  // We don't support sin/cos/sqrt/fmod/pow
103  setOperationAction(ISD::FSIN , MVT::f64, Expand);
104  setOperationAction(ISD::FCOS , MVT::f64, Expand);
105  setOperationAction(ISD::FREM , MVT::f64, Expand);
106  setOperationAction(ISD::FPOW , MVT::f64, Expand);
107  setOperationAction(ISD::FSIN , MVT::f32, Expand);
108  setOperationAction(ISD::FCOS , MVT::f32, Expand);
109  setOperationAction(ISD::FREM , MVT::f32, Expand);
110  setOperationAction(ISD::FPOW , MVT::f32, Expand);
111
112  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
113
114  // If we're enabling GP optimizations, use hardware square root
115  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
116    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
117    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
118  }
119
120  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
121  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
122
123  // PowerPC does not have BSWAP, CTPOP or CTTZ
124  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
125  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
126  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
127  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
128  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
129  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
130
131  // PowerPC does not have ROTR
132  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
133
134  // PowerPC does not have Select
135  setOperationAction(ISD::SELECT, MVT::i32, Expand);
136  setOperationAction(ISD::SELECT, MVT::i64, Expand);
137  setOperationAction(ISD::SELECT, MVT::f32, Expand);
138  setOperationAction(ISD::SELECT, MVT::f64, Expand);
139
140  // PowerPC wants to turn select_cc of FP into fsel when possible.
141  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
142  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
143
144  // PowerPC wants to optimize integer setcc a bit
145  setOperationAction(ISD::SETCC, MVT::i32, Custom);
146
147  // PowerPC does not have BRCOND which requires SetCC
148  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
149
150  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
151
152  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
153  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
154
155  // PowerPC does not have [U|S]INT_TO_FP
156  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
157  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
158
159  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
160  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
161  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
162  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
163
164  // We cannot sextinreg(i1).  Expand to shifts.
165  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
166
167  // Support label based line numbers.
168  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
169  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
170
171  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
172  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
173  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
174  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
175
176
177  // We want to legalize GlobalAddress and ConstantPool nodes into the
178  // appropriate instructions to materialize the address.
179  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
180  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
181  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
182  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
183  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
184  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
185  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
186  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
187
188  // RET must be custom lowered, to meet ABI requirements
189  setOperationAction(ISD::RET               , MVT::Other, Custom);
190
191  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
192  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
193
194  // VAARG is custom lowered with ELF 32 ABI
195  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
196    setOperationAction(ISD::VAARG, MVT::Other, Custom);
197  else
198    setOperationAction(ISD::VAARG, MVT::Other, Expand);
199
200  // Use the default implementation.
201  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
202  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
203  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
204  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
205  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
206  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
207
208  // We want to custom lower some of our intrinsics.
209  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
210
211  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
212    // They also have instructions for converting between i64 and fp.
213    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
214    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
215    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
216    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
217    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
218
219    // FIXME: disable this lowered code.  This generates 64-bit register values,
220    // and we don't model the fact that the top part is clobbered by calls.  We
221    // need to flag these together so that the value isn't live across a call.
222    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
223
224    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
225    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
226  } else {
227    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
228    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
229  }
230
231  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
232    // 64-bit PowerPC implementations can support i64 types directly
233    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
234    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
235    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
236    // 64-bit PowerPC wants to expand i128 shifts itself.
237    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
238    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
239    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
240  } else {
241    // 32-bit PowerPC wants to expand i64 shifts itself.
242    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
243    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
244    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
245  }
246
247  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
248    // First set operation action for all vector types to expand. Then we
249    // will selectively turn on ones that can be effectively codegen'd.
250    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
251         VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
252      // add/sub are legal for all supported vector VT's.
253      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
254      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
255
256      // We promote all shuffles to v16i8.
257      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
258      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
259
260      // We promote all non-typed operations to v4i32.
261      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
262      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
263      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
264      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
265      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
266      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
267      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
268      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
269      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
270      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
271      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
272      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
273
274      // No other operations are legal.
275      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
276      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
277      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
278      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
279      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
280      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
281      setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
282      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
283      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
284      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
285      setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
286      setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
287      setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
288      setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
289      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
290      setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
291      setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
292      setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
293      setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
294    }
295
296    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
297    // with merges, splats, etc.
298    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
299
300    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
301    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
302    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
303    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
304    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
305    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
306
307    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
308    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
309    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
310    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
311
312    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
313    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
314    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
315    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
316
317    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
318    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
319
320    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
321    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
322    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
323    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
324  }
325
326  setShiftAmountType(MVT::i32);
327  setSetCCResultContents(ZeroOrOneSetCCResult);
328
329  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
330    setStackPointerRegisterToSaveRestore(PPC::X1);
331    setExceptionPointerRegister(PPC::X3);
332    setExceptionSelectorRegister(PPC::X4);
333  } else {
334    setStackPointerRegisterToSaveRestore(PPC::R1);
335    setExceptionPointerRegister(PPC::R3);
336    setExceptionSelectorRegister(PPC::R4);
337  }
338
339  // We have target-specific dag combine patterns for the following nodes:
340  setTargetDAGCombine(ISD::SINT_TO_FP);
341  setTargetDAGCombine(ISD::STORE);
342  setTargetDAGCombine(ISD::BR_CC);
343  setTargetDAGCombine(ISD::BSWAP);
344
345  // Darwin long double math library functions have $LDBL128 appended.
346  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
347    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
348    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
349    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
350    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
351    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
352  }
353
354  computeRegisterProperties();
355}
356
357/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
358/// function arguments in the caller parameter area.
359unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
360  TargetMachine &TM = getTargetMachine();
361  // Darwin passes everything on 4 byte boundary.
362  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
363    return 4;
364  // FIXME Elf TBD
365  return 4;
366}
367
368const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
369  switch (Opcode) {
370  default: return 0;
371  case PPCISD::FSEL:          return "PPCISD::FSEL";
372  case PPCISD::FCFID:         return "PPCISD::FCFID";
373  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
374  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
375  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
376  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
377  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
378  case PPCISD::VPERM:         return "PPCISD::VPERM";
379  case PPCISD::Hi:            return "PPCISD::Hi";
380  case PPCISD::Lo:            return "PPCISD::Lo";
381  case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC";
382  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
383  case PPCISD::SRL:           return "PPCISD::SRL";
384  case PPCISD::SRA:           return "PPCISD::SRA";
385  case PPCISD::SHL:           return "PPCISD::SHL";
386  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
387  case PPCISD::STD_32:        return "PPCISD::STD_32";
388  case PPCISD::CALL_ELF:      return "PPCISD::CALL_ELF";
389  case PPCISD::CALL_Macho:    return "PPCISD::CALL_Macho";
390  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
391  case PPCISD::BCTRL_Macho:   return "PPCISD::BCTRL_Macho";
392  case PPCISD::BCTRL_ELF:     return "PPCISD::BCTRL_ELF";
393  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
394  case PPCISD::MFCR:          return "PPCISD::MFCR";
395  case PPCISD::VCMP:          return "PPCISD::VCMP";
396  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
397  case PPCISD::LBRX:          return "PPCISD::LBRX";
398  case PPCISD::STBRX:         return "PPCISD::STBRX";
399  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
400  case PPCISD::MFFS:          return "PPCISD::MFFS";
401  case PPCISD::MTFSB0:        return "PPCISD::MTFSB0";
402  case PPCISD::MTFSB1:        return "PPCISD::MTFSB1";
403  case PPCISD::FADDRTZ:       return "PPCISD::FADDRTZ";
404  case PPCISD::MTFSF:         return "PPCISD::MTFSF";
405  }
406}
407
408
409MVT::ValueType
410PPCTargetLowering::getSetCCResultType(const SDOperand &) const {
411  return MVT::i32;
412}
413
414
415//===----------------------------------------------------------------------===//
416// Node matching predicates, for use by the tblgen matching code.
417//===----------------------------------------------------------------------===//
418
419/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
420static bool isFloatingPointZero(SDOperand Op) {
421  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
422    return CFP->getValueAPF().isZero();
423  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
424    // Maybe this has already been legalized into the constant pool?
425    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
426      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
427        return CFP->getValueAPF().isZero();
428  }
429  return false;
430}
431
432/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
433/// true if Op is undef or if it matches the specified value.
434static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
435  return Op.getOpcode() == ISD::UNDEF ||
436         cast<ConstantSDNode>(Op)->getValue() == Val;
437}
438
439/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
440/// VPKUHUM instruction.
441bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
442  if (!isUnary) {
443    for (unsigned i = 0; i != 16; ++i)
444      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
445        return false;
446  } else {
447    for (unsigned i = 0; i != 8; ++i)
448      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
449          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
450        return false;
451  }
452  return true;
453}
454
455/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
456/// VPKUWUM instruction.
457bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
458  if (!isUnary) {
459    for (unsigned i = 0; i != 16; i += 2)
460      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
461          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
462        return false;
463  } else {
464    for (unsigned i = 0; i != 8; i += 2)
465      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
466          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
467          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
468          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
469        return false;
470  }
471  return true;
472}
473
474/// isVMerge - Common function, used to match vmrg* shuffles.
475///
476static bool isVMerge(SDNode *N, unsigned UnitSize,
477                     unsigned LHSStart, unsigned RHSStart) {
478  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
479         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
480  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
481         "Unsupported merge size!");
482
483  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
484    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
485      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
486                             LHSStart+j+i*UnitSize) ||
487          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
488                             RHSStart+j+i*UnitSize))
489        return false;
490    }
491      return true;
492}
493
494/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
495/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
496bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
497  if (!isUnary)
498    return isVMerge(N, UnitSize, 8, 24);
499  return isVMerge(N, UnitSize, 8, 8);
500}
501
502/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
503/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
504bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
505  if (!isUnary)
506    return isVMerge(N, UnitSize, 0, 16);
507  return isVMerge(N, UnitSize, 0, 0);
508}
509
510
511/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
512/// amount, otherwise return -1.
513int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
514  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
515         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
516  // Find the first non-undef value in the shuffle mask.
517  unsigned i;
518  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
519    /*search*/;
520
521  if (i == 16) return -1;  // all undef.
522
523  // Otherwise, check to see if the rest of the elements are consequtively
524  // numbered from this value.
525  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
526  if (ShiftAmt < i) return -1;
527  ShiftAmt -= i;
528
529  if (!isUnary) {
530    // Check the rest of the elements to see if they are consequtive.
531    for (++i; i != 16; ++i)
532      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
533        return -1;
534  } else {
535    // Check the rest of the elements to see if they are consequtive.
536    for (++i; i != 16; ++i)
537      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
538        return -1;
539  }
540
541  return ShiftAmt;
542}
543
544/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
545/// specifies a splat of a single element that is suitable for input to
546/// VSPLTB/VSPLTH/VSPLTW.
547bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
548  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
549         N->getNumOperands() == 16 &&
550         (EltSize == 1 || EltSize == 2 || EltSize == 4));
551
552  // This is a splat operation if each element of the permute is the same, and
553  // if the value doesn't reference the second vector.
554  unsigned ElementBase = 0;
555  SDOperand Elt = N->getOperand(0);
556  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
557    ElementBase = EltV->getValue();
558  else
559    return false;   // FIXME: Handle UNDEF elements too!
560
561  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
562    return false;
563
564  // Check that they are consequtive.
565  for (unsigned i = 1; i != EltSize; ++i) {
566    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
567        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
568      return false;
569  }
570
571  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
572  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
573    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
574    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
575           "Invalid VECTOR_SHUFFLE mask!");
576    for (unsigned j = 0; j != EltSize; ++j)
577      if (N->getOperand(i+j) != N->getOperand(j))
578        return false;
579  }
580
581  return true;
582}
583
584/// isAllNegativeZeroVector - Returns true if all elements of build_vector
585/// are -0.0.
586bool PPC::isAllNegativeZeroVector(SDNode *N) {
587  assert(N->getOpcode() == ISD::BUILD_VECTOR);
588  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
589    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
590      return CFP->getValueAPF().isNegZero();
591  return false;
592}
593
594/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
595/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
596unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
597  assert(isSplatShuffleMask(N, EltSize));
598  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
599}
600
601/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
602/// by using a vspltis[bhw] instruction of the specified element size, return
603/// the constant being splatted.  The ByteSize field indicates the number of
604/// bytes of each element [124] -> [bhw].
605SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
606  SDOperand OpVal(0, 0);
607
608  // If ByteSize of the splat is bigger than the element size of the
609  // build_vector, then we have a case where we are checking for a splat where
610  // multiple elements of the buildvector are folded together into a single
611  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
612  unsigned EltSize = 16/N->getNumOperands();
613  if (EltSize < ByteSize) {
614    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
615    SDOperand UniquedVals[4];
616    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
617
618    // See if all of the elements in the buildvector agree across.
619    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
620      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
621      // If the element isn't a constant, bail fully out.
622      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
623
624
625      if (UniquedVals[i&(Multiple-1)].Val == 0)
626        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
627      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
628        return SDOperand();  // no match.
629    }
630
631    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
632    // either constant or undef values that are identical for each chunk.  See
633    // if these chunks can form into a larger vspltis*.
634
635    // Check to see if all of the leading entries are either 0 or -1.  If
636    // neither, then this won't fit into the immediate field.
637    bool LeadingZero = true;
638    bool LeadingOnes = true;
639    for (unsigned i = 0; i != Multiple-1; ++i) {
640      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
641
642      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
643      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
644    }
645    // Finally, check the least significant entry.
646    if (LeadingZero) {
647      if (UniquedVals[Multiple-1].Val == 0)
648        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
649      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
650      if (Val < 16)
651        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
652    }
653    if (LeadingOnes) {
654      if (UniquedVals[Multiple-1].Val == 0)
655        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
656      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
657      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
658        return DAG.getTargetConstant(Val, MVT::i32);
659    }
660
661    return SDOperand();
662  }
663
664  // Check to see if this buildvec has a single non-undef value in its elements.
665  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
666    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
667    if (OpVal.Val == 0)
668      OpVal = N->getOperand(i);
669    else if (OpVal != N->getOperand(i))
670      return SDOperand();
671  }
672
673  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
674
675  unsigned ValSizeInBytes = 0;
676  uint64_t Value = 0;
677  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
678    Value = CN->getValue();
679    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
680  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
681    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
682    Value = FloatToBits(CN->getValueAPF().convertToFloat());
683    ValSizeInBytes = 4;
684  }
685
686  // If the splat value is larger than the element value, then we can never do
687  // this splat.  The only case that we could fit the replicated bits into our
688  // immediate field for would be zero, and we prefer to use vxor for it.
689  if (ValSizeInBytes < ByteSize) return SDOperand();
690
691  // If the element value is larger than the splat value, cut it in half and
692  // check to see if the two halves are equal.  Continue doing this until we
693  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
694  while (ValSizeInBytes > ByteSize) {
695    ValSizeInBytes >>= 1;
696
697    // If the top half equals the bottom half, we're still ok.
698    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
699         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
700      return SDOperand();
701  }
702
703  // Properly sign extend the value.
704  int ShAmt = (4-ByteSize)*8;
705  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
706
707  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
708  if (MaskVal == 0) return SDOperand();
709
710  // Finally, if this value fits in a 5 bit sext field, return it
711  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
712    return DAG.getTargetConstant(MaskVal, MVT::i32);
713  return SDOperand();
714}
715
716//===----------------------------------------------------------------------===//
717//  Addressing Mode Selection
718//===----------------------------------------------------------------------===//
719
720/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
721/// or 64-bit immediate, and if the value can be accurately represented as a
722/// sign extension from a 16-bit value.  If so, this returns true and the
723/// immediate.
724static bool isIntS16Immediate(SDNode *N, short &Imm) {
725  if (N->getOpcode() != ISD::Constant)
726    return false;
727
728  Imm = (short)cast<ConstantSDNode>(N)->getValue();
729  if (N->getValueType(0) == MVT::i32)
730    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
731  else
732    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
733}
734static bool isIntS16Immediate(SDOperand Op, short &Imm) {
735  return isIntS16Immediate(Op.Val, Imm);
736}
737
738
739/// SelectAddressRegReg - Given the specified addressed, check to see if it
740/// can be represented as an indexed [r+r] operation.  Returns false if it
741/// can be more efficiently represented with [r+imm].
742bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
743                                            SDOperand &Index,
744                                            SelectionDAG &DAG) {
745  short imm = 0;
746  if (N.getOpcode() == ISD::ADD) {
747    if (isIntS16Immediate(N.getOperand(1), imm))
748      return false;    // r+i
749    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
750      return false;    // r+i
751
752    Base = N.getOperand(0);
753    Index = N.getOperand(1);
754    return true;
755  } else if (N.getOpcode() == ISD::OR) {
756    if (isIntS16Immediate(N.getOperand(1), imm))
757      return false;    // r+i can fold it if we can.
758
759    // If this is an or of disjoint bitfields, we can codegen this as an add
760    // (for better address arithmetic) if the LHS and RHS of the OR are provably
761    // disjoint.
762    APInt LHSKnownZero, LHSKnownOne;
763    APInt RHSKnownZero, RHSKnownOne;
764    DAG.ComputeMaskedBits(N.getOperand(0),
765                          APInt::getAllOnesValue(N.getOperand(0)
766                            .getValueSizeInBits()),
767                          LHSKnownZero, LHSKnownOne);
768
769    if (LHSKnownZero.getBoolValue()) {
770      DAG.ComputeMaskedBits(N.getOperand(1),
771                            APInt::getAllOnesValue(N.getOperand(1)
772                              .getValueSizeInBits()),
773                            RHSKnownZero, RHSKnownOne);
774      // If all of the bits are known zero on the LHS or RHS, the add won't
775      // carry.
776      if (~(LHSKnownZero | RHSKnownZero) == 0) {
777        Base = N.getOperand(0);
778        Index = N.getOperand(1);
779        return true;
780      }
781    }
782  }
783
784  return false;
785}
786
787/// Returns true if the address N can be represented by a base register plus
788/// a signed 16-bit displacement [r+imm], and if it is not better
789/// represented as reg+reg.
790bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
791                                            SDOperand &Base, SelectionDAG &DAG){
792  // If this can be more profitably realized as r+r, fail.
793  if (SelectAddressRegReg(N, Disp, Base, DAG))
794    return false;
795
796  if (N.getOpcode() == ISD::ADD) {
797    short imm = 0;
798    if (isIntS16Immediate(N.getOperand(1), imm)) {
799      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
800      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
801        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
802      } else {
803        Base = N.getOperand(0);
804      }
805      return true; // [r+i]
806    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
807      // Match LOAD (ADD (X, Lo(G))).
808      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
809             && "Cannot handle constant offsets yet!");
810      Disp = N.getOperand(1).getOperand(0);  // The global address.
811      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
812             Disp.getOpcode() == ISD::TargetConstantPool ||
813             Disp.getOpcode() == ISD::TargetJumpTable);
814      Base = N.getOperand(0);
815      return true;  // [&g+r]
816    }
817  } else if (N.getOpcode() == ISD::OR) {
818    short imm = 0;
819    if (isIntS16Immediate(N.getOperand(1), imm)) {
820      // If this is an or of disjoint bitfields, we can codegen this as an add
821      // (for better address arithmetic) if the LHS and RHS of the OR are
822      // provably disjoint.
823      APInt LHSKnownZero, LHSKnownOne;
824      DAG.ComputeMaskedBits(N.getOperand(0),
825                            APInt::getAllOnesValue(32),
826                            LHSKnownZero, LHSKnownOne);
827      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
828        // If all of the bits are known zero on the LHS or RHS, the add won't
829        // carry.
830        Base = N.getOperand(0);
831        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
832        return true;
833      }
834    }
835  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
836    // Loading from a constant address.
837
838    // If this address fits entirely in a 16-bit sext immediate field, codegen
839    // this as "d, 0"
840    short Imm;
841    if (isIntS16Immediate(CN, Imm)) {
842      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
843      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
844      return true;
845    }
846
847    // Handle 32-bit sext immediates with LIS + addr mode.
848    if (CN->getValueType(0) == MVT::i32 ||
849        (int64_t)CN->getValue() == (int)CN->getValue()) {
850      int Addr = (int)CN->getValue();
851
852      // Otherwise, break this down into an LIS + disp.
853      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
854
855      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
856      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
857      Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
858      return true;
859    }
860  }
861
862  Disp = DAG.getTargetConstant(0, getPointerTy());
863  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
864    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
865  else
866    Base = N;
867  return true;      // [r+0]
868}
869
870/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
871/// represented as an indexed [r+r] operation.
872bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
873                                                SDOperand &Index,
874                                                SelectionDAG &DAG) {
875  // Check to see if we can easily represent this as an [r+r] address.  This
876  // will fail if it thinks that the address is more profitably represented as
877  // reg+imm, e.g. where imm = 0.
878  if (SelectAddressRegReg(N, Base, Index, DAG))
879    return true;
880
881  // If the operand is an addition, always emit this as [r+r], since this is
882  // better (for code size, and execution, as the memop does the add for free)
883  // than emitting an explicit add.
884  if (N.getOpcode() == ISD::ADD) {
885    Base = N.getOperand(0);
886    Index = N.getOperand(1);
887    return true;
888  }
889
890  // Otherwise, do it the hard way, using R0 as the base register.
891  Base = DAG.getRegister(PPC::R0, N.getValueType());
892  Index = N;
893  return true;
894}
895
896/// SelectAddressRegImmShift - Returns true if the address N can be
897/// represented by a base register plus a signed 14-bit displacement
898/// [r+imm*4].  Suitable for use by STD and friends.
899bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
900                                                 SDOperand &Base,
901                                                 SelectionDAG &DAG) {
902  // If this can be more profitably realized as r+r, fail.
903  if (SelectAddressRegReg(N, Disp, Base, DAG))
904    return false;
905
906  if (N.getOpcode() == ISD::ADD) {
907    short imm = 0;
908    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
909      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
910      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
911        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
912      } else {
913        Base = N.getOperand(0);
914      }
915      return true; // [r+i]
916    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
917      // Match LOAD (ADD (X, Lo(G))).
918      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
919             && "Cannot handle constant offsets yet!");
920      Disp = N.getOperand(1).getOperand(0);  // The global address.
921      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
922             Disp.getOpcode() == ISD::TargetConstantPool ||
923             Disp.getOpcode() == ISD::TargetJumpTable);
924      Base = N.getOperand(0);
925      return true;  // [&g+r]
926    }
927  } else if (N.getOpcode() == ISD::OR) {
928    short imm = 0;
929    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
930      // If this is an or of disjoint bitfields, we can codegen this as an add
931      // (for better address arithmetic) if the LHS and RHS of the OR are
932      // provably disjoint.
933      APInt LHSKnownZero, LHSKnownOne;
934      DAG.ComputeMaskedBits(N.getOperand(0),
935                            APInt::getAllOnesValue(32),
936                            LHSKnownZero, LHSKnownOne);
937      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
938        // If all of the bits are known zero on the LHS or RHS, the add won't
939        // carry.
940        Base = N.getOperand(0);
941        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
942        return true;
943      }
944    }
945  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
946    // Loading from a constant address.  Verify low two bits are clear.
947    if ((CN->getValue() & 3) == 0) {
948      // If this address fits entirely in a 14-bit sext immediate field, codegen
949      // this as "d, 0"
950      short Imm;
951      if (isIntS16Immediate(CN, Imm)) {
952        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
953        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
954        return true;
955      }
956
957      // Fold the low-part of 32-bit absolute addresses into addr mode.
958      if (CN->getValueType(0) == MVT::i32 ||
959          (int64_t)CN->getValue() == (int)CN->getValue()) {
960        int Addr = (int)CN->getValue();
961
962        // Otherwise, break this down into an LIS + disp.
963        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
964
965        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
966        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
967        Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
968        return true;
969      }
970    }
971  }
972
973  Disp = DAG.getTargetConstant(0, getPointerTy());
974  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
975    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
976  else
977    Base = N;
978  return true;      // [r+0]
979}
980
981
982/// getPreIndexedAddressParts - returns true by value, base pointer and
983/// offset pointer and addressing mode by reference if the node's address
984/// can be legally represented as pre-indexed load / store address.
985bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
986                                                  SDOperand &Offset,
987                                                  ISD::MemIndexedMode &AM,
988                                                  SelectionDAG &DAG) {
989  // Disabled by default for now.
990  if (!EnablePPCPreinc) return false;
991
992  SDOperand Ptr;
993  MVT::ValueType VT;
994  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
995    Ptr = LD->getBasePtr();
996    VT = LD->getMemoryVT();
997
998  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
999    ST = ST;
1000    Ptr = ST->getBasePtr();
1001    VT  = ST->getMemoryVT();
1002  } else
1003    return false;
1004
1005  // PowerPC doesn't have preinc load/store instructions for vectors.
1006  if (MVT::isVector(VT))
1007    return false;
1008
1009  // TODO: Check reg+reg first.
1010
1011  // LDU/STU use reg+imm*4, others use reg+imm.
1012  if (VT != MVT::i64) {
1013    // reg + imm
1014    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1015      return false;
1016  } else {
1017    // reg + imm * 4.
1018    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1019      return false;
1020  }
1021
1022  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1023    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1024    // sext i32 to i64 when addr mode is r+i.
1025    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1026        LD->getExtensionType() == ISD::SEXTLOAD &&
1027        isa<ConstantSDNode>(Offset))
1028      return false;
1029  }
1030
1031  AM = ISD::PRE_INC;
1032  return true;
1033}
1034
1035//===----------------------------------------------------------------------===//
1036//  LowerOperation implementation
1037//===----------------------------------------------------------------------===//
1038
1039SDOperand PPCTargetLowering::LowerConstantPool(SDOperand Op,
1040                                             SelectionDAG &DAG) {
1041  MVT::ValueType PtrVT = Op.getValueType();
1042  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1043  Constant *C = CP->getConstVal();
1044  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1045  SDOperand Zero = DAG.getConstant(0, PtrVT);
1046
1047  const TargetMachine &TM = DAG.getTarget();
1048
1049  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1050  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1051
1052  // If this is a non-darwin platform, we don't support non-static relo models
1053  // yet.
1054  if (TM.getRelocationModel() == Reloc::Static ||
1055      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1056    // Generate non-pic code that has direct accesses to the constant pool.
1057    // The address of the global is just (hi(&g)+lo(&g)).
1058    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1059  }
1060
1061  if (TM.getRelocationModel() == Reloc::PIC_) {
1062    // With PIC, the first instruction is actually "GR+hi(&G)".
1063    Hi = DAG.getNode(ISD::ADD, PtrVT,
1064                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1065  }
1066
1067  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1068  return Lo;
1069}
1070
1071SDOperand PPCTargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1072  MVT::ValueType PtrVT = Op.getValueType();
1073  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1074  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1075  SDOperand Zero = DAG.getConstant(0, PtrVT);
1076
1077  const TargetMachine &TM = DAG.getTarget();
1078
1079  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1080  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1081
1082  // If this is a non-darwin platform, we don't support non-static relo models
1083  // yet.
1084  if (TM.getRelocationModel() == Reloc::Static ||
1085      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1086    // Generate non-pic code that has direct accesses to the constant pool.
1087    // The address of the global is just (hi(&g)+lo(&g)).
1088    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1089  }
1090
1091  if (TM.getRelocationModel() == Reloc::PIC_) {
1092    // With PIC, the first instruction is actually "GR+hi(&G)".
1093    Hi = DAG.getNode(ISD::ADD, PtrVT,
1094                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1095  }
1096
1097  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1098  return Lo;
1099}
1100
1101SDOperand PPCTargetLowering::LowerGlobalTLSAddress(SDOperand Op,
1102                                                   SelectionDAG &DAG) {
1103  assert(0 && "TLS not implemented for PPC.");
1104}
1105
1106SDOperand PPCTargetLowering::LowerGlobalAddress(SDOperand Op,
1107                                                SelectionDAG &DAG) {
1108  MVT::ValueType PtrVT = Op.getValueType();
1109  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1110  GlobalValue *GV = GSDN->getGlobal();
1111  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1112  // If it's a debug information descriptor, don't mess with it.
1113  if (DAG.isVerifiedDebugInfoDesc(Op))
1114    return GA;
1115  SDOperand Zero = DAG.getConstant(0, PtrVT);
1116
1117  const TargetMachine &TM = DAG.getTarget();
1118
1119  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1120  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1121
1122  // If this is a non-darwin platform, we don't support non-static relo models
1123  // yet.
1124  if (TM.getRelocationModel() == Reloc::Static ||
1125      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1126    // Generate non-pic code that has direct accesses to globals.
1127    // The address of the global is just (hi(&g)+lo(&g)).
1128    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1129  }
1130
1131  if (TM.getRelocationModel() == Reloc::PIC_) {
1132    // With PIC, the first instruction is actually "GR+hi(&G)".
1133    Hi = DAG.getNode(ISD::ADD, PtrVT,
1134                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1135  }
1136
1137  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1138
1139  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1140    return Lo;
1141
1142  // If the global is weak or external, we have to go through the lazy
1143  // resolution stub.
1144  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1145}
1146
1147SDOperand PPCTargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1148  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1149
1150  // If we're comparing for equality to zero, expose the fact that this is
1151  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1152  // fold the new nodes.
1153  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1154    if (C->isNullValue() && CC == ISD::SETEQ) {
1155      MVT::ValueType VT = Op.getOperand(0).getValueType();
1156      SDOperand Zext = Op.getOperand(0);
1157      if (VT < MVT::i32) {
1158        VT = MVT::i32;
1159        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1160      }
1161      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1162      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1163      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1164                                  DAG.getConstant(Log2b, MVT::i32));
1165      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1166    }
1167    // Leave comparisons against 0 and -1 alone for now, since they're usually
1168    // optimized.  FIXME: revisit this when we can custom lower all setcc
1169    // optimizations.
1170    if (C->isAllOnesValue() || C->isNullValue())
1171      return SDOperand();
1172  }
1173
1174  // If we have an integer seteq/setne, turn it into a compare against zero
1175  // by xor'ing the rhs with the lhs, which is faster than setting a
1176  // condition register, reading it back out, and masking the correct bit.  The
1177  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1178  // the result to other bit-twiddling opportunities.
1179  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1180  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1181    MVT::ValueType VT = Op.getValueType();
1182    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1183                                Op.getOperand(1));
1184    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1185  }
1186  return SDOperand();
1187}
1188
1189SDOperand PPCTargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1190                              int VarArgsFrameIndex,
1191                              int VarArgsStackOffset,
1192                              unsigned VarArgsNumGPR,
1193                              unsigned VarArgsNumFPR,
1194                              const PPCSubtarget &Subtarget) {
1195
1196  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1197}
1198
1199SDOperand PPCTargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1200                              int VarArgsFrameIndex,
1201                              int VarArgsStackOffset,
1202                              unsigned VarArgsNumGPR,
1203                              unsigned VarArgsNumFPR,
1204                              const PPCSubtarget &Subtarget) {
1205
1206  if (Subtarget.isMachoABI()) {
1207    // vastart just stores the address of the VarArgsFrameIndex slot into the
1208    // memory location argument.
1209    MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1210    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1211    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1212    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
1213  }
1214
1215  // For ELF 32 ABI we follow the layout of the va_list struct.
1216  // We suppose the given va_list is already allocated.
1217  //
1218  // typedef struct {
1219  //  char gpr;     /* index into the array of 8 GPRs
1220  //                 * stored in the register save area
1221  //                 * gpr=0 corresponds to r3,
1222  //                 * gpr=1 to r4, etc.
1223  //                 */
1224  //  char fpr;     /* index into the array of 8 FPRs
1225  //                 * stored in the register save area
1226  //                 * fpr=0 corresponds to f1,
1227  //                 * fpr=1 to f2, etc.
1228  //                 */
1229  //  char *overflow_arg_area;
1230  //                /* location on stack that holds
1231  //                 * the next overflow argument
1232  //                 */
1233  //  char *reg_save_area;
1234  //               /* where r3:r10 and f1:f8 (if saved)
1235  //                * are stored
1236  //                */
1237  // } va_list[1];
1238
1239
1240  SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1241  SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1242
1243
1244  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1245
1246  SDOperand StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1247  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1248
1249  uint64_t FrameOffset = MVT::getSizeInBits(PtrVT)/8;
1250  SDOperand ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1251
1252  uint64_t StackOffset = MVT::getSizeInBits(PtrVT)/8 - 1;
1253  SDOperand ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1254
1255  uint64_t FPROffset = 1;
1256  SDOperand ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1257
1258  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1259
1260  // Store first byte : number of int regs
1261  SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1262                                      Op.getOperand(1), SV, 0);
1263  uint64_t nextOffset = FPROffset;
1264  SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1265                                  ConstFPROffset);
1266
1267  // Store second byte : number of float regs
1268  SDOperand secondStore =
1269    DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1270  nextOffset += StackOffset;
1271  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1272
1273  // Store second word : arguments given on stack
1274  SDOperand thirdStore =
1275    DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1276  nextOffset += FrameOffset;
1277  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1278
1279  // Store third word : arguments given in registers
1280  return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
1281
1282}
1283
1284#include "PPCGenCallingConv.inc"
1285
1286/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1287/// depending on which subtarget is selected.
1288static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1289  if (Subtarget.isMachoABI()) {
1290    static const unsigned FPR[] = {
1291      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1292      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1293    };
1294    return FPR;
1295  }
1296
1297
1298  static const unsigned FPR[] = {
1299    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1300    PPC::F8
1301  };
1302  return FPR;
1303}
1304
1305SDOperand
1306PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op,
1307                                         SelectionDAG &DAG,
1308                                         int &VarArgsFrameIndex,
1309                                         int &VarArgsStackOffset,
1310                                         unsigned &VarArgsNumGPR,
1311                                         unsigned &VarArgsNumFPR,
1312                                         const PPCSubtarget &Subtarget) {
1313  // TODO: add description of PPC stack frame format, or at least some docs.
1314  //
1315  MachineFunction &MF = DAG.getMachineFunction();
1316  MachineFrameInfo *MFI = MF.getFrameInfo();
1317  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1318  SmallVector<SDOperand, 8> ArgValues;
1319  SDOperand Root = Op.getOperand(0);
1320  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1321
1322  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1323  bool isPPC64 = PtrVT == MVT::i64;
1324  bool isMachoABI = Subtarget.isMachoABI();
1325  bool isELF32_ABI = Subtarget.isELF32_ABI();
1326  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1327
1328  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1329
1330  static const unsigned GPR_32[] = {           // 32-bit registers.
1331    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1332    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1333  };
1334  static const unsigned GPR_64[] = {           // 64-bit registers.
1335    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1336    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1337  };
1338
1339  static const unsigned *FPR = GetFPR(Subtarget);
1340
1341  static const unsigned VR[] = {
1342    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1343    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1344  };
1345
1346  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1347  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1348  const unsigned Num_VR_Regs  = array_lengthof( VR);
1349
1350  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1351
1352  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1353
1354  // Add DAG nodes to load the arguments or copy them out of registers.  On
1355  // entry to a function on PPC, the arguments start after the linkage area,
1356  // although the first ones are often in registers.
1357  //
1358  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1359  // represented with two words (long long or double) must be copied to an
1360  // even GPR_idx value or to an even ArgOffset value.
1361
1362  SmallVector<SDOperand, 8> MemOps;
1363
1364  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1365    SDOperand ArgVal;
1366    bool needsLoad = false;
1367    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1368    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1369    unsigned ArgSize = ObjSize;
1370    ISD::ParamFlags::ParamFlagsTy Flags =
1371              cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1372    unsigned AlignFlag = ISD::ParamFlags::One
1373                                << ISD::ParamFlags::OrigAlignmentOffs;
1374    unsigned isByVal = Flags & ISD::ParamFlags::ByVal;
1375    // See if next argument requires stack alignment in ELF
1376    bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1377      (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1378      (!(Flags & AlignFlag)));
1379
1380    unsigned CurArgOffset = ArgOffset;
1381
1382    // FIXME alignment for ELF may not be right
1383    // FIXME the codegen can be much improved in some cases.
1384    // We do not have to keep everything in memory.
1385    if (isByVal) {
1386      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1387      ObjSize = (Flags & ISD::ParamFlags::ByValSize) >>
1388                      ISD::ParamFlags::ByValSizeOffs;
1389      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1390      // Double word align in ELF
1391      if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1392      // Objects of size 1 and 2 are right justified, everything else is
1393      // left justified.  This means the memory address is adjusted forwards.
1394      if (ObjSize==1 || ObjSize==2) {
1395        CurArgOffset = CurArgOffset + (4 - ObjSize);
1396      }
1397      // The value of the object is its address.
1398      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1399      SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1400      ArgValues.push_back(FIN);
1401      if (ObjSize==1 || ObjSize==2) {
1402        if (GPR_idx != Num_GPR_Regs) {
1403          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1404          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1405          SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1406          SDOperand Store = DAG.getTruncStore(Val.getValue(1), Val, FIN,
1407                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1408          MemOps.push_back(Store);
1409          ++GPR_idx;
1410          if (isMachoABI) ArgOffset += PtrByteSize;
1411        } else {
1412          ArgOffset += PtrByteSize;
1413        }
1414        continue;
1415      }
1416      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1417        // Store whatever pieces of the object are in registers
1418        // to memory.  ArgVal will be address of the beginning of
1419        // the object.
1420        if (GPR_idx != Num_GPR_Regs) {
1421          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1422          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1423          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1424          SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1425          SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1426          SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1427          MemOps.push_back(Store);
1428          ++GPR_idx;
1429          if (isMachoABI) ArgOffset += PtrByteSize;
1430        } else {
1431          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1432          break;
1433        }
1434      }
1435      continue;
1436    }
1437
1438    switch (ObjectVT) {
1439    default: assert(0 && "Unhandled argument type!");
1440    case MVT::i32:
1441      if (!isPPC64) {
1442        // Double word align in ELF
1443        if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1444
1445        if (GPR_idx != Num_GPR_Regs) {
1446          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1447          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1448          ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1449          ++GPR_idx;
1450        } else {
1451          needsLoad = true;
1452          ArgSize = PtrByteSize;
1453        }
1454        // Stack align in ELF
1455        if (needsLoad && Expand && isELF32_ABI)
1456          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1457        // All int arguments reserve stack space in Macho ABI.
1458        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1459        break;
1460      }
1461      // FALLTHROUGH
1462    case MVT::i64:  // PPC64
1463      if (GPR_idx != Num_GPR_Regs) {
1464        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1465        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1466        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1467
1468        if (ObjectVT == MVT::i32) {
1469          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1470          // value to MVT::i64 and then truncate to the correct register size.
1471          if (Flags & ISD::ParamFlags::SExt)
1472            ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1473                                 DAG.getValueType(ObjectVT));
1474          else if (Flags & ISD::ParamFlags::ZExt)
1475            ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1476                                 DAG.getValueType(ObjectVT));
1477
1478          ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1479        }
1480
1481        ++GPR_idx;
1482      } else {
1483        needsLoad = true;
1484      }
1485      // All int arguments reserve stack space in Macho ABI.
1486      if (isMachoABI || needsLoad) ArgOffset += 8;
1487      break;
1488
1489    case MVT::f32:
1490    case MVT::f64:
1491      // Every 4 bytes of argument space consumes one of the GPRs available for
1492      // argument passing.
1493      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1494        ++GPR_idx;
1495        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1496          ++GPR_idx;
1497      }
1498      if (FPR_idx != Num_FPR_Regs) {
1499        unsigned VReg;
1500        if (ObjectVT == MVT::f32)
1501          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1502        else
1503          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1504        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1505        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1506        ++FPR_idx;
1507      } else {
1508        needsLoad = true;
1509      }
1510
1511      // Stack align in ELF
1512      if (needsLoad && Expand && isELF32_ABI)
1513        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1514      // All FP arguments reserve stack space in Macho ABI.
1515      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1516      break;
1517    case MVT::v4f32:
1518    case MVT::v4i32:
1519    case MVT::v8i16:
1520    case MVT::v16i8:
1521      // Note that vector arguments in registers don't reserve stack space,
1522      // except in varargs functions.
1523      if (VR_idx != Num_VR_Regs) {
1524        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1525        RegInfo.addLiveIn(VR[VR_idx], VReg);
1526        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1527        if (isVarArg) {
1528          while ((ArgOffset % 16) != 0) {
1529            ArgOffset += PtrByteSize;
1530            if (GPR_idx != Num_GPR_Regs)
1531              GPR_idx++;
1532          }
1533          ArgOffset += 16;
1534          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1535        }
1536        ++VR_idx;
1537      } else {
1538        // Stack offset is aligned.
1539        while (ArgOffset % 16 !=0) {
1540          ArgOffset += PtrByteSize;
1541        }
1542        ArgOffset += 16;
1543        needsLoad = true;
1544      }
1545      break;
1546    }
1547
1548    // We need to load the argument to a virtual register if we determined above
1549    // that we ran out of physical registers of the appropriate type.
1550    if (needsLoad) {
1551      int FI = MFI->CreateFixedObject(ObjSize,
1552                                      CurArgOffset + (ArgSize - ObjSize));
1553      SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1554      ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1555    }
1556
1557    ArgValues.push_back(ArgVal);
1558  }
1559
1560  // If the function takes variable number of arguments, make a frame index for
1561  // the start of the first vararg value... for expansion of llvm.va_start.
1562  if (isVarArg) {
1563
1564    int depth;
1565    if (isELF32_ABI) {
1566      VarArgsNumGPR = GPR_idx;
1567      VarArgsNumFPR = FPR_idx;
1568
1569      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1570      // pointer.
1571      depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1572                Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1573                MVT::getSizeInBits(PtrVT)/8);
1574
1575      VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1576                                                  ArgOffset);
1577
1578    }
1579    else
1580      depth = ArgOffset;
1581
1582    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1583                                               depth);
1584    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1585
1586    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1587    // stored to the VarArgsFrameIndex on the stack.
1588    if (isELF32_ABI) {
1589      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1590        SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1591        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1592        MemOps.push_back(Store);
1593        // Increment the address by four for the next argument to store
1594        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1595        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1596      }
1597    }
1598
1599    // If this function is vararg, store any remaining integer argument regs
1600    // to their spots on the stack so that they may be loaded by deferencing the
1601    // result of va_next.
1602    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1603      unsigned VReg;
1604      if (isPPC64)
1605        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1606      else
1607        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1608
1609      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1610      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1611      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1612      MemOps.push_back(Store);
1613      // Increment the address by four for the next argument to store
1614      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1615      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1616    }
1617
1618    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1619    // on the stack.
1620    if (isELF32_ABI) {
1621      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1622        SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1623        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1624        MemOps.push_back(Store);
1625        // Increment the address by eight for the next argument to store
1626        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1627                                           PtrVT);
1628        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1629      }
1630
1631      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1632        unsigned VReg;
1633        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1634
1635        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1636        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1637        SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1638        MemOps.push_back(Store);
1639        // Increment the address by eight for the next argument to store
1640        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1641                                           PtrVT);
1642        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1643      }
1644    }
1645  }
1646
1647  if (!MemOps.empty())
1648    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1649
1650  ArgValues.push_back(Root);
1651
1652  // Return the new list of results.
1653  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1654                                    Op.Val->value_end());
1655  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1656}
1657
1658/// isCallCompatibleAddress - Return the immediate to use if the specified
1659/// 32-bit value is representable in the immediate field of a BxA instruction.
1660static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1661  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1662  if (!C) return 0;
1663
1664  int Addr = C->getValue();
1665  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1666      (Addr << 6 >> 6) != Addr)
1667    return 0;  // Top 6 bits have to be sext of immediate.
1668
1669  return DAG.getConstant((int)C->getValue() >> 2,
1670                         DAG.getTargetLoweringInfo().getPointerTy()).Val;
1671}
1672
1673/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1674/// by "Src" to address "Dst" of size "Size".  Alignment information is
1675/// specified by the specific parameter attribute. The copy will be passed as
1676/// a byval function parameter.
1677/// Sometimes what we are copying is the end of a larger object, the part that
1678/// does not fit in registers.
1679static SDOperand
1680CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
1681                          ISD::ParamFlags::ParamFlagsTy Flags,
1682                          SelectionDAG &DAG, unsigned Size) {
1683  unsigned Align = ISD::ParamFlags::One <<
1684    ((Flags & ISD::ParamFlags::ByValAlign) >> ISD::ParamFlags::ByValAlignOffs);
1685  SDOperand AlignNode    = DAG.getConstant(Align, MVT::i32);
1686  SDOperand SizeNode     = DAG.getConstant(Size, MVT::i32);
1687  SDOperand AlwaysInline = DAG.getConstant(0, MVT::i32);
1688  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, AlignNode, AlwaysInline);
1689}
1690
1691SDOperand PPCTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG,
1692                                       const PPCSubtarget &Subtarget) {
1693  SDOperand Chain  = Op.getOperand(0);
1694  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1695  SDOperand Callee = Op.getOperand(4);
1696  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
1697
1698  bool isMachoABI = Subtarget.isMachoABI();
1699  bool isELF32_ABI  = Subtarget.isELF32_ABI();
1700
1701  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1702  bool isPPC64 = PtrVT == MVT::i64;
1703  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1704
1705  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1706  // SelectExpr to use to put the arguments in the appropriate registers.
1707  std::vector<SDOperand> args_to_use;
1708
1709  // Count how many bytes are to be pushed on the stack, including the linkage
1710  // area, and parameter passing area.  We start with 24/48 bytes, which is
1711  // prereserved space for [SP][CR][LR][3 x unused].
1712  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1713
1714  // Add up all the space actually used.
1715  for (unsigned i = 0; i != NumOps; ++i) {
1716    SDOperand Arg = Op.getOperand(5+2*i);
1717    MVT::ValueType ArgVT = Arg.getValueType();
1718    // Non-varargs Altivec parameters do not have corresponding stack space.
1719    if (!isVarArg &&
1720        (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1721         ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8))
1722      continue;
1723    ISD::ParamFlags::ParamFlagsTy Flags =
1724          cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1725    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1726    if (Flags & ISD::ParamFlags::ByVal)
1727      ArgSize = (Flags & ISD::ParamFlags::ByValSize) >>
1728                ISD::ParamFlags::ByValSizeOffs;
1729    ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1730    // Varargs Altivec parameters are padded to a 16 byte boundary.
1731    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1732        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8)
1733      NumBytes = ((NumBytes+15)/16)*16;
1734    NumBytes += ArgSize;
1735  }
1736
1737  // The prolog code of the callee may store up to 8 GPR argument registers to
1738  // the stack, allowing va_start to index over them in memory if its varargs.
1739  // Because we cannot tell if this is needed on the caller side, we have to
1740  // conservatively assume that it is needed.  As such, make sure we have at
1741  // least enough stack space for the caller to store the 8 GPRs.
1742  NumBytes = std::max(NumBytes,
1743                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1744
1745  // Adjust the stack pointer for the new arguments...
1746  // These operations are automatically eliminated by the prolog/epilog pass
1747  Chain = DAG.getCALLSEQ_START(Chain,
1748                               DAG.getConstant(NumBytes, PtrVT));
1749  SDOperand CallSeqStart = Chain;
1750
1751  // Set up a copy of the stack pointer for use loading and storing any
1752  // arguments that may not fit in the registers available for argument
1753  // passing.
1754  SDOperand StackPtr;
1755  if (isPPC64)
1756    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1757  else
1758    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1759
1760  // Figure out which arguments are going to go in registers, and which in
1761  // memory.  Also, if this is a vararg function, floating point operations
1762  // must be stored to our stack, and loaded into integer regs as well, if
1763  // any integer regs are available for argument passing.
1764  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1765  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1766
1767  static const unsigned GPR_32[] = {           // 32-bit registers.
1768    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1769    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1770  };
1771  static const unsigned GPR_64[] = {           // 64-bit registers.
1772    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1773    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1774  };
1775  static const unsigned *FPR = GetFPR(Subtarget);
1776
1777  static const unsigned VR[] = {
1778    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1779    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1780  };
1781  const unsigned NumGPRs = array_lengthof(GPR_32);
1782  const unsigned NumFPRs = isMachoABI ? 13 : 8;
1783  const unsigned NumVRs  = array_lengthof( VR);
1784
1785  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1786
1787  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1788  SmallVector<SDOperand, 8> MemOpChains;
1789  for (unsigned i = 0; i != NumOps; ++i) {
1790    bool inMem = false;
1791    SDOperand Arg = Op.getOperand(5+2*i);
1792    ISD::ParamFlags::ParamFlagsTy Flags =
1793            cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1794    unsigned AlignFlag = ISD::ParamFlags::One <<
1795                         ISD::ParamFlags::OrigAlignmentOffs;
1796    // See if next argument requires stack alignment in ELF
1797    unsigned next = 5+2*(i+1)+1;
1798    bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1799      (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1800      (!(Flags & AlignFlag)));
1801
1802    // PtrOff will be used to store the current argument to the stack if a
1803    // register cannot be found for it.
1804    SDOperand PtrOff;
1805
1806    // Stack align in ELF 32
1807    if (isELF32_ABI && Expand)
1808      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1809                               StackPtr.getValueType());
1810    else
1811      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1812
1813    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1814
1815    // On PPC64, promote integers to 64-bit values.
1816    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1817      unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1818      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1819    }
1820
1821    // FIXME Elf untested, what are alignment rules?
1822    // FIXME memcpy is used way more than necessary.  Correctness first.
1823    if (Flags & ISD::ParamFlags::ByVal) {
1824      unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1825                      ISD::ParamFlags::ByValSizeOffs;
1826      if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1827      if (Size==1 || Size==2) {
1828        // Very small objects are passed right-justified.
1829        // Everything else is passed left-justified.
1830        MVT::ValueType VT = (Size==1) ? MVT::i8 : MVT::i16;
1831        if (GPR_idx != NumGPRs) {
1832          SDOperand Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
1833                                          NULL, 0, VT);
1834          MemOpChains.push_back(Load.getValue(1));
1835          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1836          if (isMachoABI)
1837            ArgOffset += PtrByteSize;
1838        } else {
1839          SDOperand Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
1840          SDOperand AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
1841          SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
1842                                CallSeqStart.Val->getOperand(0),
1843                                Flags, DAG, Size);
1844          // This must go outside the CALLSEQ_START..END.
1845          SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1846                               CallSeqStart.Val->getOperand(1));
1847          DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
1848          Chain = CallSeqStart = NewCallSeqStart;
1849          ArgOffset += PtrByteSize;
1850        }
1851        continue;
1852      }
1853      for (unsigned j=0; j<Size; j+=PtrByteSize) {
1854        SDOperand Const = DAG.getConstant(j, PtrOff.getValueType());
1855        SDOperand AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
1856        if (GPR_idx != NumGPRs) {
1857          SDOperand Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
1858          MemOpChains.push_back(Load.getValue(1));
1859          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1860          if (isMachoABI)
1861            ArgOffset += PtrByteSize;
1862        } else {
1863          SDOperand AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
1864          SDOperand MemcpyCall = CreateCopyOfByValArgument(AddArg, AddPtr,
1865                                CallSeqStart.Val->getOperand(0),
1866                                Flags, DAG, Size - j);
1867          // This must go outside the CALLSEQ_START..END.
1868          SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1869                               CallSeqStart.Val->getOperand(1));
1870          DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
1871          Chain = CallSeqStart = NewCallSeqStart;
1872          ArgOffset += ((Size - j + 3)/4)*4;
1873          break;
1874        }
1875      }
1876      continue;
1877    }
1878
1879    switch (Arg.getValueType()) {
1880    default: assert(0 && "Unexpected ValueType for argument!");
1881    case MVT::i32:
1882    case MVT::i64:
1883      // Double word align in ELF
1884      if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1885      if (GPR_idx != NumGPRs) {
1886        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1887      } else {
1888        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1889        inMem = true;
1890      }
1891      if (inMem || isMachoABI) {
1892        // Stack align in ELF
1893        if (isELF32_ABI && Expand)
1894          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1895
1896        ArgOffset += PtrByteSize;
1897      }
1898      break;
1899    case MVT::f32:
1900    case MVT::f64:
1901      if (FPR_idx != NumFPRs) {
1902        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1903
1904        if (isVarArg) {
1905          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1906          MemOpChains.push_back(Store);
1907
1908          // Float varargs are always shadowed in available integer registers
1909          if (GPR_idx != NumGPRs) {
1910            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1911            MemOpChains.push_back(Load.getValue(1));
1912            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1913                                                                Load));
1914          }
1915          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1916            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1917            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1918            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1919            MemOpChains.push_back(Load.getValue(1));
1920            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1921                                                                Load));
1922          }
1923        } else {
1924          // If we have any FPRs remaining, we may also have GPRs remaining.
1925          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1926          // GPRs.
1927          if (isMachoABI) {
1928            if (GPR_idx != NumGPRs)
1929              ++GPR_idx;
1930            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1931                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
1932              ++GPR_idx;
1933          }
1934        }
1935      } else {
1936        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1937        inMem = true;
1938      }
1939      if (inMem || isMachoABI) {
1940        // Stack align in ELF
1941        if (isELF32_ABI && Expand)
1942          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1943        if (isPPC64)
1944          ArgOffset += 8;
1945        else
1946          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1947      }
1948      break;
1949    case MVT::v4f32:
1950    case MVT::v4i32:
1951    case MVT::v8i16:
1952    case MVT::v16i8:
1953      if (isVarArg) {
1954        // These go aligned on the stack, or in the corresponding R registers
1955        // when within range.  The Darwin PPC ABI doc claims they also go in
1956        // V registers; in fact gcc does this only for arguments that are
1957        // prototyped, not for those that match the ...  We do it for all
1958        // arguments, seems to work.
1959        while (ArgOffset % 16 !=0) {
1960          ArgOffset += PtrByteSize;
1961          if (GPR_idx != NumGPRs)
1962            GPR_idx++;
1963        }
1964        // We could elide this store in the case where the object fits
1965        // entirely in R registers.  Maybe later.
1966        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
1967                            DAG.getConstant(ArgOffset, PtrVT));
1968        SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1969        MemOpChains.push_back(Store);
1970        if (VR_idx != NumVRs) {
1971          SDOperand Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0);
1972          MemOpChains.push_back(Load.getValue(1));
1973          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
1974        }
1975        ArgOffset += 16;
1976        for (unsigned i=0; i<16; i+=PtrByteSize) {
1977          if (GPR_idx == NumGPRs)
1978            break;
1979          SDOperand Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff,
1980                                  DAG.getConstant(i, PtrVT));
1981          SDOperand Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0);
1982          MemOpChains.push_back(Load.getValue(1));
1983          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1984        }
1985        break;
1986      }
1987      if (VR_idx == NumVRs) {
1988        // Out of V registers; these go aligned on the stack.
1989        while (ArgOffset % 16 !=0) {
1990          ArgOffset += PtrByteSize;
1991        }
1992        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
1993                            DAG.getConstant(ArgOffset, PtrVT));
1994        SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1995        MemOpChains.push_back(Store);
1996        ArgOffset += 16;
1997      } else {
1998        // Doesn't have memory or GPR space allocated
1999        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2000      }
2001      break;
2002    }
2003  }
2004  if (!MemOpChains.empty())
2005    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2006                        &MemOpChains[0], MemOpChains.size());
2007
2008  // Build a sequence of copy-to-reg nodes chained together with token chain
2009  // and flag operands which copy the outgoing args into the appropriate regs.
2010  SDOperand InFlag;
2011  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2012    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
2013                             InFlag);
2014    InFlag = Chain.getValue(1);
2015  }
2016
2017  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2018  if (isVarArg && isELF32_ABI) {
2019    SDOperand SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0);
2020    Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag);
2021    InFlag = Chain.getValue(1);
2022  }
2023
2024  std::vector<MVT::ValueType> NodeTys;
2025  NodeTys.push_back(MVT::Other);   // Returns a chain
2026  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2027
2028  SmallVector<SDOperand, 8> Ops;
2029  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2030
2031  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2032  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2033  // node so that legalize doesn't hack it.
2034  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2035    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2036  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2037    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2038  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2039    // If this is an absolute destination address, use the munged value.
2040    Callee = SDOperand(Dest, 0);
2041  else {
2042    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2043    // to do the call, we can't use PPCISD::CALL.
2044    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
2045    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
2046    InFlag = Chain.getValue(1);
2047
2048    // Copy the callee address into R12/X12 on darwin.
2049    if (isMachoABI) {
2050      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2051      Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag);
2052      InFlag = Chain.getValue(1);
2053    }
2054
2055    NodeTys.clear();
2056    NodeTys.push_back(MVT::Other);
2057    NodeTys.push_back(MVT::Flag);
2058    Ops.push_back(Chain);
2059    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2060    Callee.Val = 0;
2061  }
2062
2063  // If this is a direct call, pass the chain and the callee.
2064  if (Callee.Val) {
2065    Ops.push_back(Chain);
2066    Ops.push_back(Callee);
2067  }
2068
2069  // Add argument registers to the end of the list so that they are known live
2070  // into the call.
2071  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2072    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2073                                  RegsToPass[i].second.getValueType()));
2074
2075  if (InFlag.Val)
2076    Ops.push_back(InFlag);
2077  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
2078  InFlag = Chain.getValue(1);
2079
2080  Chain = DAG.getCALLSEQ_END(Chain,
2081                             DAG.getConstant(NumBytes, PtrVT),
2082                             DAG.getConstant(0, PtrVT),
2083                             InFlag);
2084  if (Op.Val->getValueType(0) != MVT::Other)
2085    InFlag = Chain.getValue(1);
2086
2087  SDOperand ResultVals[3];
2088  unsigned NumResults = 0;
2089  NodeTys.clear();
2090
2091  // If the call has results, copy the values out of the ret val registers.
2092  switch (Op.Val->getValueType(0)) {
2093  default: assert(0 && "Unexpected ret value!");
2094  case MVT::Other: break;
2095  case MVT::i32:
2096    if (Op.Val->getValueType(1) == MVT::i32) {
2097      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
2098      ResultVals[0] = Chain.getValue(0);
2099      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
2100                                 Chain.getValue(2)).getValue(1);
2101      ResultVals[1] = Chain.getValue(0);
2102      NumResults = 2;
2103      NodeTys.push_back(MVT::i32);
2104    } else {
2105      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
2106      ResultVals[0] = Chain.getValue(0);
2107      NumResults = 1;
2108    }
2109    NodeTys.push_back(MVT::i32);
2110    break;
2111  case MVT::i64:
2112    if (Op.Val->getValueType(1) == MVT::i64) {
2113      Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
2114      ResultVals[0] = Chain.getValue(0);
2115      Chain = DAG.getCopyFromReg(Chain, PPC::X4, MVT::i64,
2116                                 Chain.getValue(2)).getValue(1);
2117      ResultVals[1] = Chain.getValue(0);
2118      NumResults = 2;
2119      NodeTys.push_back(MVT::i64);
2120    } else {
2121      Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
2122      ResultVals[0] = Chain.getValue(0);
2123      NumResults = 1;
2124    }
2125    NodeTys.push_back(MVT::i64);
2126    break;
2127  case MVT::f64:
2128    if (Op.Val->getValueType(1) == MVT::f64) {
2129      Chain = DAG.getCopyFromReg(Chain, PPC::F1, MVT::f64, InFlag).getValue(1);
2130      ResultVals[0] = Chain.getValue(0);
2131      Chain = DAG.getCopyFromReg(Chain, PPC::F2, MVT::f64,
2132                                 Chain.getValue(2)).getValue(1);
2133      ResultVals[1] = Chain.getValue(0);
2134      NumResults = 2;
2135      NodeTys.push_back(MVT::f64);
2136      NodeTys.push_back(MVT::f64);
2137      break;
2138    }
2139    // else fall through
2140  case MVT::f32:
2141    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
2142                               InFlag).getValue(1);
2143    ResultVals[0] = Chain.getValue(0);
2144    NumResults = 1;
2145    NodeTys.push_back(Op.Val->getValueType(0));
2146    break;
2147  case MVT::v4f32:
2148  case MVT::v4i32:
2149  case MVT::v8i16:
2150  case MVT::v16i8:
2151    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
2152                                   InFlag).getValue(1);
2153    ResultVals[0] = Chain.getValue(0);
2154    NumResults = 1;
2155    NodeTys.push_back(Op.Val->getValueType(0));
2156    break;
2157  }
2158
2159  NodeTys.push_back(MVT::Other);
2160
2161  // If the function returns void, just return the chain.
2162  if (NumResults == 0)
2163    return Chain;
2164
2165  // Otherwise, merge everything together with a MERGE_VALUES node.
2166  ResultVals[NumResults++] = Chain;
2167  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
2168                              ResultVals, NumResults);
2169  return Res.getValue(Op.ResNo);
2170}
2171
2172SDOperand PPCTargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG,
2173                                      TargetMachine &TM) {
2174  SmallVector<CCValAssign, 16> RVLocs;
2175  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2176  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2177  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2178  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
2179
2180  // If this is the first return lowered for this function, add the regs to the
2181  // liveout set for the function.
2182  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2183    for (unsigned i = 0; i != RVLocs.size(); ++i)
2184      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2185  }
2186
2187  SDOperand Chain = Op.getOperand(0);
2188  SDOperand Flag;
2189
2190  // Copy the result values into the output registers.
2191  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2192    CCValAssign &VA = RVLocs[i];
2193    assert(VA.isRegLoc() && "Can only return in registers!");
2194    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2195    Flag = Chain.getValue(1);
2196  }
2197
2198  if (Flag.Val)
2199    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2200  else
2201    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2202}
2203
2204SDOperand PPCTargetLowering::LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
2205                                   const PPCSubtarget &Subtarget) {
2206  // When we pop the dynamic allocation we need to restore the SP link.
2207
2208  // Get the corect type for pointers.
2209  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2210
2211  // Construct the stack pointer operand.
2212  bool IsPPC64 = Subtarget.isPPC64();
2213  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2214  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
2215
2216  // Get the operands for the STACKRESTORE.
2217  SDOperand Chain = Op.getOperand(0);
2218  SDOperand SaveSP = Op.getOperand(1);
2219
2220  // Load the old link SP.
2221  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2222
2223  // Restore the stack pointer.
2224  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2225
2226  // Store the old link SP.
2227  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2228}
2229
2230SDOperand PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
2231                                         SelectionDAG &DAG,
2232                                         const PPCSubtarget &Subtarget) {
2233  MachineFunction &MF = DAG.getMachineFunction();
2234  bool IsPPC64 = Subtarget.isPPC64();
2235  bool isMachoABI = Subtarget.isMachoABI();
2236
2237  // Get current frame pointer save index.  The users of this index will be
2238  // primarily DYNALLOC instructions.
2239  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2240  int FPSI = FI->getFramePointerSaveIndex();
2241
2242  // If the frame pointer save index hasn't been defined yet.
2243  if (!FPSI) {
2244    // Find out what the fix offset of the frame pointer save area.
2245    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2246
2247    // Allocate the frame index for frame pointer save area.
2248    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2249    // Save the result.
2250    FI->setFramePointerSaveIndex(FPSI);
2251  }
2252
2253  // Get the inputs.
2254  SDOperand Chain = Op.getOperand(0);
2255  SDOperand Size  = Op.getOperand(1);
2256
2257  // Get the corect type for pointers.
2258  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2259  // Negate the size.
2260  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
2261                                  DAG.getConstant(0, PtrVT), Size);
2262  // Construct a node for the frame pointer save index.
2263  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
2264  // Build a DYNALLOC node.
2265  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
2266  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2267  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2268}
2269
2270
2271/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2272/// possible.
2273SDOperand PPCTargetLowering::LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
2274  // Not FP? Not a fsel.
2275  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
2276      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
2277    return SDOperand();
2278
2279  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2280
2281  // Cannot handle SETEQ/SETNE.
2282  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2283
2284  MVT::ValueType ResVT = Op.getValueType();
2285  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2286  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2287  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2288
2289  // If the RHS of the comparison is a 0.0, we don't need to do the
2290  // subtraction at all.
2291  if (isFloatingPointZero(RHS))
2292    switch (CC) {
2293    default: break;       // SETUO etc aren't handled by fsel.
2294    case ISD::SETULT:
2295    case ISD::SETOLT:
2296    case ISD::SETLT:
2297      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2298    case ISD::SETUGE:
2299    case ISD::SETOGE:
2300    case ISD::SETGE:
2301      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2302        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2303      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2304    case ISD::SETUGT:
2305    case ISD::SETOGT:
2306    case ISD::SETGT:
2307      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2308    case ISD::SETULE:
2309    case ISD::SETOLE:
2310    case ISD::SETLE:
2311      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2312        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2313      return DAG.getNode(PPCISD::FSEL, ResVT,
2314                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2315    }
2316
2317  SDOperand Cmp;
2318  switch (CC) {
2319  default: break;       // SETUO etc aren't handled by fsel.
2320  case ISD::SETULT:
2321  case ISD::SETOLT:
2322  case ISD::SETLT:
2323    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2324    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2325      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2326      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2327  case ISD::SETUGE:
2328  case ISD::SETOGE:
2329  case ISD::SETGE:
2330    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2331    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2332      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2333      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2334  case ISD::SETUGT:
2335  case ISD::SETOGT:
2336  case ISD::SETGT:
2337    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2338    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2339      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2340      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2341  case ISD::SETULE:
2342  case ISD::SETOLE:
2343  case ISD::SETLE:
2344    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2345    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2346      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2347      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2348  }
2349  return SDOperand();
2350}
2351
2352// FIXME: Split this code up when LegalizeDAGTypes lands.
2353SDOperand PPCTargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2354  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2355  SDOperand Src = Op.getOperand(0);
2356  if (Src.getValueType() == MVT::f32)
2357    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2358
2359  SDOperand Tmp;
2360  switch (Op.getValueType()) {
2361  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2362  case MVT::i32:
2363    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2364    break;
2365  case MVT::i64:
2366    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2367    break;
2368  }
2369
2370  // Convert the FP value to an int value through memory.
2371  SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2372
2373  // Emit a store to the stack slot.
2374  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2375
2376  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2377  // add in a bias.
2378  if (Op.getValueType() == MVT::i32)
2379    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2380                        DAG.getConstant(4, FIPtr.getValueType()));
2381  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2382}
2383
2384SDOperand PPCTargetLowering::LowerFP_ROUND_INREG(SDOperand Op,
2385                                                 SelectionDAG &DAG) {
2386  assert(Op.getValueType() == MVT::ppcf128);
2387  SDNode *Node = Op.Val;
2388  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2389  assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
2390  SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2391  SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2392
2393  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2394  // of the long double, and puts FPSCR back the way it was.  We do not
2395  // actually model FPSCR.
2396  std::vector<MVT::ValueType> NodeTys;
2397  SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2398
2399  NodeTys.push_back(MVT::f64);   // Return register
2400  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2401  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2402  MFFSreg = Result.getValue(0);
2403  InFlag = Result.getValue(1);
2404
2405  NodeTys.clear();
2406  NodeTys.push_back(MVT::Flag);   // Returns a flag
2407  Ops[0] = DAG.getConstant(31, MVT::i32);
2408  Ops[1] = InFlag;
2409  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2410  InFlag = Result.getValue(0);
2411
2412  NodeTys.clear();
2413  NodeTys.push_back(MVT::Flag);   // Returns a flag
2414  Ops[0] = DAG.getConstant(30, MVT::i32);
2415  Ops[1] = InFlag;
2416  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2417  InFlag = Result.getValue(0);
2418
2419  NodeTys.clear();
2420  NodeTys.push_back(MVT::f64);    // result of add
2421  NodeTys.push_back(MVT::Flag);   // Returns a flag
2422  Ops[0] = Lo;
2423  Ops[1] = Hi;
2424  Ops[2] = InFlag;
2425  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2426  FPreg = Result.getValue(0);
2427  InFlag = Result.getValue(1);
2428
2429  NodeTys.clear();
2430  NodeTys.push_back(MVT::f64);
2431  Ops[0] = DAG.getConstant(1, MVT::i32);
2432  Ops[1] = MFFSreg;
2433  Ops[2] = FPreg;
2434  Ops[3] = InFlag;
2435  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2436  FPreg = Result.getValue(0);
2437
2438  // We know the low half is about to be thrown away, so just use something
2439  // convenient.
2440  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2441}
2442
2443SDOperand PPCTargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2444  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2445  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2446    return SDOperand();
2447
2448  if (Op.getOperand(0).getValueType() == MVT::i64) {
2449    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2450    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2451    if (Op.getValueType() == MVT::f32)
2452      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2453    return FP;
2454  }
2455
2456  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2457         "Unhandled SINT_TO_FP type in custom expander!");
2458  // Since we only generate this in 64-bit mode, we can take advantage of
2459  // 64-bit registers.  In particular, sign extend the input value into the
2460  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2461  // then lfd it and fcfid it.
2462  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2463  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2464  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2465  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2466
2467  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2468                                Op.getOperand(0));
2469
2470  // STD the extended value into the stack slot.
2471  MemOperand MO(PseudoSourceValue::getFixedStack(),
2472                MemOperand::MOStore, FrameIdx, 8, 8);
2473  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2474                                DAG.getEntryNode(), Ext64, FIdx,
2475                                DAG.getMemOperand(MO));
2476  // Load the value as a double.
2477  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2478
2479  // FCFID it and return it.
2480  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2481  if (Op.getValueType() == MVT::f32)
2482    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2483  return FP;
2484}
2485
2486SDOperand PPCTargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
2487  /*
2488   The rounding mode is in bits 30:31 of FPSR, and has the following
2489   settings:
2490     00 Round to nearest
2491     01 Round to 0
2492     10 Round to +inf
2493     11 Round to -inf
2494
2495  FLT_ROUNDS, on the other hand, expects the following:
2496    -1 Undefined
2497     0 Round to 0
2498     1 Round to nearest
2499     2 Round to +inf
2500     3 Round to -inf
2501
2502  To perform the conversion, we do:
2503    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2504  */
2505
2506  MachineFunction &MF = DAG.getMachineFunction();
2507  MVT::ValueType VT = Op.getValueType();
2508  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2509  std::vector<MVT::ValueType> NodeTys;
2510  SDOperand MFFSreg, InFlag;
2511
2512  // Save FP Control Word to register
2513  NodeTys.push_back(MVT::f64);    // return register
2514  NodeTys.push_back(MVT::Flag);   // unused in this context
2515  SDOperand Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2516
2517  // Save FP register to stack slot
2518  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2519  SDOperand StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2520  SDOperand Store = DAG.getStore(DAG.getEntryNode(), Chain,
2521                                 StackSlot, NULL, 0);
2522
2523  // Load FP Control Word from low 32 bits of stack slot.
2524  SDOperand Four = DAG.getConstant(4, PtrVT);
2525  SDOperand Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
2526  SDOperand CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
2527
2528  // Transform as necessary
2529  SDOperand CWD1 =
2530    DAG.getNode(ISD::AND, MVT::i32,
2531                CWD, DAG.getConstant(3, MVT::i32));
2532  SDOperand CWD2 =
2533    DAG.getNode(ISD::SRL, MVT::i32,
2534                DAG.getNode(ISD::AND, MVT::i32,
2535                            DAG.getNode(ISD::XOR, MVT::i32,
2536                                        CWD, DAG.getConstant(3, MVT::i32)),
2537                            DAG.getConstant(3, MVT::i32)),
2538                DAG.getConstant(1, MVT::i8));
2539
2540  SDOperand RetVal =
2541    DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
2542
2543  return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
2544                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
2545}
2546
2547SDOperand PPCTargetLowering::LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2548  MVT::ValueType VT = Op.getValueType();
2549  unsigned BitWidth = MVT::getSizeInBits(VT);
2550  assert(Op.getNumOperands() == 3 &&
2551         VT == Op.getOperand(1).getValueType() &&
2552         "Unexpected SHL!");
2553
2554  // Expand into a bunch of logical ops.  Note that these ops
2555  // depend on the PPC behavior for oversized shift amounts.
2556  SDOperand Lo = Op.getOperand(0);
2557  SDOperand Hi = Op.getOperand(1);
2558  SDOperand Amt = Op.getOperand(2);
2559  MVT::ValueType AmtVT = Amt.getValueType();
2560
2561  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2562                               DAG.getConstant(BitWidth, AmtVT), Amt);
2563  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
2564  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
2565  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2566  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2567                               DAG.getConstant(-BitWidth, AmtVT));
2568  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
2569  SDOperand OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2570  SDOperand OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
2571  SDOperand OutOps[] = { OutLo, OutHi };
2572  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
2573                     OutOps, 2);
2574}
2575
2576SDOperand PPCTargetLowering::LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2577  MVT::ValueType VT = Op.getValueType();
2578  unsigned BitWidth = MVT::getSizeInBits(VT);
2579  assert(Op.getNumOperands() == 3 &&
2580         VT == Op.getOperand(1).getValueType() &&
2581         "Unexpected SRL!");
2582
2583  // Expand into a bunch of logical ops.  Note that these ops
2584  // depend on the PPC behavior for oversized shift amounts.
2585  SDOperand Lo = Op.getOperand(0);
2586  SDOperand Hi = Op.getOperand(1);
2587  SDOperand Amt = Op.getOperand(2);
2588  MVT::ValueType AmtVT = Amt.getValueType();
2589
2590  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2591                               DAG.getConstant(BitWidth, AmtVT), Amt);
2592  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2593  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2594  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2595  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2596                               DAG.getConstant(-BitWidth, AmtVT));
2597  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
2598  SDOperand OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2599  SDOperand OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
2600  SDOperand OutOps[] = { OutLo, OutHi };
2601  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
2602                     OutOps, 2);
2603}
2604
2605SDOperand PPCTargetLowering::LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2606  MVT::ValueType VT = Op.getValueType();
2607  unsigned BitWidth = MVT::getSizeInBits(VT);
2608  assert(Op.getNumOperands() == 3 &&
2609         VT == Op.getOperand(1).getValueType() &&
2610         "Unexpected SRA!");
2611
2612  // Expand into a bunch of logical ops, followed by a select_cc.
2613  SDOperand Lo = Op.getOperand(0);
2614  SDOperand Hi = Op.getOperand(1);
2615  SDOperand Amt = Op.getOperand(2);
2616  MVT::ValueType AmtVT = Amt.getValueType();
2617
2618  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2619                               DAG.getConstant(BitWidth, AmtVT), Amt);
2620  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2621  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2622  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2623  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2624                               DAG.getConstant(-BitWidth, AmtVT));
2625  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
2626  SDOperand OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
2627  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
2628                                    Tmp4, Tmp6, ISD::SETLE);
2629  SDOperand OutOps[] = { OutLo, OutHi };
2630  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
2631                     OutOps, 2);
2632}
2633
2634//===----------------------------------------------------------------------===//
2635// Vector related lowering.
2636//
2637
2638// If this is a vector of constants or undefs, get the bits.  A bit in
2639// UndefBits is set if the corresponding element of the vector is an
2640// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2641// zero.   Return true if this is not an array of constants, false if it is.
2642//
2643static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2644                                       uint64_t UndefBits[2]) {
2645  // Start with zero'd results.
2646  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2647
2648  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2649  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2650    SDOperand OpVal = BV->getOperand(i);
2651
2652    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
2653    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
2654
2655    uint64_t EltBits = 0;
2656    if (OpVal.getOpcode() == ISD::UNDEF) {
2657      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2658      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2659      continue;
2660    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2661      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2662    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2663      assert(CN->getValueType(0) == MVT::f32 &&
2664             "Only one legal FP vector type!");
2665      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
2666    } else {
2667      // Nonconstant element.
2668      return true;
2669    }
2670
2671    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2672  }
2673
2674  //printf("%llx %llx  %llx %llx\n",
2675  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2676  return false;
2677}
2678
2679// If this is a splat (repetition) of a value across the whole vector, return
2680// the smallest size that splats it.  For example, "0x01010101010101..." is a
2681// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2682// SplatSize = 1 byte.
2683static bool isConstantSplat(const uint64_t Bits128[2],
2684                            const uint64_t Undef128[2],
2685                            unsigned &SplatBits, unsigned &SplatUndef,
2686                            unsigned &SplatSize) {
2687
2688  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
2689  // the same as the lower 64-bits, ignoring undefs.
2690  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2691    return false;  // Can't be a splat if two pieces don't match.
2692
2693  uint64_t Bits64  = Bits128[0] | Bits128[1];
2694  uint64_t Undef64 = Undef128[0] & Undef128[1];
2695
2696  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2697  // undefs.
2698  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2699    return false;  // Can't be a splat if two pieces don't match.
2700
2701  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2702  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2703
2704  // If the top 16-bits are different than the lower 16-bits, ignoring
2705  // undefs, we have an i32 splat.
2706  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2707    SplatBits = Bits32;
2708    SplatUndef = Undef32;
2709    SplatSize = 4;
2710    return true;
2711  }
2712
2713  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
2714  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2715
2716  // If the top 8-bits are different than the lower 8-bits, ignoring
2717  // undefs, we have an i16 splat.
2718  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2719    SplatBits = Bits16;
2720    SplatUndef = Undef16;
2721    SplatSize = 2;
2722    return true;
2723  }
2724
2725  // Otherwise, we have an 8-bit splat.
2726  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
2727  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2728  SplatSize = 1;
2729  return true;
2730}
2731
2732/// BuildSplatI - Build a canonical splati of Val with an element size of
2733/// SplatSize.  Cast the result to VT.
2734static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2735                             SelectionDAG &DAG) {
2736  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2737
2738  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2739    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2740  };
2741
2742  MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2743
2744  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2745  if (Val == -1)
2746    SplatSize = 1;
2747
2748  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2749
2750  // Build a canonical splat for this value.
2751  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2752  SmallVector<SDOperand, 8> Ops;
2753  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2754  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2755                              &Ops[0], Ops.size());
2756  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2757}
2758
2759/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2760/// specified intrinsic ID.
2761static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2762                                  SelectionDAG &DAG,
2763                                  MVT::ValueType DestVT = MVT::Other) {
2764  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2765  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2766                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
2767}
2768
2769/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2770/// specified intrinsic ID.
2771static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2772                                  SDOperand Op2, SelectionDAG &DAG,
2773                                  MVT::ValueType DestVT = MVT::Other) {
2774  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2775  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2776                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2777}
2778
2779
2780/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2781/// amount.  The result has the specified value type.
2782static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2783                             MVT::ValueType VT, SelectionDAG &DAG) {
2784  // Force LHS/RHS to be the right type.
2785  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2786  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2787
2788  SDOperand Ops[16];
2789  for (unsigned i = 0; i != 16; ++i)
2790    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2791  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2792                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2793  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2794}
2795
2796// If this is a case we can't handle, return null and let the default
2797// expansion code take care of it.  If we CAN select this case, and if it
2798// selects to a single instruction, return Op.  Otherwise, if we can codegen
2799// this case more efficiently than a constant pool load, lower it to the
2800// sequence of ops that should be used.
2801SDOperand PPCTargetLowering::LowerBUILD_VECTOR(SDOperand Op,
2802                                               SelectionDAG &DAG) {
2803  // If this is a vector of constants or undefs, get the bits.  A bit in
2804  // UndefBits is set if the corresponding element of the vector is an
2805  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2806  // zero.
2807  uint64_t VectorBits[2];
2808  uint64_t UndefBits[2];
2809  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2810    return SDOperand();   // Not a constant vector.
2811
2812  // If this is a splat (repetition) of a value across the whole vector, return
2813  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2814  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2815  // SplatSize = 1 byte.
2816  unsigned SplatBits, SplatUndef, SplatSize;
2817  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2818    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2819
2820    // First, handle single instruction cases.
2821
2822    // All zeros?
2823    if (SplatBits == 0) {
2824      // Canonicalize all zero vectors to be v4i32.
2825      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2826        SDOperand Z = DAG.getConstant(0, MVT::i32);
2827        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2828        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2829      }
2830      return Op;
2831    }
2832
2833    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2834    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2835    if (SextVal >= -16 && SextVal <= 15)
2836      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2837
2838
2839    // Two instruction sequences.
2840
2841    // If this value is in the range [-32,30] and is even, use:
2842    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2843    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2844      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2845      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2846    }
2847
2848    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2849    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2850    // for fneg/fabs.
2851    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2852      // Make -1 and vspltisw -1:
2853      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2854
2855      // Make the VSLW intrinsic, computing 0x8000_0000.
2856      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2857                                       OnesV, DAG);
2858
2859      // xor by OnesV to invert it.
2860      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2861      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2862    }
2863
2864    // Check to see if this is a wide variety of vsplti*, binop self cases.
2865    unsigned SplatBitSize = SplatSize*8;
2866    static const signed char SplatCsts[] = {
2867      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2868      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2869    };
2870
2871    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
2872      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2873      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2874      int i = SplatCsts[idx];
2875
2876      // Figure out what shift amount will be used by altivec if shifted by i in
2877      // this splat size.
2878      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2879
2880      // vsplti + shl self.
2881      if (SextVal == (i << (int)TypeShiftAmt)) {
2882        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2883        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2884          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2885          Intrinsic::ppc_altivec_vslw
2886        };
2887        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2888        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2889      }
2890
2891      // vsplti + srl self.
2892      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2893        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2894        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2895          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2896          Intrinsic::ppc_altivec_vsrw
2897        };
2898        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2899        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2900      }
2901
2902      // vsplti + sra self.
2903      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2904        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2905        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2906          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2907          Intrinsic::ppc_altivec_vsraw
2908        };
2909        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2910        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2911      }
2912
2913      // vsplti + rol self.
2914      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2915                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2916        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2917        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2918          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2919          Intrinsic::ppc_altivec_vrlw
2920        };
2921        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2922        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2923      }
2924
2925      // t = vsplti c, result = vsldoi t, t, 1
2926      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2927        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2928        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2929      }
2930      // t = vsplti c, result = vsldoi t, t, 2
2931      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2932        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2933        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2934      }
2935      // t = vsplti c, result = vsldoi t, t, 3
2936      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2937        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2938        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2939      }
2940    }
2941
2942    // Three instruction sequences.
2943
2944    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2945    if (SextVal >= 0 && SextVal <= 31) {
2946      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2947      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2948      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
2949      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2950    }
2951    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2952    if (SextVal >= -31 && SextVal <= 0) {
2953      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2954      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2955      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
2956      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2957    }
2958  }
2959
2960  return SDOperand();
2961}
2962
2963/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2964/// the specified operations to build the shuffle.
2965static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2966                                        SDOperand RHS, SelectionDAG &DAG) {
2967  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2968  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
2969  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2970
2971  enum {
2972    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2973    OP_VMRGHW,
2974    OP_VMRGLW,
2975    OP_VSPLTISW0,
2976    OP_VSPLTISW1,
2977    OP_VSPLTISW2,
2978    OP_VSPLTISW3,
2979    OP_VSLDOI4,
2980    OP_VSLDOI8,
2981    OP_VSLDOI12
2982  };
2983
2984  if (OpNum == OP_COPY) {
2985    if (LHSID == (1*9+2)*9+3) return LHS;
2986    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2987    return RHS;
2988  }
2989
2990  SDOperand OpLHS, OpRHS;
2991  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2992  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2993
2994  unsigned ShufIdxs[16];
2995  switch (OpNum) {
2996  default: assert(0 && "Unknown i32 permute!");
2997  case OP_VMRGHW:
2998    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
2999    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3000    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3001    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3002    break;
3003  case OP_VMRGLW:
3004    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3005    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3006    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3007    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3008    break;
3009  case OP_VSPLTISW0:
3010    for (unsigned i = 0; i != 16; ++i)
3011      ShufIdxs[i] = (i&3)+0;
3012    break;
3013  case OP_VSPLTISW1:
3014    for (unsigned i = 0; i != 16; ++i)
3015      ShufIdxs[i] = (i&3)+4;
3016    break;
3017  case OP_VSPLTISW2:
3018    for (unsigned i = 0; i != 16; ++i)
3019      ShufIdxs[i] = (i&3)+8;
3020    break;
3021  case OP_VSPLTISW3:
3022    for (unsigned i = 0; i != 16; ++i)
3023      ShufIdxs[i] = (i&3)+12;
3024    break;
3025  case OP_VSLDOI4:
3026    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
3027  case OP_VSLDOI8:
3028    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
3029  case OP_VSLDOI12:
3030    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
3031  }
3032  SDOperand Ops[16];
3033  for (unsigned i = 0; i != 16; ++i)
3034    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
3035
3036  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
3037                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3038}
3039
3040/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3041/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3042/// return the code it can be lowered into.  Worst case, it can always be
3043/// lowered into a vperm.
3044SDOperand PPCTargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op,
3045                                                 SelectionDAG &DAG) {
3046  SDOperand V1 = Op.getOperand(0);
3047  SDOperand V2 = Op.getOperand(1);
3048  SDOperand PermMask = Op.getOperand(2);
3049
3050  // Cases that are handled by instructions that take permute immediates
3051  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3052  // selected by the instruction selector.
3053  if (V2.getOpcode() == ISD::UNDEF) {
3054    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
3055        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
3056        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
3057        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
3058        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
3059        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
3060        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
3061        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
3062        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
3063        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
3064        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
3065        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
3066      return Op;
3067    }
3068  }
3069
3070  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3071  // and produce a fixed permutation.  If any of these match, do not lower to
3072  // VPERM.
3073  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
3074      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
3075      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
3076      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
3077      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
3078      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
3079      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
3080      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
3081      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
3082    return Op;
3083
3084  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3085  // perfect shuffle table to emit an optimal matching sequence.
3086  unsigned PFIndexes[4];
3087  bool isFourElementShuffle = true;
3088  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3089    unsigned EltNo = 8;   // Start out undef.
3090    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3091      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3092        continue;   // Undef, ignore it.
3093
3094      unsigned ByteSource =
3095        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
3096      if ((ByteSource & 3) != j) {
3097        isFourElementShuffle = false;
3098        break;
3099      }
3100
3101      if (EltNo == 8) {
3102        EltNo = ByteSource/4;
3103      } else if (EltNo != ByteSource/4) {
3104        isFourElementShuffle = false;
3105        break;
3106      }
3107    }
3108    PFIndexes[i] = EltNo;
3109  }
3110
3111  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3112  // perfect shuffle vector to determine if it is cost effective to do this as
3113  // discrete instructions, or whether we should use a vperm.
3114  if (isFourElementShuffle) {
3115    // Compute the index in the perfect shuffle table.
3116    unsigned PFTableIndex =
3117      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3118
3119    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3120    unsigned Cost  = (PFEntry >> 30);
3121
3122    // Determining when to avoid vperm is tricky.  Many things affect the cost
3123    // of vperm, particularly how many times the perm mask needs to be computed.
3124    // For example, if the perm mask can be hoisted out of a loop or is already
3125    // used (perhaps because there are multiple permutes with the same shuffle
3126    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3127    // the loop requires an extra register.
3128    //
3129    // As a compromise, we only emit discrete instructions if the shuffle can be
3130    // generated in 3 or fewer operations.  When we have loop information
3131    // available, if this block is within a loop, we should avoid using vperm
3132    // for 3-operation perms and use a constant pool load instead.
3133    if (Cost < 3)
3134      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3135  }
3136
3137  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3138  // vector that will get spilled to the constant pool.
3139  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3140
3141  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3142  // that it is in input element units, not in bytes.  Convert now.
3143  MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
3144  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
3145
3146  SmallVector<SDOperand, 16> ResultMask;
3147  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3148    unsigned SrcElt;
3149    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3150      SrcElt = 0;
3151    else
3152      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
3153
3154    for (unsigned j = 0; j != BytesPerElement; ++j)
3155      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3156                                           MVT::i8));
3157  }
3158
3159  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3160                                    &ResultMask[0], ResultMask.size());
3161  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3162}
3163
3164/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3165/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3166/// information about the intrinsic.
3167static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
3168                                  bool &isDot) {
3169  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
3170  CompareOpc = -1;
3171  isDot = false;
3172  switch (IntrinsicID) {
3173  default: return false;
3174    // Comparison predicates.
3175  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3176  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3177  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3178  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3179  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3180  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3181  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3182  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3183  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3184  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3185  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3186  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3187  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3188
3189    // Normal Comparisons.
3190  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3191  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3192  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3193  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3194  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3195  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3196  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3197  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
3198  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
3199  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
3200  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
3201  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
3202  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
3203  }
3204  return true;
3205}
3206
3207/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3208/// lower, do it, otherwise return null.
3209SDOperand PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op,
3210                                                     SelectionDAG &DAG) {
3211  // If this is a lowered altivec predicate compare, CompareOpc is set to the
3212  // opcode number of the comparison.
3213  int CompareOpc;
3214  bool isDot;
3215  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3216    return SDOperand();    // Don't custom lower most intrinsics.
3217
3218  // If this is a non-dot comparison, make the VCMP node and we are done.
3219  if (!isDot) {
3220    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3221                                Op.getOperand(1), Op.getOperand(2),
3222                                DAG.getConstant(CompareOpc, MVT::i32));
3223    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3224  }
3225
3226  // Create the PPCISD altivec 'dot' comparison node.
3227  SDOperand Ops[] = {
3228    Op.getOperand(2),  // LHS
3229    Op.getOperand(3),  // RHS
3230    DAG.getConstant(CompareOpc, MVT::i32)
3231  };
3232  std::vector<MVT::ValueType> VTs;
3233  VTs.push_back(Op.getOperand(2).getValueType());
3234  VTs.push_back(MVT::Flag);
3235  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3236
3237  // Now that we have the comparison, emit a copy from the CR to a GPR.
3238  // This is flagged to the above dot comparison.
3239  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3240                                DAG.getRegister(PPC::CR6, MVT::i32),
3241                                CompNode.getValue(1));
3242
3243  // Unpack the result based on how the target uses it.
3244  unsigned BitNo;   // Bit # of CR6.
3245  bool InvertBit;   // Invert result?
3246  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
3247  default:  // Can't happen, don't crash on invalid number though.
3248  case 0:   // Return the value of the EQ bit of CR6.
3249    BitNo = 0; InvertBit = false;
3250    break;
3251  case 1:   // Return the inverted value of the EQ bit of CR6.
3252    BitNo = 0; InvertBit = true;
3253    break;
3254  case 2:   // Return the value of the LT bit of CR6.
3255    BitNo = 2; InvertBit = false;
3256    break;
3257  case 3:   // Return the inverted value of the LT bit of CR6.
3258    BitNo = 2; InvertBit = true;
3259    break;
3260  }
3261
3262  // Shift the bit into the low position.
3263  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3264                      DAG.getConstant(8-(3-BitNo), MVT::i32));
3265  // Isolate the bit.
3266  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3267                      DAG.getConstant(1, MVT::i32));
3268
3269  // If we are supposed to, toggle the bit.
3270  if (InvertBit)
3271    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3272                        DAG.getConstant(1, MVT::i32));
3273  return Flags;
3274}
3275
3276SDOperand PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op,
3277                                                   SelectionDAG &DAG) {
3278  // Create a stack slot that is 16-byte aligned.
3279  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3280  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3281  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3282  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3283
3284  // Store the input value into Value#0 of the stack slot.
3285  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
3286                                 Op.getOperand(0), FIdx, NULL, 0);
3287  // Load it out.
3288  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3289}
3290
3291SDOperand PPCTargetLowering::LowerMUL(SDOperand Op, SelectionDAG &DAG) {
3292  if (Op.getValueType() == MVT::v4i32) {
3293    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3294
3295    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
3296    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3297
3298    SDOperand RHSSwap =   // = vrlw RHS, 16
3299      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3300
3301    // Shrinkify inputs to v8i16.
3302    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3303    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3304    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3305
3306    // Low parts multiplied together, generating 32-bit results (we ignore the
3307    // top parts).
3308    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3309                                        LHS, RHS, DAG, MVT::v4i32);
3310
3311    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3312                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3313    // Shift the high parts up 16 bits.
3314    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3315    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3316  } else if (Op.getValueType() == MVT::v8i16) {
3317    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3318
3319    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3320
3321    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3322                            LHS, RHS, Zero, DAG);
3323  } else if (Op.getValueType() == MVT::v16i8) {
3324    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3325
3326    // Multiply the even 8-bit parts, producing 16-bit sums.
3327    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3328                                           LHS, RHS, DAG, MVT::v8i16);
3329    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3330
3331    // Multiply the odd 8-bit parts, producing 16-bit sums.
3332    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3333                                          LHS, RHS, DAG, MVT::v8i16);
3334    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3335
3336    // Merge the results together.
3337    SDOperand Ops[16];
3338    for (unsigned i = 0; i != 8; ++i) {
3339      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
3340      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3341    }
3342    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3343                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3344  } else {
3345    assert(0 && "Unknown mul to lower!");
3346    abort();
3347  }
3348}
3349
3350/// LowerOperation - Provide custom lowering hooks for some operations.
3351///
3352SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3353  switch (Op.getOpcode()) {
3354  default: assert(0 && "Wasn't expecting to be able to lower this!");
3355  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3356  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3357  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3358  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3359  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3360  case ISD::VASTART:
3361    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3362                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3363
3364  case ISD::VAARG:
3365    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3366                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3367
3368  case ISD::FORMAL_ARGUMENTS:
3369    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3370                                 VarArgsStackOffset, VarArgsNumGPR,
3371                                 VarArgsNumFPR, PPCSubTarget);
3372
3373  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget);
3374  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3375  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3376  case ISD::DYNAMIC_STACKALLOC:
3377    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3378
3379  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3380  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3381  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3382  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3383  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3384
3385  // Lower 64-bit shifts.
3386  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3387  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3388  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3389
3390  // Vector-related lowering.
3391  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3392  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3393  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3394  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3395  case ISD::MUL:                return LowerMUL(Op, DAG);
3396
3397  // Frame & Return address.
3398  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3399  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3400  }
3401  return SDOperand();
3402}
3403
3404SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3405  switch (N->getOpcode()) {
3406  default: assert(0 && "Wasn't expecting to be able to lower this!");
3407  case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3408  }
3409}
3410
3411
3412//===----------------------------------------------------------------------===//
3413//  Other Lowering Code
3414//===----------------------------------------------------------------------===//
3415
3416MachineBasicBlock *
3417PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3418                                               MachineBasicBlock *BB) {
3419  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3420  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3421          MI->getOpcode() == PPC::SELECT_CC_I8 ||
3422          MI->getOpcode() == PPC::SELECT_CC_F4 ||
3423          MI->getOpcode() == PPC::SELECT_CC_F8 ||
3424          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3425         "Unexpected instr type to insert");
3426
3427  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3428  // control-flow pattern.  The incoming instruction knows the destination vreg
3429  // to set, the condition code register to branch on, the true/false values to
3430  // select between, and a branch opcode to use.
3431  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3432  ilist<MachineBasicBlock>::iterator It = BB;
3433  ++It;
3434
3435  //  thisMBB:
3436  //  ...
3437  //   TrueVal = ...
3438  //   cmpTY ccX, r1, r2
3439  //   bCC copy1MBB
3440  //   fallthrough --> copy0MBB
3441  MachineBasicBlock *thisMBB = BB;
3442  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3443  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3444  unsigned SelectPred = MI->getOperand(4).getImm();
3445  BuildMI(BB, TII->get(PPC::BCC))
3446    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3447  MachineFunction *F = BB->getParent();
3448  F->getBasicBlockList().insert(It, copy0MBB);
3449  F->getBasicBlockList().insert(It, sinkMBB);
3450  // Update machine-CFG edges by first adding all successors of the current
3451  // block to the new block which will contain the Phi node for the select.
3452  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3453      e = BB->succ_end(); i != e; ++i)
3454    sinkMBB->addSuccessor(*i);
3455  // Next, remove all successors of the current block, and add the true
3456  // and fallthrough blocks as its successors.
3457  while(!BB->succ_empty())
3458    BB->removeSuccessor(BB->succ_begin());
3459  BB->addSuccessor(copy0MBB);
3460  BB->addSuccessor(sinkMBB);
3461
3462  //  copy0MBB:
3463  //   %FalseValue = ...
3464  //   # fallthrough to sinkMBB
3465  BB = copy0MBB;
3466
3467  // Update machine-CFG edges
3468  BB->addSuccessor(sinkMBB);
3469
3470  //  sinkMBB:
3471  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3472  //  ...
3473  BB = sinkMBB;
3474  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3475    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3476    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3477
3478  delete MI;   // The pseudo instruction is gone now.
3479  return BB;
3480}
3481
3482//===----------------------------------------------------------------------===//
3483// Target Optimization Hooks
3484//===----------------------------------------------------------------------===//
3485
3486SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3487                                               DAGCombinerInfo &DCI) const {
3488  TargetMachine &TM = getTargetMachine();
3489  SelectionDAG &DAG = DCI.DAG;
3490  switch (N->getOpcode()) {
3491  default: break;
3492  case PPCISD::SHL:
3493    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3494      if (C->getValue() == 0)   // 0 << V -> 0.
3495        return N->getOperand(0);
3496    }
3497    break;
3498  case PPCISD::SRL:
3499    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3500      if (C->getValue() == 0)   // 0 >>u V -> 0.
3501        return N->getOperand(0);
3502    }
3503    break;
3504  case PPCISD::SRA:
3505    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3506      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
3507          C->isAllOnesValue())    // -1 >>s V -> -1.
3508        return N->getOperand(0);
3509    }
3510    break;
3511
3512  case ISD::SINT_TO_FP:
3513    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3514      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3515        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3516        // We allow the src/dst to be either f32/f64, but the intermediate
3517        // type must be i64.
3518        if (N->getOperand(0).getValueType() == MVT::i64 &&
3519            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
3520          SDOperand Val = N->getOperand(0).getOperand(0);
3521          if (Val.getValueType() == MVT::f32) {
3522            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3523            DCI.AddToWorklist(Val.Val);
3524          }
3525
3526          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3527          DCI.AddToWorklist(Val.Val);
3528          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3529          DCI.AddToWorklist(Val.Val);
3530          if (N->getValueType(0) == MVT::f32) {
3531            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
3532                              DAG.getIntPtrConstant(0));
3533            DCI.AddToWorklist(Val.Val);
3534          }
3535          return Val;
3536        } else if (N->getOperand(0).getValueType() == MVT::i32) {
3537          // If the intermediate type is i32, we can avoid the load/store here
3538          // too.
3539        }
3540      }
3541    }
3542    break;
3543  case ISD::STORE:
3544    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3545    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3546        !cast<StoreSDNode>(N)->isTruncatingStore() &&
3547        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3548        N->getOperand(1).getValueType() == MVT::i32 &&
3549        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
3550      SDOperand Val = N->getOperand(1).getOperand(0);
3551      if (Val.getValueType() == MVT::f32) {
3552        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3553        DCI.AddToWorklist(Val.Val);
3554      }
3555      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3556      DCI.AddToWorklist(Val.Val);
3557
3558      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3559                        N->getOperand(2), N->getOperand(3));
3560      DCI.AddToWorklist(Val.Val);
3561      return Val;
3562    }
3563
3564    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3565    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3566        N->getOperand(1).Val->hasOneUse() &&
3567        (N->getOperand(1).getValueType() == MVT::i32 ||
3568         N->getOperand(1).getValueType() == MVT::i16)) {
3569      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3570      // Do an any-extend to 32-bits if this is a half-word input.
3571      if (BSwapOp.getValueType() == MVT::i16)
3572        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3573
3574      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3575                         N->getOperand(2), N->getOperand(3),
3576                         DAG.getValueType(N->getOperand(1).getValueType()));
3577    }
3578    break;
3579  case ISD::BSWAP:
3580    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3581    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3582        N->getOperand(0).hasOneUse() &&
3583        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3584      SDOperand Load = N->getOperand(0);
3585      LoadSDNode *LD = cast<LoadSDNode>(Load);
3586      // Create the byte-swapping load.
3587      std::vector<MVT::ValueType> VTs;
3588      VTs.push_back(MVT::i32);
3589      VTs.push_back(MVT::Other);
3590      SDOperand MO = DAG.getMemOperand(LD->getMemOperand());
3591      SDOperand Ops[] = {
3592        LD->getChain(),    // Chain
3593        LD->getBasePtr(),  // Ptr
3594        MO,                // MemOperand
3595        DAG.getValueType(N->getValueType(0)) // VT
3596      };
3597      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3598
3599      // If this is an i16 load, insert the truncate.
3600      SDOperand ResVal = BSLoad;
3601      if (N->getValueType(0) == MVT::i16)
3602        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3603
3604      // First, combine the bswap away.  This makes the value produced by the
3605      // load dead.
3606      DCI.CombineTo(N, ResVal);
3607
3608      // Next, combine the load away, we give it a bogus result value but a real
3609      // chain result.  The result value is dead because the bswap is dead.
3610      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3611
3612      // Return N so it doesn't get rechecked!
3613      return SDOperand(N, 0);
3614    }
3615
3616    break;
3617  case PPCISD::VCMP: {
3618    // If a VCMPo node already exists with exactly the same operands as this
3619    // node, use its result instead of this node (VCMPo computes both a CR6 and
3620    // a normal output).
3621    //
3622    if (!N->getOperand(0).hasOneUse() &&
3623        !N->getOperand(1).hasOneUse() &&
3624        !N->getOperand(2).hasOneUse()) {
3625
3626      // Scan all of the users of the LHS, looking for VCMPo's that match.
3627      SDNode *VCMPoNode = 0;
3628
3629      SDNode *LHSN = N->getOperand(0).Val;
3630      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3631           UI != E; ++UI)
3632        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3633            (*UI)->getOperand(1) == N->getOperand(1) &&
3634            (*UI)->getOperand(2) == N->getOperand(2) &&
3635            (*UI)->getOperand(0) == N->getOperand(0)) {
3636          VCMPoNode = *UI;
3637          break;
3638        }
3639
3640      // If there is no VCMPo node, or if the flag value has a single use, don't
3641      // transform this.
3642      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3643        break;
3644
3645      // Look at the (necessarily single) use of the flag value.  If it has a
3646      // chain, this transformation is more complex.  Note that multiple things
3647      // could use the value result, which we should ignore.
3648      SDNode *FlagUser = 0;
3649      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3650           FlagUser == 0; ++UI) {
3651        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3652        SDNode *User = *UI;
3653        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3654          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3655            FlagUser = User;
3656            break;
3657          }
3658        }
3659      }
3660
3661      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
3662      // give up for right now.
3663      if (FlagUser->getOpcode() == PPCISD::MFCR)
3664        return SDOperand(VCMPoNode, 0);
3665    }
3666    break;
3667  }
3668  case ISD::BR_CC: {
3669    // If this is a branch on an altivec predicate comparison, lower this so
3670    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
3671    // lowering is done pre-legalize, because the legalizer lowers the predicate
3672    // compare down to code that is difficult to reassemble.
3673    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3674    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3675    int CompareOpc;
3676    bool isDot;
3677
3678    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3679        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3680        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3681      assert(isDot && "Can't compare against a vector result!");
3682
3683      // If this is a comparison against something other than 0/1, then we know
3684      // that the condition is never/always true.
3685      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3686      if (Val != 0 && Val != 1) {
3687        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
3688          return N->getOperand(0);
3689        // Always !=, turn it into an unconditional branch.
3690        return DAG.getNode(ISD::BR, MVT::Other,
3691                           N->getOperand(0), N->getOperand(4));
3692      }
3693
3694      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3695
3696      // Create the PPCISD altivec 'dot' comparison node.
3697      std::vector<MVT::ValueType> VTs;
3698      SDOperand Ops[] = {
3699        LHS.getOperand(2),  // LHS of compare
3700        LHS.getOperand(3),  // RHS of compare
3701        DAG.getConstant(CompareOpc, MVT::i32)
3702      };
3703      VTs.push_back(LHS.getOperand(2).getValueType());
3704      VTs.push_back(MVT::Flag);
3705      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3706
3707      // Unpack the result based on how the target uses it.
3708      PPC::Predicate CompOpc;
3709      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3710      default:  // Can't happen, don't crash on invalid number though.
3711      case 0:   // Branch on the value of the EQ bit of CR6.
3712        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3713        break;
3714      case 1:   // Branch on the inverted value of the EQ bit of CR6.
3715        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3716        break;
3717      case 2:   // Branch on the value of the LT bit of CR6.
3718        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3719        break;
3720      case 3:   // Branch on the inverted value of the LT bit of CR6.
3721        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3722        break;
3723      }
3724
3725      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3726                         DAG.getConstant(CompOpc, MVT::i32),
3727                         DAG.getRegister(PPC::CR6, MVT::i32),
3728                         N->getOperand(4), CompNode.getValue(1));
3729    }
3730    break;
3731  }
3732  }
3733
3734  return SDOperand();
3735}
3736
3737//===----------------------------------------------------------------------===//
3738// Inline Assembly Support
3739//===----------------------------------------------------------------------===//
3740
3741void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3742                                                       const APInt &Mask,
3743                                                       APInt &KnownZero,
3744                                                       APInt &KnownOne,
3745                                                       const SelectionDAG &DAG,
3746                                                       unsigned Depth) const {
3747  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
3748  switch (Op.getOpcode()) {
3749  default: break;
3750  case PPCISD::LBRX: {
3751    // lhbrx is known to have the top bits cleared out.
3752    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3753      KnownZero = 0xFFFF0000;
3754    break;
3755  }
3756  case ISD::INTRINSIC_WO_CHAIN: {
3757    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3758    default: break;
3759    case Intrinsic::ppc_altivec_vcmpbfp_p:
3760    case Intrinsic::ppc_altivec_vcmpeqfp_p:
3761    case Intrinsic::ppc_altivec_vcmpequb_p:
3762    case Intrinsic::ppc_altivec_vcmpequh_p:
3763    case Intrinsic::ppc_altivec_vcmpequw_p:
3764    case Intrinsic::ppc_altivec_vcmpgefp_p:
3765    case Intrinsic::ppc_altivec_vcmpgtfp_p:
3766    case Intrinsic::ppc_altivec_vcmpgtsb_p:
3767    case Intrinsic::ppc_altivec_vcmpgtsh_p:
3768    case Intrinsic::ppc_altivec_vcmpgtsw_p:
3769    case Intrinsic::ppc_altivec_vcmpgtub_p:
3770    case Intrinsic::ppc_altivec_vcmpgtuh_p:
3771    case Intrinsic::ppc_altivec_vcmpgtuw_p:
3772      KnownZero = ~1U;  // All bits but the low one are known to be zero.
3773      break;
3774    }
3775  }
3776  }
3777}
3778
3779
3780/// getConstraintType - Given a constraint, return the type of
3781/// constraint it is for this target.
3782PPCTargetLowering::ConstraintType
3783PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3784  if (Constraint.size() == 1) {
3785    switch (Constraint[0]) {
3786    default: break;
3787    case 'b':
3788    case 'r':
3789    case 'f':
3790    case 'v':
3791    case 'y':
3792      return C_RegisterClass;
3793    }
3794  }
3795  return TargetLowering::getConstraintType(Constraint);
3796}
3797
3798std::pair<unsigned, const TargetRegisterClass*>
3799PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3800                                                MVT::ValueType VT) const {
3801  if (Constraint.size() == 1) {
3802    // GCC RS6000 Constraint Letters
3803    switch (Constraint[0]) {
3804    case 'b':   // R1-R31
3805    case 'r':   // R0-R31
3806      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3807        return std::make_pair(0U, PPC::G8RCRegisterClass);
3808      return std::make_pair(0U, PPC::GPRCRegisterClass);
3809    case 'f':
3810      if (VT == MVT::f32)
3811        return std::make_pair(0U, PPC::F4RCRegisterClass);
3812      else if (VT == MVT::f64)
3813        return std::make_pair(0U, PPC::F8RCRegisterClass);
3814      break;
3815    case 'v':
3816      return std::make_pair(0U, PPC::VRRCRegisterClass);
3817    case 'y':   // crrc
3818      return std::make_pair(0U, PPC::CRRCRegisterClass);
3819    }
3820  }
3821
3822  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3823}
3824
3825
3826/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3827/// vector.  If it is invalid, don't add anything to Ops.
3828void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3829                                                     std::vector<SDOperand>&Ops,
3830                                                     SelectionDAG &DAG) {
3831  SDOperand Result(0,0);
3832  switch (Letter) {
3833  default: break;
3834  case 'I':
3835  case 'J':
3836  case 'K':
3837  case 'L':
3838  case 'M':
3839  case 'N':
3840  case 'O':
3841  case 'P': {
3842    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
3843    if (!CST) return; // Must be an immediate to match.
3844    unsigned Value = CST->getValue();
3845    switch (Letter) {
3846    default: assert(0 && "Unknown constraint letter!");
3847    case 'I':  // "I" is a signed 16-bit constant.
3848      if ((short)Value == (int)Value)
3849        Result = DAG.getTargetConstant(Value, Op.getValueType());
3850      break;
3851    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
3852    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
3853      if ((short)Value == 0)
3854        Result = DAG.getTargetConstant(Value, Op.getValueType());
3855      break;
3856    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
3857      if ((Value >> 16) == 0)
3858        Result = DAG.getTargetConstant(Value, Op.getValueType());
3859      break;
3860    case 'M':  // "M" is a constant that is greater than 31.
3861      if (Value > 31)
3862        Result = DAG.getTargetConstant(Value, Op.getValueType());
3863      break;
3864    case 'N':  // "N" is a positive constant that is an exact power of two.
3865      if ((int)Value > 0 && isPowerOf2_32(Value))
3866        Result = DAG.getTargetConstant(Value, Op.getValueType());
3867      break;
3868    case 'O':  // "O" is the constant zero.
3869      if (Value == 0)
3870        Result = DAG.getTargetConstant(Value, Op.getValueType());
3871      break;
3872    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
3873      if ((short)-Value == (int)-Value)
3874        Result = DAG.getTargetConstant(Value, Op.getValueType());
3875      break;
3876    }
3877    break;
3878  }
3879  }
3880
3881  if (Result.Val) {
3882    Ops.push_back(Result);
3883    return;
3884  }
3885
3886  // Handle standard constraint letters.
3887  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
3888}
3889
3890// isLegalAddressingMode - Return true if the addressing mode represented
3891// by AM is legal for this target, for a load/store of the specified type.
3892bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3893                                              const Type *Ty) const {
3894  // FIXME: PPC does not allow r+i addressing modes for vectors!
3895
3896  // PPC allows a sign-extended 16-bit immediate field.
3897  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3898    return false;
3899
3900  // No global is ever allowed as a base.
3901  if (AM.BaseGV)
3902    return false;
3903
3904  // PPC only support r+r,
3905  switch (AM.Scale) {
3906  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3907    break;
3908  case 1:
3909    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3910      return false;
3911    // Otherwise we have r+r or r+i.
3912    break;
3913  case 2:
3914    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3915      return false;
3916    // Allow 2*r as r+r.
3917    break;
3918  default:
3919    // No other scales are supported.
3920    return false;
3921  }
3922
3923  return true;
3924}
3925
3926/// isLegalAddressImmediate - Return true if the integer value can be used
3927/// as the offset of the target addressing mode for load / store of the
3928/// given type.
3929bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3930  // PPC allows a sign-extended 16-bit immediate field.
3931  return (V > -(1 << 16) && V < (1 << 16)-1);
3932}
3933
3934bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3935  return false;
3936}
3937
3938SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
3939  // Depths > 0 not supported yet!
3940  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3941    return SDOperand();
3942
3943  MachineFunction &MF = DAG.getMachineFunction();
3944  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3945  int RAIdx = FuncInfo->getReturnAddrSaveIndex();
3946  if (RAIdx == 0) {
3947    bool isPPC64 = PPCSubTarget.isPPC64();
3948    int Offset =
3949      PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI());
3950
3951    // Set up a frame object for the return address.
3952    RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset);
3953
3954    // Remember it for next time.
3955    FuncInfo->setReturnAddrSaveIndex(RAIdx);
3956
3957    // Make sure the function really does not optimize away the store of the RA
3958    // to the stack.
3959    FuncInfo->setLRStoreRequired();
3960  }
3961
3962  // Just load the return address off the stack.
3963  SDOperand RetAddrFI =  DAG.getFrameIndex(RAIdx, getPointerTy());
3964  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
3965}
3966
3967SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
3968  // Depths > 0 not supported yet!
3969  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3970    return SDOperand();
3971
3972  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3973  bool isPPC64 = PtrVT == MVT::i64;
3974
3975  MachineFunction &MF = DAG.getMachineFunction();
3976  MachineFrameInfo *MFI = MF.getFrameInfo();
3977  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3978                  && MFI->getStackSize();
3979
3980  if (isPPC64)
3981    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
3982      MVT::i64);
3983  else
3984    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3985      MVT::i32);
3986}
3987