PPCISelLowering.cpp revision dc1adac582fa120861f18ae7221bfe1421fea59f
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/CodeGen/SelectionDAG.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
38cl::desc("enable preincrement load/store generation on PPC (experimental)"),
39                                     cl::Hidden);
40
41PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
42  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
43
44  setPow2DivIsCheap();
45
46  // Use _setjmp/_longjmp instead of setjmp/longjmp.
47  setUseUnderscoreSetJmp(true);
48  setUseUnderscoreLongJmp(true);
49
50  // Set up the register classes.
51  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
52  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
53  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
54
55  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
56  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
57  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
58
59  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
60
61  // PowerPC has pre-inc load and store's.
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
73  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
74  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
75  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
76  // This is used in the ppcf128->int sequence.  Note it has different semantics
77  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
78  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
79
80  // PowerPC has no intrinsics for these particular operations
81  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
82  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
83  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
84  setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
85
86  // PowerPC has no SREM/UREM instructions
87  setOperationAction(ISD::SREM, MVT::i32, Expand);
88  setOperationAction(ISD::UREM, MVT::i32, Expand);
89  setOperationAction(ISD::SREM, MVT::i64, Expand);
90  setOperationAction(ISD::UREM, MVT::i64, Expand);
91
92  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
93  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
94  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
95  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
96  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
97  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
98  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
99  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
100  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
101
102  // We don't support sin/cos/sqrt/fmod/pow
103  setOperationAction(ISD::FSIN , MVT::f64, Expand);
104  setOperationAction(ISD::FCOS , MVT::f64, Expand);
105  setOperationAction(ISD::FREM , MVT::f64, Expand);
106  setOperationAction(ISD::FPOW , MVT::f64, Expand);
107  setOperationAction(ISD::FSIN , MVT::f32, Expand);
108  setOperationAction(ISD::FCOS , MVT::f32, Expand);
109  setOperationAction(ISD::FREM , MVT::f32, Expand);
110  setOperationAction(ISD::FPOW , MVT::f32, Expand);
111
112  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
113
114  // If we're enabling GP optimizations, use hardware square root
115  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
116    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
117    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
118  }
119
120  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
121  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
122
123  // PowerPC does not have BSWAP, CTPOP or CTTZ
124  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
125  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
126  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
127  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
128  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
129  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
130
131  // PowerPC does not have ROTR
132  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
133
134  // PowerPC does not have Select
135  setOperationAction(ISD::SELECT, MVT::i32, Expand);
136  setOperationAction(ISD::SELECT, MVT::i64, Expand);
137  setOperationAction(ISD::SELECT, MVT::f32, Expand);
138  setOperationAction(ISD::SELECT, MVT::f64, Expand);
139
140  // PowerPC wants to turn select_cc of FP into fsel when possible.
141  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
142  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
143
144  // PowerPC wants to optimize integer setcc a bit
145  setOperationAction(ISD::SETCC, MVT::i32, Custom);
146
147  // PowerPC does not have BRCOND which requires SetCC
148  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
149
150  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
151
152  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
153  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
154
155  // PowerPC does not have [U|S]INT_TO_FP
156  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
157  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
158
159  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
160  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
161  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
162  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
163
164  // We cannot sextinreg(i1).  Expand to shifts.
165  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
166
167  // Support label based line numbers.
168  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
169  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
170
171  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
172  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
173  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
174  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
175
176
177  // We want to legalize GlobalAddress and ConstantPool nodes into the
178  // appropriate instructions to materialize the address.
179  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
180  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
181  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
182  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
183  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
184  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
185  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
186  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
187
188  // RET must be custom lowered, to meet ABI requirements
189  setOperationAction(ISD::RET               , MVT::Other, Custom);
190
191  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
192  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
193
194  // VAARG is custom lowered with ELF 32 ABI
195  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
196    setOperationAction(ISD::VAARG, MVT::Other, Custom);
197  else
198    setOperationAction(ISD::VAARG, MVT::Other, Expand);
199
200  // Use the default implementation.
201  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
202  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
203  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
204  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
205  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
206  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
207
208  // We want to custom lower some of our intrinsics.
209  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
210
211  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
212    // They also have instructions for converting between i64 and fp.
213    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
214    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
215    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
216    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
217    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
218
219    // FIXME: disable this lowered code.  This generates 64-bit register values,
220    // and we don't model the fact that the top part is clobbered by calls.  We
221    // need to flag these together so that the value isn't live across a call.
222    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
223
224    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
225    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
226  } else {
227    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
228    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
229  }
230
231  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
232    // 64-bit PowerPC implementations can support i64 types directly
233    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
234    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
235    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
236    // 64-bit PowerPC wants to expand i128 shifts itself.
237    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
238    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
239    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
240  } else {
241    // 32-bit PowerPC wants to expand i64 shifts itself.
242    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
243    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
244    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
245  }
246
247  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
248    // First set operation action for all vector types to expand. Then we
249    // will selectively turn on ones that can be effectively codegen'd.
250    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
251         VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
252      // add/sub are legal for all supported vector VT's.
253      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
254      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
255
256      // We promote all shuffles to v16i8.
257      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
258      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
259
260      // We promote all non-typed operations to v4i32.
261      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
262      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
263      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
264      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
265      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
266      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
267      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
268      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
269      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
270      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
271      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
272      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
273
274      // No other operations are legal.
275      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
276      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
277      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
278      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
279      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
280      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
281      setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
282      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
283      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
284      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
285      setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
286      setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
287      setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
288      setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
289      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
290      setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
291      setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
292      setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
293      setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
294    }
295
296    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
297    // with merges, splats, etc.
298    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
299
300    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
301    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
302    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
303    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
304    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
305    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
306
307    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
308    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
309    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
310    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
311
312    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
313    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
314    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
315    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
316
317    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
318    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
319
320    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
321    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
322    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
323    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
324  }
325
326  setShiftAmountType(MVT::i32);
327  setSetCCResultContents(ZeroOrOneSetCCResult);
328
329  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
330    setStackPointerRegisterToSaveRestore(PPC::X1);
331    setExceptionPointerRegister(PPC::X3);
332    setExceptionSelectorRegister(PPC::X4);
333  } else {
334    setStackPointerRegisterToSaveRestore(PPC::R1);
335    setExceptionPointerRegister(PPC::R3);
336    setExceptionSelectorRegister(PPC::R4);
337  }
338
339  // We have target-specific dag combine patterns for the following nodes:
340  setTargetDAGCombine(ISD::SINT_TO_FP);
341  setTargetDAGCombine(ISD::STORE);
342  setTargetDAGCombine(ISD::BR_CC);
343  setTargetDAGCombine(ISD::BSWAP);
344
345  // Darwin long double math library functions have $LDBL128 appended.
346  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
347    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
348    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
349    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
350    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
351    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
352  }
353
354  computeRegisterProperties();
355}
356
357/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
358/// function arguments in the caller parameter area.
359unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
360  TargetMachine &TM = getTargetMachine();
361  // Darwin passes everything on 4 byte boundary.
362  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
363    return 4;
364  // FIXME Elf TBD
365  return 4;
366}
367
368const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
369  switch (Opcode) {
370  default: return 0;
371  case PPCISD::FSEL:          return "PPCISD::FSEL";
372  case PPCISD::FCFID:         return "PPCISD::FCFID";
373  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
374  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
375  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
376  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
377  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
378  case PPCISD::VPERM:         return "PPCISD::VPERM";
379  case PPCISD::Hi:            return "PPCISD::Hi";
380  case PPCISD::Lo:            return "PPCISD::Lo";
381  case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC";
382  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
383  case PPCISD::SRL:           return "PPCISD::SRL";
384  case PPCISD::SRA:           return "PPCISD::SRA";
385  case PPCISD::SHL:           return "PPCISD::SHL";
386  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
387  case PPCISD::STD_32:        return "PPCISD::STD_32";
388  case PPCISD::CALL_ELF:      return "PPCISD::CALL_ELF";
389  case PPCISD::CALL_Macho:    return "PPCISD::CALL_Macho";
390  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
391  case PPCISD::BCTRL_Macho:   return "PPCISD::BCTRL_Macho";
392  case PPCISD::BCTRL_ELF:     return "PPCISD::BCTRL_ELF";
393  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
394  case PPCISD::MFCR:          return "PPCISD::MFCR";
395  case PPCISD::VCMP:          return "PPCISD::VCMP";
396  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
397  case PPCISD::LBRX:          return "PPCISD::LBRX";
398  case PPCISD::STBRX:         return "PPCISD::STBRX";
399  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
400  case PPCISD::MFFS:          return "PPCISD::MFFS";
401  case PPCISD::MTFSB0:        return "PPCISD::MTFSB0";
402  case PPCISD::MTFSB1:        return "PPCISD::MTFSB1";
403  case PPCISD::FADDRTZ:       return "PPCISD::FADDRTZ";
404  case PPCISD::MTFSF:         return "PPCISD::MTFSF";
405  }
406}
407
408
409MVT::ValueType
410PPCTargetLowering::getSetCCResultType(const SDOperand &) const {
411  return MVT::i32;
412}
413
414
415//===----------------------------------------------------------------------===//
416// Node matching predicates, for use by the tblgen matching code.
417//===----------------------------------------------------------------------===//
418
419/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
420static bool isFloatingPointZero(SDOperand Op) {
421  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
422    return CFP->getValueAPF().isZero();
423  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
424    // Maybe this has already been legalized into the constant pool?
425    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
426      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
427        return CFP->getValueAPF().isZero();
428  }
429  return false;
430}
431
432/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
433/// true if Op is undef or if it matches the specified value.
434static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
435  return Op.getOpcode() == ISD::UNDEF ||
436         cast<ConstantSDNode>(Op)->getValue() == Val;
437}
438
439/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
440/// VPKUHUM instruction.
441bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
442  if (!isUnary) {
443    for (unsigned i = 0; i != 16; ++i)
444      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
445        return false;
446  } else {
447    for (unsigned i = 0; i != 8; ++i)
448      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
449          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
450        return false;
451  }
452  return true;
453}
454
455/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
456/// VPKUWUM instruction.
457bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
458  if (!isUnary) {
459    for (unsigned i = 0; i != 16; i += 2)
460      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
461          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
462        return false;
463  } else {
464    for (unsigned i = 0; i != 8; i += 2)
465      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
466          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
467          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
468          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
469        return false;
470  }
471  return true;
472}
473
474/// isVMerge - Common function, used to match vmrg* shuffles.
475///
476static bool isVMerge(SDNode *N, unsigned UnitSize,
477                     unsigned LHSStart, unsigned RHSStart) {
478  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
479         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
480  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
481         "Unsupported merge size!");
482
483  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
484    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
485      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
486                             LHSStart+j+i*UnitSize) ||
487          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
488                             RHSStart+j+i*UnitSize))
489        return false;
490    }
491      return true;
492}
493
494/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
495/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
496bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
497  if (!isUnary)
498    return isVMerge(N, UnitSize, 8, 24);
499  return isVMerge(N, UnitSize, 8, 8);
500}
501
502/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
503/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
504bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
505  if (!isUnary)
506    return isVMerge(N, UnitSize, 0, 16);
507  return isVMerge(N, UnitSize, 0, 0);
508}
509
510
511/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
512/// amount, otherwise return -1.
513int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
514  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
515         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
516  // Find the first non-undef value in the shuffle mask.
517  unsigned i;
518  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
519    /*search*/;
520
521  if (i == 16) return -1;  // all undef.
522
523  // Otherwise, check to see if the rest of the elements are consequtively
524  // numbered from this value.
525  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
526  if (ShiftAmt < i) return -1;
527  ShiftAmt -= i;
528
529  if (!isUnary) {
530    // Check the rest of the elements to see if they are consequtive.
531    for (++i; i != 16; ++i)
532      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
533        return -1;
534  } else {
535    // Check the rest of the elements to see if they are consequtive.
536    for (++i; i != 16; ++i)
537      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
538        return -1;
539  }
540
541  return ShiftAmt;
542}
543
544/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
545/// specifies a splat of a single element that is suitable for input to
546/// VSPLTB/VSPLTH/VSPLTW.
547bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
548  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
549         N->getNumOperands() == 16 &&
550         (EltSize == 1 || EltSize == 2 || EltSize == 4));
551
552  // This is a splat operation if each element of the permute is the same, and
553  // if the value doesn't reference the second vector.
554  unsigned ElementBase = 0;
555  SDOperand Elt = N->getOperand(0);
556  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
557    ElementBase = EltV->getValue();
558  else
559    return false;   // FIXME: Handle UNDEF elements too!
560
561  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
562    return false;
563
564  // Check that they are consequtive.
565  for (unsigned i = 1; i != EltSize; ++i) {
566    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
567        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
568      return false;
569  }
570
571  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
572  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
573    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
574    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
575           "Invalid VECTOR_SHUFFLE mask!");
576    for (unsigned j = 0; j != EltSize; ++j)
577      if (N->getOperand(i+j) != N->getOperand(j))
578        return false;
579  }
580
581  return true;
582}
583
584/// isAllNegativeZeroVector - Returns true if all elements of build_vector
585/// are -0.0.
586bool PPC::isAllNegativeZeroVector(SDNode *N) {
587  assert(N->getOpcode() == ISD::BUILD_VECTOR);
588  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
589    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
590      return CFP->getValueAPF().isNegZero();
591  return false;
592}
593
594/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
595/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
596unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
597  assert(isSplatShuffleMask(N, EltSize));
598  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
599}
600
601/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
602/// by using a vspltis[bhw] instruction of the specified element size, return
603/// the constant being splatted.  The ByteSize field indicates the number of
604/// bytes of each element [124] -> [bhw].
605SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
606  SDOperand OpVal(0, 0);
607
608  // If ByteSize of the splat is bigger than the element size of the
609  // build_vector, then we have a case where we are checking for a splat where
610  // multiple elements of the buildvector are folded together into a single
611  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
612  unsigned EltSize = 16/N->getNumOperands();
613  if (EltSize < ByteSize) {
614    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
615    SDOperand UniquedVals[4];
616    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
617
618    // See if all of the elements in the buildvector agree across.
619    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
620      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
621      // If the element isn't a constant, bail fully out.
622      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
623
624
625      if (UniquedVals[i&(Multiple-1)].Val == 0)
626        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
627      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
628        return SDOperand();  // no match.
629    }
630
631    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
632    // either constant or undef values that are identical for each chunk.  See
633    // if these chunks can form into a larger vspltis*.
634
635    // Check to see if all of the leading entries are either 0 or -1.  If
636    // neither, then this won't fit into the immediate field.
637    bool LeadingZero = true;
638    bool LeadingOnes = true;
639    for (unsigned i = 0; i != Multiple-1; ++i) {
640      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
641
642      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
643      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
644    }
645    // Finally, check the least significant entry.
646    if (LeadingZero) {
647      if (UniquedVals[Multiple-1].Val == 0)
648        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
649      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
650      if (Val < 16)
651        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
652    }
653    if (LeadingOnes) {
654      if (UniquedVals[Multiple-1].Val == 0)
655        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
656      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
657      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
658        return DAG.getTargetConstant(Val, MVT::i32);
659    }
660
661    return SDOperand();
662  }
663
664  // Check to see if this buildvec has a single non-undef value in its elements.
665  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
666    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
667    if (OpVal.Val == 0)
668      OpVal = N->getOperand(i);
669    else if (OpVal != N->getOperand(i))
670      return SDOperand();
671  }
672
673  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
674
675  unsigned ValSizeInBytes = 0;
676  uint64_t Value = 0;
677  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
678    Value = CN->getValue();
679    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
680  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
681    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
682    Value = FloatToBits(CN->getValueAPF().convertToFloat());
683    ValSizeInBytes = 4;
684  }
685
686  // If the splat value is larger than the element value, then we can never do
687  // this splat.  The only case that we could fit the replicated bits into our
688  // immediate field for would be zero, and we prefer to use vxor for it.
689  if (ValSizeInBytes < ByteSize) return SDOperand();
690
691  // If the element value is larger than the splat value, cut it in half and
692  // check to see if the two halves are equal.  Continue doing this until we
693  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
694  while (ValSizeInBytes > ByteSize) {
695    ValSizeInBytes >>= 1;
696
697    // If the top half equals the bottom half, we're still ok.
698    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
699         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
700      return SDOperand();
701  }
702
703  // Properly sign extend the value.
704  int ShAmt = (4-ByteSize)*8;
705  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
706
707  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
708  if (MaskVal == 0) return SDOperand();
709
710  // Finally, if this value fits in a 5 bit sext field, return it
711  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
712    return DAG.getTargetConstant(MaskVal, MVT::i32);
713  return SDOperand();
714}
715
716//===----------------------------------------------------------------------===//
717//  Addressing Mode Selection
718//===----------------------------------------------------------------------===//
719
720/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
721/// or 64-bit immediate, and if the value can be accurately represented as a
722/// sign extension from a 16-bit value.  If so, this returns true and the
723/// immediate.
724static bool isIntS16Immediate(SDNode *N, short &Imm) {
725  if (N->getOpcode() != ISD::Constant)
726    return false;
727
728  Imm = (short)cast<ConstantSDNode>(N)->getValue();
729  if (N->getValueType(0) == MVT::i32)
730    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
731  else
732    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
733}
734static bool isIntS16Immediate(SDOperand Op, short &Imm) {
735  return isIntS16Immediate(Op.Val, Imm);
736}
737
738
739/// SelectAddressRegReg - Given the specified addressed, check to see if it
740/// can be represented as an indexed [r+r] operation.  Returns false if it
741/// can be more efficiently represented with [r+imm].
742bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
743                                            SDOperand &Index,
744                                            SelectionDAG &DAG) {
745  short imm = 0;
746  if (N.getOpcode() == ISD::ADD) {
747    if (isIntS16Immediate(N.getOperand(1), imm))
748      return false;    // r+i
749    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
750      return false;    // r+i
751
752    Base = N.getOperand(0);
753    Index = N.getOperand(1);
754    return true;
755  } else if (N.getOpcode() == ISD::OR) {
756    if (isIntS16Immediate(N.getOperand(1), imm))
757      return false;    // r+i can fold it if we can.
758
759    // If this is an or of disjoint bitfields, we can codegen this as an add
760    // (for better address arithmetic) if the LHS and RHS of the OR are provably
761    // disjoint.
762    APInt LHSKnownZero, LHSKnownOne;
763    APInt RHSKnownZero, RHSKnownOne;
764    DAG.ComputeMaskedBits(N.getOperand(0),
765                          APInt::getAllOnesValue(N.getOperand(0)
766                            .getValueSizeInBits()),
767                          LHSKnownZero, LHSKnownOne);
768
769    if (LHSKnownZero.getBoolValue()) {
770      DAG.ComputeMaskedBits(N.getOperand(1),
771                            APInt::getAllOnesValue(N.getOperand(1)
772                              .getValueSizeInBits()),
773                            RHSKnownZero, RHSKnownOne);
774      // If all of the bits are known zero on the LHS or RHS, the add won't
775      // carry.
776      if (~(LHSKnownZero | RHSKnownZero) == 0) {
777        Base = N.getOperand(0);
778        Index = N.getOperand(1);
779        return true;
780      }
781    }
782  }
783
784  return false;
785}
786
787/// Returns true if the address N can be represented by a base register plus
788/// a signed 16-bit displacement [r+imm], and if it is not better
789/// represented as reg+reg.
790bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
791                                            SDOperand &Base, SelectionDAG &DAG){
792  // If this can be more profitably realized as r+r, fail.
793  if (SelectAddressRegReg(N, Disp, Base, DAG))
794    return false;
795
796  if (N.getOpcode() == ISD::ADD) {
797    short imm = 0;
798    if (isIntS16Immediate(N.getOperand(1), imm)) {
799      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
800      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
801        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
802      } else {
803        Base = N.getOperand(0);
804      }
805      return true; // [r+i]
806    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
807      // Match LOAD (ADD (X, Lo(G))).
808      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
809             && "Cannot handle constant offsets yet!");
810      Disp = N.getOperand(1).getOperand(0);  // The global address.
811      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
812             Disp.getOpcode() == ISD::TargetConstantPool ||
813             Disp.getOpcode() == ISD::TargetJumpTable);
814      Base = N.getOperand(0);
815      return true;  // [&g+r]
816    }
817  } else if (N.getOpcode() == ISD::OR) {
818    short imm = 0;
819    if (isIntS16Immediate(N.getOperand(1), imm)) {
820      // If this is an or of disjoint bitfields, we can codegen this as an add
821      // (for better address arithmetic) if the LHS and RHS of the OR are
822      // provably disjoint.
823      APInt LHSKnownZero, LHSKnownOne;
824      DAG.ComputeMaskedBits(N.getOperand(0),
825                            APInt::getAllOnesValue(N.getOperand(0)
826                                                   .getValueSizeInBits()),
827                            LHSKnownZero, LHSKnownOne);
828
829      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
830        // If all of the bits are known zero on the LHS or RHS, the add won't
831        // carry.
832        Base = N.getOperand(0);
833        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
834        return true;
835      }
836    }
837  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
838    // Loading from a constant address.
839
840    // If this address fits entirely in a 16-bit sext immediate field, codegen
841    // this as "d, 0"
842    short Imm;
843    if (isIntS16Immediate(CN, Imm)) {
844      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
845      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
846      return true;
847    }
848
849    // Handle 32-bit sext immediates with LIS + addr mode.
850    if (CN->getValueType(0) == MVT::i32 ||
851        (int64_t)CN->getValue() == (int)CN->getValue()) {
852      int Addr = (int)CN->getValue();
853
854      // Otherwise, break this down into an LIS + disp.
855      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
856
857      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
858      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
859      Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
860      return true;
861    }
862  }
863
864  Disp = DAG.getTargetConstant(0, getPointerTy());
865  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
866    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
867  else
868    Base = N;
869  return true;      // [r+0]
870}
871
872/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
873/// represented as an indexed [r+r] operation.
874bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
875                                                SDOperand &Index,
876                                                SelectionDAG &DAG) {
877  // Check to see if we can easily represent this as an [r+r] address.  This
878  // will fail if it thinks that the address is more profitably represented as
879  // reg+imm, e.g. where imm = 0.
880  if (SelectAddressRegReg(N, Base, Index, DAG))
881    return true;
882
883  // If the operand is an addition, always emit this as [r+r], since this is
884  // better (for code size, and execution, as the memop does the add for free)
885  // than emitting an explicit add.
886  if (N.getOpcode() == ISD::ADD) {
887    Base = N.getOperand(0);
888    Index = N.getOperand(1);
889    return true;
890  }
891
892  // Otherwise, do it the hard way, using R0 as the base register.
893  Base = DAG.getRegister(PPC::R0, N.getValueType());
894  Index = N;
895  return true;
896}
897
898/// SelectAddressRegImmShift - Returns true if the address N can be
899/// represented by a base register plus a signed 14-bit displacement
900/// [r+imm*4].  Suitable for use by STD and friends.
901bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
902                                                 SDOperand &Base,
903                                                 SelectionDAG &DAG) {
904  // If this can be more profitably realized as r+r, fail.
905  if (SelectAddressRegReg(N, Disp, Base, DAG))
906    return false;
907
908  if (N.getOpcode() == ISD::ADD) {
909    short imm = 0;
910    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
911      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
912      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
913        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
914      } else {
915        Base = N.getOperand(0);
916      }
917      return true; // [r+i]
918    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
919      // Match LOAD (ADD (X, Lo(G))).
920      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
921             && "Cannot handle constant offsets yet!");
922      Disp = N.getOperand(1).getOperand(0);  // The global address.
923      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
924             Disp.getOpcode() == ISD::TargetConstantPool ||
925             Disp.getOpcode() == ISD::TargetJumpTable);
926      Base = N.getOperand(0);
927      return true;  // [&g+r]
928    }
929  } else if (N.getOpcode() == ISD::OR) {
930    short imm = 0;
931    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
932      // If this is an or of disjoint bitfields, we can codegen this as an add
933      // (for better address arithmetic) if the LHS and RHS of the OR are
934      // provably disjoint.
935      APInt LHSKnownZero, LHSKnownOne;
936      DAG.ComputeMaskedBits(N.getOperand(0),
937                            APInt::getAllOnesValue(N.getOperand(0)
938                                                   .getValueSizeInBits()),
939                            LHSKnownZero, LHSKnownOne);
940      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
941        // If all of the bits are known zero on the LHS or RHS, the add won't
942        // carry.
943        Base = N.getOperand(0);
944        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
945        return true;
946      }
947    }
948  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
949    // Loading from a constant address.  Verify low two bits are clear.
950    if ((CN->getValue() & 3) == 0) {
951      // If this address fits entirely in a 14-bit sext immediate field, codegen
952      // this as "d, 0"
953      short Imm;
954      if (isIntS16Immediate(CN, Imm)) {
955        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
956        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
957        return true;
958      }
959
960      // Fold the low-part of 32-bit absolute addresses into addr mode.
961      if (CN->getValueType(0) == MVT::i32 ||
962          (int64_t)CN->getValue() == (int)CN->getValue()) {
963        int Addr = (int)CN->getValue();
964
965        // Otherwise, break this down into an LIS + disp.
966        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
967
968        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
969        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
970        Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
971        return true;
972      }
973    }
974  }
975
976  Disp = DAG.getTargetConstant(0, getPointerTy());
977  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
978    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
979  else
980    Base = N;
981  return true;      // [r+0]
982}
983
984
985/// getPreIndexedAddressParts - returns true by value, base pointer and
986/// offset pointer and addressing mode by reference if the node's address
987/// can be legally represented as pre-indexed load / store address.
988bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
989                                                  SDOperand &Offset,
990                                                  ISD::MemIndexedMode &AM,
991                                                  SelectionDAG &DAG) {
992  // Disabled by default for now.
993  if (!EnablePPCPreinc) return false;
994
995  SDOperand Ptr;
996  MVT::ValueType VT;
997  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
998    Ptr = LD->getBasePtr();
999    VT = LD->getMemoryVT();
1000
1001  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1002    ST = ST;
1003    Ptr = ST->getBasePtr();
1004    VT  = ST->getMemoryVT();
1005  } else
1006    return false;
1007
1008  // PowerPC doesn't have preinc load/store instructions for vectors.
1009  if (MVT::isVector(VT))
1010    return false;
1011
1012  // TODO: Check reg+reg first.
1013
1014  // LDU/STU use reg+imm*4, others use reg+imm.
1015  if (VT != MVT::i64) {
1016    // reg + imm
1017    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1018      return false;
1019  } else {
1020    // reg + imm * 4.
1021    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1022      return false;
1023  }
1024
1025  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1026    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1027    // sext i32 to i64 when addr mode is r+i.
1028    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1029        LD->getExtensionType() == ISD::SEXTLOAD &&
1030        isa<ConstantSDNode>(Offset))
1031      return false;
1032  }
1033
1034  AM = ISD::PRE_INC;
1035  return true;
1036}
1037
1038//===----------------------------------------------------------------------===//
1039//  LowerOperation implementation
1040//===----------------------------------------------------------------------===//
1041
1042SDOperand PPCTargetLowering::LowerConstantPool(SDOperand Op,
1043                                             SelectionDAG &DAG) {
1044  MVT::ValueType PtrVT = Op.getValueType();
1045  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1046  Constant *C = CP->getConstVal();
1047  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1048  SDOperand Zero = DAG.getConstant(0, PtrVT);
1049
1050  const TargetMachine &TM = DAG.getTarget();
1051
1052  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1053  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1054
1055  // If this is a non-darwin platform, we don't support non-static relo models
1056  // yet.
1057  if (TM.getRelocationModel() == Reloc::Static ||
1058      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1059    // Generate non-pic code that has direct accesses to the constant pool.
1060    // The address of the global is just (hi(&g)+lo(&g)).
1061    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1062  }
1063
1064  if (TM.getRelocationModel() == Reloc::PIC_) {
1065    // With PIC, the first instruction is actually "GR+hi(&G)".
1066    Hi = DAG.getNode(ISD::ADD, PtrVT,
1067                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1068  }
1069
1070  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1071  return Lo;
1072}
1073
1074SDOperand PPCTargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1075  MVT::ValueType PtrVT = Op.getValueType();
1076  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1077  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1078  SDOperand Zero = DAG.getConstant(0, PtrVT);
1079
1080  const TargetMachine &TM = DAG.getTarget();
1081
1082  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1083  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1084
1085  // If this is a non-darwin platform, we don't support non-static relo models
1086  // yet.
1087  if (TM.getRelocationModel() == Reloc::Static ||
1088      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1089    // Generate non-pic code that has direct accesses to the constant pool.
1090    // The address of the global is just (hi(&g)+lo(&g)).
1091    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1092  }
1093
1094  if (TM.getRelocationModel() == Reloc::PIC_) {
1095    // With PIC, the first instruction is actually "GR+hi(&G)".
1096    Hi = DAG.getNode(ISD::ADD, PtrVT,
1097                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1098  }
1099
1100  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1101  return Lo;
1102}
1103
1104SDOperand PPCTargetLowering::LowerGlobalTLSAddress(SDOperand Op,
1105                                                   SelectionDAG &DAG) {
1106  assert(0 && "TLS not implemented for PPC.");
1107  return SDOperand(); // Not reached
1108}
1109
1110SDOperand PPCTargetLowering::LowerGlobalAddress(SDOperand Op,
1111                                                SelectionDAG &DAG) {
1112  MVT::ValueType PtrVT = Op.getValueType();
1113  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1114  GlobalValue *GV = GSDN->getGlobal();
1115  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1116  // If it's a debug information descriptor, don't mess with it.
1117  if (DAG.isVerifiedDebugInfoDesc(Op))
1118    return GA;
1119  SDOperand Zero = DAG.getConstant(0, PtrVT);
1120
1121  const TargetMachine &TM = DAG.getTarget();
1122
1123  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1124  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1125
1126  // If this is a non-darwin platform, we don't support non-static relo models
1127  // yet.
1128  if (TM.getRelocationModel() == Reloc::Static ||
1129      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1130    // Generate non-pic code that has direct accesses to globals.
1131    // The address of the global is just (hi(&g)+lo(&g)).
1132    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1133  }
1134
1135  if (TM.getRelocationModel() == Reloc::PIC_) {
1136    // With PIC, the first instruction is actually "GR+hi(&G)".
1137    Hi = DAG.getNode(ISD::ADD, PtrVT,
1138                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1139  }
1140
1141  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1142
1143  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1144    return Lo;
1145
1146  // If the global is weak or external, we have to go through the lazy
1147  // resolution stub.
1148  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1149}
1150
1151SDOperand PPCTargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1152  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1153
1154  // If we're comparing for equality to zero, expose the fact that this is
1155  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1156  // fold the new nodes.
1157  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1158    if (C->isNullValue() && CC == ISD::SETEQ) {
1159      MVT::ValueType VT = Op.getOperand(0).getValueType();
1160      SDOperand Zext = Op.getOperand(0);
1161      if (VT < MVT::i32) {
1162        VT = MVT::i32;
1163        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1164      }
1165      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1166      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1167      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1168                                  DAG.getConstant(Log2b, MVT::i32));
1169      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1170    }
1171    // Leave comparisons against 0 and -1 alone for now, since they're usually
1172    // optimized.  FIXME: revisit this when we can custom lower all setcc
1173    // optimizations.
1174    if (C->isAllOnesValue() || C->isNullValue())
1175      return SDOperand();
1176  }
1177
1178  // If we have an integer seteq/setne, turn it into a compare against zero
1179  // by xor'ing the rhs with the lhs, which is faster than setting a
1180  // condition register, reading it back out, and masking the correct bit.  The
1181  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1182  // the result to other bit-twiddling opportunities.
1183  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1184  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1185    MVT::ValueType VT = Op.getValueType();
1186    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1187                                Op.getOperand(1));
1188    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1189  }
1190  return SDOperand();
1191}
1192
1193SDOperand PPCTargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1194                              int VarArgsFrameIndex,
1195                              int VarArgsStackOffset,
1196                              unsigned VarArgsNumGPR,
1197                              unsigned VarArgsNumFPR,
1198                              const PPCSubtarget &Subtarget) {
1199
1200  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1201  return SDOperand(); // Not reached
1202}
1203
1204SDOperand PPCTargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1205                              int VarArgsFrameIndex,
1206                              int VarArgsStackOffset,
1207                              unsigned VarArgsNumGPR,
1208                              unsigned VarArgsNumFPR,
1209                              const PPCSubtarget &Subtarget) {
1210
1211  if (Subtarget.isMachoABI()) {
1212    // vastart just stores the address of the VarArgsFrameIndex slot into the
1213    // memory location argument.
1214    MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1215    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1216    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1217    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
1218  }
1219
1220  // For ELF 32 ABI we follow the layout of the va_list struct.
1221  // We suppose the given va_list is already allocated.
1222  //
1223  // typedef struct {
1224  //  char gpr;     /* index into the array of 8 GPRs
1225  //                 * stored in the register save area
1226  //                 * gpr=0 corresponds to r3,
1227  //                 * gpr=1 to r4, etc.
1228  //                 */
1229  //  char fpr;     /* index into the array of 8 FPRs
1230  //                 * stored in the register save area
1231  //                 * fpr=0 corresponds to f1,
1232  //                 * fpr=1 to f2, etc.
1233  //                 */
1234  //  char *overflow_arg_area;
1235  //                /* location on stack that holds
1236  //                 * the next overflow argument
1237  //                 */
1238  //  char *reg_save_area;
1239  //               /* where r3:r10 and f1:f8 (if saved)
1240  //                * are stored
1241  //                */
1242  // } va_list[1];
1243
1244
1245  SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1246  SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1247
1248
1249  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1250
1251  SDOperand StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1252  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1253
1254  uint64_t FrameOffset = MVT::getSizeInBits(PtrVT)/8;
1255  SDOperand ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1256
1257  uint64_t StackOffset = MVT::getSizeInBits(PtrVT)/8 - 1;
1258  SDOperand ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1259
1260  uint64_t FPROffset = 1;
1261  SDOperand ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1262
1263  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1264
1265  // Store first byte : number of int regs
1266  SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1267                                      Op.getOperand(1), SV, 0);
1268  uint64_t nextOffset = FPROffset;
1269  SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1270                                  ConstFPROffset);
1271
1272  // Store second byte : number of float regs
1273  SDOperand secondStore =
1274    DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1275  nextOffset += StackOffset;
1276  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1277
1278  // Store second word : arguments given on stack
1279  SDOperand thirdStore =
1280    DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1281  nextOffset += FrameOffset;
1282  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1283
1284  // Store third word : arguments given in registers
1285  return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
1286
1287}
1288
1289#include "PPCGenCallingConv.inc"
1290
1291/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1292/// depending on which subtarget is selected.
1293static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1294  if (Subtarget.isMachoABI()) {
1295    static const unsigned FPR[] = {
1296      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1297      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1298    };
1299    return FPR;
1300  }
1301
1302
1303  static const unsigned FPR[] = {
1304    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1305    PPC::F8
1306  };
1307  return FPR;
1308}
1309
1310SDOperand
1311PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op,
1312                                         SelectionDAG &DAG,
1313                                         int &VarArgsFrameIndex,
1314                                         int &VarArgsStackOffset,
1315                                         unsigned &VarArgsNumGPR,
1316                                         unsigned &VarArgsNumFPR,
1317                                         const PPCSubtarget &Subtarget) {
1318  // TODO: add description of PPC stack frame format, or at least some docs.
1319  //
1320  MachineFunction &MF = DAG.getMachineFunction();
1321  MachineFrameInfo *MFI = MF.getFrameInfo();
1322  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1323  SmallVector<SDOperand, 8> ArgValues;
1324  SDOperand Root = Op.getOperand(0);
1325  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1326
1327  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1328  bool isPPC64 = PtrVT == MVT::i64;
1329  bool isMachoABI = Subtarget.isMachoABI();
1330  bool isELF32_ABI = Subtarget.isELF32_ABI();
1331  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1332
1333  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1334
1335  static const unsigned GPR_32[] = {           // 32-bit registers.
1336    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1337    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1338  };
1339  static const unsigned GPR_64[] = {           // 64-bit registers.
1340    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1341    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1342  };
1343
1344  static const unsigned *FPR = GetFPR(Subtarget);
1345
1346  static const unsigned VR[] = {
1347    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1348    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1349  };
1350
1351  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1352  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1353  const unsigned Num_VR_Regs  = array_lengthof( VR);
1354
1355  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1356
1357  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1358
1359  // In 32-bit non-varargs functions, the stack space for vectors is after the
1360  // stack space for non-vectors.  We do not use this space unless we have
1361  // too many vectors to fit in registers, something that only occurs in
1362  // constructed examples:), but we have to walk the arglist to figure
1363  // that out...for the pathological case, compute VecArgOffset as the
1364  // start of the vector parameter area.  Computing VecArgOffset is the
1365  // entire point of the following loop.
1366  // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1367  // to handle Elf here.
1368  unsigned VecArgOffset = ArgOffset;
1369  if (!isVarArg && !isPPC64) {
1370    for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e;
1371         ++ArgNo) {
1372      MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1373      unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1374      ISD::ArgFlagsTy Flags =
1375        cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1376
1377      if (Flags.isByVal()) {
1378        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1379        ObjSize = Flags.getByValSize();
1380        unsigned ArgSize =
1381                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1382        VecArgOffset += ArgSize;
1383        continue;
1384      }
1385
1386      switch(ObjectVT) {
1387      default: assert(0 && "Unhandled argument type!");
1388      case MVT::i32:
1389      case MVT::f32:
1390        VecArgOffset += isPPC64 ? 8 : 4;
1391        break;
1392      case MVT::i64:  // PPC64
1393      case MVT::f64:
1394        VecArgOffset += 8;
1395        break;
1396      case MVT::v4f32:
1397      case MVT::v4i32:
1398      case MVT::v8i16:
1399      case MVT::v16i8:
1400        // Nothing to do, we're only looking at Nonvector args here.
1401        break;
1402      }
1403    }
1404  }
1405  // We've found where the vector parameter area in memory is.  Skip the
1406  // first 12 parameters; these don't use that memory.
1407  VecArgOffset = ((VecArgOffset+15)/16)*16;
1408  VecArgOffset += 12*16;
1409
1410  // Add DAG nodes to load the arguments or copy them out of registers.  On
1411  // entry to a function on PPC, the arguments start after the linkage area,
1412  // although the first ones are often in registers.
1413  //
1414  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1415  // represented with two words (long long or double) must be copied to an
1416  // even GPR_idx value or to an even ArgOffset value.  TODO: implement this.
1417
1418  SmallVector<SDOperand, 8> MemOps;
1419
1420  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1421    SDOperand ArgVal;
1422    bool needsLoad = false;
1423    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1424    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1425    unsigned ArgSize = ObjSize;
1426    ISD::ArgFlagsTy Flags =
1427      cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1428    // See if next argument requires stack alignment in ELF
1429    bool Expand = false; // TODO: implement this.
1430
1431    unsigned CurArgOffset = ArgOffset;
1432
1433    // FIXME alignment for ELF may not be right
1434    // FIXME the codegen can be much improved in some cases.
1435    // We do not have to keep everything in memory.
1436    if (Flags.isByVal()) {
1437      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1438      ObjSize = Flags.getByValSize();
1439      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1440      // Double word align in ELF
1441      if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1442      // Objects of size 1 and 2 are right justified, everything else is
1443      // left justified.  This means the memory address is adjusted forwards.
1444      if (ObjSize==1 || ObjSize==2) {
1445        CurArgOffset = CurArgOffset + (4 - ObjSize);
1446      }
1447      // The value of the object is its address.
1448      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1449      SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1450      ArgValues.push_back(FIN);
1451      if (ObjSize==1 || ObjSize==2) {
1452        if (GPR_idx != Num_GPR_Regs) {
1453          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1454          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1455          SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1456          SDOperand Store = DAG.getTruncStore(Val.getValue(1), Val, FIN,
1457                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1458          MemOps.push_back(Store);
1459          ++GPR_idx;
1460          if (isMachoABI) ArgOffset += PtrByteSize;
1461        } else {
1462          ArgOffset += PtrByteSize;
1463        }
1464        continue;
1465      }
1466      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1467        // Store whatever pieces of the object are in registers
1468        // to memory.  ArgVal will be address of the beginning of
1469        // the object.
1470        if (GPR_idx != Num_GPR_Regs) {
1471          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1472          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1473          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1474          SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1475          SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1476          SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1477          MemOps.push_back(Store);
1478          ++GPR_idx;
1479          if (isMachoABI) ArgOffset += PtrByteSize;
1480        } else {
1481          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1482          break;
1483        }
1484      }
1485      continue;
1486    }
1487
1488    switch (ObjectVT) {
1489    default: assert(0 && "Unhandled argument type!");
1490    case MVT::i32:
1491      if (!isPPC64) {
1492        // Double word align in ELF
1493        if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1494
1495        if (GPR_idx != Num_GPR_Regs) {
1496          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1497          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1498          ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1499          ++GPR_idx;
1500        } else {
1501          needsLoad = true;
1502          ArgSize = PtrByteSize;
1503        }
1504        // Stack align in ELF
1505        if (needsLoad && Expand && isELF32_ABI)
1506          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1507        // All int arguments reserve stack space in Macho ABI.
1508        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1509        break;
1510      }
1511      // FALLTHROUGH
1512    case MVT::i64:  // PPC64
1513      if (GPR_idx != Num_GPR_Regs) {
1514        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1515        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1516        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1517
1518        if (ObjectVT == MVT::i32) {
1519          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1520          // value to MVT::i64 and then truncate to the correct register size.
1521          if (Flags.isSExt())
1522            ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1523                                 DAG.getValueType(ObjectVT));
1524          else if (Flags.isZExt())
1525            ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1526                                 DAG.getValueType(ObjectVT));
1527
1528          ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1529        }
1530
1531        ++GPR_idx;
1532      } else {
1533        needsLoad = true;
1534      }
1535      // All int arguments reserve stack space in Macho ABI.
1536      if (isMachoABI || needsLoad) ArgOffset += 8;
1537      break;
1538
1539    case MVT::f32:
1540    case MVT::f64:
1541      // Every 4 bytes of argument space consumes one of the GPRs available for
1542      // argument passing.
1543      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1544        ++GPR_idx;
1545        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1546          ++GPR_idx;
1547      }
1548      if (FPR_idx != Num_FPR_Regs) {
1549        unsigned VReg;
1550        if (ObjectVT == MVT::f32)
1551          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1552        else
1553          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1554        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1555        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1556        ++FPR_idx;
1557      } else {
1558        needsLoad = true;
1559      }
1560
1561      // Stack align in ELF
1562      if (needsLoad && Expand && isELF32_ABI)
1563        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1564      // All FP arguments reserve stack space in Macho ABI.
1565      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1566      break;
1567    case MVT::v4f32:
1568    case MVT::v4i32:
1569    case MVT::v8i16:
1570    case MVT::v16i8:
1571      // Note that vector arguments in registers don't reserve stack space,
1572      // except in varargs functions.
1573      if (VR_idx != Num_VR_Regs) {
1574        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1575        RegInfo.addLiveIn(VR[VR_idx], VReg);
1576        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1577        if (isVarArg) {
1578          while ((ArgOffset % 16) != 0) {
1579            ArgOffset += PtrByteSize;
1580            if (GPR_idx != Num_GPR_Regs)
1581              GPR_idx++;
1582          }
1583          ArgOffset += 16;
1584          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1585        }
1586        ++VR_idx;
1587      } else {
1588        if (!isVarArg && !isPPC64) {
1589          // Vectors go after all the nonvectors.
1590          CurArgOffset = VecArgOffset;
1591          VecArgOffset += 16;
1592        } else {
1593          // Vectors are aligned.
1594          ArgOffset = ((ArgOffset+15)/16)*16;
1595          CurArgOffset = ArgOffset;
1596          ArgOffset += 16;
1597        }
1598        needsLoad = true;
1599      }
1600      break;
1601    }
1602
1603    // We need to load the argument to a virtual register if we determined above
1604    // that we ran out of physical registers of the appropriate type.
1605    if (needsLoad) {
1606      int FI = MFI->CreateFixedObject(ObjSize,
1607                                      CurArgOffset + (ArgSize - ObjSize));
1608      SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1609      ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1610    }
1611
1612    ArgValues.push_back(ArgVal);
1613  }
1614
1615  // If the function takes variable number of arguments, make a frame index for
1616  // the start of the first vararg value... for expansion of llvm.va_start.
1617  if (isVarArg) {
1618
1619    int depth;
1620    if (isELF32_ABI) {
1621      VarArgsNumGPR = GPR_idx;
1622      VarArgsNumFPR = FPR_idx;
1623
1624      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1625      // pointer.
1626      depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1627                Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1628                MVT::getSizeInBits(PtrVT)/8);
1629
1630      VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1631                                                  ArgOffset);
1632
1633    }
1634    else
1635      depth = ArgOffset;
1636
1637    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1638                                               depth);
1639    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1640
1641    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1642    // stored to the VarArgsFrameIndex on the stack.
1643    if (isELF32_ABI) {
1644      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1645        SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1646        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1647        MemOps.push_back(Store);
1648        // Increment the address by four for the next argument to store
1649        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1650        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1651      }
1652    }
1653
1654    // If this function is vararg, store any remaining integer argument regs
1655    // to their spots on the stack so that they may be loaded by deferencing the
1656    // result of va_next.
1657    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1658      unsigned VReg;
1659      if (isPPC64)
1660        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1661      else
1662        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1663
1664      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1665      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1666      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1667      MemOps.push_back(Store);
1668      // Increment the address by four for the next argument to store
1669      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1670      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1671    }
1672
1673    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1674    // on the stack.
1675    if (isELF32_ABI) {
1676      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1677        SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1678        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1679        MemOps.push_back(Store);
1680        // Increment the address by eight for the next argument to store
1681        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1682                                           PtrVT);
1683        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1684      }
1685
1686      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1687        unsigned VReg;
1688        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1689
1690        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1691        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1692        SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1693        MemOps.push_back(Store);
1694        // Increment the address by eight for the next argument to store
1695        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1696                                           PtrVT);
1697        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1698      }
1699    }
1700  }
1701
1702  if (!MemOps.empty())
1703    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1704
1705  ArgValues.push_back(Root);
1706
1707  // Return the new list of results.
1708  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1709                                    Op.Val->value_end());
1710  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1711}
1712
1713/// isCallCompatibleAddress - Return the immediate to use if the specified
1714/// 32-bit value is representable in the immediate field of a BxA instruction.
1715static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1716  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1717  if (!C) return 0;
1718
1719  int Addr = C->getValue();
1720  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1721      (Addr << 6 >> 6) != Addr)
1722    return 0;  // Top 6 bits have to be sext of immediate.
1723
1724  return DAG.getConstant((int)C->getValue() >> 2,
1725                         DAG.getTargetLoweringInfo().getPointerTy()).Val;
1726}
1727
1728/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1729/// by "Src" to address "Dst" of size "Size".  Alignment information is
1730/// specified by the specific parameter attribute. The copy will be passed as
1731/// a byval function parameter.
1732/// Sometimes what we are copying is the end of a larger object, the part that
1733/// does not fit in registers.
1734static SDOperand
1735CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
1736                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1737                          unsigned Size) {
1738  SDOperand AlignNode    = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
1739  SDOperand SizeNode     = DAG.getConstant(Size, MVT::i32);
1740  SDOperand AlwaysInline = DAG.getConstant(0, MVT::i32);
1741  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, AlignNode, AlwaysInline);
1742}
1743
1744SDOperand PPCTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG,
1745                                       const PPCSubtarget &Subtarget,
1746                                       TargetMachine &TM) {
1747  SDOperand Chain  = Op.getOperand(0);
1748  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1749  SDOperand Callee = Op.getOperand(4);
1750  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
1751
1752  bool isMachoABI = Subtarget.isMachoABI();
1753  bool isELF32_ABI  = Subtarget.isELF32_ABI();
1754
1755  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1756  bool isPPC64 = PtrVT == MVT::i64;
1757  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1758
1759  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1760  // SelectExpr to use to put the arguments in the appropriate registers.
1761  std::vector<SDOperand> args_to_use;
1762
1763  // Count how many bytes are to be pushed on the stack, including the linkage
1764  // area, and parameter passing area.  We start with 24/48 bytes, which is
1765  // prereserved space for [SP][CR][LR][3 x unused].
1766  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1767
1768  // Add up all the space actually used.
1769  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1770  // they all go in registers, but we must reserve stack space for them for
1771  // possible use by the caller.  In varargs or 64-bit calls, parameters are
1772  // assigned stack space in order, with padding so Altivec parameters are
1773  // 16-byte aligned.
1774  unsigned nAltivecParamsAtEnd = 0;
1775  for (unsigned i = 0; i != NumOps; ++i) {
1776    SDOperand Arg = Op.getOperand(5+2*i);
1777    MVT::ValueType ArgVT = Arg.getValueType();
1778    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1779        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1780      if (!isVarArg && !isPPC64) {
1781      // Non-varargs Altivec parameters go after all the non-Altivec parameters;
1782      // do those last so we know how much padding we need.
1783        nAltivecParamsAtEnd++;
1784        continue;
1785      } else {
1786        // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1787        NumBytes = ((NumBytes+15)/16)*16;
1788      }
1789    }
1790    ISD::ArgFlagsTy Flags =
1791      cast<ARG_FLAGSSDNode>(Op.getOperand(5+2*i+1))->getArgFlags();
1792    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1793    if (Flags.isByVal())
1794      ArgSize = Flags.getByValSize();
1795    ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1796    NumBytes += ArgSize;
1797  }
1798  // Allow for Altivec parameters at the end, if needed.
1799  if (nAltivecParamsAtEnd) {
1800    NumBytes = ((NumBytes+15)/16)*16;
1801    NumBytes += 16*nAltivecParamsAtEnd;
1802  }
1803
1804  // The prolog code of the callee may store up to 8 GPR argument registers to
1805  // the stack, allowing va_start to index over them in memory if its varargs.
1806  // Because we cannot tell if this is needed on the caller side, we have to
1807  // conservatively assume that it is needed.  As such, make sure we have at
1808  // least enough stack space for the caller to store the 8 GPRs.
1809  NumBytes = std::max(NumBytes,
1810                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1811
1812  // Adjust the stack pointer for the new arguments...
1813  // These operations are automatically eliminated by the prolog/epilog pass
1814  Chain = DAG.getCALLSEQ_START(Chain,
1815                               DAG.getConstant(NumBytes, PtrVT));
1816  SDOperand CallSeqStart = Chain;
1817
1818  // Set up a copy of the stack pointer for use loading and storing any
1819  // arguments that may not fit in the registers available for argument
1820  // passing.
1821  SDOperand StackPtr;
1822  if (isPPC64)
1823    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1824  else
1825    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1826
1827  // Figure out which arguments are going to go in registers, and which in
1828  // memory.  Also, if this is a vararg function, floating point operations
1829  // must be stored to our stack, and loaded into integer regs as well, if
1830  // any integer regs are available for argument passing.
1831  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1832  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1833
1834  static const unsigned GPR_32[] = {           // 32-bit registers.
1835    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1836    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1837  };
1838  static const unsigned GPR_64[] = {           // 64-bit registers.
1839    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1840    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1841  };
1842  static const unsigned *FPR = GetFPR(Subtarget);
1843
1844  static const unsigned VR[] = {
1845    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1846    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1847  };
1848  const unsigned NumGPRs = array_lengthof(GPR_32);
1849  const unsigned NumFPRs = isMachoABI ? 13 : 8;
1850  const unsigned NumVRs  = array_lengthof( VR);
1851
1852  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1853
1854  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1855  SmallVector<SDOperand, 8> MemOpChains;
1856  for (unsigned i = 0; i != NumOps; ++i) {
1857    bool inMem = false;
1858    SDOperand Arg = Op.getOperand(5+2*i);
1859    ISD::ArgFlagsTy Flags =
1860      cast<ARG_FLAGSSDNode>(Op.getOperand(5+2*i+1))->getArgFlags();
1861    // See if next argument requires stack alignment in ELF
1862    bool Expand = false; // TODO: implement this.
1863
1864    // PtrOff will be used to store the current argument to the stack if a
1865    // register cannot be found for it.
1866    SDOperand PtrOff;
1867
1868    // Stack align in ELF 32
1869    if (isELF32_ABI && Expand)
1870      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1871                               StackPtr.getValueType());
1872    else
1873      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1874
1875    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1876
1877    // On PPC64, promote integers to 64-bit values.
1878    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1879      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
1880      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1881      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1882    }
1883
1884    // FIXME Elf untested, what are alignment rules?
1885    // FIXME memcpy is used way more than necessary.  Correctness first.
1886    if (Flags.isByVal()) {
1887      unsigned Size = Flags.getByValSize();
1888      if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1889      if (Size==1 || Size==2) {
1890        // Very small objects are passed right-justified.
1891        // Everything else is passed left-justified.
1892        MVT::ValueType VT = (Size==1) ? MVT::i8 : MVT::i16;
1893        if (GPR_idx != NumGPRs) {
1894          SDOperand Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
1895                                          NULL, 0, VT);
1896          MemOpChains.push_back(Load.getValue(1));
1897          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1898          if (isMachoABI)
1899            ArgOffset += PtrByteSize;
1900        } else {
1901          SDOperand Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
1902          SDOperand AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
1903          SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
1904                                CallSeqStart.Val->getOperand(0),
1905                                Flags, DAG, Size);
1906          // This must go outside the CALLSEQ_START..END.
1907          SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1908                               CallSeqStart.Val->getOperand(1));
1909          DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
1910          Chain = CallSeqStart = NewCallSeqStart;
1911          ArgOffset += PtrByteSize;
1912        }
1913        continue;
1914      }
1915      // Copy entire object into memory.  There are cases where gcc-generated
1916      // code assumes it is there, even if it could be put entirely into
1917      // registers.  (This is not what the doc says.)
1918      SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
1919                            CallSeqStart.Val->getOperand(0),
1920                            Flags, DAG, Size);
1921      // This must go outside the CALLSEQ_START..END.
1922      SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1923                           CallSeqStart.Val->getOperand(1));
1924      DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
1925      Chain = CallSeqStart = NewCallSeqStart;
1926      // And copy the pieces of it that fit into registers.
1927      for (unsigned j=0; j<Size; j+=PtrByteSize) {
1928        SDOperand Const = DAG.getConstant(j, PtrOff.getValueType());
1929        SDOperand AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
1930        if (GPR_idx != NumGPRs) {
1931          SDOperand Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
1932          MemOpChains.push_back(Load.getValue(1));
1933          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1934          if (isMachoABI)
1935            ArgOffset += PtrByteSize;
1936        } else {
1937          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
1938          break;
1939        }
1940      }
1941      continue;
1942    }
1943
1944    switch (Arg.getValueType()) {
1945    default: assert(0 && "Unexpected ValueType for argument!");
1946    case MVT::i32:
1947    case MVT::i64:
1948      // Double word align in ELF
1949      if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1950      if (GPR_idx != NumGPRs) {
1951        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1952      } else {
1953        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1954        inMem = true;
1955      }
1956      if (inMem || isMachoABI) {
1957        // Stack align in ELF
1958        if (isELF32_ABI && Expand)
1959          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1960
1961        ArgOffset += PtrByteSize;
1962      }
1963      break;
1964    case MVT::f32:
1965    case MVT::f64:
1966      if (FPR_idx != NumFPRs) {
1967        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1968
1969        if (isVarArg) {
1970          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1971          MemOpChains.push_back(Store);
1972
1973          // Float varargs are always shadowed in available integer registers
1974          if (GPR_idx != NumGPRs) {
1975            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1976            MemOpChains.push_back(Load.getValue(1));
1977            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1978                                                                Load));
1979          }
1980          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1981            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1982            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1983            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1984            MemOpChains.push_back(Load.getValue(1));
1985            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1986                                                                Load));
1987          }
1988        } else {
1989          // If we have any FPRs remaining, we may also have GPRs remaining.
1990          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1991          // GPRs.
1992          if (isMachoABI) {
1993            if (GPR_idx != NumGPRs)
1994              ++GPR_idx;
1995            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1996                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
1997              ++GPR_idx;
1998          }
1999        }
2000      } else {
2001        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
2002        inMem = true;
2003      }
2004      if (inMem || isMachoABI) {
2005        // Stack align in ELF
2006        if (isELF32_ABI && Expand)
2007          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2008        if (isPPC64)
2009          ArgOffset += 8;
2010        else
2011          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2012      }
2013      break;
2014    case MVT::v4f32:
2015    case MVT::v4i32:
2016    case MVT::v8i16:
2017    case MVT::v16i8:
2018      if (isVarArg) {
2019        // These go aligned on the stack, or in the corresponding R registers
2020        // when within range.  The Darwin PPC ABI doc claims they also go in
2021        // V registers; in fact gcc does this only for arguments that are
2022        // prototyped, not for those that match the ...  We do it for all
2023        // arguments, seems to work.
2024        while (ArgOffset % 16 !=0) {
2025          ArgOffset += PtrByteSize;
2026          if (GPR_idx != NumGPRs)
2027            GPR_idx++;
2028        }
2029        // We could elide this store in the case where the object fits
2030        // entirely in R registers.  Maybe later.
2031        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2032                            DAG.getConstant(ArgOffset, PtrVT));
2033        SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2034        MemOpChains.push_back(Store);
2035        if (VR_idx != NumVRs) {
2036          SDOperand Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0);
2037          MemOpChains.push_back(Load.getValue(1));
2038          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2039        }
2040        ArgOffset += 16;
2041        for (unsigned i=0; i<16; i+=PtrByteSize) {
2042          if (GPR_idx == NumGPRs)
2043            break;
2044          SDOperand Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff,
2045                                  DAG.getConstant(i, PtrVT));
2046          SDOperand Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0);
2047          MemOpChains.push_back(Load.getValue(1));
2048          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2049        }
2050        break;
2051      }
2052      // Non-varargs Altivec params generally go in registers, but have
2053      // stack space allocated at the end.
2054      if (VR_idx != NumVRs) {
2055        // Doesn't have GPR space allocated.
2056        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2057      } else if (nAltivecParamsAtEnd==0) {
2058        // We are emitting Altivec params in order.
2059        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2060                            DAG.getConstant(ArgOffset, PtrVT));
2061        SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2062        MemOpChains.push_back(Store);
2063        ArgOffset += 16;
2064      }
2065      break;
2066    }
2067  }
2068  // If all Altivec parameters fit in registers, as they usually do,
2069  // they get stack space following the non-Altivec parameters.  We
2070  // don't track this here because nobody below needs it.
2071  // If there are more Altivec parameters than fit in registers emit
2072  // the stores here.
2073  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2074    unsigned j = 0;
2075    // Offset is aligned; skip 1st 12 params which go in V registers.
2076    ArgOffset = ((ArgOffset+15)/16)*16;
2077    ArgOffset += 12*16;
2078    for (unsigned i = 0; i != NumOps; ++i) {
2079      SDOperand Arg = Op.getOperand(5+2*i);
2080      MVT::ValueType ArgType = Arg.getValueType();
2081      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2082          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2083        if (++j > NumVRs) {
2084          SDOperand PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2085                              DAG.getConstant(ArgOffset, PtrVT));
2086          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2087          MemOpChains.push_back(Store);
2088          ArgOffset += 16;
2089        }
2090      }
2091    }
2092  }
2093
2094  if (!MemOpChains.empty())
2095    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2096                        &MemOpChains[0], MemOpChains.size());
2097
2098  // Build a sequence of copy-to-reg nodes chained together with token chain
2099  // and flag operands which copy the outgoing args into the appropriate regs.
2100  SDOperand InFlag;
2101  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2102    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
2103                             InFlag);
2104    InFlag = Chain.getValue(1);
2105  }
2106
2107  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2108  if (isVarArg && isELF32_ABI) {
2109    SDOperand SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0);
2110    Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag);
2111    InFlag = Chain.getValue(1);
2112  }
2113
2114  std::vector<MVT::ValueType> NodeTys;
2115  NodeTys.push_back(MVT::Other);   // Returns a chain
2116  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2117
2118  SmallVector<SDOperand, 8> Ops;
2119  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2120
2121  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2122  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2123  // node so that legalize doesn't hack it.
2124  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2125    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2126  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2127    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2128  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2129    // If this is an absolute destination address, use the munged value.
2130    Callee = SDOperand(Dest, 0);
2131  else {
2132    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2133    // to do the call, we can't use PPCISD::CALL.
2134    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
2135    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
2136    InFlag = Chain.getValue(1);
2137
2138    // Copy the callee address into R12/X12 on darwin.
2139    if (isMachoABI) {
2140      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2141      Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag);
2142      InFlag = Chain.getValue(1);
2143    }
2144
2145    NodeTys.clear();
2146    NodeTys.push_back(MVT::Other);
2147    NodeTys.push_back(MVT::Flag);
2148    Ops.push_back(Chain);
2149    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2150    Callee.Val = 0;
2151  }
2152
2153  // If this is a direct call, pass the chain and the callee.
2154  if (Callee.Val) {
2155    Ops.push_back(Chain);
2156    Ops.push_back(Callee);
2157  }
2158
2159  // Add argument registers to the end of the list so that they are known live
2160  // into the call.
2161  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2162    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2163                                  RegsToPass[i].second.getValueType()));
2164
2165  if (InFlag.Val)
2166    Ops.push_back(InFlag);
2167  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
2168  InFlag = Chain.getValue(1);
2169
2170  Chain = DAG.getCALLSEQ_END(Chain,
2171                             DAG.getConstant(NumBytes, PtrVT),
2172                             DAG.getConstant(0, PtrVT),
2173                             InFlag);
2174  if (Op.Val->getValueType(0) != MVT::Other)
2175    InFlag = Chain.getValue(1);
2176
2177  SmallVector<SDOperand, 16> ResultVals;
2178  SmallVector<CCValAssign, 16> RVLocs;
2179  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2180  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2181  CCInfo.AnalyzeCallResult(Op.Val, RetCC_PPC);
2182
2183  // Copy all of the result registers out of their specified physreg.
2184  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2185    CCValAssign &VA = RVLocs[i];
2186    MVT::ValueType VT = VA.getValVT();
2187    assert(VA.isRegLoc() && "Can only return in registers!");
2188    Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1);
2189    ResultVals.push_back(Chain.getValue(0));
2190    InFlag = Chain.getValue(2);
2191  }
2192
2193  // If the function returns void, just return the chain.
2194  if (RVLocs.empty())
2195    return Chain;
2196
2197  // Otherwise, merge everything together with a MERGE_VALUES node.
2198  ResultVals.push_back(Chain);
2199  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
2200                              &ResultVals[0], ResultVals.size());
2201  return Res.getValue(Op.ResNo);
2202}
2203
2204SDOperand PPCTargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG,
2205                                      TargetMachine &TM) {
2206  SmallVector<CCValAssign, 16> RVLocs;
2207  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2208  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2209  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2210  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
2211
2212  // If this is the first return lowered for this function, add the regs to the
2213  // liveout set for the function.
2214  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2215    for (unsigned i = 0; i != RVLocs.size(); ++i)
2216      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2217  }
2218
2219  SDOperand Chain = Op.getOperand(0);
2220  SDOperand Flag;
2221
2222  // Copy the result values into the output registers.
2223  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2224    CCValAssign &VA = RVLocs[i];
2225    assert(VA.isRegLoc() && "Can only return in registers!");
2226    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2227    Flag = Chain.getValue(1);
2228  }
2229
2230  if (Flag.Val)
2231    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2232  else
2233    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2234}
2235
2236SDOperand PPCTargetLowering::LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
2237                                   const PPCSubtarget &Subtarget) {
2238  // When we pop the dynamic allocation we need to restore the SP link.
2239
2240  // Get the corect type for pointers.
2241  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2242
2243  // Construct the stack pointer operand.
2244  bool IsPPC64 = Subtarget.isPPC64();
2245  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2246  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
2247
2248  // Get the operands for the STACKRESTORE.
2249  SDOperand Chain = Op.getOperand(0);
2250  SDOperand SaveSP = Op.getOperand(1);
2251
2252  // Load the old link SP.
2253  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2254
2255  // Restore the stack pointer.
2256  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2257
2258  // Store the old link SP.
2259  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2260}
2261
2262SDOperand PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
2263                                         SelectionDAG &DAG,
2264                                         const PPCSubtarget &Subtarget) {
2265  MachineFunction &MF = DAG.getMachineFunction();
2266  bool IsPPC64 = Subtarget.isPPC64();
2267  bool isMachoABI = Subtarget.isMachoABI();
2268
2269  // Get current frame pointer save index.  The users of this index will be
2270  // primarily DYNALLOC instructions.
2271  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2272  int FPSI = FI->getFramePointerSaveIndex();
2273
2274  // If the frame pointer save index hasn't been defined yet.
2275  if (!FPSI) {
2276    // Find out what the fix offset of the frame pointer save area.
2277    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2278
2279    // Allocate the frame index for frame pointer save area.
2280    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2281    // Save the result.
2282    FI->setFramePointerSaveIndex(FPSI);
2283  }
2284
2285  // Get the inputs.
2286  SDOperand Chain = Op.getOperand(0);
2287  SDOperand Size  = Op.getOperand(1);
2288
2289  // Get the corect type for pointers.
2290  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2291  // Negate the size.
2292  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
2293                                  DAG.getConstant(0, PtrVT), Size);
2294  // Construct a node for the frame pointer save index.
2295  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
2296  // Build a DYNALLOC node.
2297  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
2298  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2299  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2300}
2301
2302
2303/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2304/// possible.
2305SDOperand PPCTargetLowering::LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
2306  // Not FP? Not a fsel.
2307  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
2308      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
2309    return SDOperand();
2310
2311  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2312
2313  // Cannot handle SETEQ/SETNE.
2314  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2315
2316  MVT::ValueType ResVT = Op.getValueType();
2317  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2318  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2319  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2320
2321  // If the RHS of the comparison is a 0.0, we don't need to do the
2322  // subtraction at all.
2323  if (isFloatingPointZero(RHS))
2324    switch (CC) {
2325    default: break;       // SETUO etc aren't handled by fsel.
2326    case ISD::SETULT:
2327    case ISD::SETOLT:
2328    case ISD::SETLT:
2329      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2330    case ISD::SETUGE:
2331    case ISD::SETOGE:
2332    case ISD::SETGE:
2333      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2334        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2335      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2336    case ISD::SETUGT:
2337    case ISD::SETOGT:
2338    case ISD::SETGT:
2339      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2340    case ISD::SETULE:
2341    case ISD::SETOLE:
2342    case ISD::SETLE:
2343      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2344        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2345      return DAG.getNode(PPCISD::FSEL, ResVT,
2346                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2347    }
2348
2349  SDOperand Cmp;
2350  switch (CC) {
2351  default: break;       // SETUO etc aren't handled by fsel.
2352  case ISD::SETULT:
2353  case ISD::SETOLT:
2354  case ISD::SETLT:
2355    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2356    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2357      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2358      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2359  case ISD::SETUGE:
2360  case ISD::SETOGE:
2361  case ISD::SETGE:
2362    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2363    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2364      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2365      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2366  case ISD::SETUGT:
2367  case ISD::SETOGT:
2368  case ISD::SETGT:
2369    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2370    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2371      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2372      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2373  case ISD::SETULE:
2374  case ISD::SETOLE:
2375  case ISD::SETLE:
2376    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2377    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2378      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2379      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2380  }
2381  return SDOperand();
2382}
2383
2384// FIXME: Split this code up when LegalizeDAGTypes lands.
2385SDOperand PPCTargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2386  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2387  SDOperand Src = Op.getOperand(0);
2388  if (Src.getValueType() == MVT::f32)
2389    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2390
2391  SDOperand Tmp;
2392  switch (Op.getValueType()) {
2393  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2394  case MVT::i32:
2395    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2396    break;
2397  case MVT::i64:
2398    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2399    break;
2400  }
2401
2402  // Convert the FP value to an int value through memory.
2403  SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2404
2405  // Emit a store to the stack slot.
2406  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2407
2408  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2409  // add in a bias.
2410  if (Op.getValueType() == MVT::i32)
2411    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2412                        DAG.getConstant(4, FIPtr.getValueType()));
2413  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2414}
2415
2416SDOperand PPCTargetLowering::LowerFP_ROUND_INREG(SDOperand Op,
2417                                                 SelectionDAG &DAG) {
2418  assert(Op.getValueType() == MVT::ppcf128);
2419  SDNode *Node = Op.Val;
2420  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2421  assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
2422  SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2423  SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2424
2425  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2426  // of the long double, and puts FPSCR back the way it was.  We do not
2427  // actually model FPSCR.
2428  std::vector<MVT::ValueType> NodeTys;
2429  SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2430
2431  NodeTys.push_back(MVT::f64);   // Return register
2432  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2433  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2434  MFFSreg = Result.getValue(0);
2435  InFlag = Result.getValue(1);
2436
2437  NodeTys.clear();
2438  NodeTys.push_back(MVT::Flag);   // Returns a flag
2439  Ops[0] = DAG.getConstant(31, MVT::i32);
2440  Ops[1] = InFlag;
2441  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2442  InFlag = Result.getValue(0);
2443
2444  NodeTys.clear();
2445  NodeTys.push_back(MVT::Flag);   // Returns a flag
2446  Ops[0] = DAG.getConstant(30, MVT::i32);
2447  Ops[1] = InFlag;
2448  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2449  InFlag = Result.getValue(0);
2450
2451  NodeTys.clear();
2452  NodeTys.push_back(MVT::f64);    // result of add
2453  NodeTys.push_back(MVT::Flag);   // Returns a flag
2454  Ops[0] = Lo;
2455  Ops[1] = Hi;
2456  Ops[2] = InFlag;
2457  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2458  FPreg = Result.getValue(0);
2459  InFlag = Result.getValue(1);
2460
2461  NodeTys.clear();
2462  NodeTys.push_back(MVT::f64);
2463  Ops[0] = DAG.getConstant(1, MVT::i32);
2464  Ops[1] = MFFSreg;
2465  Ops[2] = FPreg;
2466  Ops[3] = InFlag;
2467  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2468  FPreg = Result.getValue(0);
2469
2470  // We know the low half is about to be thrown away, so just use something
2471  // convenient.
2472  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2473}
2474
2475SDOperand PPCTargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2476  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2477  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2478    return SDOperand();
2479
2480  if (Op.getOperand(0).getValueType() == MVT::i64) {
2481    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2482    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2483    if (Op.getValueType() == MVT::f32)
2484      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2485    return FP;
2486  }
2487
2488  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2489         "Unhandled SINT_TO_FP type in custom expander!");
2490  // Since we only generate this in 64-bit mode, we can take advantage of
2491  // 64-bit registers.  In particular, sign extend the input value into the
2492  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2493  // then lfd it and fcfid it.
2494  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2495  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2496  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2497  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2498
2499  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2500                                Op.getOperand(0));
2501
2502  // STD the extended value into the stack slot.
2503  MemOperand MO(PseudoSourceValue::getFixedStack(),
2504                MemOperand::MOStore, FrameIdx, 8, 8);
2505  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2506                                DAG.getEntryNode(), Ext64, FIdx,
2507                                DAG.getMemOperand(MO));
2508  // Load the value as a double.
2509  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2510
2511  // FCFID it and return it.
2512  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2513  if (Op.getValueType() == MVT::f32)
2514    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2515  return FP;
2516}
2517
2518SDOperand PPCTargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
2519  /*
2520   The rounding mode is in bits 30:31 of FPSR, and has the following
2521   settings:
2522     00 Round to nearest
2523     01 Round to 0
2524     10 Round to +inf
2525     11 Round to -inf
2526
2527  FLT_ROUNDS, on the other hand, expects the following:
2528    -1 Undefined
2529     0 Round to 0
2530     1 Round to nearest
2531     2 Round to +inf
2532     3 Round to -inf
2533
2534  To perform the conversion, we do:
2535    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2536  */
2537
2538  MachineFunction &MF = DAG.getMachineFunction();
2539  MVT::ValueType VT = Op.getValueType();
2540  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2541  std::vector<MVT::ValueType> NodeTys;
2542  SDOperand MFFSreg, InFlag;
2543
2544  // Save FP Control Word to register
2545  NodeTys.push_back(MVT::f64);    // return register
2546  NodeTys.push_back(MVT::Flag);   // unused in this context
2547  SDOperand Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2548
2549  // Save FP register to stack slot
2550  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2551  SDOperand StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2552  SDOperand Store = DAG.getStore(DAG.getEntryNode(), Chain,
2553                                 StackSlot, NULL, 0);
2554
2555  // Load FP Control Word from low 32 bits of stack slot.
2556  SDOperand Four = DAG.getConstant(4, PtrVT);
2557  SDOperand Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
2558  SDOperand CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
2559
2560  // Transform as necessary
2561  SDOperand CWD1 =
2562    DAG.getNode(ISD::AND, MVT::i32,
2563                CWD, DAG.getConstant(3, MVT::i32));
2564  SDOperand CWD2 =
2565    DAG.getNode(ISD::SRL, MVT::i32,
2566                DAG.getNode(ISD::AND, MVT::i32,
2567                            DAG.getNode(ISD::XOR, MVT::i32,
2568                                        CWD, DAG.getConstant(3, MVT::i32)),
2569                            DAG.getConstant(3, MVT::i32)),
2570                DAG.getConstant(1, MVT::i8));
2571
2572  SDOperand RetVal =
2573    DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
2574
2575  return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
2576                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
2577}
2578
2579SDOperand PPCTargetLowering::LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2580  MVT::ValueType VT = Op.getValueType();
2581  unsigned BitWidth = MVT::getSizeInBits(VT);
2582  assert(Op.getNumOperands() == 3 &&
2583         VT == Op.getOperand(1).getValueType() &&
2584         "Unexpected SHL!");
2585
2586  // Expand into a bunch of logical ops.  Note that these ops
2587  // depend on the PPC behavior for oversized shift amounts.
2588  SDOperand Lo = Op.getOperand(0);
2589  SDOperand Hi = Op.getOperand(1);
2590  SDOperand Amt = Op.getOperand(2);
2591  MVT::ValueType AmtVT = Amt.getValueType();
2592
2593  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2594                               DAG.getConstant(BitWidth, AmtVT), Amt);
2595  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
2596  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
2597  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2598  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2599                               DAG.getConstant(-BitWidth, AmtVT));
2600  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
2601  SDOperand OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2602  SDOperand OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
2603  SDOperand OutOps[] = { OutLo, OutHi };
2604  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
2605                     OutOps, 2);
2606}
2607
2608SDOperand PPCTargetLowering::LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2609  MVT::ValueType VT = Op.getValueType();
2610  unsigned BitWidth = MVT::getSizeInBits(VT);
2611  assert(Op.getNumOperands() == 3 &&
2612         VT == Op.getOperand(1).getValueType() &&
2613         "Unexpected SRL!");
2614
2615  // Expand into a bunch of logical ops.  Note that these ops
2616  // depend on the PPC behavior for oversized shift amounts.
2617  SDOperand Lo = Op.getOperand(0);
2618  SDOperand Hi = Op.getOperand(1);
2619  SDOperand Amt = Op.getOperand(2);
2620  MVT::ValueType AmtVT = Amt.getValueType();
2621
2622  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2623                               DAG.getConstant(BitWidth, AmtVT), Amt);
2624  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2625  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2626  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2627  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2628                               DAG.getConstant(-BitWidth, AmtVT));
2629  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
2630  SDOperand OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2631  SDOperand OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
2632  SDOperand OutOps[] = { OutLo, OutHi };
2633  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
2634                     OutOps, 2);
2635}
2636
2637SDOperand PPCTargetLowering::LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2638  MVT::ValueType VT = Op.getValueType();
2639  unsigned BitWidth = MVT::getSizeInBits(VT);
2640  assert(Op.getNumOperands() == 3 &&
2641         VT == Op.getOperand(1).getValueType() &&
2642         "Unexpected SRA!");
2643
2644  // Expand into a bunch of logical ops, followed by a select_cc.
2645  SDOperand Lo = Op.getOperand(0);
2646  SDOperand Hi = Op.getOperand(1);
2647  SDOperand Amt = Op.getOperand(2);
2648  MVT::ValueType AmtVT = Amt.getValueType();
2649
2650  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2651                               DAG.getConstant(BitWidth, AmtVT), Amt);
2652  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2653  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2654  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2655  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2656                               DAG.getConstant(-BitWidth, AmtVT));
2657  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
2658  SDOperand OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
2659  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
2660                                    Tmp4, Tmp6, ISD::SETLE);
2661  SDOperand OutOps[] = { OutLo, OutHi };
2662  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
2663                     OutOps, 2);
2664}
2665
2666//===----------------------------------------------------------------------===//
2667// Vector related lowering.
2668//
2669
2670// If this is a vector of constants or undefs, get the bits.  A bit in
2671// UndefBits is set if the corresponding element of the vector is an
2672// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2673// zero.   Return true if this is not an array of constants, false if it is.
2674//
2675static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2676                                       uint64_t UndefBits[2]) {
2677  // Start with zero'd results.
2678  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2679
2680  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2681  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2682    SDOperand OpVal = BV->getOperand(i);
2683
2684    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
2685    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
2686
2687    uint64_t EltBits = 0;
2688    if (OpVal.getOpcode() == ISD::UNDEF) {
2689      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2690      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2691      continue;
2692    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2693      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2694    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2695      assert(CN->getValueType(0) == MVT::f32 &&
2696             "Only one legal FP vector type!");
2697      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
2698    } else {
2699      // Nonconstant element.
2700      return true;
2701    }
2702
2703    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2704  }
2705
2706  //printf("%llx %llx  %llx %llx\n",
2707  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2708  return false;
2709}
2710
2711// If this is a splat (repetition) of a value across the whole vector, return
2712// the smallest size that splats it.  For example, "0x01010101010101..." is a
2713// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2714// SplatSize = 1 byte.
2715static bool isConstantSplat(const uint64_t Bits128[2],
2716                            const uint64_t Undef128[2],
2717                            unsigned &SplatBits, unsigned &SplatUndef,
2718                            unsigned &SplatSize) {
2719
2720  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
2721  // the same as the lower 64-bits, ignoring undefs.
2722  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2723    return false;  // Can't be a splat if two pieces don't match.
2724
2725  uint64_t Bits64  = Bits128[0] | Bits128[1];
2726  uint64_t Undef64 = Undef128[0] & Undef128[1];
2727
2728  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2729  // undefs.
2730  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2731    return false;  // Can't be a splat if two pieces don't match.
2732
2733  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2734  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2735
2736  // If the top 16-bits are different than the lower 16-bits, ignoring
2737  // undefs, we have an i32 splat.
2738  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2739    SplatBits = Bits32;
2740    SplatUndef = Undef32;
2741    SplatSize = 4;
2742    return true;
2743  }
2744
2745  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
2746  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2747
2748  // If the top 8-bits are different than the lower 8-bits, ignoring
2749  // undefs, we have an i16 splat.
2750  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2751    SplatBits = Bits16;
2752    SplatUndef = Undef16;
2753    SplatSize = 2;
2754    return true;
2755  }
2756
2757  // Otherwise, we have an 8-bit splat.
2758  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
2759  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2760  SplatSize = 1;
2761  return true;
2762}
2763
2764/// BuildSplatI - Build a canonical splati of Val with an element size of
2765/// SplatSize.  Cast the result to VT.
2766static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2767                             SelectionDAG &DAG) {
2768  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2769
2770  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2771    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2772  };
2773
2774  MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2775
2776  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2777  if (Val == -1)
2778    SplatSize = 1;
2779
2780  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2781
2782  // Build a canonical splat for this value.
2783  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2784  SmallVector<SDOperand, 8> Ops;
2785  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2786  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2787                              &Ops[0], Ops.size());
2788  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2789}
2790
2791/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2792/// specified intrinsic ID.
2793static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2794                                  SelectionDAG &DAG,
2795                                  MVT::ValueType DestVT = MVT::Other) {
2796  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2797  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2798                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
2799}
2800
2801/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2802/// specified intrinsic ID.
2803static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2804                                  SDOperand Op2, SelectionDAG &DAG,
2805                                  MVT::ValueType DestVT = MVT::Other) {
2806  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2807  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2808                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2809}
2810
2811
2812/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2813/// amount.  The result has the specified value type.
2814static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2815                             MVT::ValueType VT, SelectionDAG &DAG) {
2816  // Force LHS/RHS to be the right type.
2817  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2818  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2819
2820  SDOperand Ops[16];
2821  for (unsigned i = 0; i != 16; ++i)
2822    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2823  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2824                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2825  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2826}
2827
2828// If this is a case we can't handle, return null and let the default
2829// expansion code take care of it.  If we CAN select this case, and if it
2830// selects to a single instruction, return Op.  Otherwise, if we can codegen
2831// this case more efficiently than a constant pool load, lower it to the
2832// sequence of ops that should be used.
2833SDOperand PPCTargetLowering::LowerBUILD_VECTOR(SDOperand Op,
2834                                               SelectionDAG &DAG) {
2835  // If this is a vector of constants or undefs, get the bits.  A bit in
2836  // UndefBits is set if the corresponding element of the vector is an
2837  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2838  // zero.
2839  uint64_t VectorBits[2];
2840  uint64_t UndefBits[2];
2841  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2842    return SDOperand();   // Not a constant vector.
2843
2844  // If this is a splat (repetition) of a value across the whole vector, return
2845  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2846  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2847  // SplatSize = 1 byte.
2848  unsigned SplatBits, SplatUndef, SplatSize;
2849  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2850    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2851
2852    // First, handle single instruction cases.
2853
2854    // All zeros?
2855    if (SplatBits == 0) {
2856      // Canonicalize all zero vectors to be v4i32.
2857      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2858        SDOperand Z = DAG.getConstant(0, MVT::i32);
2859        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2860        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2861      }
2862      return Op;
2863    }
2864
2865    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2866    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2867    if (SextVal >= -16 && SextVal <= 15)
2868      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2869
2870
2871    // Two instruction sequences.
2872
2873    // If this value is in the range [-32,30] and is even, use:
2874    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2875    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2876      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2877      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2878    }
2879
2880    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2881    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2882    // for fneg/fabs.
2883    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2884      // Make -1 and vspltisw -1:
2885      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2886
2887      // Make the VSLW intrinsic, computing 0x8000_0000.
2888      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2889                                       OnesV, DAG);
2890
2891      // xor by OnesV to invert it.
2892      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2893      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2894    }
2895
2896    // Check to see if this is a wide variety of vsplti*, binop self cases.
2897    unsigned SplatBitSize = SplatSize*8;
2898    static const signed char SplatCsts[] = {
2899      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2900      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2901    };
2902
2903    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
2904      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2905      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2906      int i = SplatCsts[idx];
2907
2908      // Figure out what shift amount will be used by altivec if shifted by i in
2909      // this splat size.
2910      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2911
2912      // vsplti + shl self.
2913      if (SextVal == (i << (int)TypeShiftAmt)) {
2914        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2915        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2916          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2917          Intrinsic::ppc_altivec_vslw
2918        };
2919        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2920        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2921      }
2922
2923      // vsplti + srl self.
2924      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2925        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2926        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2927          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2928          Intrinsic::ppc_altivec_vsrw
2929        };
2930        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2931        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2932      }
2933
2934      // vsplti + sra self.
2935      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2936        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2937        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2938          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2939          Intrinsic::ppc_altivec_vsraw
2940        };
2941        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2942        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2943      }
2944
2945      // vsplti + rol self.
2946      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2947                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2948        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2949        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2950          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2951          Intrinsic::ppc_altivec_vrlw
2952        };
2953        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2954        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2955      }
2956
2957      // t = vsplti c, result = vsldoi t, t, 1
2958      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2959        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2960        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2961      }
2962      // t = vsplti c, result = vsldoi t, t, 2
2963      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2964        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2965        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2966      }
2967      // t = vsplti c, result = vsldoi t, t, 3
2968      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2969        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2970        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2971      }
2972    }
2973
2974    // Three instruction sequences.
2975
2976    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2977    if (SextVal >= 0 && SextVal <= 31) {
2978      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2979      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2980      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
2981      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2982    }
2983    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2984    if (SextVal >= -31 && SextVal <= 0) {
2985      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2986      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2987      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
2988      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2989    }
2990  }
2991
2992  return SDOperand();
2993}
2994
2995/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2996/// the specified operations to build the shuffle.
2997static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2998                                        SDOperand RHS, SelectionDAG &DAG) {
2999  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3000  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
3001  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3002
3003  enum {
3004    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3005    OP_VMRGHW,
3006    OP_VMRGLW,
3007    OP_VSPLTISW0,
3008    OP_VSPLTISW1,
3009    OP_VSPLTISW2,
3010    OP_VSPLTISW3,
3011    OP_VSLDOI4,
3012    OP_VSLDOI8,
3013    OP_VSLDOI12
3014  };
3015
3016  if (OpNum == OP_COPY) {
3017    if (LHSID == (1*9+2)*9+3) return LHS;
3018    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3019    return RHS;
3020  }
3021
3022  SDOperand OpLHS, OpRHS;
3023  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
3024  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
3025
3026  unsigned ShufIdxs[16];
3027  switch (OpNum) {
3028  default: assert(0 && "Unknown i32 permute!");
3029  case OP_VMRGHW:
3030    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3031    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3032    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3033    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3034    break;
3035  case OP_VMRGLW:
3036    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3037    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3038    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3039    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3040    break;
3041  case OP_VSPLTISW0:
3042    for (unsigned i = 0; i != 16; ++i)
3043      ShufIdxs[i] = (i&3)+0;
3044    break;
3045  case OP_VSPLTISW1:
3046    for (unsigned i = 0; i != 16; ++i)
3047      ShufIdxs[i] = (i&3)+4;
3048    break;
3049  case OP_VSPLTISW2:
3050    for (unsigned i = 0; i != 16; ++i)
3051      ShufIdxs[i] = (i&3)+8;
3052    break;
3053  case OP_VSPLTISW3:
3054    for (unsigned i = 0; i != 16; ++i)
3055      ShufIdxs[i] = (i&3)+12;
3056    break;
3057  case OP_VSLDOI4:
3058    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
3059  case OP_VSLDOI8:
3060    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
3061  case OP_VSLDOI12:
3062    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
3063  }
3064  SDOperand Ops[16];
3065  for (unsigned i = 0; i != 16; ++i)
3066    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
3067
3068  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
3069                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3070}
3071
3072/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3073/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3074/// return the code it can be lowered into.  Worst case, it can always be
3075/// lowered into a vperm.
3076SDOperand PPCTargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op,
3077                                                 SelectionDAG &DAG) {
3078  SDOperand V1 = Op.getOperand(0);
3079  SDOperand V2 = Op.getOperand(1);
3080  SDOperand PermMask = Op.getOperand(2);
3081
3082  // Cases that are handled by instructions that take permute immediates
3083  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3084  // selected by the instruction selector.
3085  if (V2.getOpcode() == ISD::UNDEF) {
3086    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
3087        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
3088        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
3089        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
3090        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
3091        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
3092        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
3093        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
3094        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
3095        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
3096        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
3097        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
3098      return Op;
3099    }
3100  }
3101
3102  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3103  // and produce a fixed permutation.  If any of these match, do not lower to
3104  // VPERM.
3105  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
3106      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
3107      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
3108      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
3109      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
3110      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
3111      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
3112      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
3113      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
3114    return Op;
3115
3116  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3117  // perfect shuffle table to emit an optimal matching sequence.
3118  unsigned PFIndexes[4];
3119  bool isFourElementShuffle = true;
3120  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3121    unsigned EltNo = 8;   // Start out undef.
3122    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3123      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3124        continue;   // Undef, ignore it.
3125
3126      unsigned ByteSource =
3127        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
3128      if ((ByteSource & 3) != j) {
3129        isFourElementShuffle = false;
3130        break;
3131      }
3132
3133      if (EltNo == 8) {
3134        EltNo = ByteSource/4;
3135      } else if (EltNo != ByteSource/4) {
3136        isFourElementShuffle = false;
3137        break;
3138      }
3139    }
3140    PFIndexes[i] = EltNo;
3141  }
3142
3143  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3144  // perfect shuffle vector to determine if it is cost effective to do this as
3145  // discrete instructions, or whether we should use a vperm.
3146  if (isFourElementShuffle) {
3147    // Compute the index in the perfect shuffle table.
3148    unsigned PFTableIndex =
3149      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3150
3151    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3152    unsigned Cost  = (PFEntry >> 30);
3153
3154    // Determining when to avoid vperm is tricky.  Many things affect the cost
3155    // of vperm, particularly how many times the perm mask needs to be computed.
3156    // For example, if the perm mask can be hoisted out of a loop or is already
3157    // used (perhaps because there are multiple permutes with the same shuffle
3158    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3159    // the loop requires an extra register.
3160    //
3161    // As a compromise, we only emit discrete instructions if the shuffle can be
3162    // generated in 3 or fewer operations.  When we have loop information
3163    // available, if this block is within a loop, we should avoid using vperm
3164    // for 3-operation perms and use a constant pool load instead.
3165    if (Cost < 3)
3166      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3167  }
3168
3169  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3170  // vector that will get spilled to the constant pool.
3171  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3172
3173  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3174  // that it is in input element units, not in bytes.  Convert now.
3175  MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
3176  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
3177
3178  SmallVector<SDOperand, 16> ResultMask;
3179  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3180    unsigned SrcElt;
3181    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3182      SrcElt = 0;
3183    else
3184      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
3185
3186    for (unsigned j = 0; j != BytesPerElement; ++j)
3187      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3188                                           MVT::i8));
3189  }
3190
3191  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3192                                    &ResultMask[0], ResultMask.size());
3193  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3194}
3195
3196/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3197/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3198/// information about the intrinsic.
3199static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
3200                                  bool &isDot) {
3201  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
3202  CompareOpc = -1;
3203  isDot = false;
3204  switch (IntrinsicID) {
3205  default: return false;
3206    // Comparison predicates.
3207  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3208  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3209  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3210  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3211  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3212  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3213  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3214  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3215  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3216  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3217  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3218  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3219  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3220
3221    // Normal Comparisons.
3222  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3223  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3224  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3225  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3226  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3227  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3228  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3229  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
3230  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
3231  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
3232  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
3233  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
3234  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
3235  }
3236  return true;
3237}
3238
3239/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3240/// lower, do it, otherwise return null.
3241SDOperand PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op,
3242                                                     SelectionDAG &DAG) {
3243  // If this is a lowered altivec predicate compare, CompareOpc is set to the
3244  // opcode number of the comparison.
3245  int CompareOpc;
3246  bool isDot;
3247  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3248    return SDOperand();    // Don't custom lower most intrinsics.
3249
3250  // If this is a non-dot comparison, make the VCMP node and we are done.
3251  if (!isDot) {
3252    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3253                                Op.getOperand(1), Op.getOperand(2),
3254                                DAG.getConstant(CompareOpc, MVT::i32));
3255    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3256  }
3257
3258  // Create the PPCISD altivec 'dot' comparison node.
3259  SDOperand Ops[] = {
3260    Op.getOperand(2),  // LHS
3261    Op.getOperand(3),  // RHS
3262    DAG.getConstant(CompareOpc, MVT::i32)
3263  };
3264  std::vector<MVT::ValueType> VTs;
3265  VTs.push_back(Op.getOperand(2).getValueType());
3266  VTs.push_back(MVT::Flag);
3267  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3268
3269  // Now that we have the comparison, emit a copy from the CR to a GPR.
3270  // This is flagged to the above dot comparison.
3271  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3272                                DAG.getRegister(PPC::CR6, MVT::i32),
3273                                CompNode.getValue(1));
3274
3275  // Unpack the result based on how the target uses it.
3276  unsigned BitNo;   // Bit # of CR6.
3277  bool InvertBit;   // Invert result?
3278  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
3279  default:  // Can't happen, don't crash on invalid number though.
3280  case 0:   // Return the value of the EQ bit of CR6.
3281    BitNo = 0; InvertBit = false;
3282    break;
3283  case 1:   // Return the inverted value of the EQ bit of CR6.
3284    BitNo = 0; InvertBit = true;
3285    break;
3286  case 2:   // Return the value of the LT bit of CR6.
3287    BitNo = 2; InvertBit = false;
3288    break;
3289  case 3:   // Return the inverted value of the LT bit of CR6.
3290    BitNo = 2; InvertBit = true;
3291    break;
3292  }
3293
3294  // Shift the bit into the low position.
3295  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3296                      DAG.getConstant(8-(3-BitNo), MVT::i32));
3297  // Isolate the bit.
3298  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3299                      DAG.getConstant(1, MVT::i32));
3300
3301  // If we are supposed to, toggle the bit.
3302  if (InvertBit)
3303    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3304                        DAG.getConstant(1, MVT::i32));
3305  return Flags;
3306}
3307
3308SDOperand PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op,
3309                                                   SelectionDAG &DAG) {
3310  // Create a stack slot that is 16-byte aligned.
3311  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3312  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3313  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3314  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3315
3316  // Store the input value into Value#0 of the stack slot.
3317  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
3318                                 Op.getOperand(0), FIdx, NULL, 0);
3319  // Load it out.
3320  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3321}
3322
3323SDOperand PPCTargetLowering::LowerMUL(SDOperand Op, SelectionDAG &DAG) {
3324  if (Op.getValueType() == MVT::v4i32) {
3325    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3326
3327    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
3328    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3329
3330    SDOperand RHSSwap =   // = vrlw RHS, 16
3331      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3332
3333    // Shrinkify inputs to v8i16.
3334    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3335    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3336    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3337
3338    // Low parts multiplied together, generating 32-bit results (we ignore the
3339    // top parts).
3340    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3341                                        LHS, RHS, DAG, MVT::v4i32);
3342
3343    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3344                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3345    // Shift the high parts up 16 bits.
3346    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3347    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3348  } else if (Op.getValueType() == MVT::v8i16) {
3349    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3350
3351    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3352
3353    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3354                            LHS, RHS, Zero, DAG);
3355  } else if (Op.getValueType() == MVT::v16i8) {
3356    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3357
3358    // Multiply the even 8-bit parts, producing 16-bit sums.
3359    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3360                                           LHS, RHS, DAG, MVT::v8i16);
3361    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3362
3363    // Multiply the odd 8-bit parts, producing 16-bit sums.
3364    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3365                                          LHS, RHS, DAG, MVT::v8i16);
3366    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3367
3368    // Merge the results together.
3369    SDOperand Ops[16];
3370    for (unsigned i = 0; i != 8; ++i) {
3371      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
3372      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3373    }
3374    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3375                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3376  } else {
3377    assert(0 && "Unknown mul to lower!");
3378    abort();
3379  }
3380}
3381
3382/// LowerOperation - Provide custom lowering hooks for some operations.
3383///
3384SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3385  switch (Op.getOpcode()) {
3386  default: assert(0 && "Wasn't expecting to be able to lower this!");
3387  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3388  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3389  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3390  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3391  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3392  case ISD::VASTART:
3393    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3394                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3395
3396  case ISD::VAARG:
3397    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3398                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3399
3400  case ISD::FORMAL_ARGUMENTS:
3401    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3402                                 VarArgsStackOffset, VarArgsNumGPR,
3403                                 VarArgsNumFPR, PPCSubTarget);
3404
3405  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget,
3406                                                 getTargetMachine());
3407  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3408  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3409  case ISD::DYNAMIC_STACKALLOC:
3410    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3411
3412  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3413  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3414  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3415  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3416  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3417
3418  // Lower 64-bit shifts.
3419  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3420  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3421  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3422
3423  // Vector-related lowering.
3424  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3425  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3426  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3427  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3428  case ISD::MUL:                return LowerMUL(Op, DAG);
3429
3430  // Frame & Return address.
3431  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3432  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3433  }
3434  return SDOperand();
3435}
3436
3437SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3438  switch (N->getOpcode()) {
3439  default: assert(0 && "Wasn't expecting to be able to lower this!");
3440  case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3441  }
3442}
3443
3444
3445//===----------------------------------------------------------------------===//
3446//  Other Lowering Code
3447//===----------------------------------------------------------------------===//
3448
3449MachineBasicBlock *
3450PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3451                                               MachineBasicBlock *BB) {
3452  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3453  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3454          MI->getOpcode() == PPC::SELECT_CC_I8 ||
3455          MI->getOpcode() == PPC::SELECT_CC_F4 ||
3456          MI->getOpcode() == PPC::SELECT_CC_F8 ||
3457          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3458         "Unexpected instr type to insert");
3459
3460  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3461  // control-flow pattern.  The incoming instruction knows the destination vreg
3462  // to set, the condition code register to branch on, the true/false values to
3463  // select between, and a branch opcode to use.
3464  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3465  ilist<MachineBasicBlock>::iterator It = BB;
3466  ++It;
3467
3468  //  thisMBB:
3469  //  ...
3470  //   TrueVal = ...
3471  //   cmpTY ccX, r1, r2
3472  //   bCC copy1MBB
3473  //   fallthrough --> copy0MBB
3474  MachineBasicBlock *thisMBB = BB;
3475  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3476  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3477  unsigned SelectPred = MI->getOperand(4).getImm();
3478  BuildMI(BB, TII->get(PPC::BCC))
3479    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3480  MachineFunction *F = BB->getParent();
3481  F->getBasicBlockList().insert(It, copy0MBB);
3482  F->getBasicBlockList().insert(It, sinkMBB);
3483  // Update machine-CFG edges by first adding all successors of the current
3484  // block to the new block which will contain the Phi node for the select.
3485  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3486      e = BB->succ_end(); i != e; ++i)
3487    sinkMBB->addSuccessor(*i);
3488  // Next, remove all successors of the current block, and add the true
3489  // and fallthrough blocks as its successors.
3490  while(!BB->succ_empty())
3491    BB->removeSuccessor(BB->succ_begin());
3492  BB->addSuccessor(copy0MBB);
3493  BB->addSuccessor(sinkMBB);
3494
3495  //  copy0MBB:
3496  //   %FalseValue = ...
3497  //   # fallthrough to sinkMBB
3498  BB = copy0MBB;
3499
3500  // Update machine-CFG edges
3501  BB->addSuccessor(sinkMBB);
3502
3503  //  sinkMBB:
3504  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3505  //  ...
3506  BB = sinkMBB;
3507  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3508    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3509    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3510
3511  delete MI;   // The pseudo instruction is gone now.
3512  return BB;
3513}
3514
3515//===----------------------------------------------------------------------===//
3516// Target Optimization Hooks
3517//===----------------------------------------------------------------------===//
3518
3519SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3520                                               DAGCombinerInfo &DCI) const {
3521  TargetMachine &TM = getTargetMachine();
3522  SelectionDAG &DAG = DCI.DAG;
3523  switch (N->getOpcode()) {
3524  default: break;
3525  case PPCISD::SHL:
3526    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3527      if (C->getValue() == 0)   // 0 << V -> 0.
3528        return N->getOperand(0);
3529    }
3530    break;
3531  case PPCISD::SRL:
3532    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3533      if (C->getValue() == 0)   // 0 >>u V -> 0.
3534        return N->getOperand(0);
3535    }
3536    break;
3537  case PPCISD::SRA:
3538    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3539      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
3540          C->isAllOnesValue())    // -1 >>s V -> -1.
3541        return N->getOperand(0);
3542    }
3543    break;
3544
3545  case ISD::SINT_TO_FP:
3546    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3547      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3548        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3549        // We allow the src/dst to be either f32/f64, but the intermediate
3550        // type must be i64.
3551        if (N->getOperand(0).getValueType() == MVT::i64 &&
3552            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
3553          SDOperand Val = N->getOperand(0).getOperand(0);
3554          if (Val.getValueType() == MVT::f32) {
3555            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3556            DCI.AddToWorklist(Val.Val);
3557          }
3558
3559          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3560          DCI.AddToWorklist(Val.Val);
3561          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3562          DCI.AddToWorklist(Val.Val);
3563          if (N->getValueType(0) == MVT::f32) {
3564            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
3565                              DAG.getIntPtrConstant(0));
3566            DCI.AddToWorklist(Val.Val);
3567          }
3568          return Val;
3569        } else if (N->getOperand(0).getValueType() == MVT::i32) {
3570          // If the intermediate type is i32, we can avoid the load/store here
3571          // too.
3572        }
3573      }
3574    }
3575    break;
3576  case ISD::STORE:
3577    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3578    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3579        !cast<StoreSDNode>(N)->isTruncatingStore() &&
3580        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3581        N->getOperand(1).getValueType() == MVT::i32 &&
3582        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
3583      SDOperand Val = N->getOperand(1).getOperand(0);
3584      if (Val.getValueType() == MVT::f32) {
3585        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3586        DCI.AddToWorklist(Val.Val);
3587      }
3588      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3589      DCI.AddToWorklist(Val.Val);
3590
3591      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3592                        N->getOperand(2), N->getOperand(3));
3593      DCI.AddToWorklist(Val.Val);
3594      return Val;
3595    }
3596
3597    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3598    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3599        N->getOperand(1).Val->hasOneUse() &&
3600        (N->getOperand(1).getValueType() == MVT::i32 ||
3601         N->getOperand(1).getValueType() == MVT::i16)) {
3602      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3603      // Do an any-extend to 32-bits if this is a half-word input.
3604      if (BSwapOp.getValueType() == MVT::i16)
3605        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3606
3607      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3608                         N->getOperand(2), N->getOperand(3),
3609                         DAG.getValueType(N->getOperand(1).getValueType()));
3610    }
3611    break;
3612  case ISD::BSWAP:
3613    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3614    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3615        N->getOperand(0).hasOneUse() &&
3616        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3617      SDOperand Load = N->getOperand(0);
3618      LoadSDNode *LD = cast<LoadSDNode>(Load);
3619      // Create the byte-swapping load.
3620      std::vector<MVT::ValueType> VTs;
3621      VTs.push_back(MVT::i32);
3622      VTs.push_back(MVT::Other);
3623      SDOperand MO = DAG.getMemOperand(LD->getMemOperand());
3624      SDOperand Ops[] = {
3625        LD->getChain(),    // Chain
3626        LD->getBasePtr(),  // Ptr
3627        MO,                // MemOperand
3628        DAG.getValueType(N->getValueType(0)) // VT
3629      };
3630      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3631
3632      // If this is an i16 load, insert the truncate.
3633      SDOperand ResVal = BSLoad;
3634      if (N->getValueType(0) == MVT::i16)
3635        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3636
3637      // First, combine the bswap away.  This makes the value produced by the
3638      // load dead.
3639      DCI.CombineTo(N, ResVal);
3640
3641      // Next, combine the load away, we give it a bogus result value but a real
3642      // chain result.  The result value is dead because the bswap is dead.
3643      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3644
3645      // Return N so it doesn't get rechecked!
3646      return SDOperand(N, 0);
3647    }
3648
3649    break;
3650  case PPCISD::VCMP: {
3651    // If a VCMPo node already exists with exactly the same operands as this
3652    // node, use its result instead of this node (VCMPo computes both a CR6 and
3653    // a normal output).
3654    //
3655    if (!N->getOperand(0).hasOneUse() &&
3656        !N->getOperand(1).hasOneUse() &&
3657        !N->getOperand(2).hasOneUse()) {
3658
3659      // Scan all of the users of the LHS, looking for VCMPo's that match.
3660      SDNode *VCMPoNode = 0;
3661
3662      SDNode *LHSN = N->getOperand(0).Val;
3663      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3664           UI != E; ++UI)
3665        if ((*UI).getUser()->getOpcode() == PPCISD::VCMPo &&
3666            (*UI).getUser()->getOperand(1) == N->getOperand(1) &&
3667            (*UI).getUser()->getOperand(2) == N->getOperand(2) &&
3668            (*UI).getUser()->getOperand(0) == N->getOperand(0)) {
3669          VCMPoNode = UI->getUser();
3670          break;
3671        }
3672
3673      // If there is no VCMPo node, or if the flag value has a single use, don't
3674      // transform this.
3675      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3676        break;
3677
3678      // Look at the (necessarily single) use of the flag value.  If it has a
3679      // chain, this transformation is more complex.  Note that multiple things
3680      // could use the value result, which we should ignore.
3681      SDNode *FlagUser = 0;
3682      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3683           FlagUser == 0; ++UI) {
3684        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3685        SDNode *User = UI->getUser();
3686        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3687          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3688            FlagUser = User;
3689            break;
3690          }
3691        }
3692      }
3693
3694      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
3695      // give up for right now.
3696      if (FlagUser->getOpcode() == PPCISD::MFCR)
3697        return SDOperand(VCMPoNode, 0);
3698    }
3699    break;
3700  }
3701  case ISD::BR_CC: {
3702    // If this is a branch on an altivec predicate comparison, lower this so
3703    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
3704    // lowering is done pre-legalize, because the legalizer lowers the predicate
3705    // compare down to code that is difficult to reassemble.
3706    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3707    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3708    int CompareOpc;
3709    bool isDot;
3710
3711    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3712        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3713        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3714      assert(isDot && "Can't compare against a vector result!");
3715
3716      // If this is a comparison against something other than 0/1, then we know
3717      // that the condition is never/always true.
3718      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3719      if (Val != 0 && Val != 1) {
3720        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
3721          return N->getOperand(0);
3722        // Always !=, turn it into an unconditional branch.
3723        return DAG.getNode(ISD::BR, MVT::Other,
3724                           N->getOperand(0), N->getOperand(4));
3725      }
3726
3727      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3728
3729      // Create the PPCISD altivec 'dot' comparison node.
3730      std::vector<MVT::ValueType> VTs;
3731      SDOperand Ops[] = {
3732        LHS.getOperand(2),  // LHS of compare
3733        LHS.getOperand(3),  // RHS of compare
3734        DAG.getConstant(CompareOpc, MVT::i32)
3735      };
3736      VTs.push_back(LHS.getOperand(2).getValueType());
3737      VTs.push_back(MVT::Flag);
3738      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3739
3740      // Unpack the result based on how the target uses it.
3741      PPC::Predicate CompOpc;
3742      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3743      default:  // Can't happen, don't crash on invalid number though.
3744      case 0:   // Branch on the value of the EQ bit of CR6.
3745        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3746        break;
3747      case 1:   // Branch on the inverted value of the EQ bit of CR6.
3748        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3749        break;
3750      case 2:   // Branch on the value of the LT bit of CR6.
3751        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3752        break;
3753      case 3:   // Branch on the inverted value of the LT bit of CR6.
3754        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3755        break;
3756      }
3757
3758      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3759                         DAG.getConstant(CompOpc, MVT::i32),
3760                         DAG.getRegister(PPC::CR6, MVT::i32),
3761                         N->getOperand(4), CompNode.getValue(1));
3762    }
3763    break;
3764  }
3765  }
3766
3767  return SDOperand();
3768}
3769
3770//===----------------------------------------------------------------------===//
3771// Inline Assembly Support
3772//===----------------------------------------------------------------------===//
3773
3774void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3775                                                       const APInt &Mask,
3776                                                       APInt &KnownZero,
3777                                                       APInt &KnownOne,
3778                                                       const SelectionDAG &DAG,
3779                                                       unsigned Depth) const {
3780  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
3781  switch (Op.getOpcode()) {
3782  default: break;
3783  case PPCISD::LBRX: {
3784    // lhbrx is known to have the top bits cleared out.
3785    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3786      KnownZero = 0xFFFF0000;
3787    break;
3788  }
3789  case ISD::INTRINSIC_WO_CHAIN: {
3790    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3791    default: break;
3792    case Intrinsic::ppc_altivec_vcmpbfp_p:
3793    case Intrinsic::ppc_altivec_vcmpeqfp_p:
3794    case Intrinsic::ppc_altivec_vcmpequb_p:
3795    case Intrinsic::ppc_altivec_vcmpequh_p:
3796    case Intrinsic::ppc_altivec_vcmpequw_p:
3797    case Intrinsic::ppc_altivec_vcmpgefp_p:
3798    case Intrinsic::ppc_altivec_vcmpgtfp_p:
3799    case Intrinsic::ppc_altivec_vcmpgtsb_p:
3800    case Intrinsic::ppc_altivec_vcmpgtsh_p:
3801    case Intrinsic::ppc_altivec_vcmpgtsw_p:
3802    case Intrinsic::ppc_altivec_vcmpgtub_p:
3803    case Intrinsic::ppc_altivec_vcmpgtuh_p:
3804    case Intrinsic::ppc_altivec_vcmpgtuw_p:
3805      KnownZero = ~1U;  // All bits but the low one are known to be zero.
3806      break;
3807    }
3808  }
3809  }
3810}
3811
3812
3813/// getConstraintType - Given a constraint, return the type of
3814/// constraint it is for this target.
3815PPCTargetLowering::ConstraintType
3816PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3817  if (Constraint.size() == 1) {
3818    switch (Constraint[0]) {
3819    default: break;
3820    case 'b':
3821    case 'r':
3822    case 'f':
3823    case 'v':
3824    case 'y':
3825      return C_RegisterClass;
3826    }
3827  }
3828  return TargetLowering::getConstraintType(Constraint);
3829}
3830
3831std::pair<unsigned, const TargetRegisterClass*>
3832PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3833                                                MVT::ValueType VT) const {
3834  if (Constraint.size() == 1) {
3835    // GCC RS6000 Constraint Letters
3836    switch (Constraint[0]) {
3837    case 'b':   // R1-R31
3838    case 'r':   // R0-R31
3839      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3840        return std::make_pair(0U, PPC::G8RCRegisterClass);
3841      return std::make_pair(0U, PPC::GPRCRegisterClass);
3842    case 'f':
3843      if (VT == MVT::f32)
3844        return std::make_pair(0U, PPC::F4RCRegisterClass);
3845      else if (VT == MVT::f64)
3846        return std::make_pair(0U, PPC::F8RCRegisterClass);
3847      break;
3848    case 'v':
3849      return std::make_pair(0U, PPC::VRRCRegisterClass);
3850    case 'y':   // crrc
3851      return std::make_pair(0U, PPC::CRRCRegisterClass);
3852    }
3853  }
3854
3855  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3856}
3857
3858
3859/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3860/// vector.  If it is invalid, don't add anything to Ops.
3861void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3862                                                     std::vector<SDOperand>&Ops,
3863                                                     SelectionDAG &DAG) {
3864  SDOperand Result(0,0);
3865  switch (Letter) {
3866  default: break;
3867  case 'I':
3868  case 'J':
3869  case 'K':
3870  case 'L':
3871  case 'M':
3872  case 'N':
3873  case 'O':
3874  case 'P': {
3875    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
3876    if (!CST) return; // Must be an immediate to match.
3877    unsigned Value = CST->getValue();
3878    switch (Letter) {
3879    default: assert(0 && "Unknown constraint letter!");
3880    case 'I':  // "I" is a signed 16-bit constant.
3881      if ((short)Value == (int)Value)
3882        Result = DAG.getTargetConstant(Value, Op.getValueType());
3883      break;
3884    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
3885    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
3886      if ((short)Value == 0)
3887        Result = DAG.getTargetConstant(Value, Op.getValueType());
3888      break;
3889    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
3890      if ((Value >> 16) == 0)
3891        Result = DAG.getTargetConstant(Value, Op.getValueType());
3892      break;
3893    case 'M':  // "M" is a constant that is greater than 31.
3894      if (Value > 31)
3895        Result = DAG.getTargetConstant(Value, Op.getValueType());
3896      break;
3897    case 'N':  // "N" is a positive constant that is an exact power of two.
3898      if ((int)Value > 0 && isPowerOf2_32(Value))
3899        Result = DAG.getTargetConstant(Value, Op.getValueType());
3900      break;
3901    case 'O':  // "O" is the constant zero.
3902      if (Value == 0)
3903        Result = DAG.getTargetConstant(Value, Op.getValueType());
3904      break;
3905    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
3906      if ((short)-Value == (int)-Value)
3907        Result = DAG.getTargetConstant(Value, Op.getValueType());
3908      break;
3909    }
3910    break;
3911  }
3912  }
3913
3914  if (Result.Val) {
3915    Ops.push_back(Result);
3916    return;
3917  }
3918
3919  // Handle standard constraint letters.
3920  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
3921}
3922
3923// isLegalAddressingMode - Return true if the addressing mode represented
3924// by AM is legal for this target, for a load/store of the specified type.
3925bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3926                                              const Type *Ty) const {
3927  // FIXME: PPC does not allow r+i addressing modes for vectors!
3928
3929  // PPC allows a sign-extended 16-bit immediate field.
3930  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3931    return false;
3932
3933  // No global is ever allowed as a base.
3934  if (AM.BaseGV)
3935    return false;
3936
3937  // PPC only support r+r,
3938  switch (AM.Scale) {
3939  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3940    break;
3941  case 1:
3942    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3943      return false;
3944    // Otherwise we have r+r or r+i.
3945    break;
3946  case 2:
3947    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3948      return false;
3949    // Allow 2*r as r+r.
3950    break;
3951  default:
3952    // No other scales are supported.
3953    return false;
3954  }
3955
3956  return true;
3957}
3958
3959/// isLegalAddressImmediate - Return true if the integer value can be used
3960/// as the offset of the target addressing mode for load / store of the
3961/// given type.
3962bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3963  // PPC allows a sign-extended 16-bit immediate field.
3964  return (V > -(1 << 16) && V < (1 << 16)-1);
3965}
3966
3967bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3968  return false;
3969}
3970
3971SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
3972  // Depths > 0 not supported yet!
3973  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3974    return SDOperand();
3975
3976  MachineFunction &MF = DAG.getMachineFunction();
3977  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3978  int RAIdx = FuncInfo->getReturnAddrSaveIndex();
3979  if (RAIdx == 0) {
3980    bool isPPC64 = PPCSubTarget.isPPC64();
3981    int Offset =
3982      PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI());
3983
3984    // Set up a frame object for the return address.
3985    RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset);
3986
3987    // Remember it for next time.
3988    FuncInfo->setReturnAddrSaveIndex(RAIdx);
3989
3990    // Make sure the function really does not optimize away the store of the RA
3991    // to the stack.
3992    FuncInfo->setLRStoreRequired();
3993  }
3994
3995  // Just load the return address off the stack.
3996  SDOperand RetAddrFI =  DAG.getFrameIndex(RAIdx, getPointerTy());
3997  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
3998}
3999
4000SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4001  // Depths > 0 not supported yet!
4002  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4003    return SDOperand();
4004
4005  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4006  bool isPPC64 = PtrVT == MVT::i64;
4007
4008  MachineFunction &MF = DAG.getMachineFunction();
4009  MachineFrameInfo *MFI = MF.getFrameInfo();
4010  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4011                  && MFI->getStackSize();
4012
4013  if (isPPC64)
4014    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
4015      MVT::i64);
4016  else
4017    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
4018      MVT::i32);
4019}
4020