PPCISelLowering.cpp revision db125cfaf57cc83e7dd7453de2d509bc8efd0e5e
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPerfectShuffle.h"
17#include "PPCPredicates.h"
18#include "PPCTargetMachine.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29#include "llvm/CallingConv.h"
30#include "llvm/Constants.h"
31#include "llvm/Function.h"
32#include "llvm/Intrinsics.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/DerivedTypes.h"
39using namespace llvm;
40
41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
42                                     CCValAssign::LocInfo &LocInfo,
43                                     ISD::ArgFlagsTy &ArgFlags,
44                                     CCState &State);
45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
46                                            MVT &LocVT,
47                                            CCValAssign::LocInfo &LocInfo,
48                                            ISD::ArgFlagsTy &ArgFlags,
49                                            CCState &State);
50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
51                                              MVT &LocVT,
52                                              CCValAssign::LocInfo &LocInfo,
53                                              ISD::ArgFlagsTy &ArgFlags,
54                                              CCState &State);
55
56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                     cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63
64  return new TargetLoweringObjectFileELF();
65}
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69
70  setPow2DivIsCheap();
71
72  // Use _setjmp/_longjmp instead of setjmp/longjmp.
73  setUseUnderscoreSetJmp(true);
74  setUseUnderscoreLongJmp(true);
75
76  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
77  // arguments are at least 4/8 bytes aligned.
78  setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4);
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
82  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
83  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
84
85  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
86  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
87  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
88
89  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
90
91  // PowerPC has pre-inc load and store's.
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
93  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
94  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
95  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
96  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
98  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
99  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
100  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
101  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
102
103  // This is used in the ppcf128->int sequence.  Note it has different semantics
104  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
105  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
106
107  // PowerPC has no SREM/UREM instructions
108  setOperationAction(ISD::SREM, MVT::i32, Expand);
109  setOperationAction(ISD::UREM, MVT::i32, Expand);
110  setOperationAction(ISD::SREM, MVT::i64, Expand);
111  setOperationAction(ISD::UREM, MVT::i64, Expand);
112
113  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
114  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
115  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
116  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
117  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
118  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
119  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
120  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
121  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
122
123  // We don't support sin/cos/sqrt/fmod/pow
124  setOperationAction(ISD::FSIN , MVT::f64, Expand);
125  setOperationAction(ISD::FCOS , MVT::f64, Expand);
126  setOperationAction(ISD::FREM , MVT::f64, Expand);
127  setOperationAction(ISD::FPOW , MVT::f64, Expand);
128  setOperationAction(ISD::FMA  , MVT::f64, Expand);
129  setOperationAction(ISD::FSIN , MVT::f32, Expand);
130  setOperationAction(ISD::FCOS , MVT::f32, Expand);
131  setOperationAction(ISD::FREM , MVT::f32, Expand);
132  setOperationAction(ISD::FPOW , MVT::f32, Expand);
133  setOperationAction(ISD::FMA  , MVT::f32, Expand);
134
135  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
136
137  // If we're enabling GP optimizations, use hardware square root
138  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
139    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
140    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
141  }
142
143  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
144  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
145
146  // PowerPC does not have BSWAP, CTPOP or CTTZ
147  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
148  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
149  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
150  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
151  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
152  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
153
154  // PowerPC does not have ROTR
155  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
156  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
157
158  // PowerPC does not have Select
159  setOperationAction(ISD::SELECT, MVT::i32, Expand);
160  setOperationAction(ISD::SELECT, MVT::i64, Expand);
161  setOperationAction(ISD::SELECT, MVT::f32, Expand);
162  setOperationAction(ISD::SELECT, MVT::f64, Expand);
163
164  // PowerPC wants to turn select_cc of FP into fsel when possible.
165  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
166  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
167
168  // PowerPC wants to optimize integer setcc a bit
169  setOperationAction(ISD::SETCC, MVT::i32, Custom);
170
171  // PowerPC does not have BRCOND which requires SetCC
172  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
173
174  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
175
176  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
177  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
178
179  // PowerPC does not have [U|S]INT_TO_FP
180  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
181  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
182
183  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
184  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
185  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
186  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
187
188  // We cannot sextinreg(i1).  Expand to shifts.
189  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
190
191  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
192  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
193  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
194  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
195
196
197  // We want to legalize GlobalAddress and ConstantPool nodes into the
198  // appropriate instructions to materialize the address.
199  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
200  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
201  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
202  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
203  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
204  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
205  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
206  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
207  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
208  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
209
210  // TRAP is legal.
211  setOperationAction(ISD::TRAP, MVT::Other, Legal);
212
213  // TRAMPOLINE is custom lowered.
214  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
215
216  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
217  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
218
219  // VAARG is custom lowered with the 32-bit SVR4 ABI.
220  if (TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
221      && !TM.getSubtarget<PPCSubtarget>().isPPC64()) {
222    setOperationAction(ISD::VAARG, MVT::Other, Custom);
223    setOperationAction(ISD::VAARG, MVT::i64, Custom);
224  } else
225    setOperationAction(ISD::VAARG, MVT::Other, Expand);
226
227  // Use the default implementation.
228  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
229  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
230  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
231  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
232  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
233  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
234
235  // We want to custom lower some of our intrinsics.
236  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
237
238  // Comparisons that require checking two conditions.
239  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
240  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
241  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
244  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
245  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
246  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
247  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
248  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
249  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
250  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
251
252  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
253    // They also have instructions for converting between i64 and fp.
254    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
255    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
256    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
257    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
258    // This is just the low 32 bits of a (signed) fp->i64 conversion.
259    // We cannot do this with Promote because i64 is not a legal type.
260    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
261
262    // FIXME: disable this lowered code.  This generates 64-bit register values,
263    // and we don't model the fact that the top part is clobbered by calls.  We
264    // need to flag these together so that the value isn't live across a call.
265    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
266  } else {
267    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
268    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
269  }
270
271  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
272    // 64-bit PowerPC implementations can support i64 types directly
273    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
274    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
275    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
276    // 64-bit PowerPC wants to expand i128 shifts itself.
277    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
278    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
279    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
280  } else {
281    // 32-bit PowerPC wants to expand i64 shifts itself.
282    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
283    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
284    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
285  }
286
287  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
288    // First set operation action for all vector types to expand. Then we
289    // will selectively turn on ones that can be effectively codegen'd.
290    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
291         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
292      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
293
294      // add/sub are legal for all supported vector VT's.
295      setOperationAction(ISD::ADD , VT, Legal);
296      setOperationAction(ISD::SUB , VT, Legal);
297
298      // We promote all shuffles to v16i8.
299      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
300      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
301
302      // We promote all non-typed operations to v4i32.
303      setOperationAction(ISD::AND   , VT, Promote);
304      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
305      setOperationAction(ISD::OR    , VT, Promote);
306      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
307      setOperationAction(ISD::XOR   , VT, Promote);
308      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
309      setOperationAction(ISD::LOAD  , VT, Promote);
310      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
311      setOperationAction(ISD::SELECT, VT, Promote);
312      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
313      setOperationAction(ISD::STORE, VT, Promote);
314      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
315
316      // No other operations are legal.
317      setOperationAction(ISD::MUL , VT, Expand);
318      setOperationAction(ISD::SDIV, VT, Expand);
319      setOperationAction(ISD::SREM, VT, Expand);
320      setOperationAction(ISD::UDIV, VT, Expand);
321      setOperationAction(ISD::UREM, VT, Expand);
322      setOperationAction(ISD::FDIV, VT, Expand);
323      setOperationAction(ISD::FNEG, VT, Expand);
324      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
325      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
326      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
327      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
328      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
329      setOperationAction(ISD::UDIVREM, VT, Expand);
330      setOperationAction(ISD::SDIVREM, VT, Expand);
331      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
332      setOperationAction(ISD::FPOW, VT, Expand);
333      setOperationAction(ISD::CTPOP, VT, Expand);
334      setOperationAction(ISD::CTLZ, VT, Expand);
335      setOperationAction(ISD::CTTZ, VT, Expand);
336    }
337
338    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
339    // with merges, splats, etc.
340    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
341
342    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
343    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
344    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
345    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
346    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
347    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
348
349    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
350    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
351    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
352    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
353
354    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
355    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
356    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
357    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
358
359    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
360    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
361
362    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
363    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
364    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
365    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
366  }
367
368  setBooleanContents(ZeroOrOneBooleanContent);
369
370  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
371    setStackPointerRegisterToSaveRestore(PPC::X1);
372    setExceptionPointerRegister(PPC::X3);
373    setExceptionSelectorRegister(PPC::X4);
374  } else {
375    setStackPointerRegisterToSaveRestore(PPC::R1);
376    setExceptionPointerRegister(PPC::R3);
377    setExceptionSelectorRegister(PPC::R4);
378  }
379
380  // We have target-specific dag combine patterns for the following nodes:
381  setTargetDAGCombine(ISD::SINT_TO_FP);
382  setTargetDAGCombine(ISD::STORE);
383  setTargetDAGCombine(ISD::BR_CC);
384  setTargetDAGCombine(ISD::BSWAP);
385
386  // Darwin long double math library functions have $LDBL128 appended.
387  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
388    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
389    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
390    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
391    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
392    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
393    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
394    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
395    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
396    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
397    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
398  }
399
400  setMinFunctionAlignment(2);
401  if (PPCSubTarget.isDarwin())
402    setPrefFunctionAlignment(4);
403
404  computeRegisterProperties();
405}
406
407/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
408/// function arguments in the caller parameter area.
409unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
410  const TargetMachine &TM = getTargetMachine();
411  // Darwin passes everything on 4 byte boundary.
412  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
413    return 4;
414  // FIXME SVR4 TBD
415  return 4;
416}
417
418const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
419  switch (Opcode) {
420  default: return 0;
421  case PPCISD::FSEL:            return "PPCISD::FSEL";
422  case PPCISD::FCFID:           return "PPCISD::FCFID";
423  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
424  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
425  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
426  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
427  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
428  case PPCISD::VPERM:           return "PPCISD::VPERM";
429  case PPCISD::Hi:              return "PPCISD::Hi";
430  case PPCISD::Lo:              return "PPCISD::Lo";
431  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
432  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
433  case PPCISD::LOAD:            return "PPCISD::LOAD";
434  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
435  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
436  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
437  case PPCISD::SRL:             return "PPCISD::SRL";
438  case PPCISD::SRA:             return "PPCISD::SRA";
439  case PPCISD::SHL:             return "PPCISD::SHL";
440  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
441  case PPCISD::STD_32:          return "PPCISD::STD_32";
442  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
443  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
444  case PPCISD::NOP:             return "PPCISD::NOP";
445  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
446  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
447  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
448  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
449  case PPCISD::MFCR:            return "PPCISD::MFCR";
450  case PPCISD::VCMP:            return "PPCISD::VCMP";
451  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
452  case PPCISD::LBRX:            return "PPCISD::LBRX";
453  case PPCISD::STBRX:           return "PPCISD::STBRX";
454  case PPCISD::LARX:            return "PPCISD::LARX";
455  case PPCISD::STCX:            return "PPCISD::STCX";
456  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
457  case PPCISD::MFFS:            return "PPCISD::MFFS";
458  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
459  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
460  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
461  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
462  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
463  }
464}
465
466MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
467  return MVT::i32;
468}
469
470//===----------------------------------------------------------------------===//
471// Node matching predicates, for use by the tblgen matching code.
472//===----------------------------------------------------------------------===//
473
474/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
475static bool isFloatingPointZero(SDValue Op) {
476  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
477    return CFP->getValueAPF().isZero();
478  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
479    // Maybe this has already been legalized into the constant pool?
480    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
481      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
482        return CFP->getValueAPF().isZero();
483  }
484  return false;
485}
486
487/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
488/// true if Op is undef or if it matches the specified value.
489static bool isConstantOrUndef(int Op, int Val) {
490  return Op < 0 || Op == Val;
491}
492
493/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
494/// VPKUHUM instruction.
495bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
496  if (!isUnary) {
497    for (unsigned i = 0; i != 16; ++i)
498      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
499        return false;
500  } else {
501    for (unsigned i = 0; i != 8; ++i)
502      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
503          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
504        return false;
505  }
506  return true;
507}
508
509/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
510/// VPKUWUM instruction.
511bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
512  if (!isUnary) {
513    for (unsigned i = 0; i != 16; i += 2)
514      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
515          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
516        return false;
517  } else {
518    for (unsigned i = 0; i != 8; i += 2)
519      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
520          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
521          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
522          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
523        return false;
524  }
525  return true;
526}
527
528/// isVMerge - Common function, used to match vmrg* shuffles.
529///
530static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
531                     unsigned LHSStart, unsigned RHSStart) {
532  assert(N->getValueType(0) == MVT::v16i8 &&
533         "PPC only supports shuffles by bytes!");
534  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
535         "Unsupported merge size!");
536
537  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
538    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
539      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
540                             LHSStart+j+i*UnitSize) ||
541          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
542                             RHSStart+j+i*UnitSize))
543        return false;
544    }
545  return true;
546}
547
548/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
549/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
550bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
551                             bool isUnary) {
552  if (!isUnary)
553    return isVMerge(N, UnitSize, 8, 24);
554  return isVMerge(N, UnitSize, 8, 8);
555}
556
557/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
558/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
559bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
560                             bool isUnary) {
561  if (!isUnary)
562    return isVMerge(N, UnitSize, 0, 16);
563  return isVMerge(N, UnitSize, 0, 0);
564}
565
566
567/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
568/// amount, otherwise return -1.
569int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
570  assert(N->getValueType(0) == MVT::v16i8 &&
571         "PPC only supports shuffles by bytes!");
572
573  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
574
575  // Find the first non-undef value in the shuffle mask.
576  unsigned i;
577  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
578    /*search*/;
579
580  if (i == 16) return -1;  // all undef.
581
582  // Otherwise, check to see if the rest of the elements are consecutively
583  // numbered from this value.
584  unsigned ShiftAmt = SVOp->getMaskElt(i);
585  if (ShiftAmt < i) return -1;
586  ShiftAmt -= i;
587
588  if (!isUnary) {
589    // Check the rest of the elements to see if they are consecutive.
590    for (++i; i != 16; ++i)
591      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
592        return -1;
593  } else {
594    // Check the rest of the elements to see if they are consecutive.
595    for (++i; i != 16; ++i)
596      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
597        return -1;
598  }
599  return ShiftAmt;
600}
601
602/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
603/// specifies a splat of a single element that is suitable for input to
604/// VSPLTB/VSPLTH/VSPLTW.
605bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
606  assert(N->getValueType(0) == MVT::v16i8 &&
607         (EltSize == 1 || EltSize == 2 || EltSize == 4));
608
609  // This is a splat operation if each element of the permute is the same, and
610  // if the value doesn't reference the second vector.
611  unsigned ElementBase = N->getMaskElt(0);
612
613  // FIXME: Handle UNDEF elements too!
614  if (ElementBase >= 16)
615    return false;
616
617  // Check that the indices are consecutive, in the case of a multi-byte element
618  // splatted with a v16i8 mask.
619  for (unsigned i = 1; i != EltSize; ++i)
620    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
621      return false;
622
623  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
624    if (N->getMaskElt(i) < 0) continue;
625    for (unsigned j = 0; j != EltSize; ++j)
626      if (N->getMaskElt(i+j) != N->getMaskElt(j))
627        return false;
628  }
629  return true;
630}
631
632/// isAllNegativeZeroVector - Returns true if all elements of build_vector
633/// are -0.0.
634bool PPC::isAllNegativeZeroVector(SDNode *N) {
635  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
636
637  APInt APVal, APUndef;
638  unsigned BitSize;
639  bool HasAnyUndefs;
640
641  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
642    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
643      return CFP->getValueAPF().isNegZero();
644
645  return false;
646}
647
648/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
649/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
650unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
651  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
652  assert(isSplatShuffleMask(SVOp, EltSize));
653  return SVOp->getMaskElt(0) / EltSize;
654}
655
656/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
657/// by using a vspltis[bhw] instruction of the specified element size, return
658/// the constant being splatted.  The ByteSize field indicates the number of
659/// bytes of each element [124] -> [bhw].
660SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
661  SDValue OpVal(0, 0);
662
663  // If ByteSize of the splat is bigger than the element size of the
664  // build_vector, then we have a case where we are checking for a splat where
665  // multiple elements of the buildvector are folded together into a single
666  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
667  unsigned EltSize = 16/N->getNumOperands();
668  if (EltSize < ByteSize) {
669    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
670    SDValue UniquedVals[4];
671    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
672
673    // See if all of the elements in the buildvector agree across.
674    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
675      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
676      // If the element isn't a constant, bail fully out.
677      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
678
679
680      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
681        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
682      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
683        return SDValue();  // no match.
684    }
685
686    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
687    // either constant or undef values that are identical for each chunk.  See
688    // if these chunks can form into a larger vspltis*.
689
690    // Check to see if all of the leading entries are either 0 or -1.  If
691    // neither, then this won't fit into the immediate field.
692    bool LeadingZero = true;
693    bool LeadingOnes = true;
694    for (unsigned i = 0; i != Multiple-1; ++i) {
695      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
696
697      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
698      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
699    }
700    // Finally, check the least significant entry.
701    if (LeadingZero) {
702      if (UniquedVals[Multiple-1].getNode() == 0)
703        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
704      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
705      if (Val < 16)
706        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
707    }
708    if (LeadingOnes) {
709      if (UniquedVals[Multiple-1].getNode() == 0)
710        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
711      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
712      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
713        return DAG.getTargetConstant(Val, MVT::i32);
714    }
715
716    return SDValue();
717  }
718
719  // Check to see if this buildvec has a single non-undef value in its elements.
720  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
721    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
722    if (OpVal.getNode() == 0)
723      OpVal = N->getOperand(i);
724    else if (OpVal != N->getOperand(i))
725      return SDValue();
726  }
727
728  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
729
730  unsigned ValSizeInBytes = EltSize;
731  uint64_t Value = 0;
732  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
733    Value = CN->getZExtValue();
734  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
735    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
736    Value = FloatToBits(CN->getValueAPF().convertToFloat());
737  }
738
739  // If the splat value is larger than the element value, then we can never do
740  // this splat.  The only case that we could fit the replicated bits into our
741  // immediate field for would be zero, and we prefer to use vxor for it.
742  if (ValSizeInBytes < ByteSize) return SDValue();
743
744  // If the element value is larger than the splat value, cut it in half and
745  // check to see if the two halves are equal.  Continue doing this until we
746  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
747  while (ValSizeInBytes > ByteSize) {
748    ValSizeInBytes >>= 1;
749
750    // If the top half equals the bottom half, we're still ok.
751    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
752         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
753      return SDValue();
754  }
755
756  // Properly sign extend the value.
757  int ShAmt = (4-ByteSize)*8;
758  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
759
760  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
761  if (MaskVal == 0) return SDValue();
762
763  // Finally, if this value fits in a 5 bit sext field, return it
764  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
765    return DAG.getTargetConstant(MaskVal, MVT::i32);
766  return SDValue();
767}
768
769//===----------------------------------------------------------------------===//
770//  Addressing Mode Selection
771//===----------------------------------------------------------------------===//
772
773/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
774/// or 64-bit immediate, and if the value can be accurately represented as a
775/// sign extension from a 16-bit value.  If so, this returns true and the
776/// immediate.
777static bool isIntS16Immediate(SDNode *N, short &Imm) {
778  if (N->getOpcode() != ISD::Constant)
779    return false;
780
781  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
782  if (N->getValueType(0) == MVT::i32)
783    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
784  else
785    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
786}
787static bool isIntS16Immediate(SDValue Op, short &Imm) {
788  return isIntS16Immediate(Op.getNode(), Imm);
789}
790
791
792/// SelectAddressRegReg - Given the specified addressed, check to see if it
793/// can be represented as an indexed [r+r] operation.  Returns false if it
794/// can be more efficiently represented with [r+imm].
795bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
796                                            SDValue &Index,
797                                            SelectionDAG &DAG) const {
798  short imm = 0;
799  if (N.getOpcode() == ISD::ADD) {
800    if (isIntS16Immediate(N.getOperand(1), imm))
801      return false;    // r+i
802    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
803      return false;    // r+i
804
805    Base = N.getOperand(0);
806    Index = N.getOperand(1);
807    return true;
808  } else if (N.getOpcode() == ISD::OR) {
809    if (isIntS16Immediate(N.getOperand(1), imm))
810      return false;    // r+i can fold it if we can.
811
812    // If this is an or of disjoint bitfields, we can codegen this as an add
813    // (for better address arithmetic) if the LHS and RHS of the OR are provably
814    // disjoint.
815    APInt LHSKnownZero, LHSKnownOne;
816    APInt RHSKnownZero, RHSKnownOne;
817    DAG.ComputeMaskedBits(N.getOperand(0),
818                          APInt::getAllOnesValue(N.getOperand(0)
819                            .getValueSizeInBits()),
820                          LHSKnownZero, LHSKnownOne);
821
822    if (LHSKnownZero.getBoolValue()) {
823      DAG.ComputeMaskedBits(N.getOperand(1),
824                            APInt::getAllOnesValue(N.getOperand(1)
825                              .getValueSizeInBits()),
826                            RHSKnownZero, RHSKnownOne);
827      // If all of the bits are known zero on the LHS or RHS, the add won't
828      // carry.
829      if (~(LHSKnownZero | RHSKnownZero) == 0) {
830        Base = N.getOperand(0);
831        Index = N.getOperand(1);
832        return true;
833      }
834    }
835  }
836
837  return false;
838}
839
840/// Returns true if the address N can be represented by a base register plus
841/// a signed 16-bit displacement [r+imm], and if it is not better
842/// represented as reg+reg.
843bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
844                                            SDValue &Base,
845                                            SelectionDAG &DAG) const {
846  // FIXME dl should come from parent load or store, not from address
847  DebugLoc dl = N.getDebugLoc();
848  // If this can be more profitably realized as r+r, fail.
849  if (SelectAddressRegReg(N, Disp, Base, DAG))
850    return false;
851
852  if (N.getOpcode() == ISD::ADD) {
853    short imm = 0;
854    if (isIntS16Immediate(N.getOperand(1), imm)) {
855      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
856      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
857        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
858      } else {
859        Base = N.getOperand(0);
860      }
861      return true; // [r+i]
862    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
863      // Match LOAD (ADD (X, Lo(G))).
864     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
865             && "Cannot handle constant offsets yet!");
866      Disp = N.getOperand(1).getOperand(0);  // The global address.
867      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
868             Disp.getOpcode() == ISD::TargetConstantPool ||
869             Disp.getOpcode() == ISD::TargetJumpTable);
870      Base = N.getOperand(0);
871      return true;  // [&g+r]
872    }
873  } else if (N.getOpcode() == ISD::OR) {
874    short imm = 0;
875    if (isIntS16Immediate(N.getOperand(1), imm)) {
876      // If this is an or of disjoint bitfields, we can codegen this as an add
877      // (for better address arithmetic) if the LHS and RHS of the OR are
878      // provably disjoint.
879      APInt LHSKnownZero, LHSKnownOne;
880      DAG.ComputeMaskedBits(N.getOperand(0),
881                            APInt::getAllOnesValue(N.getOperand(0)
882                                                   .getValueSizeInBits()),
883                            LHSKnownZero, LHSKnownOne);
884
885      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
886        // If all of the bits are known zero on the LHS or RHS, the add won't
887        // carry.
888        Base = N.getOperand(0);
889        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
890        return true;
891      }
892    }
893  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
894    // Loading from a constant address.
895
896    // If this address fits entirely in a 16-bit sext immediate field, codegen
897    // this as "d, 0"
898    short Imm;
899    if (isIntS16Immediate(CN, Imm)) {
900      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
901      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
902                             CN->getValueType(0));
903      return true;
904    }
905
906    // Handle 32-bit sext immediates with LIS + addr mode.
907    if (CN->getValueType(0) == MVT::i32 ||
908        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
909      int Addr = (int)CN->getZExtValue();
910
911      // Otherwise, break this down into an LIS + disp.
912      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
913
914      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
915      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
916      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
917      return true;
918    }
919  }
920
921  Disp = DAG.getTargetConstant(0, getPointerTy());
922  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
923    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
924  else
925    Base = N;
926  return true;      // [r+0]
927}
928
929/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
930/// represented as an indexed [r+r] operation.
931bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
932                                                SDValue &Index,
933                                                SelectionDAG &DAG) const {
934  // Check to see if we can easily represent this as an [r+r] address.  This
935  // will fail if it thinks that the address is more profitably represented as
936  // reg+imm, e.g. where imm = 0.
937  if (SelectAddressRegReg(N, Base, Index, DAG))
938    return true;
939
940  // If the operand is an addition, always emit this as [r+r], since this is
941  // better (for code size, and execution, as the memop does the add for free)
942  // than emitting an explicit add.
943  if (N.getOpcode() == ISD::ADD) {
944    Base = N.getOperand(0);
945    Index = N.getOperand(1);
946    return true;
947  }
948
949  // Otherwise, do it the hard way, using R0 as the base register.
950  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
951                         N.getValueType());
952  Index = N;
953  return true;
954}
955
956/// SelectAddressRegImmShift - Returns true if the address N can be
957/// represented by a base register plus a signed 14-bit displacement
958/// [r+imm*4].  Suitable for use by STD and friends.
959bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
960                                                 SDValue &Base,
961                                                 SelectionDAG &DAG) const {
962  // FIXME dl should come from the parent load or store, not the address
963  DebugLoc dl = N.getDebugLoc();
964  // If this can be more profitably realized as r+r, fail.
965  if (SelectAddressRegReg(N, Disp, Base, DAG))
966    return false;
967
968  if (N.getOpcode() == ISD::ADD) {
969    short imm = 0;
970    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
971      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
972      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
973        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
974      } else {
975        Base = N.getOperand(0);
976      }
977      return true; // [r+i]
978    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
979      // Match LOAD (ADD (X, Lo(G))).
980     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
981             && "Cannot handle constant offsets yet!");
982      Disp = N.getOperand(1).getOperand(0);  // The global address.
983      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
984             Disp.getOpcode() == ISD::TargetConstantPool ||
985             Disp.getOpcode() == ISD::TargetJumpTable);
986      Base = N.getOperand(0);
987      return true;  // [&g+r]
988    }
989  } else if (N.getOpcode() == ISD::OR) {
990    short imm = 0;
991    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
992      // If this is an or of disjoint bitfields, we can codegen this as an add
993      // (for better address arithmetic) if the LHS and RHS of the OR are
994      // provably disjoint.
995      APInt LHSKnownZero, LHSKnownOne;
996      DAG.ComputeMaskedBits(N.getOperand(0),
997                            APInt::getAllOnesValue(N.getOperand(0)
998                                                   .getValueSizeInBits()),
999                            LHSKnownZero, LHSKnownOne);
1000      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1001        // If all of the bits are known zero on the LHS or RHS, the add won't
1002        // carry.
1003        Base = N.getOperand(0);
1004        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1005        return true;
1006      }
1007    }
1008  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1009    // Loading from a constant address.  Verify low two bits are clear.
1010    if ((CN->getZExtValue() & 3) == 0) {
1011      // If this address fits entirely in a 14-bit sext immediate field, codegen
1012      // this as "d, 0"
1013      short Imm;
1014      if (isIntS16Immediate(CN, Imm)) {
1015        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1016        Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1017                               CN->getValueType(0));
1018        return true;
1019      }
1020
1021      // Fold the low-part of 32-bit absolute addresses into addr mode.
1022      if (CN->getValueType(0) == MVT::i32 ||
1023          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1024        int Addr = (int)CN->getZExtValue();
1025
1026        // Otherwise, break this down into an LIS + disp.
1027        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1028        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1029        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1030        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1031        return true;
1032      }
1033    }
1034  }
1035
1036  Disp = DAG.getTargetConstant(0, getPointerTy());
1037  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1038    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1039  else
1040    Base = N;
1041  return true;      // [r+0]
1042}
1043
1044
1045/// getPreIndexedAddressParts - returns true by value, base pointer and
1046/// offset pointer and addressing mode by reference if the node's address
1047/// can be legally represented as pre-indexed load / store address.
1048bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1049                                                  SDValue &Offset,
1050                                                  ISD::MemIndexedMode &AM,
1051                                                  SelectionDAG &DAG) const {
1052  // Disabled by default for now.
1053  if (!EnablePPCPreinc) return false;
1054
1055  SDValue Ptr;
1056  EVT VT;
1057  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1058    Ptr = LD->getBasePtr();
1059    VT = LD->getMemoryVT();
1060
1061  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1062    Ptr = ST->getBasePtr();
1063    VT  = ST->getMemoryVT();
1064  } else
1065    return false;
1066
1067  // PowerPC doesn't have preinc load/store instructions for vectors.
1068  if (VT.isVector())
1069    return false;
1070
1071  // TODO: Check reg+reg first.
1072
1073  // LDU/STU use reg+imm*4, others use reg+imm.
1074  if (VT != MVT::i64) {
1075    // reg + imm
1076    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1077      return false;
1078  } else {
1079    // reg + imm * 4.
1080    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1081      return false;
1082  }
1083
1084  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1085    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1086    // sext i32 to i64 when addr mode is r+i.
1087    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1088        LD->getExtensionType() == ISD::SEXTLOAD &&
1089        isa<ConstantSDNode>(Offset))
1090      return false;
1091  }
1092
1093  AM = ISD::PRE_INC;
1094  return true;
1095}
1096
1097//===----------------------------------------------------------------------===//
1098//  LowerOperation implementation
1099//===----------------------------------------------------------------------===//
1100
1101/// GetLabelAccessInfo - Return true if we should reference labels using a
1102/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1103static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1104                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1105  HiOpFlags = PPCII::MO_HA16;
1106  LoOpFlags = PPCII::MO_LO16;
1107
1108  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1109  // non-darwin platform.  We don't support PIC on other platforms yet.
1110  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1111               TM.getSubtarget<PPCSubtarget>().isDarwin();
1112  if (isPIC) {
1113    HiOpFlags |= PPCII::MO_PIC_FLAG;
1114    LoOpFlags |= PPCII::MO_PIC_FLAG;
1115  }
1116
1117  // If this is a reference to a global value that requires a non-lazy-ptr, make
1118  // sure that instruction lowering adds it.
1119  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1120    HiOpFlags |= PPCII::MO_NLP_FLAG;
1121    LoOpFlags |= PPCII::MO_NLP_FLAG;
1122
1123    if (GV->hasHiddenVisibility()) {
1124      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1125      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1126    }
1127  }
1128
1129  return isPIC;
1130}
1131
1132static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1133                             SelectionDAG &DAG) {
1134  EVT PtrVT = HiPart.getValueType();
1135  SDValue Zero = DAG.getConstant(0, PtrVT);
1136  DebugLoc DL = HiPart.getDebugLoc();
1137
1138  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1139  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1140
1141  // With PIC, the first instruction is actually "GR+hi(&G)".
1142  if (isPIC)
1143    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1144                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1145
1146  // Generate non-pic code that has direct accesses to the constant pool.
1147  // The address of the global is just (hi(&g)+lo(&g)).
1148  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1149}
1150
1151SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1152                                             SelectionDAG &DAG) const {
1153  EVT PtrVT = Op.getValueType();
1154  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1155  const Constant *C = CP->getConstVal();
1156
1157  unsigned MOHiFlag, MOLoFlag;
1158  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1159  SDValue CPIHi =
1160    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1161  SDValue CPILo =
1162    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1163  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1164}
1165
1166SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1167  EVT PtrVT = Op.getValueType();
1168  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1169
1170  unsigned MOHiFlag, MOLoFlag;
1171  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1172  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1173  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1174  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1175}
1176
1177SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1178                                             SelectionDAG &DAG) const {
1179  EVT PtrVT = Op.getValueType();
1180
1181  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1182
1183  unsigned MOHiFlag, MOLoFlag;
1184  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1185  SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag);
1186  SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag);
1187  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1188}
1189
1190SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1191                                              SelectionDAG &DAG) const {
1192  EVT PtrVT = Op.getValueType();
1193  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1194  DebugLoc DL = GSDN->getDebugLoc();
1195  const GlobalValue *GV = GSDN->getGlobal();
1196
1197  // 64-bit SVR4 ABI code is always position-independent.
1198  // The actual address of the GlobalValue is stored in the TOC.
1199  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1200    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1201    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1202                       DAG.getRegister(PPC::X2, MVT::i64));
1203  }
1204
1205  unsigned MOHiFlag, MOLoFlag;
1206  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1207
1208  SDValue GAHi =
1209    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1210  SDValue GALo =
1211    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1212
1213  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1214
1215  // If the global reference is actually to a non-lazy-pointer, we have to do an
1216  // extra load to get the address of the global.
1217  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1218    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1219                      false, false, 0);
1220  return Ptr;
1221}
1222
1223SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1224  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1225  DebugLoc dl = Op.getDebugLoc();
1226
1227  // If we're comparing for equality to zero, expose the fact that this is
1228  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1229  // fold the new nodes.
1230  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1231    if (C->isNullValue() && CC == ISD::SETEQ) {
1232      EVT VT = Op.getOperand(0).getValueType();
1233      SDValue Zext = Op.getOperand(0);
1234      if (VT.bitsLT(MVT::i32)) {
1235        VT = MVT::i32;
1236        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1237      }
1238      unsigned Log2b = Log2_32(VT.getSizeInBits());
1239      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1240      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1241                                DAG.getConstant(Log2b, MVT::i32));
1242      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1243    }
1244    // Leave comparisons against 0 and -1 alone for now, since they're usually
1245    // optimized.  FIXME: revisit this when we can custom lower all setcc
1246    // optimizations.
1247    if (C->isAllOnesValue() || C->isNullValue())
1248      return SDValue();
1249  }
1250
1251  // If we have an integer seteq/setne, turn it into a compare against zero
1252  // by xor'ing the rhs with the lhs, which is faster than setting a
1253  // condition register, reading it back out, and masking the correct bit.  The
1254  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1255  // the result to other bit-twiddling opportunities.
1256  EVT LHSVT = Op.getOperand(0).getValueType();
1257  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1258    EVT VT = Op.getValueType();
1259    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1260                                Op.getOperand(1));
1261    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1262  }
1263  return SDValue();
1264}
1265
1266SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1267                                      const PPCSubtarget &Subtarget) const {
1268  SDNode *Node = Op.getNode();
1269  EVT VT = Node->getValueType(0);
1270  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1271  SDValue InChain = Node->getOperand(0);
1272  SDValue VAListPtr = Node->getOperand(1);
1273  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1274  DebugLoc dl = Node->getDebugLoc();
1275
1276  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1277
1278  // gpr_index
1279  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1280                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
1281                                    false, false, 0);
1282  InChain = GprIndex.getValue(1);
1283
1284  if (VT == MVT::i64) {
1285    // Check if GprIndex is even
1286    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1287                                 DAG.getConstant(1, MVT::i32));
1288    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1289                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
1290    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1291                                          DAG.getConstant(1, MVT::i32));
1292    // Align GprIndex to be even if it isn't
1293    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1294                           GprIndex);
1295  }
1296
1297  // fpr index is 1 byte after gpr
1298  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1299                               DAG.getConstant(1, MVT::i32));
1300
1301  // fpr
1302  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1303                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
1304                                    false, false, 0);
1305  InChain = FprIndex.getValue(1);
1306
1307  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1308                                       DAG.getConstant(8, MVT::i32));
1309
1310  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1311                                        DAG.getConstant(4, MVT::i32));
1312
1313  // areas
1314  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1315                                     MachinePointerInfo(), false, false, 0);
1316  InChain = OverflowArea.getValue(1);
1317
1318  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1319                                    MachinePointerInfo(), false, false, 0);
1320  InChain = RegSaveArea.getValue(1);
1321
1322  // select overflow_area if index > 8
1323  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1324                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
1325
1326  // adjustment constant gpr_index * 4/8
1327  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1328                                    VT.isInteger() ? GprIndex : FprIndex,
1329                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
1330                                                    MVT::i32));
1331
1332  // OurReg = RegSaveArea + RegConstant
1333  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1334                               RegConstant);
1335
1336  // Floating types are 32 bytes into RegSaveArea
1337  if (VT.isFloatingPoint())
1338    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1339                         DAG.getConstant(32, MVT::i32));
1340
1341  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1342  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1343                                   VT.isInteger() ? GprIndex : FprIndex,
1344                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1345                                                   MVT::i32));
1346
1347  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1348                              VT.isInteger() ? VAListPtr : FprPtr,
1349                              MachinePointerInfo(SV),
1350                              MVT::i8, false, false, 0);
1351
1352  // determine if we should load from reg_save_area or overflow_area
1353  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1354
1355  // increase overflow_area by 4/8 if gpr/fpr > 8
1356  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1357                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
1358                                          MVT::i32));
1359
1360  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1361                             OverflowAreaPlusN);
1362
1363  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1364                              OverflowAreaPtr,
1365                              MachinePointerInfo(),
1366                              MVT::i32, false, false, 0);
1367
1368  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), false, false, 0);
1369}
1370
1371SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op,
1372                                           SelectionDAG &DAG) const {
1373  SDValue Chain = Op.getOperand(0);
1374  SDValue Trmp = Op.getOperand(1); // trampoline
1375  SDValue FPtr = Op.getOperand(2); // nested function
1376  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1377  DebugLoc dl = Op.getDebugLoc();
1378
1379  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1380  bool isPPC64 = (PtrVT == MVT::i64);
1381  Type *IntPtrTy =
1382    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1383                                                             *DAG.getContext());
1384
1385  TargetLowering::ArgListTy Args;
1386  TargetLowering::ArgListEntry Entry;
1387
1388  Entry.Ty = IntPtrTy;
1389  Entry.Node = Trmp; Args.push_back(Entry);
1390
1391  // TrampSize == (isPPC64 ? 48 : 40);
1392  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1393                               isPPC64 ? MVT::i64 : MVT::i32);
1394  Args.push_back(Entry);
1395
1396  Entry.Node = FPtr; Args.push_back(Entry);
1397  Entry.Node = Nest; Args.push_back(Entry);
1398
1399  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1400  std::pair<SDValue, SDValue> CallResult =
1401    LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1402                false, false, false, false, 0, CallingConv::C, false,
1403                /*isReturnValueUsed=*/true,
1404                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1405                Args, DAG, dl);
1406
1407  SDValue Ops[] =
1408    { CallResult.first, CallResult.second };
1409
1410  return DAG.getMergeValues(Ops, 2, dl);
1411}
1412
1413SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1414                                        const PPCSubtarget &Subtarget) const {
1415  MachineFunction &MF = DAG.getMachineFunction();
1416  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1417
1418  DebugLoc dl = Op.getDebugLoc();
1419
1420  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1421    // vastart just stores the address of the VarArgsFrameIndex slot into the
1422    // memory location argument.
1423    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1424    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1425    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1426    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1427                        MachinePointerInfo(SV),
1428                        false, false, 0);
1429  }
1430
1431  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1432  // We suppose the given va_list is already allocated.
1433  //
1434  // typedef struct {
1435  //  char gpr;     /* index into the array of 8 GPRs
1436  //                 * stored in the register save area
1437  //                 * gpr=0 corresponds to r3,
1438  //                 * gpr=1 to r4, etc.
1439  //                 */
1440  //  char fpr;     /* index into the array of 8 FPRs
1441  //                 * stored in the register save area
1442  //                 * fpr=0 corresponds to f1,
1443  //                 * fpr=1 to f2, etc.
1444  //                 */
1445  //  char *overflow_arg_area;
1446  //                /* location on stack that holds
1447  //                 * the next overflow argument
1448  //                 */
1449  //  char *reg_save_area;
1450  //               /* where r3:r10 and f1:f8 (if saved)
1451  //                * are stored
1452  //                */
1453  // } va_list[1];
1454
1455
1456  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1457  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1458
1459
1460  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1461
1462  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1463                                            PtrVT);
1464  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1465                                 PtrVT);
1466
1467  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1468  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1469
1470  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1471  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1472
1473  uint64_t FPROffset = 1;
1474  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1475
1476  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1477
1478  // Store first byte : number of int regs
1479  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1480                                         Op.getOperand(1),
1481                                         MachinePointerInfo(SV),
1482                                         MVT::i8, false, false, 0);
1483  uint64_t nextOffset = FPROffset;
1484  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1485                                  ConstFPROffset);
1486
1487  // Store second byte : number of float regs
1488  SDValue secondStore =
1489    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1490                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1491                      false, false, 0);
1492  nextOffset += StackOffset;
1493  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1494
1495  // Store second word : arguments given on stack
1496  SDValue thirdStore =
1497    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1498                 MachinePointerInfo(SV, nextOffset),
1499                 false, false, 0);
1500  nextOffset += FrameOffset;
1501  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1502
1503  // Store third word : arguments given in registers
1504  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1505                      MachinePointerInfo(SV, nextOffset),
1506                      false, false, 0);
1507
1508}
1509
1510#include "PPCGenCallingConv.inc"
1511
1512static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1513                                     CCValAssign::LocInfo &LocInfo,
1514                                     ISD::ArgFlagsTy &ArgFlags,
1515                                     CCState &State) {
1516  return true;
1517}
1518
1519static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1520                                            MVT &LocVT,
1521                                            CCValAssign::LocInfo &LocInfo,
1522                                            ISD::ArgFlagsTy &ArgFlags,
1523                                            CCState &State) {
1524  static const unsigned ArgRegs[] = {
1525    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1526    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1527  };
1528  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1529
1530  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1531
1532  // Skip one register if the first unallocated register has an even register
1533  // number and there are still argument registers available which have not been
1534  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1535  // need to skip a register if RegNum is odd.
1536  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1537    State.AllocateReg(ArgRegs[RegNum]);
1538  }
1539
1540  // Always return false here, as this function only makes sure that the first
1541  // unallocated register has an odd register number and does not actually
1542  // allocate a register for the current argument.
1543  return false;
1544}
1545
1546static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1547                                              MVT &LocVT,
1548                                              CCValAssign::LocInfo &LocInfo,
1549                                              ISD::ArgFlagsTy &ArgFlags,
1550                                              CCState &State) {
1551  static const unsigned ArgRegs[] = {
1552    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1553    PPC::F8
1554  };
1555
1556  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1557
1558  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1559
1560  // If there is only one Floating-point register left we need to put both f64
1561  // values of a split ppc_fp128 value on the stack.
1562  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1563    State.AllocateReg(ArgRegs[RegNum]);
1564  }
1565
1566  // Always return false here, as this function only makes sure that the two f64
1567  // values a ppc_fp128 value is split into are both passed in registers or both
1568  // passed on the stack and does not actually allocate a register for the
1569  // current argument.
1570  return false;
1571}
1572
1573/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1574/// on Darwin.
1575static const unsigned *GetFPR() {
1576  static const unsigned FPR[] = {
1577    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1578    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1579  };
1580
1581  return FPR;
1582}
1583
1584/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1585/// the stack.
1586static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1587                                       unsigned PtrByteSize) {
1588  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1589  if (Flags.isByVal())
1590    ArgSize = Flags.getByValSize();
1591  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1592
1593  return ArgSize;
1594}
1595
1596SDValue
1597PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1598                                        CallingConv::ID CallConv, bool isVarArg,
1599                                        const SmallVectorImpl<ISD::InputArg>
1600                                          &Ins,
1601                                        DebugLoc dl, SelectionDAG &DAG,
1602                                        SmallVectorImpl<SDValue> &InVals)
1603                                          const {
1604  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1605    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1606                                     dl, DAG, InVals);
1607  } else {
1608    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1609                                       dl, DAG, InVals);
1610  }
1611}
1612
1613SDValue
1614PPCTargetLowering::LowerFormalArguments_SVR4(
1615                                      SDValue Chain,
1616                                      CallingConv::ID CallConv, bool isVarArg,
1617                                      const SmallVectorImpl<ISD::InputArg>
1618                                        &Ins,
1619                                      DebugLoc dl, SelectionDAG &DAG,
1620                                      SmallVectorImpl<SDValue> &InVals) const {
1621
1622  // 32-bit SVR4 ABI Stack Frame Layout:
1623  //              +-----------------------------------+
1624  //        +-->  |            Back chain             |
1625  //        |     +-----------------------------------+
1626  //        |     | Floating-point register save area |
1627  //        |     +-----------------------------------+
1628  //        |     |    General register save area     |
1629  //        |     +-----------------------------------+
1630  //        |     |          CR save word             |
1631  //        |     +-----------------------------------+
1632  //        |     |         VRSAVE save word          |
1633  //        |     +-----------------------------------+
1634  //        |     |         Alignment padding         |
1635  //        |     +-----------------------------------+
1636  //        |     |     Vector register save area     |
1637  //        |     +-----------------------------------+
1638  //        |     |       Local variable space        |
1639  //        |     +-----------------------------------+
1640  //        |     |        Parameter list area        |
1641  //        |     +-----------------------------------+
1642  //        |     |           LR save word            |
1643  //        |     +-----------------------------------+
1644  // SP-->  +---  |            Back chain             |
1645  //              +-----------------------------------+
1646  //
1647  // Specifications:
1648  //   System V Application Binary Interface PowerPC Processor Supplement
1649  //   AltiVec Technology Programming Interface Manual
1650
1651  MachineFunction &MF = DAG.getMachineFunction();
1652  MachineFrameInfo *MFI = MF.getFrameInfo();
1653  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1654
1655  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1656  // Potential tail calls could cause overwriting of argument stack slots.
1657  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1658  unsigned PtrByteSize = 4;
1659
1660  // Assign locations to all of the incoming arguments.
1661  SmallVector<CCValAssign, 16> ArgLocs;
1662  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1663		 getTargetMachine(), ArgLocs, *DAG.getContext());
1664
1665  // Reserve space for the linkage area on the stack.
1666  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1667
1668  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1669
1670  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1671    CCValAssign &VA = ArgLocs[i];
1672
1673    // Arguments stored in registers.
1674    if (VA.isRegLoc()) {
1675      TargetRegisterClass *RC;
1676      EVT ValVT = VA.getValVT();
1677
1678      switch (ValVT.getSimpleVT().SimpleTy) {
1679        default:
1680          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1681        case MVT::i32:
1682          RC = PPC::GPRCRegisterClass;
1683          break;
1684        case MVT::f32:
1685          RC = PPC::F4RCRegisterClass;
1686          break;
1687        case MVT::f64:
1688          RC = PPC::F8RCRegisterClass;
1689          break;
1690        case MVT::v16i8:
1691        case MVT::v8i16:
1692        case MVT::v4i32:
1693        case MVT::v4f32:
1694          RC = PPC::VRRCRegisterClass;
1695          break;
1696      }
1697
1698      // Transform the arguments stored in physical registers into virtual ones.
1699      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1700      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1701
1702      InVals.push_back(ArgValue);
1703    } else {
1704      // Argument stored in memory.
1705      assert(VA.isMemLoc());
1706
1707      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1708      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1709                                      isImmutable);
1710
1711      // Create load nodes to retrieve arguments from the stack.
1712      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1713      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1714                                   MachinePointerInfo(),
1715                                   false, false, 0));
1716    }
1717  }
1718
1719  // Assign locations to all of the incoming aggregate by value arguments.
1720  // Aggregates passed by value are stored in the local variable space of the
1721  // caller's stack frame, right above the parameter list area.
1722  SmallVector<CCValAssign, 16> ByValArgLocs;
1723  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1724		      getTargetMachine(), ByValArgLocs, *DAG.getContext());
1725
1726  // Reserve stack space for the allocations in CCInfo.
1727  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1728
1729  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1730
1731  // Area that is at least reserved in the caller of this function.
1732  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1733
1734  // Set the size that is at least reserved in caller of this function.  Tail
1735  // call optimized function's reserved stack space needs to be aligned so that
1736  // taking the difference between two stack areas will result in an aligned
1737  // stack.
1738  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1739
1740  MinReservedArea =
1741    std::max(MinReservedArea,
1742             PPCFrameLowering::getMinCallFrameSize(false, false));
1743
1744  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
1745    getStackAlignment();
1746  unsigned AlignMask = TargetAlign-1;
1747  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1748
1749  FI->setMinReservedArea(MinReservedArea);
1750
1751  SmallVector<SDValue, 8> MemOps;
1752
1753  // If the function takes variable number of arguments, make a frame index for
1754  // the start of the first vararg value... for expansion of llvm.va_start.
1755  if (isVarArg) {
1756    static const unsigned GPArgRegs[] = {
1757      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1758      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1759    };
1760    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1761
1762    static const unsigned FPArgRegs[] = {
1763      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1764      PPC::F8
1765    };
1766    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1767
1768    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
1769                                                          NumGPArgRegs));
1770    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
1771                                                          NumFPArgRegs));
1772
1773    // Make room for NumGPArgRegs and NumFPArgRegs.
1774    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1775                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1776
1777    FuncInfo->setVarArgsStackOffset(
1778      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1779                             CCInfo.getNextStackOffset(), true));
1780
1781    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
1782    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1783
1784    // The fixed integer arguments of a variadic function are stored to the
1785    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1786    // the result of va_next.
1787    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1788      // Get an existing live-in vreg, or add a new one.
1789      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
1790      if (!VReg)
1791        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1792
1793      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1794      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1795                                   MachinePointerInfo(), false, false, 0);
1796      MemOps.push_back(Store);
1797      // Increment the address by four for the next argument to store
1798      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1799      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1800    }
1801
1802    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1803    // is set.
1804    // The double arguments are stored to the VarArgsFrameIndex
1805    // on the stack.
1806    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1807      // Get an existing live-in vreg, or add a new one.
1808      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
1809      if (!VReg)
1810        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1811
1812      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1813      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1814                                   MachinePointerInfo(), false, false, 0);
1815      MemOps.push_back(Store);
1816      // Increment the address by eight for the next argument to store
1817      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1818                                         PtrVT);
1819      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1820    }
1821  }
1822
1823  if (!MemOps.empty())
1824    Chain = DAG.getNode(ISD::TokenFactor, dl,
1825                        MVT::Other, &MemOps[0], MemOps.size());
1826
1827  return Chain;
1828}
1829
1830SDValue
1831PPCTargetLowering::LowerFormalArguments_Darwin(
1832                                      SDValue Chain,
1833                                      CallingConv::ID CallConv, bool isVarArg,
1834                                      const SmallVectorImpl<ISD::InputArg>
1835                                        &Ins,
1836                                      DebugLoc dl, SelectionDAG &DAG,
1837                                      SmallVectorImpl<SDValue> &InVals) const {
1838  // TODO: add description of PPC stack frame format, or at least some docs.
1839  //
1840  MachineFunction &MF = DAG.getMachineFunction();
1841  MachineFrameInfo *MFI = MF.getFrameInfo();
1842  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1843
1844  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1845  bool isPPC64 = PtrVT == MVT::i64;
1846  // Potential tail calls could cause overwriting of argument stack slots.
1847  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1848  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1849
1850  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
1851  // Area that is at least reserved in caller of this function.
1852  unsigned MinReservedArea = ArgOffset;
1853
1854  static const unsigned GPR_32[] = {           // 32-bit registers.
1855    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1856    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1857  };
1858  static const unsigned GPR_64[] = {           // 64-bit registers.
1859    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1860    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1861  };
1862
1863  static const unsigned *FPR = GetFPR();
1864
1865  static const unsigned VR[] = {
1866    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1867    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1868  };
1869
1870  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1871  const unsigned Num_FPR_Regs = 13;
1872  const unsigned Num_VR_Regs  = array_lengthof( VR);
1873
1874  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1875
1876  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1877
1878  // In 32-bit non-varargs functions, the stack space for vectors is after the
1879  // stack space for non-vectors.  We do not use this space unless we have
1880  // too many vectors to fit in registers, something that only occurs in
1881  // constructed examples:), but we have to walk the arglist to figure
1882  // that out...for the pathological case, compute VecArgOffset as the
1883  // start of the vector parameter area.  Computing VecArgOffset is the
1884  // entire point of the following loop.
1885  unsigned VecArgOffset = ArgOffset;
1886  if (!isVarArg && !isPPC64) {
1887    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1888         ++ArgNo) {
1889      EVT ObjectVT = Ins[ArgNo].VT;
1890      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1891      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1892
1893      if (Flags.isByVal()) {
1894        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1895        ObjSize = Flags.getByValSize();
1896        unsigned ArgSize =
1897                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1898        VecArgOffset += ArgSize;
1899        continue;
1900      }
1901
1902      switch(ObjectVT.getSimpleVT().SimpleTy) {
1903      default: llvm_unreachable("Unhandled argument type!");
1904      case MVT::i32:
1905      case MVT::f32:
1906        VecArgOffset += isPPC64 ? 8 : 4;
1907        break;
1908      case MVT::i64:  // PPC64
1909      case MVT::f64:
1910        VecArgOffset += 8;
1911        break;
1912      case MVT::v4f32:
1913      case MVT::v4i32:
1914      case MVT::v8i16:
1915      case MVT::v16i8:
1916        // Nothing to do, we're only looking at Nonvector args here.
1917        break;
1918      }
1919    }
1920  }
1921  // We've found where the vector parameter area in memory is.  Skip the
1922  // first 12 parameters; these don't use that memory.
1923  VecArgOffset = ((VecArgOffset+15)/16)*16;
1924  VecArgOffset += 12*16;
1925
1926  // Add DAG nodes to load the arguments or copy them out of registers.  On
1927  // entry to a function on PPC, the arguments start after the linkage area,
1928  // although the first ones are often in registers.
1929
1930  SmallVector<SDValue, 8> MemOps;
1931  unsigned nAltivecParamsAtEnd = 0;
1932  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1933    SDValue ArgVal;
1934    bool needsLoad = false;
1935    EVT ObjectVT = Ins[ArgNo].VT;
1936    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1937    unsigned ArgSize = ObjSize;
1938    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1939
1940    unsigned CurArgOffset = ArgOffset;
1941
1942    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1943    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1944        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1945      if (isVarArg || isPPC64) {
1946        MinReservedArea = ((MinReservedArea+15)/16)*16;
1947        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1948                                                  Flags,
1949                                                  PtrByteSize);
1950      } else  nAltivecParamsAtEnd++;
1951    } else
1952      // Calculate min reserved area.
1953      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1954                                                Flags,
1955                                                PtrByteSize);
1956
1957    // FIXME the codegen can be much improved in some cases.
1958    // We do not have to keep everything in memory.
1959    if (Flags.isByVal()) {
1960      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1961      ObjSize = Flags.getByValSize();
1962      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1963      // Objects of size 1 and 2 are right justified, everything else is
1964      // left justified.  This means the memory address is adjusted forwards.
1965      if (ObjSize==1 || ObjSize==2) {
1966        CurArgOffset = CurArgOffset + (4 - ObjSize);
1967      }
1968      // The value of the object is its address.
1969      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
1970      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1971      InVals.push_back(FIN);
1972      if (ObjSize==1 || ObjSize==2) {
1973        if (GPR_idx != Num_GPR_Regs) {
1974          unsigned VReg;
1975          if (isPPC64)
1976            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1977          else
1978            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1979          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1980          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1981                                            MachinePointerInfo(),
1982                                            ObjSize==1 ? MVT::i8 : MVT::i16,
1983                                            false, false, 0);
1984          MemOps.push_back(Store);
1985          ++GPR_idx;
1986        }
1987
1988        ArgOffset += PtrByteSize;
1989
1990        continue;
1991      }
1992      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1993        // Store whatever pieces of the object are in registers
1994        // to memory.  ArgVal will be address of the beginning of
1995        // the object.
1996        if (GPR_idx != Num_GPR_Regs) {
1997          unsigned VReg;
1998          if (isPPC64)
1999            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2000          else
2001            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2002          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2003          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2004          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2005          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2006                                       MachinePointerInfo(),
2007                                       false, false, 0);
2008          MemOps.push_back(Store);
2009          ++GPR_idx;
2010          ArgOffset += PtrByteSize;
2011        } else {
2012          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2013          break;
2014        }
2015      }
2016      continue;
2017    }
2018
2019    switch (ObjectVT.getSimpleVT().SimpleTy) {
2020    default: llvm_unreachable("Unhandled argument type!");
2021    case MVT::i32:
2022      if (!isPPC64) {
2023        if (GPR_idx != Num_GPR_Regs) {
2024          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2025          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2026          ++GPR_idx;
2027        } else {
2028          needsLoad = true;
2029          ArgSize = PtrByteSize;
2030        }
2031        // All int arguments reserve stack space in the Darwin ABI.
2032        ArgOffset += PtrByteSize;
2033        break;
2034      }
2035      // FALLTHROUGH
2036    case MVT::i64:  // PPC64
2037      if (GPR_idx != Num_GPR_Regs) {
2038        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2039        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2040
2041        if (ObjectVT == MVT::i32) {
2042          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2043          // value to MVT::i64 and then truncate to the correct register size.
2044          if (Flags.isSExt())
2045            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2046                                 DAG.getValueType(ObjectVT));
2047          else if (Flags.isZExt())
2048            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2049                                 DAG.getValueType(ObjectVT));
2050
2051          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2052        }
2053
2054        ++GPR_idx;
2055      } else {
2056        needsLoad = true;
2057        ArgSize = PtrByteSize;
2058      }
2059      // All int arguments reserve stack space in the Darwin ABI.
2060      ArgOffset += 8;
2061      break;
2062
2063    case MVT::f32:
2064    case MVT::f64:
2065      // Every 4 bytes of argument space consumes one of the GPRs available for
2066      // argument passing.
2067      if (GPR_idx != Num_GPR_Regs) {
2068        ++GPR_idx;
2069        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2070          ++GPR_idx;
2071      }
2072      if (FPR_idx != Num_FPR_Regs) {
2073        unsigned VReg;
2074
2075        if (ObjectVT == MVT::f32)
2076          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2077        else
2078          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2079
2080        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2081        ++FPR_idx;
2082      } else {
2083        needsLoad = true;
2084      }
2085
2086      // All FP arguments reserve stack space in the Darwin ABI.
2087      ArgOffset += isPPC64 ? 8 : ObjSize;
2088      break;
2089    case MVT::v4f32:
2090    case MVT::v4i32:
2091    case MVT::v8i16:
2092    case MVT::v16i8:
2093      // Note that vector arguments in registers don't reserve stack space,
2094      // except in varargs functions.
2095      if (VR_idx != Num_VR_Regs) {
2096        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2097        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2098        if (isVarArg) {
2099          while ((ArgOffset % 16) != 0) {
2100            ArgOffset += PtrByteSize;
2101            if (GPR_idx != Num_GPR_Regs)
2102              GPR_idx++;
2103          }
2104          ArgOffset += 16;
2105          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2106        }
2107        ++VR_idx;
2108      } else {
2109        if (!isVarArg && !isPPC64) {
2110          // Vectors go after all the nonvectors.
2111          CurArgOffset = VecArgOffset;
2112          VecArgOffset += 16;
2113        } else {
2114          // Vectors are aligned.
2115          ArgOffset = ((ArgOffset+15)/16)*16;
2116          CurArgOffset = ArgOffset;
2117          ArgOffset += 16;
2118        }
2119        needsLoad = true;
2120      }
2121      break;
2122    }
2123
2124    // We need to load the argument to a virtual register if we determined above
2125    // that we ran out of physical registers of the appropriate type.
2126    if (needsLoad) {
2127      int FI = MFI->CreateFixedObject(ObjSize,
2128                                      CurArgOffset + (ArgSize - ObjSize),
2129                                      isImmutable);
2130      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2131      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2132                           false, false, 0);
2133    }
2134
2135    InVals.push_back(ArgVal);
2136  }
2137
2138  // Set the size that is at least reserved in caller of this function.  Tail
2139  // call optimized function's reserved stack space needs to be aligned so that
2140  // taking the difference between two stack areas will result in an aligned
2141  // stack.
2142  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2143  // Add the Altivec parameters at the end, if needed.
2144  if (nAltivecParamsAtEnd) {
2145    MinReservedArea = ((MinReservedArea+15)/16)*16;
2146    MinReservedArea += 16*nAltivecParamsAtEnd;
2147  }
2148  MinReservedArea =
2149    std::max(MinReservedArea,
2150             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2151  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2152    getStackAlignment();
2153  unsigned AlignMask = TargetAlign-1;
2154  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2155  FI->setMinReservedArea(MinReservedArea);
2156
2157  // If the function takes variable number of arguments, make a frame index for
2158  // the start of the first vararg value... for expansion of llvm.va_start.
2159  if (isVarArg) {
2160    int Depth = ArgOffset;
2161
2162    FuncInfo->setVarArgsFrameIndex(
2163      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2164                             Depth, true));
2165    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2166
2167    // If this function is vararg, store any remaining integer argument regs
2168    // to their spots on the stack so that they may be loaded by deferencing the
2169    // result of va_next.
2170    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2171      unsigned VReg;
2172
2173      if (isPPC64)
2174        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2175      else
2176        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2177
2178      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2179      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2180                                   MachinePointerInfo(), false, false, 0);
2181      MemOps.push_back(Store);
2182      // Increment the address by four for the next argument to store
2183      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2184      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2185    }
2186  }
2187
2188  if (!MemOps.empty())
2189    Chain = DAG.getNode(ISD::TokenFactor, dl,
2190                        MVT::Other, &MemOps[0], MemOps.size());
2191
2192  return Chain;
2193}
2194
2195/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2196/// linkage area for the Darwin ABI.
2197static unsigned
2198CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2199                                     bool isPPC64,
2200                                     bool isVarArg,
2201                                     unsigned CC,
2202                                     const SmallVectorImpl<ISD::OutputArg>
2203                                       &Outs,
2204                                     const SmallVectorImpl<SDValue> &OutVals,
2205                                     unsigned &nAltivecParamsAtEnd) {
2206  // Count how many bytes are to be pushed on the stack, including the linkage
2207  // area, and parameter passing area.  We start with 24/48 bytes, which is
2208  // prereserved space for [SP][CR][LR][3 x unused].
2209  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2210  unsigned NumOps = Outs.size();
2211  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2212
2213  // Add up all the space actually used.
2214  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2215  // they all go in registers, but we must reserve stack space for them for
2216  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2217  // assigned stack space in order, with padding so Altivec parameters are
2218  // 16-byte aligned.
2219  nAltivecParamsAtEnd = 0;
2220  for (unsigned i = 0; i != NumOps; ++i) {
2221    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2222    EVT ArgVT = Outs[i].VT;
2223    // Varargs Altivec parameters are padded to a 16 byte boundary.
2224    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2225        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2226      if (!isVarArg && !isPPC64) {
2227        // Non-varargs Altivec parameters go after all the non-Altivec
2228        // parameters; handle those later so we know how much padding we need.
2229        nAltivecParamsAtEnd++;
2230        continue;
2231      }
2232      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2233      NumBytes = ((NumBytes+15)/16)*16;
2234    }
2235    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2236  }
2237
2238   // Allow for Altivec parameters at the end, if needed.
2239  if (nAltivecParamsAtEnd) {
2240    NumBytes = ((NumBytes+15)/16)*16;
2241    NumBytes += 16*nAltivecParamsAtEnd;
2242  }
2243
2244  // The prolog code of the callee may store up to 8 GPR argument registers to
2245  // the stack, allowing va_start to index over them in memory if its varargs.
2246  // Because we cannot tell if this is needed on the caller side, we have to
2247  // conservatively assume that it is needed.  As such, make sure we have at
2248  // least enough stack space for the caller to store the 8 GPRs.
2249  NumBytes = std::max(NumBytes,
2250                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2251
2252  // Tail call needs the stack to be aligned.
2253  if (CC==CallingConv::Fast && GuaranteedTailCallOpt) {
2254    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2255      getStackAlignment();
2256    unsigned AlignMask = TargetAlign-1;
2257    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2258  }
2259
2260  return NumBytes;
2261}
2262
2263/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2264/// adjusted to accommodate the arguments for the tailcall.
2265static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2266                                   unsigned ParamSize) {
2267
2268  if (!isTailCall) return 0;
2269
2270  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2271  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2272  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2273  // Remember only if the new adjustement is bigger.
2274  if (SPDiff < FI->getTailCallSPDelta())
2275    FI->setTailCallSPDelta(SPDiff);
2276
2277  return SPDiff;
2278}
2279
2280/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2281/// for tail call optimization. Targets which want to do tail call
2282/// optimization should implement this function.
2283bool
2284PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2285                                                     CallingConv::ID CalleeCC,
2286                                                     bool isVarArg,
2287                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2288                                                     SelectionDAG& DAG) const {
2289  if (!GuaranteedTailCallOpt)
2290    return false;
2291
2292  // Variable argument functions are not supported.
2293  if (isVarArg)
2294    return false;
2295
2296  MachineFunction &MF = DAG.getMachineFunction();
2297  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2298  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2299    // Functions containing by val parameters are not supported.
2300    for (unsigned i = 0; i != Ins.size(); i++) {
2301       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2302       if (Flags.isByVal()) return false;
2303    }
2304
2305    // Non PIC/GOT  tail calls are supported.
2306    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2307      return true;
2308
2309    // At the moment we can only do local tail calls (in same module, hidden
2310    // or protected) if we are generating PIC.
2311    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2312      return G->getGlobal()->hasHiddenVisibility()
2313          || G->getGlobal()->hasProtectedVisibility();
2314  }
2315
2316  return false;
2317}
2318
2319/// isCallCompatibleAddress - Return the immediate to use if the specified
2320/// 32-bit value is representable in the immediate field of a BxA instruction.
2321static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2322  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2323  if (!C) return 0;
2324
2325  int Addr = C->getZExtValue();
2326  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2327      (Addr << 6 >> 6) != Addr)
2328    return 0;  // Top 6 bits have to be sext of immediate.
2329
2330  return DAG.getConstant((int)C->getZExtValue() >> 2,
2331                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2332}
2333
2334namespace {
2335
2336struct TailCallArgumentInfo {
2337  SDValue Arg;
2338  SDValue FrameIdxOp;
2339  int       FrameIdx;
2340
2341  TailCallArgumentInfo() : FrameIdx(0) {}
2342};
2343
2344}
2345
2346/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2347static void
2348StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2349                                           SDValue Chain,
2350                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2351                   SmallVector<SDValue, 8> &MemOpChains,
2352                   DebugLoc dl) {
2353  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2354    SDValue Arg = TailCallArgs[i].Arg;
2355    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2356    int FI = TailCallArgs[i].FrameIdx;
2357    // Store relative to framepointer.
2358    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2359                                       MachinePointerInfo::getFixedStack(FI),
2360                                       false, false, 0));
2361  }
2362}
2363
2364/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2365/// the appropriate stack slot for the tail call optimized function call.
2366static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2367                                               MachineFunction &MF,
2368                                               SDValue Chain,
2369                                               SDValue OldRetAddr,
2370                                               SDValue OldFP,
2371                                               int SPDiff,
2372                                               bool isPPC64,
2373                                               bool isDarwinABI,
2374                                               DebugLoc dl) {
2375  if (SPDiff) {
2376    // Calculate the new stack slot for the return address.
2377    int SlotSize = isPPC64 ? 8 : 4;
2378    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2379                                                                   isDarwinABI);
2380    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2381                                                          NewRetAddrLoc, true);
2382    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2383    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2384    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2385                         MachinePointerInfo::getFixedStack(NewRetAddr),
2386                         false, false, 0);
2387
2388    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2389    // slot as the FP is never overwritten.
2390    if (isDarwinABI) {
2391      int NewFPLoc =
2392        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2393      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2394                                                          true);
2395      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2396      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2397                           MachinePointerInfo::getFixedStack(NewFPIdx),
2398                           false, false, 0);
2399    }
2400  }
2401  return Chain;
2402}
2403
2404/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2405/// the position of the argument.
2406static void
2407CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2408                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2409                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2410  int Offset = ArgOffset + SPDiff;
2411  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2412  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2413  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2414  SDValue FIN = DAG.getFrameIndex(FI, VT);
2415  TailCallArgumentInfo Info;
2416  Info.Arg = Arg;
2417  Info.FrameIdxOp = FIN;
2418  Info.FrameIdx = FI;
2419  TailCallArguments.push_back(Info);
2420}
2421
2422/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2423/// stack slot. Returns the chain as result and the loaded frame pointers in
2424/// LROpOut/FPOpout. Used when tail calling.
2425SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2426                                                        int SPDiff,
2427                                                        SDValue Chain,
2428                                                        SDValue &LROpOut,
2429                                                        SDValue &FPOpOut,
2430                                                        bool isDarwinABI,
2431                                                        DebugLoc dl) const {
2432  if (SPDiff) {
2433    // Load the LR and FP stack slot for later adjusting.
2434    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2435    LROpOut = getReturnAddrFrameIndex(DAG);
2436    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2437                          false, false, 0);
2438    Chain = SDValue(LROpOut.getNode(), 1);
2439
2440    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2441    // slot as the FP is never overwritten.
2442    if (isDarwinABI) {
2443      FPOpOut = getFramePointerFrameIndex(DAG);
2444      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2445                            false, false, 0);
2446      Chain = SDValue(FPOpOut.getNode(), 1);
2447    }
2448  }
2449  return Chain;
2450}
2451
2452/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2453/// by "Src" to address "Dst" of size "Size".  Alignment information is
2454/// specified by the specific parameter attribute. The copy will be passed as
2455/// a byval function parameter.
2456/// Sometimes what we are copying is the end of a larger object, the part that
2457/// does not fit in registers.
2458static SDValue
2459CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2460                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2461                          DebugLoc dl) {
2462  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2463  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2464                       false, false, MachinePointerInfo(0),
2465                       MachinePointerInfo(0));
2466}
2467
2468/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2469/// tail calls.
2470static void
2471LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2472                 SDValue Arg, SDValue PtrOff, int SPDiff,
2473                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2474                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2475                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
2476                 DebugLoc dl) {
2477  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2478  if (!isTailCall) {
2479    if (isVector) {
2480      SDValue StackPtr;
2481      if (isPPC64)
2482        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2483      else
2484        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2485      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2486                           DAG.getConstant(ArgOffset, PtrVT));
2487    }
2488    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2489                                       MachinePointerInfo(), false, false, 0));
2490  // Calculate and remember argument location.
2491  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2492                                  TailCallArguments);
2493}
2494
2495static
2496void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2497                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2498                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2499                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2500  MachineFunction &MF = DAG.getMachineFunction();
2501
2502  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2503  // might overwrite each other in case of tail call optimization.
2504  SmallVector<SDValue, 8> MemOpChains2;
2505  // Do not flag preceding copytoreg stuff together with the following stuff.
2506  InFlag = SDValue();
2507  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2508                                    MemOpChains2, dl);
2509  if (!MemOpChains2.empty())
2510    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2511                        &MemOpChains2[0], MemOpChains2.size());
2512
2513  // Store the return address to the appropriate stack slot.
2514  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2515                                        isPPC64, isDarwinABI, dl);
2516
2517  // Emit callseq_end just before tailcall node.
2518  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2519                             DAG.getIntPtrConstant(0, true), InFlag);
2520  InFlag = Chain.getValue(1);
2521}
2522
2523static
2524unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2525                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2526                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2527                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2528                     const PPCSubtarget &PPCSubTarget) {
2529
2530  bool isPPC64 = PPCSubTarget.isPPC64();
2531  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
2532
2533  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2534  NodeTys.push_back(MVT::Other);   // Returns a chain
2535  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
2536
2537  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2538
2539  bool needIndirectCall = true;
2540  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
2541    // If this is an absolute destination address, use the munged value.
2542    Callee = SDValue(Dest, 0);
2543    needIndirectCall = false;
2544  }
2545
2546  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2547    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2548    // Use indirect calls for ALL functions calls in JIT mode, since the
2549    // far-call stubs may be outside relocation limits for a BL instruction.
2550    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
2551      unsigned OpFlags = 0;
2552      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2553          (!PPCSubTarget.getTargetTriple().isMacOSX() ||
2554           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
2555          (G->getGlobal()->isDeclaration() ||
2556           G->getGlobal()->isWeakForLinker())) {
2557        // PC-relative references to external symbols should go through $stub,
2558        // unless we're building with the leopard linker or later, which
2559        // automatically synthesizes these stubs.
2560        OpFlags = PPCII::MO_DARWIN_STUB;
2561      }
2562
2563      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
2564      // every direct call is) turn it into a TargetGlobalAddress /
2565      // TargetExternalSymbol node so that legalize doesn't hack it.
2566      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2567                                          Callee.getValueType(),
2568                                          0, OpFlags);
2569      needIndirectCall = false;
2570    }
2571  }
2572
2573  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2574    unsigned char OpFlags = 0;
2575
2576    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2577        (!PPCSubTarget.getTargetTriple().isMacOSX() ||
2578         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
2579      // PC-relative references to external symbols should go through $stub,
2580      // unless we're building with the leopard linker or later, which
2581      // automatically synthesizes these stubs.
2582      OpFlags = PPCII::MO_DARWIN_STUB;
2583    }
2584
2585    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
2586                                         OpFlags);
2587    needIndirectCall = false;
2588  }
2589
2590  if (needIndirectCall) {
2591    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2592    // to do the call, we can't use PPCISD::CALL.
2593    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2594
2595    if (isSVR4ABI && isPPC64) {
2596      // Function pointers in the 64-bit SVR4 ABI do not point to the function
2597      // entry point, but to the function descriptor (the function entry point
2598      // address is part of the function descriptor though).
2599      // The function descriptor is a three doubleword structure with the
2600      // following fields: function entry point, TOC base address and
2601      // environment pointer.
2602      // Thus for a call through a function pointer, the following actions need
2603      // to be performed:
2604      //   1. Save the TOC of the caller in the TOC save area of its stack
2605      //      frame (this is done in LowerCall_Darwin()).
2606      //   2. Load the address of the function entry point from the function
2607      //      descriptor.
2608      //   3. Load the TOC of the callee from the function descriptor into r2.
2609      //   4. Load the environment pointer from the function descriptor into
2610      //      r11.
2611      //   5. Branch to the function entry point address.
2612      //   6. On return of the callee, the TOC of the caller needs to be
2613      //      restored (this is done in FinishCall()).
2614      //
2615      // All those operations are flagged together to ensure that no other
2616      // operations can be scheduled in between. E.g. without flagging the
2617      // operations together, a TOC access in the caller could be scheduled
2618      // between the load of the callee TOC and the branch to the callee, which
2619      // results in the TOC access going through the TOC of the callee instead
2620      // of going through the TOC of the caller, which leads to incorrect code.
2621
2622      // Load the address of the function entry point from the function
2623      // descriptor.
2624      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
2625      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2626                                        InFlag.getNode() ? 3 : 2);
2627      Chain = LoadFuncPtr.getValue(1);
2628      InFlag = LoadFuncPtr.getValue(2);
2629
2630      // Load environment pointer into r11.
2631      // Offset of the environment pointer within the function descriptor.
2632      SDValue PtrOff = DAG.getIntPtrConstant(16);
2633
2634      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2635      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2636                                       InFlag);
2637      Chain = LoadEnvPtr.getValue(1);
2638      InFlag = LoadEnvPtr.getValue(2);
2639
2640      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2641                                        InFlag);
2642      Chain = EnvVal.getValue(0);
2643      InFlag = EnvVal.getValue(1);
2644
2645      // Load TOC of the callee into r2. We are using a target-specific load
2646      // with r2 hard coded, because the result of a target-independent load
2647      // would never go directly into r2, since r2 is a reserved register (which
2648      // prevents the register allocator from allocating it), resulting in an
2649      // additional register being allocated and an unnecessary move instruction
2650      // being generated.
2651      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2652      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2653                                       Callee, InFlag);
2654      Chain = LoadTOCPtr.getValue(0);
2655      InFlag = LoadTOCPtr.getValue(1);
2656
2657      MTCTROps[0] = Chain;
2658      MTCTROps[1] = LoadFuncPtr;
2659      MTCTROps[2] = InFlag;
2660    }
2661
2662    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2663                        2 + (InFlag.getNode() != 0));
2664    InFlag = Chain.getValue(1);
2665
2666    NodeTys.clear();
2667    NodeTys.push_back(MVT::Other);
2668    NodeTys.push_back(MVT::Glue);
2669    Ops.push_back(Chain);
2670    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2671    Callee.setNode(0);
2672    // Add CTR register as callee so a bctr can be emitted later.
2673    if (isTailCall)
2674      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
2675  }
2676
2677  // If this is a direct call, pass the chain and the callee.
2678  if (Callee.getNode()) {
2679    Ops.push_back(Chain);
2680    Ops.push_back(Callee);
2681  }
2682  // If this is a tail call add stack pointer delta.
2683  if (isTailCall)
2684    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2685
2686  // Add argument registers to the end of the list so that they are known live
2687  // into the call.
2688  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2689    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2690                                  RegsToPass[i].second.getValueType()));
2691
2692  return CallOpc;
2693}
2694
2695SDValue
2696PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2697                                   CallingConv::ID CallConv, bool isVarArg,
2698                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2699                                   DebugLoc dl, SelectionDAG &DAG,
2700                                   SmallVectorImpl<SDValue> &InVals) const {
2701
2702  SmallVector<CCValAssign, 16> RVLocs;
2703  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2704		    getTargetMachine(), RVLocs, *DAG.getContext());
2705  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2706
2707  // Copy all of the result registers out of their specified physreg.
2708  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2709    CCValAssign &VA = RVLocs[i];
2710    EVT VT = VA.getValVT();
2711    assert(VA.isRegLoc() && "Can only return in registers!");
2712    Chain = DAG.getCopyFromReg(Chain, dl,
2713                               VA.getLocReg(), VT, InFlag).getValue(1);
2714    InVals.push_back(Chain.getValue(0));
2715    InFlag = Chain.getValue(2);
2716  }
2717
2718  return Chain;
2719}
2720
2721SDValue
2722PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2723                              bool isTailCall, bool isVarArg,
2724                              SelectionDAG &DAG,
2725                              SmallVector<std::pair<unsigned, SDValue>, 8>
2726                                &RegsToPass,
2727                              SDValue InFlag, SDValue Chain,
2728                              SDValue &Callee,
2729                              int SPDiff, unsigned NumBytes,
2730                              const SmallVectorImpl<ISD::InputArg> &Ins,
2731                              SmallVectorImpl<SDValue> &InVals) const {
2732  std::vector<EVT> NodeTys;
2733  SmallVector<SDValue, 8> Ops;
2734  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2735                                 isTailCall, RegsToPass, Ops, NodeTys,
2736                                 PPCSubTarget);
2737
2738  // When performing tail call optimization the callee pops its arguments off
2739  // the stack. Account for this here so these bytes can be pushed back on in
2740  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2741  int BytesCalleePops =
2742    (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0;
2743
2744  if (InFlag.getNode())
2745    Ops.push_back(InFlag);
2746
2747  // Emit tail call.
2748  if (isTailCall) {
2749    // If this is the first return lowered for this function, add the regs
2750    // to the liveout set for the function.
2751    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2752      SmallVector<CCValAssign, 16> RVLocs;
2753      CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2754		     getTargetMachine(), RVLocs, *DAG.getContext());
2755      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2756      for (unsigned i = 0; i != RVLocs.size(); ++i)
2757        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2758    }
2759
2760    assert(((Callee.getOpcode() == ISD::Register &&
2761             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2762            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2763            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2764            isa<ConstantSDNode>(Callee)) &&
2765    "Expecting an global address, external symbol, absolute value or register");
2766
2767    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2768  }
2769
2770  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2771  InFlag = Chain.getValue(1);
2772
2773  // Add a NOP immediately after the branch instruction when using the 64-bit
2774  // SVR4 ABI. At link time, if caller and callee are in a different module and
2775  // thus have a different TOC, the call will be replaced with a call to a stub
2776  // function which saves the current TOC, loads the TOC of the callee and
2777  // branches to the callee. The NOP will be replaced with a load instruction
2778  // which restores the TOC of the caller from the TOC save slot of the current
2779  // stack frame. If caller and callee belong to the same module (and have the
2780  // same TOC), the NOP will remain unchanged.
2781  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2782    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2783    if (CallOpc == PPCISD::BCTRL_SVR4) {
2784      // This is a call through a function pointer.
2785      // Restore the caller TOC from the save area into R2.
2786      // See PrepareCall() for more information about calls through function
2787      // pointers in the 64-bit SVR4 ABI.
2788      // We are using a target-specific load with r2 hard coded, because the
2789      // result of a target-independent load would never go directly into r2,
2790      // since r2 is a reserved register (which prevents the register allocator
2791      // from allocating it), resulting in an additional register being
2792      // allocated and an unnecessary move instruction being generated.
2793      Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2794      InFlag = Chain.getValue(1);
2795    } else {
2796      // Otherwise insert NOP.
2797      InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Glue, InFlag);
2798    }
2799  }
2800
2801  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2802                             DAG.getIntPtrConstant(BytesCalleePops, true),
2803                             InFlag);
2804  if (!Ins.empty())
2805    InFlag = Chain.getValue(1);
2806
2807  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2808                         Ins, dl, DAG, InVals);
2809}
2810
2811SDValue
2812PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2813                             CallingConv::ID CallConv, bool isVarArg,
2814                             bool &isTailCall,
2815                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2816                             const SmallVectorImpl<SDValue> &OutVals,
2817                             const SmallVectorImpl<ISD::InputArg> &Ins,
2818                             DebugLoc dl, SelectionDAG &DAG,
2819                             SmallVectorImpl<SDValue> &InVals) const {
2820  if (isTailCall)
2821    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2822                                                   Ins, DAG);
2823
2824  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
2825    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2826                          isTailCall, Outs, OutVals, Ins,
2827                          dl, DAG, InVals);
2828
2829  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2830                          isTailCall, Outs, OutVals, Ins,
2831                          dl, DAG, InVals);
2832}
2833
2834SDValue
2835PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2836                                  CallingConv::ID CallConv, bool isVarArg,
2837                                  bool isTailCall,
2838                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2839                                  const SmallVectorImpl<SDValue> &OutVals,
2840                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2841                                  DebugLoc dl, SelectionDAG &DAG,
2842                                  SmallVectorImpl<SDValue> &InVals) const {
2843  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2844  // of the 32-bit SVR4 ABI stack frame layout.
2845
2846  assert((CallConv == CallingConv::C ||
2847          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2848
2849  unsigned PtrByteSize = 4;
2850
2851  MachineFunction &MF = DAG.getMachineFunction();
2852
2853  // Mark this function as potentially containing a function that contains a
2854  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2855  // and restoring the callers stack pointer in this functions epilog. This is
2856  // done because by tail calling the called function might overwrite the value
2857  // in this function's (MF) stack pointer stack slot 0(SP).
2858  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2859    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2860
2861  // Count how many bytes are to be pushed on the stack, including the linkage
2862  // area, parameter list area and the part of the local variable space which
2863  // contains copies of aggregates which are passed by value.
2864
2865  // Assign locations to all of the outgoing arguments.
2866  SmallVector<CCValAssign, 16> ArgLocs;
2867  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2868		 getTargetMachine(), ArgLocs, *DAG.getContext());
2869
2870  // Reserve space for the linkage area on the stack.
2871  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
2872
2873  if (isVarArg) {
2874    // Handle fixed and variable vector arguments differently.
2875    // Fixed vector arguments go into registers as long as registers are
2876    // available. Variable vector arguments always go into memory.
2877    unsigned NumArgs = Outs.size();
2878
2879    for (unsigned i = 0; i != NumArgs; ++i) {
2880      MVT ArgVT = Outs[i].VT;
2881      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2882      bool Result;
2883
2884      if (Outs[i].IsFixed) {
2885        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2886                             CCInfo);
2887      } else {
2888        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2889                                    ArgFlags, CCInfo);
2890      }
2891
2892      if (Result) {
2893#ifndef NDEBUG
2894        errs() << "Call operand #" << i << " has unhandled type "
2895             << EVT(ArgVT).getEVTString() << "\n";
2896#endif
2897        llvm_unreachable(0);
2898      }
2899    }
2900  } else {
2901    // All arguments are treated the same.
2902    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2903  }
2904
2905  // Assign locations to all of the outgoing aggregate by value arguments.
2906  SmallVector<CCValAssign, 16> ByValArgLocs;
2907  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2908		      getTargetMachine(), ByValArgLocs, *DAG.getContext());
2909
2910  // Reserve stack space for the allocations in CCInfo.
2911  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2912
2913  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2914
2915  // Size of the linkage area, parameter list area and the part of the local
2916  // space variable where copies of aggregates which are passed by value are
2917  // stored.
2918  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2919
2920  // Calculate by how many bytes the stack has to be adjusted in case of tail
2921  // call optimization.
2922  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2923
2924  // Adjust the stack pointer for the new arguments...
2925  // These operations are automatically eliminated by the prolog/epilog pass
2926  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2927  SDValue CallSeqStart = Chain;
2928
2929  // Load the return address and frame pointer so it can be moved somewhere else
2930  // later.
2931  SDValue LROp, FPOp;
2932  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2933                                       dl);
2934
2935  // Set up a copy of the stack pointer for use loading and storing any
2936  // arguments that may not fit in the registers available for argument
2937  // passing.
2938  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2939
2940  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2941  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2942  SmallVector<SDValue, 8> MemOpChains;
2943
2944  // Walk the register/memloc assignments, inserting copies/loads.
2945  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2946       i != e;
2947       ++i) {
2948    CCValAssign &VA = ArgLocs[i];
2949    SDValue Arg = OutVals[i];
2950    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2951
2952    if (Flags.isByVal()) {
2953      // Argument is an aggregate which is passed by value, thus we need to
2954      // create a copy of it in the local variable space of the current stack
2955      // frame (which is the stack frame of the caller) and pass the address of
2956      // this copy to the callee.
2957      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2958      CCValAssign &ByValVA = ByValArgLocs[j++];
2959      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2960
2961      // Memory reserved in the local variable space of the callers stack frame.
2962      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2963
2964      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2965      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2966
2967      // Create a copy of the argument in the local area of the current
2968      // stack frame.
2969      SDValue MemcpyCall =
2970        CreateCopyOfByValArgument(Arg, PtrOff,
2971                                  CallSeqStart.getNode()->getOperand(0),
2972                                  Flags, DAG, dl);
2973
2974      // This must go outside the CALLSEQ_START..END.
2975      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2976                           CallSeqStart.getNode()->getOperand(1));
2977      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2978                             NewCallSeqStart.getNode());
2979      Chain = CallSeqStart = NewCallSeqStart;
2980
2981      // Pass the address of the aggregate copy on the stack either in a
2982      // physical register or in the parameter list area of the current stack
2983      // frame to the callee.
2984      Arg = PtrOff;
2985    }
2986
2987    if (VA.isRegLoc()) {
2988      // Put argument in a physical register.
2989      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2990    } else {
2991      // Put argument in the parameter list area of the current stack frame.
2992      assert(VA.isMemLoc());
2993      unsigned LocMemOffset = VA.getLocMemOffset();
2994
2995      if (!isTailCall) {
2996        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2997        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2998
2999        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3000                                           MachinePointerInfo(),
3001                                           false, false, 0));
3002      } else {
3003        // Calculate and remember argument location.
3004        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3005                                 TailCallArguments);
3006      }
3007    }
3008  }
3009
3010  if (!MemOpChains.empty())
3011    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3012                        &MemOpChains[0], MemOpChains.size());
3013
3014  // Set CR6 to true if this is a vararg call.
3015  if (isVarArg) {
3016    SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
3017    RegsToPass.push_back(std::make_pair(unsigned(PPC::CR1EQ), SetCR));
3018  }
3019
3020  // Build a sequence of copy-to-reg nodes chained together with token chain
3021  // and flag operands which copy the outgoing args into the appropriate regs.
3022  SDValue InFlag;
3023  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3024    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3025                             RegsToPass[i].second, InFlag);
3026    InFlag = Chain.getValue(1);
3027  }
3028
3029  if (isTailCall)
3030    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3031                    false, TailCallArguments);
3032
3033  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3034                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3035                    Ins, InVals);
3036}
3037
3038SDValue
3039PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
3040                                    CallingConv::ID CallConv, bool isVarArg,
3041                                    bool isTailCall,
3042                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3043                                    const SmallVectorImpl<SDValue> &OutVals,
3044                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3045                                    DebugLoc dl, SelectionDAG &DAG,
3046                                    SmallVectorImpl<SDValue> &InVals) const {
3047
3048  unsigned NumOps  = Outs.size();
3049
3050  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3051  bool isPPC64 = PtrVT == MVT::i64;
3052  unsigned PtrByteSize = isPPC64 ? 8 : 4;
3053
3054  MachineFunction &MF = DAG.getMachineFunction();
3055
3056  // Mark this function as potentially containing a function that contains a
3057  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3058  // and restoring the callers stack pointer in this functions epilog. This is
3059  // done because by tail calling the called function might overwrite the value
3060  // in this function's (MF) stack pointer stack slot 0(SP).
3061  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
3062    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3063
3064  unsigned nAltivecParamsAtEnd = 0;
3065
3066  // Count how many bytes are to be pushed on the stack, including the linkage
3067  // area, and parameter passing area.  We start with 24/48 bytes, which is
3068  // prereserved space for [SP][CR][LR][3 x unused].
3069  unsigned NumBytes =
3070    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
3071                                         Outs, OutVals,
3072                                         nAltivecParamsAtEnd);
3073
3074  // Calculate by how many bytes the stack has to be adjusted in case of tail
3075  // call optimization.
3076  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3077
3078  // To protect arguments on the stack from being clobbered in a tail call,
3079  // force all the loads to happen before doing any other lowering.
3080  if (isTailCall)
3081    Chain = DAG.getStackArgumentTokenFactor(Chain);
3082
3083  // Adjust the stack pointer for the new arguments...
3084  // These operations are automatically eliminated by the prolog/epilog pass
3085  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3086  SDValue CallSeqStart = Chain;
3087
3088  // Load the return address and frame pointer so it can be move somewhere else
3089  // later.
3090  SDValue LROp, FPOp;
3091  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3092                                       dl);
3093
3094  // Set up a copy of the stack pointer for use loading and storing any
3095  // arguments that may not fit in the registers available for argument
3096  // passing.
3097  SDValue StackPtr;
3098  if (isPPC64)
3099    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3100  else
3101    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3102
3103  // Figure out which arguments are going to go in registers, and which in
3104  // memory.  Also, if this is a vararg function, floating point operations
3105  // must be stored to our stack, and loaded into integer regs as well, if
3106  // any integer regs are available for argument passing.
3107  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
3108  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3109
3110  static const unsigned GPR_32[] = {           // 32-bit registers.
3111    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3112    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3113  };
3114  static const unsigned GPR_64[] = {           // 64-bit registers.
3115    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3116    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3117  };
3118  static const unsigned *FPR = GetFPR();
3119
3120  static const unsigned VR[] = {
3121    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3122    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3123  };
3124  const unsigned NumGPRs = array_lengthof(GPR_32);
3125  const unsigned NumFPRs = 13;
3126  const unsigned NumVRs  = array_lengthof(VR);
3127
3128  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
3129
3130  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3131  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3132
3133  SmallVector<SDValue, 8> MemOpChains;
3134  for (unsigned i = 0; i != NumOps; ++i) {
3135    SDValue Arg = OutVals[i];
3136    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3137
3138    // PtrOff will be used to store the current argument to the stack if a
3139    // register cannot be found for it.
3140    SDValue PtrOff;
3141
3142    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3143
3144    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3145
3146    // On PPC64, promote integers to 64-bit values.
3147    if (isPPC64 && Arg.getValueType() == MVT::i32) {
3148      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3149      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3150      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3151    }
3152
3153    // FIXME memcpy is used way more than necessary.  Correctness first.
3154    if (Flags.isByVal()) {
3155      unsigned Size = Flags.getByValSize();
3156      if (Size==1 || Size==2) {
3157        // Very small objects are passed right-justified.
3158        // Everything else is passed left-justified.
3159        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3160        if (GPR_idx != NumGPRs) {
3161          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3162                                        MachinePointerInfo(), VT,
3163                                        false, false, 0);
3164          MemOpChains.push_back(Load.getValue(1));
3165          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3166
3167          ArgOffset += PtrByteSize;
3168        } else {
3169          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3170          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3171          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3172                                CallSeqStart.getNode()->getOperand(0),
3173                                Flags, DAG, dl);
3174          // This must go outside the CALLSEQ_START..END.
3175          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3176                               CallSeqStart.getNode()->getOperand(1));
3177          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3178                                 NewCallSeqStart.getNode());
3179          Chain = CallSeqStart = NewCallSeqStart;
3180          ArgOffset += PtrByteSize;
3181        }
3182        continue;
3183      }
3184      // Copy entire object into memory.  There are cases where gcc-generated
3185      // code assumes it is there, even if it could be put entirely into
3186      // registers.  (This is not what the doc says.)
3187      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3188                            CallSeqStart.getNode()->getOperand(0),
3189                            Flags, DAG, dl);
3190      // This must go outside the CALLSEQ_START..END.
3191      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3192                           CallSeqStart.getNode()->getOperand(1));
3193      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3194      Chain = CallSeqStart = NewCallSeqStart;
3195      // And copy the pieces of it that fit into registers.
3196      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3197        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3198        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3199        if (GPR_idx != NumGPRs) {
3200          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3201                                     MachinePointerInfo(),
3202                                     false, false, 0);
3203          MemOpChains.push_back(Load.getValue(1));
3204          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3205          ArgOffset += PtrByteSize;
3206        } else {
3207          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3208          break;
3209        }
3210      }
3211      continue;
3212    }
3213
3214    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3215    default: llvm_unreachable("Unexpected ValueType for argument!");
3216    case MVT::i32:
3217    case MVT::i64:
3218      if (GPR_idx != NumGPRs) {
3219        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3220      } else {
3221        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3222                         isPPC64, isTailCall, false, MemOpChains,
3223                         TailCallArguments, dl);
3224      }
3225      ArgOffset += PtrByteSize;
3226      break;
3227    case MVT::f32:
3228    case MVT::f64:
3229      if (FPR_idx != NumFPRs) {
3230        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3231
3232        if (isVarArg) {
3233          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3234                                       MachinePointerInfo(), false, false, 0);
3235          MemOpChains.push_back(Store);
3236
3237          // Float varargs are always shadowed in available integer registers
3238          if (GPR_idx != NumGPRs) {
3239            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3240                                       MachinePointerInfo(), false, false, 0);
3241            MemOpChains.push_back(Load.getValue(1));
3242            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3243          }
3244          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3245            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3246            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3247            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3248                                       MachinePointerInfo(),
3249                                       false, false, 0);
3250            MemOpChains.push_back(Load.getValue(1));
3251            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3252          }
3253        } else {
3254          // If we have any FPRs remaining, we may also have GPRs remaining.
3255          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3256          // GPRs.
3257          if (GPR_idx != NumGPRs)
3258            ++GPR_idx;
3259          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3260              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3261            ++GPR_idx;
3262        }
3263      } else {
3264        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3265                         isPPC64, isTailCall, false, MemOpChains,
3266                         TailCallArguments, dl);
3267      }
3268      if (isPPC64)
3269        ArgOffset += 8;
3270      else
3271        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3272      break;
3273    case MVT::v4f32:
3274    case MVT::v4i32:
3275    case MVT::v8i16:
3276    case MVT::v16i8:
3277      if (isVarArg) {
3278        // These go aligned on the stack, or in the corresponding R registers
3279        // when within range.  The Darwin PPC ABI doc claims they also go in
3280        // V registers; in fact gcc does this only for arguments that are
3281        // prototyped, not for those that match the ...  We do it for all
3282        // arguments, seems to work.
3283        while (ArgOffset % 16 !=0) {
3284          ArgOffset += PtrByteSize;
3285          if (GPR_idx != NumGPRs)
3286            GPR_idx++;
3287        }
3288        // We could elide this store in the case where the object fits
3289        // entirely in R registers.  Maybe later.
3290        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3291                            DAG.getConstant(ArgOffset, PtrVT));
3292        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3293                                     MachinePointerInfo(), false, false, 0);
3294        MemOpChains.push_back(Store);
3295        if (VR_idx != NumVRs) {
3296          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3297                                     MachinePointerInfo(),
3298                                     false, false, 0);
3299          MemOpChains.push_back(Load.getValue(1));
3300          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3301        }
3302        ArgOffset += 16;
3303        for (unsigned i=0; i<16; i+=PtrByteSize) {
3304          if (GPR_idx == NumGPRs)
3305            break;
3306          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3307                                  DAG.getConstant(i, PtrVT));
3308          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3309                                     false, false, 0);
3310          MemOpChains.push_back(Load.getValue(1));
3311          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3312        }
3313        break;
3314      }
3315
3316      // Non-varargs Altivec params generally go in registers, but have
3317      // stack space allocated at the end.
3318      if (VR_idx != NumVRs) {
3319        // Doesn't have GPR space allocated.
3320        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3321      } else if (nAltivecParamsAtEnd==0) {
3322        // We are emitting Altivec params in order.
3323        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3324                         isPPC64, isTailCall, true, MemOpChains,
3325                         TailCallArguments, dl);
3326        ArgOffset += 16;
3327      }
3328      break;
3329    }
3330  }
3331  // If all Altivec parameters fit in registers, as they usually do,
3332  // they get stack space following the non-Altivec parameters.  We
3333  // don't track this here because nobody below needs it.
3334  // If there are more Altivec parameters than fit in registers emit
3335  // the stores here.
3336  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3337    unsigned j = 0;
3338    // Offset is aligned; skip 1st 12 params which go in V registers.
3339    ArgOffset = ((ArgOffset+15)/16)*16;
3340    ArgOffset += 12*16;
3341    for (unsigned i = 0; i != NumOps; ++i) {
3342      SDValue Arg = OutVals[i];
3343      EVT ArgType = Outs[i].VT;
3344      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3345          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3346        if (++j > NumVRs) {
3347          SDValue PtrOff;
3348          // We are emitting Altivec params in order.
3349          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3350                           isPPC64, isTailCall, true, MemOpChains,
3351                           TailCallArguments, dl);
3352          ArgOffset += 16;
3353        }
3354      }
3355    }
3356  }
3357
3358  if (!MemOpChains.empty())
3359    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3360                        &MemOpChains[0], MemOpChains.size());
3361
3362  // Check if this is an indirect call (MTCTR/BCTRL).
3363  // See PrepareCall() for more information about calls through function
3364  // pointers in the 64-bit SVR4 ABI.
3365  if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3366      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3367      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3368      !isBLACompatibleAddress(Callee, DAG)) {
3369    // Load r2 into a virtual register and store it to the TOC save area.
3370    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3371    // TOC save area offset.
3372    SDValue PtrOff = DAG.getIntPtrConstant(40);
3373    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3374    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
3375                         false, false, 0);
3376  }
3377
3378  // On Darwin, R12 must contain the address of an indirect callee.  This does
3379  // not mean the MTCTR instruction must use R12; it's easier to model this as
3380  // an extra parameter, so do that.
3381  if (!isTailCall &&
3382      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3383      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3384      !isBLACompatibleAddress(Callee, DAG))
3385    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3386                                                   PPC::R12), Callee));
3387
3388  // Build a sequence of copy-to-reg nodes chained together with token chain
3389  // and flag operands which copy the outgoing args into the appropriate regs.
3390  SDValue InFlag;
3391  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3392    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3393                             RegsToPass[i].second, InFlag);
3394    InFlag = Chain.getValue(1);
3395  }
3396
3397  if (isTailCall)
3398    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3399                    FPOp, true, TailCallArguments);
3400
3401  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3402                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3403                    Ins, InVals);
3404}
3405
3406SDValue
3407PPCTargetLowering::LowerReturn(SDValue Chain,
3408                               CallingConv::ID CallConv, bool isVarArg,
3409                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3410                               const SmallVectorImpl<SDValue> &OutVals,
3411                               DebugLoc dl, SelectionDAG &DAG) const {
3412
3413  SmallVector<CCValAssign, 16> RVLocs;
3414  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3415		 getTargetMachine(), RVLocs, *DAG.getContext());
3416  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3417
3418  // If this is the first return lowered for this function, add the regs to the
3419  // liveout set for the function.
3420  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3421    for (unsigned i = 0; i != RVLocs.size(); ++i)
3422      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3423  }
3424
3425  SDValue Flag;
3426
3427  // Copy the result values into the output registers.
3428  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3429    CCValAssign &VA = RVLocs[i];
3430    assert(VA.isRegLoc() && "Can only return in registers!");
3431    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3432                             OutVals[i], Flag);
3433    Flag = Chain.getValue(1);
3434  }
3435
3436  if (Flag.getNode())
3437    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3438  else
3439    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3440}
3441
3442SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3443                                   const PPCSubtarget &Subtarget) const {
3444  // When we pop the dynamic allocation we need to restore the SP link.
3445  DebugLoc dl = Op.getDebugLoc();
3446
3447  // Get the corect type for pointers.
3448  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3449
3450  // Construct the stack pointer operand.
3451  bool isPPC64 = Subtarget.isPPC64();
3452  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3453  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3454
3455  // Get the operands for the STACKRESTORE.
3456  SDValue Chain = Op.getOperand(0);
3457  SDValue SaveSP = Op.getOperand(1);
3458
3459  // Load the old link SP.
3460  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
3461                                   MachinePointerInfo(),
3462                                   false, false, 0);
3463
3464  // Restore the stack pointer.
3465  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3466
3467  // Store the old link SP.
3468  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
3469                      false, false, 0);
3470}
3471
3472
3473
3474SDValue
3475PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3476  MachineFunction &MF = DAG.getMachineFunction();
3477  bool isPPC64 = PPCSubTarget.isPPC64();
3478  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3479  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3480
3481  // Get current frame pointer save index.  The users of this index will be
3482  // primarily DYNALLOC instructions.
3483  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3484  int RASI = FI->getReturnAddrSaveIndex();
3485
3486  // If the frame pointer save index hasn't been defined yet.
3487  if (!RASI) {
3488    // Find out what the fix offset of the frame pointer save area.
3489    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
3490    // Allocate the frame index for frame pointer save area.
3491    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
3492    // Save the result.
3493    FI->setReturnAddrSaveIndex(RASI);
3494  }
3495  return DAG.getFrameIndex(RASI, PtrVT);
3496}
3497
3498SDValue
3499PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3500  MachineFunction &MF = DAG.getMachineFunction();
3501  bool isPPC64 = PPCSubTarget.isPPC64();
3502  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3503  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3504
3505  // Get current frame pointer save index.  The users of this index will be
3506  // primarily DYNALLOC instructions.
3507  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3508  int FPSI = FI->getFramePointerSaveIndex();
3509
3510  // If the frame pointer save index hasn't been defined yet.
3511  if (!FPSI) {
3512    // Find out what the fix offset of the frame pointer save area.
3513    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
3514                                                           isDarwinABI);
3515
3516    // Allocate the frame index for frame pointer save area.
3517    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
3518    // Save the result.
3519    FI->setFramePointerSaveIndex(FPSI);
3520  }
3521  return DAG.getFrameIndex(FPSI, PtrVT);
3522}
3523
3524SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3525                                         SelectionDAG &DAG,
3526                                         const PPCSubtarget &Subtarget) const {
3527  // Get the inputs.
3528  SDValue Chain = Op.getOperand(0);
3529  SDValue Size  = Op.getOperand(1);
3530  DebugLoc dl = Op.getDebugLoc();
3531
3532  // Get the corect type for pointers.
3533  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3534  // Negate the size.
3535  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3536                                  DAG.getConstant(0, PtrVT), Size);
3537  // Construct a node for the frame pointer save index.
3538  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3539  // Build a DYNALLOC node.
3540  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3541  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3542  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3543}
3544
3545/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3546/// possible.
3547SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3548  // Not FP? Not a fsel.
3549  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3550      !Op.getOperand(2).getValueType().isFloatingPoint())
3551    return Op;
3552
3553  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3554
3555  // Cannot handle SETEQ/SETNE.
3556  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3557
3558  EVT ResVT = Op.getValueType();
3559  EVT CmpVT = Op.getOperand(0).getValueType();
3560  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3561  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3562  DebugLoc dl = Op.getDebugLoc();
3563
3564  // If the RHS of the comparison is a 0.0, we don't need to do the
3565  // subtraction at all.
3566  if (isFloatingPointZero(RHS))
3567    switch (CC) {
3568    default: break;       // SETUO etc aren't handled by fsel.
3569    case ISD::SETULT:
3570    case ISD::SETLT:
3571      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3572    case ISD::SETOGE:
3573    case ISD::SETGE:
3574      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3575        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3576      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3577    case ISD::SETUGT:
3578    case ISD::SETGT:
3579      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3580    case ISD::SETOLE:
3581    case ISD::SETLE:
3582      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3583        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3584      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3585                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3586    }
3587
3588  SDValue Cmp;
3589  switch (CC) {
3590  default: break;       // SETUO etc aren't handled by fsel.
3591  case ISD::SETULT:
3592  case ISD::SETLT:
3593    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3594    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3595      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3596      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3597  case ISD::SETOGE:
3598  case ISD::SETGE:
3599    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3600    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3601      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3602      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3603  case ISD::SETUGT:
3604  case ISD::SETGT:
3605    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3606    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3607      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3608      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3609  case ISD::SETOLE:
3610  case ISD::SETLE:
3611    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3612    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3613      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3614      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3615  }
3616  return Op;
3617}
3618
3619// FIXME: Split this code up when LegalizeDAGTypes lands.
3620SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3621                                           DebugLoc dl) const {
3622  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3623  SDValue Src = Op.getOperand(0);
3624  if (Src.getValueType() == MVT::f32)
3625    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3626
3627  SDValue Tmp;
3628  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3629  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3630  case MVT::i32:
3631    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3632                                                         PPCISD::FCTIDZ,
3633                      dl, MVT::f64, Src);
3634    break;
3635  case MVT::i64:
3636    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3637    break;
3638  }
3639
3640  // Convert the FP value to an int value through memory.
3641  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3642
3643  // Emit a store to the stack slot.
3644  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
3645                               MachinePointerInfo(), false, false, 0);
3646
3647  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3648  // add in a bias.
3649  if (Op.getValueType() == MVT::i32)
3650    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3651                        DAG.getConstant(4, FIPtr.getValueType()));
3652  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
3653                     false, false, 0);
3654}
3655
3656SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
3657                                           SelectionDAG &DAG) const {
3658  DebugLoc dl = Op.getDebugLoc();
3659  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3660  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3661    return SDValue();
3662
3663  if (Op.getOperand(0).getValueType() == MVT::i64) {
3664    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0));
3665    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3666    if (Op.getValueType() == MVT::f32)
3667      FP = DAG.getNode(ISD::FP_ROUND, dl,
3668                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3669    return FP;
3670  }
3671
3672  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3673         "Unhandled SINT_TO_FP type in custom expander!");
3674  // Since we only generate this in 64-bit mode, we can take advantage of
3675  // 64-bit registers.  In particular, sign extend the input value into the
3676  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3677  // then lfd it and fcfid it.
3678  MachineFunction &MF = DAG.getMachineFunction();
3679  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3680  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3681  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3682  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3683
3684  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3685                                Op.getOperand(0));
3686
3687  // STD the extended value into the stack slot.
3688  MachineMemOperand *MMO =
3689    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
3690                            MachineMemOperand::MOStore, 8, 8);
3691  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3692  SDValue Store =
3693    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3694                            Ops, 4, MVT::i64, MMO);
3695  // Load the value as a double.
3696  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
3697                           false, false, 0);
3698
3699  // FCFID it and return it.
3700  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3701  if (Op.getValueType() == MVT::f32)
3702    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3703  return FP;
3704}
3705
3706SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3707                                            SelectionDAG &DAG) const {
3708  DebugLoc dl = Op.getDebugLoc();
3709  /*
3710   The rounding mode is in bits 30:31 of FPSR, and has the following
3711   settings:
3712     00 Round to nearest
3713     01 Round to 0
3714     10 Round to +inf
3715     11 Round to -inf
3716
3717  FLT_ROUNDS, on the other hand, expects the following:
3718    -1 Undefined
3719     0 Round to 0
3720     1 Round to nearest
3721     2 Round to +inf
3722     3 Round to -inf
3723
3724  To perform the conversion, we do:
3725    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3726  */
3727
3728  MachineFunction &MF = DAG.getMachineFunction();
3729  EVT VT = Op.getValueType();
3730  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3731  std::vector<EVT> NodeTys;
3732  SDValue MFFSreg, InFlag;
3733
3734  // Save FP Control Word to register
3735  NodeTys.push_back(MVT::f64);    // return register
3736  NodeTys.push_back(MVT::Glue);   // unused in this context
3737  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3738
3739  // Save FP register to stack slot
3740  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3741  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3742  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3743                               StackSlot, MachinePointerInfo(), false, false,0);
3744
3745  // Load FP Control Word from low 32 bits of stack slot.
3746  SDValue Four = DAG.getConstant(4, PtrVT);
3747  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3748  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
3749                            false, false, 0);
3750
3751  // Transform as necessary
3752  SDValue CWD1 =
3753    DAG.getNode(ISD::AND, dl, MVT::i32,
3754                CWD, DAG.getConstant(3, MVT::i32));
3755  SDValue CWD2 =
3756    DAG.getNode(ISD::SRL, dl, MVT::i32,
3757                DAG.getNode(ISD::AND, dl, MVT::i32,
3758                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3759                                        CWD, DAG.getConstant(3, MVT::i32)),
3760                            DAG.getConstant(3, MVT::i32)),
3761                DAG.getConstant(1, MVT::i32));
3762
3763  SDValue RetVal =
3764    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3765
3766  return DAG.getNode((VT.getSizeInBits() < 16 ?
3767                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3768}
3769
3770SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3771  EVT VT = Op.getValueType();
3772  unsigned BitWidth = VT.getSizeInBits();
3773  DebugLoc dl = Op.getDebugLoc();
3774  assert(Op.getNumOperands() == 3 &&
3775         VT == Op.getOperand(1).getValueType() &&
3776         "Unexpected SHL!");
3777
3778  // Expand into a bunch of logical ops.  Note that these ops
3779  // depend on the PPC behavior for oversized shift amounts.
3780  SDValue Lo = Op.getOperand(0);
3781  SDValue Hi = Op.getOperand(1);
3782  SDValue Amt = Op.getOperand(2);
3783  EVT AmtVT = Amt.getValueType();
3784
3785  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3786                             DAG.getConstant(BitWidth, AmtVT), Amt);
3787  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3788  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3789  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3790  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3791                             DAG.getConstant(-BitWidth, AmtVT));
3792  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3793  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3794  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3795  SDValue OutOps[] = { OutLo, OutHi };
3796  return DAG.getMergeValues(OutOps, 2, dl);
3797}
3798
3799SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3800  EVT VT = Op.getValueType();
3801  DebugLoc dl = Op.getDebugLoc();
3802  unsigned BitWidth = VT.getSizeInBits();
3803  assert(Op.getNumOperands() == 3 &&
3804         VT == Op.getOperand(1).getValueType() &&
3805         "Unexpected SRL!");
3806
3807  // Expand into a bunch of logical ops.  Note that these ops
3808  // depend on the PPC behavior for oversized shift amounts.
3809  SDValue Lo = Op.getOperand(0);
3810  SDValue Hi = Op.getOperand(1);
3811  SDValue Amt = Op.getOperand(2);
3812  EVT AmtVT = Amt.getValueType();
3813
3814  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3815                             DAG.getConstant(BitWidth, AmtVT), Amt);
3816  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3817  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3818  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3819  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3820                             DAG.getConstant(-BitWidth, AmtVT));
3821  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3822  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3823  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3824  SDValue OutOps[] = { OutLo, OutHi };
3825  return DAG.getMergeValues(OutOps, 2, dl);
3826}
3827
3828SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
3829  DebugLoc dl = Op.getDebugLoc();
3830  EVT VT = Op.getValueType();
3831  unsigned BitWidth = VT.getSizeInBits();
3832  assert(Op.getNumOperands() == 3 &&
3833         VT == Op.getOperand(1).getValueType() &&
3834         "Unexpected SRA!");
3835
3836  // Expand into a bunch of logical ops, followed by a select_cc.
3837  SDValue Lo = Op.getOperand(0);
3838  SDValue Hi = Op.getOperand(1);
3839  SDValue Amt = Op.getOperand(2);
3840  EVT AmtVT = Amt.getValueType();
3841
3842  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3843                             DAG.getConstant(BitWidth, AmtVT), Amt);
3844  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3845  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3846  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3847  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3848                             DAG.getConstant(-BitWidth, AmtVT));
3849  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3850  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3851  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3852                                  Tmp4, Tmp6, ISD::SETLE);
3853  SDValue OutOps[] = { OutLo, OutHi };
3854  return DAG.getMergeValues(OutOps, 2, dl);
3855}
3856
3857//===----------------------------------------------------------------------===//
3858// Vector related lowering.
3859//
3860
3861/// BuildSplatI - Build a canonical splati of Val with an element size of
3862/// SplatSize.  Cast the result to VT.
3863static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3864                             SelectionDAG &DAG, DebugLoc dl) {
3865  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3866
3867  static const EVT VTys[] = { // canonical VT to use for each size.
3868    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3869  };
3870
3871  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3872
3873  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3874  if (Val == -1)
3875    SplatSize = 1;
3876
3877  EVT CanonicalVT = VTys[SplatSize-1];
3878
3879  // Build a canonical splat for this value.
3880  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3881  SmallVector<SDValue, 8> Ops;
3882  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3883  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3884                              &Ops[0], Ops.size());
3885  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
3886}
3887
3888/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3889/// specified intrinsic ID.
3890static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3891                                SelectionDAG &DAG, DebugLoc dl,
3892                                EVT DestVT = MVT::Other) {
3893  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3894  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3895                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3896}
3897
3898/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3899/// specified intrinsic ID.
3900static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3901                                SDValue Op2, SelectionDAG &DAG,
3902                                DebugLoc dl, EVT DestVT = MVT::Other) {
3903  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3904  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3905                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3906}
3907
3908
3909/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3910/// amount.  The result has the specified value type.
3911static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3912                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3913  // Force LHS/RHS to be the right type.
3914  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
3915  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
3916
3917  int Ops[16];
3918  for (unsigned i = 0; i != 16; ++i)
3919    Ops[i] = i + Amt;
3920  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3921  return DAG.getNode(ISD::BITCAST, dl, VT, T);
3922}
3923
3924// If this is a case we can't handle, return null and let the default
3925// expansion code take care of it.  If we CAN select this case, and if it
3926// selects to a single instruction, return Op.  Otherwise, if we can codegen
3927// this case more efficiently than a constant pool load, lower it to the
3928// sequence of ops that should be used.
3929SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3930                                             SelectionDAG &DAG) const {
3931  DebugLoc dl = Op.getDebugLoc();
3932  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3933  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3934
3935  // Check if this is a splat of a constant value.
3936  APInt APSplatBits, APSplatUndef;
3937  unsigned SplatBitSize;
3938  bool HasAnyUndefs;
3939  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3940                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
3941    return SDValue();
3942
3943  unsigned SplatBits = APSplatBits.getZExtValue();
3944  unsigned SplatUndef = APSplatUndef.getZExtValue();
3945  unsigned SplatSize = SplatBitSize / 8;
3946
3947  // First, handle single instruction cases.
3948
3949  // All zeros?
3950  if (SplatBits == 0) {
3951    // Canonicalize all zero vectors to be v4i32.
3952    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3953      SDValue Z = DAG.getConstant(0, MVT::i32);
3954      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3955      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
3956    }
3957    return Op;
3958  }
3959
3960  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3961  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3962                    (32-SplatBitSize));
3963  if (SextVal >= -16 && SextVal <= 15)
3964    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3965
3966
3967  // Two instruction sequences.
3968
3969  // If this value is in the range [-32,30] and is even, use:
3970  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3971  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3972    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3973    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3974    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3975  }
3976
3977  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3978  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3979  // for fneg/fabs.
3980  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3981    // Make -1 and vspltisw -1:
3982    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3983
3984    // Make the VSLW intrinsic, computing 0x8000_0000.
3985    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3986                                   OnesV, DAG, dl);
3987
3988    // xor by OnesV to invert it.
3989    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3990    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3991  }
3992
3993  // Check to see if this is a wide variety of vsplti*, binop self cases.
3994  static const signed char SplatCsts[] = {
3995    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3996    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3997  };
3998
3999  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
4000    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
4001    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
4002    int i = SplatCsts[idx];
4003
4004    // Figure out what shift amount will be used by altivec if shifted by i in
4005    // this splat size.
4006    unsigned TypeShiftAmt = i & (SplatBitSize-1);
4007
4008    // vsplti + shl self.
4009    if (SextVal == (i << (int)TypeShiftAmt)) {
4010      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4011      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4012        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
4013        Intrinsic::ppc_altivec_vslw
4014      };
4015      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4016      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4017    }
4018
4019    // vsplti + srl self.
4020    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
4021      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4022      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4023        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
4024        Intrinsic::ppc_altivec_vsrw
4025      };
4026      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4027      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4028    }
4029
4030    // vsplti + sra self.
4031    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
4032      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4033      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4034        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
4035        Intrinsic::ppc_altivec_vsraw
4036      };
4037      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4038      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4039    }
4040
4041    // vsplti + rol self.
4042    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
4043                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
4044      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4045      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4046        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
4047        Intrinsic::ppc_altivec_vrlw
4048      };
4049      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4050      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4051    }
4052
4053    // t = vsplti c, result = vsldoi t, t, 1
4054    if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) {
4055      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4056      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
4057    }
4058    // t = vsplti c, result = vsldoi t, t, 2
4059    if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) {
4060      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4061      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
4062    }
4063    // t = vsplti c, result = vsldoi t, t, 3
4064    if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
4065      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4066      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
4067    }
4068  }
4069
4070  // Three instruction sequences.
4071
4072  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
4073  if (SextVal >= 0 && SextVal <= 31) {
4074    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
4075    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
4076    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
4077    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
4078  }
4079  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
4080  if (SextVal >= -31 && SextVal <= 0) {
4081    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
4082    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
4083    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
4084    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
4085  }
4086
4087  return SDValue();
4088}
4089
4090/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4091/// the specified operations to build the shuffle.
4092static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4093                                      SDValue RHS, SelectionDAG &DAG,
4094                                      DebugLoc dl) {
4095  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4096  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4097  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4098
4099  enum {
4100    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4101    OP_VMRGHW,
4102    OP_VMRGLW,
4103    OP_VSPLTISW0,
4104    OP_VSPLTISW1,
4105    OP_VSPLTISW2,
4106    OP_VSPLTISW3,
4107    OP_VSLDOI4,
4108    OP_VSLDOI8,
4109    OP_VSLDOI12
4110  };
4111
4112  if (OpNum == OP_COPY) {
4113    if (LHSID == (1*9+2)*9+3) return LHS;
4114    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4115    return RHS;
4116  }
4117
4118  SDValue OpLHS, OpRHS;
4119  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4120  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4121
4122  int ShufIdxs[16];
4123  switch (OpNum) {
4124  default: llvm_unreachable("Unknown i32 permute!");
4125  case OP_VMRGHW:
4126    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
4127    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4128    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
4129    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4130    break;
4131  case OP_VMRGLW:
4132    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4133    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4134    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4135    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4136    break;
4137  case OP_VSPLTISW0:
4138    for (unsigned i = 0; i != 16; ++i)
4139      ShufIdxs[i] = (i&3)+0;
4140    break;
4141  case OP_VSPLTISW1:
4142    for (unsigned i = 0; i != 16; ++i)
4143      ShufIdxs[i] = (i&3)+4;
4144    break;
4145  case OP_VSPLTISW2:
4146    for (unsigned i = 0; i != 16; ++i)
4147      ShufIdxs[i] = (i&3)+8;
4148    break;
4149  case OP_VSPLTISW3:
4150    for (unsigned i = 0; i != 16; ++i)
4151      ShufIdxs[i] = (i&3)+12;
4152    break;
4153  case OP_VSLDOI4:
4154    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4155  case OP_VSLDOI8:
4156    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4157  case OP_VSLDOI12:
4158    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4159  }
4160  EVT VT = OpLHS.getValueType();
4161  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
4162  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
4163  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4164  return DAG.getNode(ISD::BITCAST, dl, VT, T);
4165}
4166
4167/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4168/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4169/// return the code it can be lowered into.  Worst case, it can always be
4170/// lowered into a vperm.
4171SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4172                                               SelectionDAG &DAG) const {
4173  DebugLoc dl = Op.getDebugLoc();
4174  SDValue V1 = Op.getOperand(0);
4175  SDValue V2 = Op.getOperand(1);
4176  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4177  EVT VT = Op.getValueType();
4178
4179  // Cases that are handled by instructions that take permute immediates
4180  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4181  // selected by the instruction selector.
4182  if (V2.getOpcode() == ISD::UNDEF) {
4183    if (PPC::isSplatShuffleMask(SVOp, 1) ||
4184        PPC::isSplatShuffleMask(SVOp, 2) ||
4185        PPC::isSplatShuffleMask(SVOp, 4) ||
4186        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4187        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4188        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4189        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4190        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4191        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4192        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4193        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4194        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4195      return Op;
4196    }
4197  }
4198
4199  // Altivec has a variety of "shuffle immediates" that take two vector inputs
4200  // and produce a fixed permutation.  If any of these match, do not lower to
4201  // VPERM.
4202  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4203      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4204      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4205      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4206      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4207      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4208      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4209      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4210      PPC::isVMRGHShuffleMask(SVOp, 4, false))
4211    return Op;
4212
4213  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4214  // perfect shuffle table to emit an optimal matching sequence.
4215  SmallVector<int, 16> PermMask;
4216  SVOp->getMask(PermMask);
4217
4218  unsigned PFIndexes[4];
4219  bool isFourElementShuffle = true;
4220  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4221    unsigned EltNo = 8;   // Start out undef.
4222    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4223      if (PermMask[i*4+j] < 0)
4224        continue;   // Undef, ignore it.
4225
4226      unsigned ByteSource = PermMask[i*4+j];
4227      if ((ByteSource & 3) != j) {
4228        isFourElementShuffle = false;
4229        break;
4230      }
4231
4232      if (EltNo == 8) {
4233        EltNo = ByteSource/4;
4234      } else if (EltNo != ByteSource/4) {
4235        isFourElementShuffle = false;
4236        break;
4237      }
4238    }
4239    PFIndexes[i] = EltNo;
4240  }
4241
4242  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4243  // perfect shuffle vector to determine if it is cost effective to do this as
4244  // discrete instructions, or whether we should use a vperm.
4245  if (isFourElementShuffle) {
4246    // Compute the index in the perfect shuffle table.
4247    unsigned PFTableIndex =
4248      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4249
4250    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4251    unsigned Cost  = (PFEntry >> 30);
4252
4253    // Determining when to avoid vperm is tricky.  Many things affect the cost
4254    // of vperm, particularly how many times the perm mask needs to be computed.
4255    // For example, if the perm mask can be hoisted out of a loop or is already
4256    // used (perhaps because there are multiple permutes with the same shuffle
4257    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4258    // the loop requires an extra register.
4259    //
4260    // As a compromise, we only emit discrete instructions if the shuffle can be
4261    // generated in 3 or fewer operations.  When we have loop information
4262    // available, if this block is within a loop, we should avoid using vperm
4263    // for 3-operation perms and use a constant pool load instead.
4264    if (Cost < 3)
4265      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4266  }
4267
4268  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4269  // vector that will get spilled to the constant pool.
4270  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4271
4272  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4273  // that it is in input element units, not in bytes.  Convert now.
4274  EVT EltVT = V1.getValueType().getVectorElementType();
4275  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4276
4277  SmallVector<SDValue, 16> ResultMask;
4278  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4279    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4280
4281    for (unsigned j = 0; j != BytesPerElement; ++j)
4282      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4283                                           MVT::i32));
4284  }
4285
4286  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4287                                    &ResultMask[0], ResultMask.size());
4288  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4289}
4290
4291/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4292/// altivec comparison.  If it is, return true and fill in Opc/isDot with
4293/// information about the intrinsic.
4294static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4295                                  bool &isDot) {
4296  unsigned IntrinsicID =
4297    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4298  CompareOpc = -1;
4299  isDot = false;
4300  switch (IntrinsicID) {
4301  default: return false;
4302    // Comparison predicates.
4303  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4304  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4305  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4306  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4307  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4308  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4309  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4310  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4311  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4312  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4313  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4314  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4315  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4316
4317    // Normal Comparisons.
4318  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4319  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4320  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4321  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4322  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4323  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4324  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4325  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4326  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4327  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4328  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4329  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4330  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4331  }
4332  return true;
4333}
4334
4335/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4336/// lower, do it, otherwise return null.
4337SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4338                                                   SelectionDAG &DAG) const {
4339  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4340  // opcode number of the comparison.
4341  DebugLoc dl = Op.getDebugLoc();
4342  int CompareOpc;
4343  bool isDot;
4344  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4345    return SDValue();    // Don't custom lower most intrinsics.
4346
4347  // If this is a non-dot comparison, make the VCMP node and we are done.
4348  if (!isDot) {
4349    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4350                              Op.getOperand(1), Op.getOperand(2),
4351                              DAG.getConstant(CompareOpc, MVT::i32));
4352    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
4353  }
4354
4355  // Create the PPCISD altivec 'dot' comparison node.
4356  SDValue Ops[] = {
4357    Op.getOperand(2),  // LHS
4358    Op.getOperand(3),  // RHS
4359    DAG.getConstant(CompareOpc, MVT::i32)
4360  };
4361  std::vector<EVT> VTs;
4362  VTs.push_back(Op.getOperand(2).getValueType());
4363  VTs.push_back(MVT::Glue);
4364  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4365
4366  // Now that we have the comparison, emit a copy from the CR to a GPR.
4367  // This is flagged to the above dot comparison.
4368  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4369                                DAG.getRegister(PPC::CR6, MVT::i32),
4370                                CompNode.getValue(1));
4371
4372  // Unpack the result based on how the target uses it.
4373  unsigned BitNo;   // Bit # of CR6.
4374  bool InvertBit;   // Invert result?
4375  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4376  default:  // Can't happen, don't crash on invalid number though.
4377  case 0:   // Return the value of the EQ bit of CR6.
4378    BitNo = 0; InvertBit = false;
4379    break;
4380  case 1:   // Return the inverted value of the EQ bit of CR6.
4381    BitNo = 0; InvertBit = true;
4382    break;
4383  case 2:   // Return the value of the LT bit of CR6.
4384    BitNo = 2; InvertBit = false;
4385    break;
4386  case 3:   // Return the inverted value of the LT bit of CR6.
4387    BitNo = 2; InvertBit = true;
4388    break;
4389  }
4390
4391  // Shift the bit into the low position.
4392  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4393                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4394  // Isolate the bit.
4395  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4396                      DAG.getConstant(1, MVT::i32));
4397
4398  // If we are supposed to, toggle the bit.
4399  if (InvertBit)
4400    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4401                        DAG.getConstant(1, MVT::i32));
4402  return Flags;
4403}
4404
4405SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4406                                                   SelectionDAG &DAG) const {
4407  DebugLoc dl = Op.getDebugLoc();
4408  // Create a stack slot that is 16-byte aligned.
4409  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4410  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4411  EVT PtrVT = getPointerTy();
4412  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4413
4414  // Store the input value into Value#0 of the stack slot.
4415  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4416                               Op.getOperand(0), FIdx, MachinePointerInfo(),
4417                               false, false, 0);
4418  // Load it out.
4419  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
4420                     false, false, 0);
4421}
4422
4423SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
4424  DebugLoc dl = Op.getDebugLoc();
4425  if (Op.getValueType() == MVT::v4i32) {
4426    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4427
4428    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4429    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4430
4431    SDValue RHSSwap =   // = vrlw RHS, 16
4432      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4433
4434    // Shrinkify inputs to v8i16.
4435    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
4436    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
4437    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
4438
4439    // Low parts multiplied together, generating 32-bit results (we ignore the
4440    // top parts).
4441    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4442                                        LHS, RHS, DAG, dl, MVT::v4i32);
4443
4444    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4445                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4446    // Shift the high parts up 16 bits.
4447    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4448                              Neg16, DAG, dl);
4449    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4450  } else if (Op.getValueType() == MVT::v8i16) {
4451    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4452
4453    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4454
4455    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4456                            LHS, RHS, Zero, DAG, dl);
4457  } else if (Op.getValueType() == MVT::v16i8) {
4458    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4459
4460    // Multiply the even 8-bit parts, producing 16-bit sums.
4461    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4462                                           LHS, RHS, DAG, dl, MVT::v8i16);
4463    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
4464
4465    // Multiply the odd 8-bit parts, producing 16-bit sums.
4466    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4467                                          LHS, RHS, DAG, dl, MVT::v8i16);
4468    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
4469
4470    // Merge the results together.
4471    int Ops[16];
4472    for (unsigned i = 0; i != 8; ++i) {
4473      Ops[i*2  ] = 2*i+1;
4474      Ops[i*2+1] = 2*i+1+16;
4475    }
4476    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4477  } else {
4478    llvm_unreachable("Unknown mul to lower!");
4479  }
4480}
4481
4482/// LowerOperation - Provide custom lowering hooks for some operations.
4483///
4484SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4485  switch (Op.getOpcode()) {
4486  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4487  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4488  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4489  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4490  case ISD::GlobalTLSAddress:   llvm_unreachable("TLS not implemented for PPC");
4491  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4492  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4493  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4494  case ISD::VASTART:
4495    return LowerVASTART(Op, DAG, PPCSubTarget);
4496
4497  case ISD::VAARG:
4498    return LowerVAARG(Op, DAG, PPCSubTarget);
4499
4500  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4501  case ISD::DYNAMIC_STACKALLOC:
4502    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4503
4504  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4505  case ISD::FP_TO_UINT:
4506  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4507                                                       Op.getDebugLoc());
4508  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4509  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4510
4511  // Lower 64-bit shifts.
4512  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4513  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4514  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4515
4516  // Vector-related lowering.
4517  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4518  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4519  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4520  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4521  case ISD::MUL:                return LowerMUL(Op, DAG);
4522
4523  // Frame & Return address.
4524  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4525  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4526  }
4527  return SDValue();
4528}
4529
4530void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4531                                           SmallVectorImpl<SDValue>&Results,
4532                                           SelectionDAG &DAG) const {
4533  const TargetMachine &TM = getTargetMachine();
4534  DebugLoc dl = N->getDebugLoc();
4535  switch (N->getOpcode()) {
4536  default:
4537    assert(false && "Do not know how to custom type legalize this operation!");
4538    return;
4539  case ISD::VAARG: {
4540    if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
4541        || TM.getSubtarget<PPCSubtarget>().isPPC64())
4542      return;
4543
4544    EVT VT = N->getValueType(0);
4545
4546    if (VT == MVT::i64) {
4547      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
4548
4549      Results.push_back(NewNode);
4550      Results.push_back(NewNode.getValue(1));
4551    }
4552    return;
4553  }
4554  case ISD::FP_ROUND_INREG: {
4555    assert(N->getValueType(0) == MVT::ppcf128);
4556    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4557    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4558                             MVT::f64, N->getOperand(0),
4559                             DAG.getIntPtrConstant(0));
4560    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4561                             MVT::f64, N->getOperand(0),
4562                             DAG.getIntPtrConstant(1));
4563
4564    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4565    // of the long double, and puts FPSCR back the way it was.  We do not
4566    // actually model FPSCR.
4567    std::vector<EVT> NodeTys;
4568    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4569
4570    NodeTys.push_back(MVT::f64);   // Return register
4571    NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
4572    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4573    MFFSreg = Result.getValue(0);
4574    InFlag = Result.getValue(1);
4575
4576    NodeTys.clear();
4577    NodeTys.push_back(MVT::Glue);   // Returns a flag
4578    Ops[0] = DAG.getConstant(31, MVT::i32);
4579    Ops[1] = InFlag;
4580    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4581    InFlag = Result.getValue(0);
4582
4583    NodeTys.clear();
4584    NodeTys.push_back(MVT::Glue);   // Returns a flag
4585    Ops[0] = DAG.getConstant(30, MVT::i32);
4586    Ops[1] = InFlag;
4587    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4588    InFlag = Result.getValue(0);
4589
4590    NodeTys.clear();
4591    NodeTys.push_back(MVT::f64);    // result of add
4592    NodeTys.push_back(MVT::Glue);   // Returns a flag
4593    Ops[0] = Lo;
4594    Ops[1] = Hi;
4595    Ops[2] = InFlag;
4596    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4597    FPreg = Result.getValue(0);
4598    InFlag = Result.getValue(1);
4599
4600    NodeTys.clear();
4601    NodeTys.push_back(MVT::f64);
4602    Ops[0] = DAG.getConstant(1, MVT::i32);
4603    Ops[1] = MFFSreg;
4604    Ops[2] = FPreg;
4605    Ops[3] = InFlag;
4606    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4607    FPreg = Result.getValue(0);
4608
4609    // We know the low half is about to be thrown away, so just use something
4610    // convenient.
4611    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4612                                FPreg, FPreg));
4613    return;
4614  }
4615  case ISD::FP_TO_SINT:
4616    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4617    return;
4618  }
4619}
4620
4621
4622//===----------------------------------------------------------------------===//
4623//  Other Lowering Code
4624//===----------------------------------------------------------------------===//
4625
4626MachineBasicBlock *
4627PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4628                                    bool is64bit, unsigned BinOpcode) const {
4629  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4630  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4631
4632  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4633  MachineFunction *F = BB->getParent();
4634  MachineFunction::iterator It = BB;
4635  ++It;
4636
4637  unsigned dest = MI->getOperand(0).getReg();
4638  unsigned ptrA = MI->getOperand(1).getReg();
4639  unsigned ptrB = MI->getOperand(2).getReg();
4640  unsigned incr = MI->getOperand(3).getReg();
4641  DebugLoc dl = MI->getDebugLoc();
4642
4643  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4644  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4645  F->insert(It, loopMBB);
4646  F->insert(It, exitMBB);
4647  exitMBB->splice(exitMBB->begin(), BB,
4648                  llvm::next(MachineBasicBlock::iterator(MI)),
4649                  BB->end());
4650  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4651
4652  MachineRegisterInfo &RegInfo = F->getRegInfo();
4653  unsigned TmpReg = (!BinOpcode) ? incr :
4654    RegInfo.createVirtualRegister(
4655       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4656                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4657
4658  //  thisMBB:
4659  //   ...
4660  //   fallthrough --> loopMBB
4661  BB->addSuccessor(loopMBB);
4662
4663  //  loopMBB:
4664  //   l[wd]arx dest, ptr
4665  //   add r0, dest, incr
4666  //   st[wd]cx. r0, ptr
4667  //   bne- loopMBB
4668  //   fallthrough --> exitMBB
4669  BB = loopMBB;
4670  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4671    .addReg(ptrA).addReg(ptrB);
4672  if (BinOpcode)
4673    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4674  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4675    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4676  BuildMI(BB, dl, TII->get(PPC::BCC))
4677    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4678  BB->addSuccessor(loopMBB);
4679  BB->addSuccessor(exitMBB);
4680
4681  //  exitMBB:
4682  //   ...
4683  BB = exitMBB;
4684  return BB;
4685}
4686
4687MachineBasicBlock *
4688PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4689                                            MachineBasicBlock *BB,
4690                                            bool is8bit,    // operation
4691                                            unsigned BinOpcode) const {
4692  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4693  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4694  // In 64 bit mode we have to use 64 bits for addresses, even though the
4695  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4696  // registers without caring whether they're 32 or 64, but here we're
4697  // doing actual arithmetic on the addresses.
4698  bool is64bit = PPCSubTarget.isPPC64();
4699  unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
4700
4701  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4702  MachineFunction *F = BB->getParent();
4703  MachineFunction::iterator It = BB;
4704  ++It;
4705
4706  unsigned dest = MI->getOperand(0).getReg();
4707  unsigned ptrA = MI->getOperand(1).getReg();
4708  unsigned ptrB = MI->getOperand(2).getReg();
4709  unsigned incr = MI->getOperand(3).getReg();
4710  DebugLoc dl = MI->getDebugLoc();
4711
4712  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4713  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4714  F->insert(It, loopMBB);
4715  F->insert(It, exitMBB);
4716  exitMBB->splice(exitMBB->begin(), BB,
4717                  llvm::next(MachineBasicBlock::iterator(MI)),
4718                  BB->end());
4719  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4720
4721  MachineRegisterInfo &RegInfo = F->getRegInfo();
4722  const TargetRegisterClass *RC =
4723    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4724              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4725  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4726  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4727  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4728  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4729  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4730  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4731  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4732  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4733  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4734  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4735  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4736  unsigned Ptr1Reg;
4737  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4738
4739  //  thisMBB:
4740  //   ...
4741  //   fallthrough --> loopMBB
4742  BB->addSuccessor(loopMBB);
4743
4744  // The 4-byte load must be aligned, while a char or short may be
4745  // anywhere in the word.  Hence all this nasty bookkeeping code.
4746  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4747  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4748  //   xori shift, shift1, 24 [16]
4749  //   rlwinm ptr, ptr1, 0, 0, 29
4750  //   slw incr2, incr, shift
4751  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4752  //   slw mask, mask2, shift
4753  //  loopMBB:
4754  //   lwarx tmpDest, ptr
4755  //   add tmp, tmpDest, incr2
4756  //   andc tmp2, tmpDest, mask
4757  //   and tmp3, tmp, mask
4758  //   or tmp4, tmp3, tmp2
4759  //   stwcx. tmp4, ptr
4760  //   bne- loopMBB
4761  //   fallthrough --> exitMBB
4762  //   srw dest, tmpDest, shift
4763  if (ptrA != ZeroReg) {
4764    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4765    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4766      .addReg(ptrA).addReg(ptrB);
4767  } else {
4768    Ptr1Reg = ptrB;
4769  }
4770  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4771      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4772  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4773      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4774  if (is64bit)
4775    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4776      .addReg(Ptr1Reg).addImm(0).addImm(61);
4777  else
4778    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4779      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4780  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4781      .addReg(incr).addReg(ShiftReg);
4782  if (is8bit)
4783    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4784  else {
4785    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4786    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4787  }
4788  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4789      .addReg(Mask2Reg).addReg(ShiftReg);
4790
4791  BB = loopMBB;
4792  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4793    .addReg(ZeroReg).addReg(PtrReg);
4794  if (BinOpcode)
4795    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4796      .addReg(Incr2Reg).addReg(TmpDestReg);
4797  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4798    .addReg(TmpDestReg).addReg(MaskReg);
4799  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4800    .addReg(TmpReg).addReg(MaskReg);
4801  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4802    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4803  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4804    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
4805  BuildMI(BB, dl, TII->get(PPC::BCC))
4806    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4807  BB->addSuccessor(loopMBB);
4808  BB->addSuccessor(exitMBB);
4809
4810  //  exitMBB:
4811  //   ...
4812  BB = exitMBB;
4813  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
4814    .addReg(ShiftReg);
4815  return BB;
4816}
4817
4818MachineBasicBlock *
4819PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4820                                               MachineBasicBlock *BB) const {
4821  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4822
4823  // To "insert" these instructions we actually have to insert their
4824  // control-flow patterns.
4825  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4826  MachineFunction::iterator It = BB;
4827  ++It;
4828
4829  MachineFunction *F = BB->getParent();
4830
4831  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4832      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4833      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4834      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4835      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4836
4837    // The incoming instruction knows the destination vreg to set, the
4838    // condition code register to branch on, the true/false values to
4839    // select between, and a branch opcode to use.
4840
4841    //  thisMBB:
4842    //  ...
4843    //   TrueVal = ...
4844    //   cmpTY ccX, r1, r2
4845    //   bCC copy1MBB
4846    //   fallthrough --> copy0MBB
4847    MachineBasicBlock *thisMBB = BB;
4848    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4849    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4850    unsigned SelectPred = MI->getOperand(4).getImm();
4851    DebugLoc dl = MI->getDebugLoc();
4852    F->insert(It, copy0MBB);
4853    F->insert(It, sinkMBB);
4854
4855    // Transfer the remainder of BB and its successor edges to sinkMBB.
4856    sinkMBB->splice(sinkMBB->begin(), BB,
4857                    llvm::next(MachineBasicBlock::iterator(MI)),
4858                    BB->end());
4859    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4860
4861    // Next, add the true and fallthrough blocks as its successors.
4862    BB->addSuccessor(copy0MBB);
4863    BB->addSuccessor(sinkMBB);
4864
4865    BuildMI(BB, dl, TII->get(PPC::BCC))
4866      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4867
4868    //  copy0MBB:
4869    //   %FalseValue = ...
4870    //   # fallthrough to sinkMBB
4871    BB = copy0MBB;
4872
4873    // Update machine-CFG edges
4874    BB->addSuccessor(sinkMBB);
4875
4876    //  sinkMBB:
4877    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4878    //  ...
4879    BB = sinkMBB;
4880    BuildMI(*BB, BB->begin(), dl,
4881            TII->get(PPC::PHI), MI->getOperand(0).getReg())
4882      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4883      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4884  }
4885  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4886    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4887  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4888    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4889  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4890    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4891  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4892    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4893
4894  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4895    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4896  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4897    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4898  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4899    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4900  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4901    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4902
4903  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4904    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4905  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4906    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4907  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4908    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4909  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4910    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4911
4912  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4913    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4914  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4915    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4916  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4917    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4918  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4919    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4920
4921  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4922    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4923  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4924    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4925  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4926    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4927  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4928    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4929
4930  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4931    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4932  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4933    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4934  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4935    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4936  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4937    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4938
4939  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4940    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4941  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4942    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4943  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4944    BB = EmitAtomicBinary(MI, BB, false, 0);
4945  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4946    BB = EmitAtomicBinary(MI, BB, true, 0);
4947
4948  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4949           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4950    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4951
4952    unsigned dest   = MI->getOperand(0).getReg();
4953    unsigned ptrA   = MI->getOperand(1).getReg();
4954    unsigned ptrB   = MI->getOperand(2).getReg();
4955    unsigned oldval = MI->getOperand(3).getReg();
4956    unsigned newval = MI->getOperand(4).getReg();
4957    DebugLoc dl     = MI->getDebugLoc();
4958
4959    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4960    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4961    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4962    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4963    F->insert(It, loop1MBB);
4964    F->insert(It, loop2MBB);
4965    F->insert(It, midMBB);
4966    F->insert(It, exitMBB);
4967    exitMBB->splice(exitMBB->begin(), BB,
4968                    llvm::next(MachineBasicBlock::iterator(MI)),
4969                    BB->end());
4970    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4971
4972    //  thisMBB:
4973    //   ...
4974    //   fallthrough --> loopMBB
4975    BB->addSuccessor(loop1MBB);
4976
4977    // loop1MBB:
4978    //   l[wd]arx dest, ptr
4979    //   cmp[wd] dest, oldval
4980    //   bne- midMBB
4981    // loop2MBB:
4982    //   st[wd]cx. newval, ptr
4983    //   bne- loopMBB
4984    //   b exitBB
4985    // midMBB:
4986    //   st[wd]cx. dest, ptr
4987    // exitBB:
4988    BB = loop1MBB;
4989    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4990      .addReg(ptrA).addReg(ptrB);
4991    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4992      .addReg(oldval).addReg(dest);
4993    BuildMI(BB, dl, TII->get(PPC::BCC))
4994      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4995    BB->addSuccessor(loop2MBB);
4996    BB->addSuccessor(midMBB);
4997
4998    BB = loop2MBB;
4999    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5000      .addReg(newval).addReg(ptrA).addReg(ptrB);
5001    BuildMI(BB, dl, TII->get(PPC::BCC))
5002      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5003    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5004    BB->addSuccessor(loop1MBB);
5005    BB->addSuccessor(exitMBB);
5006
5007    BB = midMBB;
5008    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5009      .addReg(dest).addReg(ptrA).addReg(ptrB);
5010    BB->addSuccessor(exitMBB);
5011
5012    //  exitMBB:
5013    //   ...
5014    BB = exitMBB;
5015  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
5016             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
5017    // We must use 64-bit registers for addresses when targeting 64-bit,
5018    // since we're actually doing arithmetic on them.  Other registers
5019    // can be 32-bit.
5020    bool is64bit = PPCSubTarget.isPPC64();
5021    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
5022
5023    unsigned dest   = MI->getOperand(0).getReg();
5024    unsigned ptrA   = MI->getOperand(1).getReg();
5025    unsigned ptrB   = MI->getOperand(2).getReg();
5026    unsigned oldval = MI->getOperand(3).getReg();
5027    unsigned newval = MI->getOperand(4).getReg();
5028    DebugLoc dl     = MI->getDebugLoc();
5029
5030    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
5031    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
5032    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
5033    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5034    F->insert(It, loop1MBB);
5035    F->insert(It, loop2MBB);
5036    F->insert(It, midMBB);
5037    F->insert(It, exitMBB);
5038    exitMBB->splice(exitMBB->begin(), BB,
5039                    llvm::next(MachineBasicBlock::iterator(MI)),
5040                    BB->end());
5041    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5042
5043    MachineRegisterInfo &RegInfo = F->getRegInfo();
5044    const TargetRegisterClass *RC =
5045      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5046                (const TargetRegisterClass *) &PPC::GPRCRegClass;
5047    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5048    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5049    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5050    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
5051    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
5052    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
5053    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
5054    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5055    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5056    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5057    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5058    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5059    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5060    unsigned Ptr1Reg;
5061    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
5062    unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
5063    //  thisMBB:
5064    //   ...
5065    //   fallthrough --> loopMBB
5066    BB->addSuccessor(loop1MBB);
5067
5068    // The 4-byte load must be aligned, while a char or short may be
5069    // anywhere in the word.  Hence all this nasty bookkeeping code.
5070    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5071    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5072    //   xori shift, shift1, 24 [16]
5073    //   rlwinm ptr, ptr1, 0, 0, 29
5074    //   slw newval2, newval, shift
5075    //   slw oldval2, oldval,shift
5076    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5077    //   slw mask, mask2, shift
5078    //   and newval3, newval2, mask
5079    //   and oldval3, oldval2, mask
5080    // loop1MBB:
5081    //   lwarx tmpDest, ptr
5082    //   and tmp, tmpDest, mask
5083    //   cmpw tmp, oldval3
5084    //   bne- midMBB
5085    // loop2MBB:
5086    //   andc tmp2, tmpDest, mask
5087    //   or tmp4, tmp2, newval3
5088    //   stwcx. tmp4, ptr
5089    //   bne- loop1MBB
5090    //   b exitBB
5091    // midMBB:
5092    //   stwcx. tmpDest, ptr
5093    // exitBB:
5094    //   srw dest, tmpDest, shift
5095    if (ptrA != ZeroReg) {
5096      Ptr1Reg = RegInfo.createVirtualRegister(RC);
5097      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5098        .addReg(ptrA).addReg(ptrB);
5099    } else {
5100      Ptr1Reg = ptrB;
5101    }
5102    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5103        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5104    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5105        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5106    if (is64bit)
5107      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5108        .addReg(Ptr1Reg).addImm(0).addImm(61);
5109    else
5110      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5111        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5112    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
5113        .addReg(newval).addReg(ShiftReg);
5114    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
5115        .addReg(oldval).addReg(ShiftReg);
5116    if (is8bit)
5117      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5118    else {
5119      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5120      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
5121        .addReg(Mask3Reg).addImm(65535);
5122    }
5123    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5124        .addReg(Mask2Reg).addReg(ShiftReg);
5125    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
5126        .addReg(NewVal2Reg).addReg(MaskReg);
5127    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
5128        .addReg(OldVal2Reg).addReg(MaskReg);
5129
5130    BB = loop1MBB;
5131    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5132        .addReg(ZeroReg).addReg(PtrReg);
5133    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
5134        .addReg(TmpDestReg).addReg(MaskReg);
5135    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
5136        .addReg(TmpReg).addReg(OldVal3Reg);
5137    BuildMI(BB, dl, TII->get(PPC::BCC))
5138        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5139    BB->addSuccessor(loop2MBB);
5140    BB->addSuccessor(midMBB);
5141
5142    BB = loop2MBB;
5143    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5144        .addReg(TmpDestReg).addReg(MaskReg);
5145    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5146        .addReg(Tmp2Reg).addReg(NewVal3Reg);
5147    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5148        .addReg(ZeroReg).addReg(PtrReg);
5149    BuildMI(BB, dl, TII->get(PPC::BCC))
5150      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5151    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5152    BB->addSuccessor(loop1MBB);
5153    BB->addSuccessor(exitMBB);
5154
5155    BB = midMBB;
5156    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5157      .addReg(ZeroReg).addReg(PtrReg);
5158    BB->addSuccessor(exitMBB);
5159
5160    //  exitMBB:
5161    //   ...
5162    BB = exitMBB;
5163    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
5164      .addReg(ShiftReg);
5165  } else {
5166    llvm_unreachable("Unexpected instr type to insert");
5167  }
5168
5169  MI->eraseFromParent();   // The pseudo instruction is gone now.
5170  return BB;
5171}
5172
5173//===----------------------------------------------------------------------===//
5174// Target Optimization Hooks
5175//===----------------------------------------------------------------------===//
5176
5177SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5178                                             DAGCombinerInfo &DCI) const {
5179  const TargetMachine &TM = getTargetMachine();
5180  SelectionDAG &DAG = DCI.DAG;
5181  DebugLoc dl = N->getDebugLoc();
5182  switch (N->getOpcode()) {
5183  default: break;
5184  case PPCISD::SHL:
5185    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5186      if (C->isNullValue())   // 0 << V -> 0.
5187        return N->getOperand(0);
5188    }
5189    break;
5190  case PPCISD::SRL:
5191    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5192      if (C->isNullValue())   // 0 >>u V -> 0.
5193        return N->getOperand(0);
5194    }
5195    break;
5196  case PPCISD::SRA:
5197    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5198      if (C->isNullValue() ||   //  0 >>s V -> 0.
5199          C->isAllOnesValue())    // -1 >>s V -> -1.
5200        return N->getOperand(0);
5201    }
5202    break;
5203
5204  case ISD::SINT_TO_FP:
5205    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5206      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5207        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5208        // We allow the src/dst to be either f32/f64, but the intermediate
5209        // type must be i64.
5210        if (N->getOperand(0).getValueType() == MVT::i64 &&
5211            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5212          SDValue Val = N->getOperand(0).getOperand(0);
5213          if (Val.getValueType() == MVT::f32) {
5214            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5215            DCI.AddToWorklist(Val.getNode());
5216          }
5217
5218          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5219          DCI.AddToWorklist(Val.getNode());
5220          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5221          DCI.AddToWorklist(Val.getNode());
5222          if (N->getValueType(0) == MVT::f32) {
5223            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5224                              DAG.getIntPtrConstant(0));
5225            DCI.AddToWorklist(Val.getNode());
5226          }
5227          return Val;
5228        } else if (N->getOperand(0).getValueType() == MVT::i32) {
5229          // If the intermediate type is i32, we can avoid the load/store here
5230          // too.
5231        }
5232      }
5233    }
5234    break;
5235  case ISD::STORE:
5236    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5237    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5238        !cast<StoreSDNode>(N)->isTruncatingStore() &&
5239        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5240        N->getOperand(1).getValueType() == MVT::i32 &&
5241        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5242      SDValue Val = N->getOperand(1).getOperand(0);
5243      if (Val.getValueType() == MVT::f32) {
5244        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5245        DCI.AddToWorklist(Val.getNode());
5246      }
5247      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5248      DCI.AddToWorklist(Val.getNode());
5249
5250      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5251                        N->getOperand(2), N->getOperand(3));
5252      DCI.AddToWorklist(Val.getNode());
5253      return Val;
5254    }
5255
5256    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5257    if (cast<StoreSDNode>(N)->isUnindexed() &&
5258        N->getOperand(1).getOpcode() == ISD::BSWAP &&
5259        N->getOperand(1).getNode()->hasOneUse() &&
5260        (N->getOperand(1).getValueType() == MVT::i32 ||
5261         N->getOperand(1).getValueType() == MVT::i16)) {
5262      SDValue BSwapOp = N->getOperand(1).getOperand(0);
5263      // Do an any-extend to 32-bits if this is a half-word input.
5264      if (BSwapOp.getValueType() == MVT::i16)
5265        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5266
5267      SDValue Ops[] = {
5268        N->getOperand(0), BSwapOp, N->getOperand(2),
5269        DAG.getValueType(N->getOperand(1).getValueType())
5270      };
5271      return
5272        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5273                                Ops, array_lengthof(Ops),
5274                                cast<StoreSDNode>(N)->getMemoryVT(),
5275                                cast<StoreSDNode>(N)->getMemOperand());
5276    }
5277    break;
5278  case ISD::BSWAP:
5279    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5280    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5281        N->getOperand(0).hasOneUse() &&
5282        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5283      SDValue Load = N->getOperand(0);
5284      LoadSDNode *LD = cast<LoadSDNode>(Load);
5285      // Create the byte-swapping load.
5286      SDValue Ops[] = {
5287        LD->getChain(),    // Chain
5288        LD->getBasePtr(),  // Ptr
5289        DAG.getValueType(N->getValueType(0)) // VT
5290      };
5291      SDValue BSLoad =
5292        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5293                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5294                                LD->getMemoryVT(), LD->getMemOperand());
5295
5296      // If this is an i16 load, insert the truncate.
5297      SDValue ResVal = BSLoad;
5298      if (N->getValueType(0) == MVT::i16)
5299        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5300
5301      // First, combine the bswap away.  This makes the value produced by the
5302      // load dead.
5303      DCI.CombineTo(N, ResVal);
5304
5305      // Next, combine the load away, we give it a bogus result value but a real
5306      // chain result.  The result value is dead because the bswap is dead.
5307      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5308
5309      // Return N so it doesn't get rechecked!
5310      return SDValue(N, 0);
5311    }
5312
5313    break;
5314  case PPCISD::VCMP: {
5315    // If a VCMPo node already exists with exactly the same operands as this
5316    // node, use its result instead of this node (VCMPo computes both a CR6 and
5317    // a normal output).
5318    //
5319    if (!N->getOperand(0).hasOneUse() &&
5320        !N->getOperand(1).hasOneUse() &&
5321        !N->getOperand(2).hasOneUse()) {
5322
5323      // Scan all of the users of the LHS, looking for VCMPo's that match.
5324      SDNode *VCMPoNode = 0;
5325
5326      SDNode *LHSN = N->getOperand(0).getNode();
5327      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5328           UI != E; ++UI)
5329        if (UI->getOpcode() == PPCISD::VCMPo &&
5330            UI->getOperand(1) == N->getOperand(1) &&
5331            UI->getOperand(2) == N->getOperand(2) &&
5332            UI->getOperand(0) == N->getOperand(0)) {
5333          VCMPoNode = *UI;
5334          break;
5335        }
5336
5337      // If there is no VCMPo node, or if the flag value has a single use, don't
5338      // transform this.
5339      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5340        break;
5341
5342      // Look at the (necessarily single) use of the flag value.  If it has a
5343      // chain, this transformation is more complex.  Note that multiple things
5344      // could use the value result, which we should ignore.
5345      SDNode *FlagUser = 0;
5346      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5347           FlagUser == 0; ++UI) {
5348        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5349        SDNode *User = *UI;
5350        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5351          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5352            FlagUser = User;
5353            break;
5354          }
5355        }
5356      }
5357
5358      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5359      // give up for right now.
5360      if (FlagUser->getOpcode() == PPCISD::MFCR)
5361        return SDValue(VCMPoNode, 0);
5362    }
5363    break;
5364  }
5365  case ISD::BR_CC: {
5366    // If this is a branch on an altivec predicate comparison, lower this so
5367    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5368    // lowering is done pre-legalize, because the legalizer lowers the predicate
5369    // compare down to code that is difficult to reassemble.
5370    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5371    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5372    int CompareOpc;
5373    bool isDot;
5374
5375    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5376        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5377        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5378      assert(isDot && "Can't compare against a vector result!");
5379
5380      // If this is a comparison against something other than 0/1, then we know
5381      // that the condition is never/always true.
5382      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5383      if (Val != 0 && Val != 1) {
5384        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5385          return N->getOperand(0);
5386        // Always !=, turn it into an unconditional branch.
5387        return DAG.getNode(ISD::BR, dl, MVT::Other,
5388                           N->getOperand(0), N->getOperand(4));
5389      }
5390
5391      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5392
5393      // Create the PPCISD altivec 'dot' comparison node.
5394      std::vector<EVT> VTs;
5395      SDValue Ops[] = {
5396        LHS.getOperand(2),  // LHS of compare
5397        LHS.getOperand(3),  // RHS of compare
5398        DAG.getConstant(CompareOpc, MVT::i32)
5399      };
5400      VTs.push_back(LHS.getOperand(2).getValueType());
5401      VTs.push_back(MVT::Glue);
5402      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5403
5404      // Unpack the result based on how the target uses it.
5405      PPC::Predicate CompOpc;
5406      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5407      default:  // Can't happen, don't crash on invalid number though.
5408      case 0:   // Branch on the value of the EQ bit of CR6.
5409        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5410        break;
5411      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5412        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5413        break;
5414      case 2:   // Branch on the value of the LT bit of CR6.
5415        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5416        break;
5417      case 3:   // Branch on the inverted value of the LT bit of CR6.
5418        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5419        break;
5420      }
5421
5422      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5423                         DAG.getConstant(CompOpc, MVT::i32),
5424                         DAG.getRegister(PPC::CR6, MVT::i32),
5425                         N->getOperand(4), CompNode.getValue(1));
5426    }
5427    break;
5428  }
5429  }
5430
5431  return SDValue();
5432}
5433
5434//===----------------------------------------------------------------------===//
5435// Inline Assembly Support
5436//===----------------------------------------------------------------------===//
5437
5438void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5439                                                       const APInt &Mask,
5440                                                       APInt &KnownZero,
5441                                                       APInt &KnownOne,
5442                                                       const SelectionDAG &DAG,
5443                                                       unsigned Depth) const {
5444  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5445  switch (Op.getOpcode()) {
5446  default: break;
5447  case PPCISD::LBRX: {
5448    // lhbrx is known to have the top bits cleared out.
5449    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5450      KnownZero = 0xFFFF0000;
5451    break;
5452  }
5453  case ISD::INTRINSIC_WO_CHAIN: {
5454    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5455    default: break;
5456    case Intrinsic::ppc_altivec_vcmpbfp_p:
5457    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5458    case Intrinsic::ppc_altivec_vcmpequb_p:
5459    case Intrinsic::ppc_altivec_vcmpequh_p:
5460    case Intrinsic::ppc_altivec_vcmpequw_p:
5461    case Intrinsic::ppc_altivec_vcmpgefp_p:
5462    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5463    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5464    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5465    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5466    case Intrinsic::ppc_altivec_vcmpgtub_p:
5467    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5468    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5469      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5470      break;
5471    }
5472  }
5473  }
5474}
5475
5476
5477/// getConstraintType - Given a constraint, return the type of
5478/// constraint it is for this target.
5479PPCTargetLowering::ConstraintType
5480PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5481  if (Constraint.size() == 1) {
5482    switch (Constraint[0]) {
5483    default: break;
5484    case 'b':
5485    case 'r':
5486    case 'f':
5487    case 'v':
5488    case 'y':
5489      return C_RegisterClass;
5490    }
5491  }
5492  return TargetLowering::getConstraintType(Constraint);
5493}
5494
5495/// Examine constraint type and operand type and determine a weight value.
5496/// This object must already have been set up with the operand type
5497/// and the current alternative constraint selected.
5498TargetLowering::ConstraintWeight
5499PPCTargetLowering::getSingleConstraintMatchWeight(
5500    AsmOperandInfo &info, const char *constraint) const {
5501  ConstraintWeight weight = CW_Invalid;
5502  Value *CallOperandVal = info.CallOperandVal;
5503    // If we don't have a value, we can't do a match,
5504    // but allow it at the lowest weight.
5505  if (CallOperandVal == NULL)
5506    return CW_Default;
5507  Type *type = CallOperandVal->getType();
5508  // Look at the constraint type.
5509  switch (*constraint) {
5510  default:
5511    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5512    break;
5513  case 'b':
5514    if (type->isIntegerTy())
5515      weight = CW_Register;
5516    break;
5517  case 'f':
5518    if (type->isFloatTy())
5519      weight = CW_Register;
5520    break;
5521  case 'd':
5522    if (type->isDoubleTy())
5523      weight = CW_Register;
5524    break;
5525  case 'v':
5526    if (type->isVectorTy())
5527      weight = CW_Register;
5528    break;
5529  case 'y':
5530    weight = CW_Register;
5531    break;
5532  }
5533  return weight;
5534}
5535
5536std::pair<unsigned, const TargetRegisterClass*>
5537PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5538                                                EVT VT) const {
5539  if (Constraint.size() == 1) {
5540    // GCC RS6000 Constraint Letters
5541    switch (Constraint[0]) {
5542    case 'b':   // R1-R31
5543    case 'r':   // R0-R31
5544      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5545        return std::make_pair(0U, PPC::G8RCRegisterClass);
5546      return std::make_pair(0U, PPC::GPRCRegisterClass);
5547    case 'f':
5548      if (VT == MVT::f32)
5549        return std::make_pair(0U, PPC::F4RCRegisterClass);
5550      else if (VT == MVT::f64)
5551        return std::make_pair(0U, PPC::F8RCRegisterClass);
5552      break;
5553    case 'v':
5554      return std::make_pair(0U, PPC::VRRCRegisterClass);
5555    case 'y':   // crrc
5556      return std::make_pair(0U, PPC::CRRCRegisterClass);
5557    }
5558  }
5559
5560  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5561}
5562
5563
5564/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5565/// vector.  If it is invalid, don't add anything to Ops.
5566void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5567                                                     std::string &Constraint,
5568                                                     std::vector<SDValue>&Ops,
5569                                                     SelectionDAG &DAG) const {
5570  SDValue Result(0,0);
5571
5572  // Only support length 1 constraints.
5573  if (Constraint.length() > 1) return;
5574
5575  char Letter = Constraint[0];
5576  switch (Letter) {
5577  default: break;
5578  case 'I':
5579  case 'J':
5580  case 'K':
5581  case 'L':
5582  case 'M':
5583  case 'N':
5584  case 'O':
5585  case 'P': {
5586    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5587    if (!CST) return; // Must be an immediate to match.
5588    unsigned Value = CST->getZExtValue();
5589    switch (Letter) {
5590    default: llvm_unreachable("Unknown constraint letter!");
5591    case 'I':  // "I" is a signed 16-bit constant.
5592      if ((short)Value == (int)Value)
5593        Result = DAG.getTargetConstant(Value, Op.getValueType());
5594      break;
5595    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5596    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5597      if ((short)Value == 0)
5598        Result = DAG.getTargetConstant(Value, Op.getValueType());
5599      break;
5600    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5601      if ((Value >> 16) == 0)
5602        Result = DAG.getTargetConstant(Value, Op.getValueType());
5603      break;
5604    case 'M':  // "M" is a constant that is greater than 31.
5605      if (Value > 31)
5606        Result = DAG.getTargetConstant(Value, Op.getValueType());
5607      break;
5608    case 'N':  // "N" is a positive constant that is an exact power of two.
5609      if ((int)Value > 0 && isPowerOf2_32(Value))
5610        Result = DAG.getTargetConstant(Value, Op.getValueType());
5611      break;
5612    case 'O':  // "O" is the constant zero.
5613      if (Value == 0)
5614        Result = DAG.getTargetConstant(Value, Op.getValueType());
5615      break;
5616    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5617      if ((short)-Value == (int)-Value)
5618        Result = DAG.getTargetConstant(Value, Op.getValueType());
5619      break;
5620    }
5621    break;
5622  }
5623  }
5624
5625  if (Result.getNode()) {
5626    Ops.push_back(Result);
5627    return;
5628  }
5629
5630  // Handle standard constraint letters.
5631  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5632}
5633
5634// isLegalAddressingMode - Return true if the addressing mode represented
5635// by AM is legal for this target, for a load/store of the specified type.
5636bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5637                                              Type *Ty) const {
5638  // FIXME: PPC does not allow r+i addressing modes for vectors!
5639
5640  // PPC allows a sign-extended 16-bit immediate field.
5641  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5642    return false;
5643
5644  // No global is ever allowed as a base.
5645  if (AM.BaseGV)
5646    return false;
5647
5648  // PPC only support r+r,
5649  switch (AM.Scale) {
5650  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5651    break;
5652  case 1:
5653    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5654      return false;
5655    // Otherwise we have r+r or r+i.
5656    break;
5657  case 2:
5658    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5659      return false;
5660    // Allow 2*r as r+r.
5661    break;
5662  default:
5663    // No other scales are supported.
5664    return false;
5665  }
5666
5667  return true;
5668}
5669
5670/// isLegalAddressImmediate - Return true if the integer value can be used
5671/// as the offset of the target addressing mode for load / store of the
5672/// given type.
5673bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{
5674  // PPC allows a sign-extended 16-bit immediate field.
5675  return (V > -(1 << 16) && V < (1 << 16)-1);
5676}
5677
5678bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5679  return false;
5680}
5681
5682SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
5683                                           SelectionDAG &DAG) const {
5684  MachineFunction &MF = DAG.getMachineFunction();
5685  MachineFrameInfo *MFI = MF.getFrameInfo();
5686  MFI->setReturnAddressIsTaken(true);
5687
5688  DebugLoc dl = Op.getDebugLoc();
5689  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5690
5691  // Make sure the function does not optimize away the store of the RA to
5692  // the stack.
5693  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5694  FuncInfo->setLRStoreRequired();
5695  bool isPPC64 = PPCSubTarget.isPPC64();
5696  bool isDarwinABI = PPCSubTarget.isDarwinABI();
5697
5698  if (Depth > 0) {
5699    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5700    SDValue Offset =
5701
5702      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
5703                      isPPC64? MVT::i64 : MVT::i32);
5704    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5705                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
5706                                   FrameAddr, Offset),
5707                       MachinePointerInfo(), false, false, 0);
5708  }
5709
5710  // Just load the return address off the stack.
5711  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5712  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5713                     RetAddrFI, MachinePointerInfo(), false, false, 0);
5714}
5715
5716SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
5717                                          SelectionDAG &DAG) const {
5718  DebugLoc dl = Op.getDebugLoc();
5719  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5720
5721  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5722  bool isPPC64 = PtrVT == MVT::i64;
5723
5724  MachineFunction &MF = DAG.getMachineFunction();
5725  MachineFrameInfo *MFI = MF.getFrameInfo();
5726  MFI->setFrameAddressIsTaken(true);
5727  bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) &&
5728                  MFI->getStackSize() &&
5729                  !MF.getFunction()->hasFnAttr(Attribute::Naked);
5730  unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
5731                                (is31 ? PPC::R31 : PPC::R1);
5732  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
5733                                         PtrVT);
5734  while (Depth--)
5735    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
5736                            FrameAddr, MachinePointerInfo(), false, false, 0);
5737  return FrameAddr;
5738}
5739
5740bool
5741PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5742  // The PowerPC target isn't yet aware of offsets.
5743  return false;
5744}
5745
5746/// getOptimalMemOpType - Returns the target specific optimal type for load
5747/// and store operations as a result of memset, memcpy, and memmove
5748/// lowering. If DstAlign is zero that means it's safe to destination
5749/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5750/// means there isn't a need to check it against alignment requirement,
5751/// probably because the source does not need to be loaded. If
5752/// 'NonScalarIntSafe' is true, that means it's safe to return a
5753/// non-scalar-integer type, e.g. empty string source, constant, or loaded
5754/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
5755/// constant so it does not need to be loaded.
5756/// It returns EVT::Other if the type should be determined using generic
5757/// target-independent logic.
5758EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
5759                                           unsigned DstAlign, unsigned SrcAlign,
5760                                           bool NonScalarIntSafe,
5761                                           bool MemcpyStrSrc,
5762                                           MachineFunction &MF) const {
5763  if (this->PPCSubTarget.isPPC64()) {
5764    return MVT::i64;
5765  } else {
5766    return MVT::i32;
5767  }
5768}
5769