PPCISelLowering.cpp revision ddf89566a93081cb230bb9406a72ab2d3eada4a7
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Target/TargetOptions.h"
33#include "llvm/Support/CommandLine.h"
34using namespace llvm;
35
36static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
37cl::desc("enable preincrement load/store generation on PPC (experimental)"),
38                                     cl::Hidden);
39
40PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
41  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
42
43  setPow2DivIsCheap();
44
45  // Use _setjmp/_longjmp instead of setjmp/longjmp.
46  setUseUnderscoreSetJmp(true);
47  setUseUnderscoreLongJmp(true);
48
49  // Set up the register classes.
50  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
51  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
52  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
53
54  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
56  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
57
58  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
59
60  // PowerPC has pre-inc load and store's.
61  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
66  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
71
72  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
73  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
74
75  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
76  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
77  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
78  // This is used in the ppcf128->int sequence.  Note it has different semantics
79  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
80  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
81
82  // PowerPC has no intrinsics for these particular operations
83  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
84  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
85  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
86
87  // PowerPC has no SREM/UREM instructions
88  setOperationAction(ISD::SREM, MVT::i32, Expand);
89  setOperationAction(ISD::UREM, MVT::i32, Expand);
90  setOperationAction(ISD::SREM, MVT::i64, Expand);
91  setOperationAction(ISD::UREM, MVT::i64, Expand);
92
93  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
94  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
95  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
96  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
97  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
98  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
99  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
100  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
101  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
102
103  // We don't support sin/cos/sqrt/fmod/pow
104  setOperationAction(ISD::FSIN , MVT::f64, Expand);
105  setOperationAction(ISD::FCOS , MVT::f64, Expand);
106  setOperationAction(ISD::FREM , MVT::f64, Expand);
107  setOperationAction(ISD::FPOW , MVT::f64, Expand);
108  setOperationAction(ISD::FSIN , MVT::f32, Expand);
109  setOperationAction(ISD::FCOS , MVT::f32, Expand);
110  setOperationAction(ISD::FREM , MVT::f32, Expand);
111  setOperationAction(ISD::FPOW , MVT::f32, Expand);
112
113  // If we're enabling GP optimizations, use hardware square root
114  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
115    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
116    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
117  }
118
119  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
120  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
121
122  // PowerPC does not have BSWAP, CTPOP or CTTZ
123  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
124  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
125  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
126  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
127  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
128  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
129
130  // PowerPC does not have ROTR
131  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
132
133  // PowerPC does not have Select
134  setOperationAction(ISD::SELECT, MVT::i32, Expand);
135  setOperationAction(ISD::SELECT, MVT::i64, Expand);
136  setOperationAction(ISD::SELECT, MVT::f32, Expand);
137  setOperationAction(ISD::SELECT, MVT::f64, Expand);
138
139  // PowerPC wants to turn select_cc of FP into fsel when possible.
140  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
141  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
142
143  // PowerPC wants to optimize integer setcc a bit
144  setOperationAction(ISD::SETCC, MVT::i32, Custom);
145
146  // PowerPC does not have BRCOND which requires SetCC
147  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
148
149  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
150
151  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
152  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
153
154  // PowerPC does not have [U|S]INT_TO_FP
155  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
156  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
157
158  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
159  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
160  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
161  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
162
163  // We cannot sextinreg(i1).  Expand to shifts.
164  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
165
166  // Support label based line numbers.
167  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
168  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
169
170  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
171  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
172  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
173  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
174
175
176  // We want to legalize GlobalAddress and ConstantPool nodes into the
177  // appropriate instructions to materialize the address.
178  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
179  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
180  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
181  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
182  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
183  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
184  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
185  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
186
187  // RET must be custom lowered, to meet ABI requirements
188  setOperationAction(ISD::RET               , MVT::Other, Custom);
189
190  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
191  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
192
193  // VAARG is custom lowered with ELF 32 ABI
194  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
195    setOperationAction(ISD::VAARG, MVT::Other, Custom);
196  else
197    setOperationAction(ISD::VAARG, MVT::Other, Expand);
198
199  // Use the default implementation.
200  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
201  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
202  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
203  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
204  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
205  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
206
207  // We want to custom lower some of our intrinsics.
208  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
209
210  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
211    // They also have instructions for converting between i64 and fp.
212    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
213    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
214    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
215    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
216    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
217
218    // FIXME: disable this lowered code.  This generates 64-bit register values,
219    // and we don't model the fact that the top part is clobbered by calls.  We
220    // need to flag these together so that the value isn't live across a call.
221    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
222
223    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
224    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
225  } else {
226    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
227    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
228  }
229
230  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
231    // 64-bit PowerPC implementations can support i64 types directly
232    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
233    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
234    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
235  } else {
236    // 32-bit PowerPC wants to expand i64 shifts itself.
237    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
238    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
239    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
240  }
241
242  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
243    // First set operation action for all vector types to expand. Then we
244    // will selectively turn on ones that can be effectively codegen'd.
245    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
246         VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
247      // add/sub are legal for all supported vector VT's.
248      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
249      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
250
251      // We promote all shuffles to v16i8.
252      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
253      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
254
255      // We promote all non-typed operations to v4i32.
256      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
257      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
258      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
259      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
260      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
261      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
262      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
263      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
264      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
265      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
266      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
267      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
268
269      // No other operations are legal.
270      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
271      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
272      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
273      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
274      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
275      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
276      setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
277      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
278      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
279      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
280      setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
281      setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
282      setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
283      setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
284      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
285      setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
286      setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
287      setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
288      setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
289    }
290
291    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
292    // with merges, splats, etc.
293    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
294
295    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
296    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
297    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
298    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
299    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
300    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
301
302    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
303    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
304    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
305    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
306
307    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
308    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
309    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
310    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
311
312    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
313    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
314
315    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
316    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
317    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
318    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
319  }
320
321  setSetCCResultType(MVT::i32);
322  setShiftAmountType(MVT::i32);
323  setSetCCResultContents(ZeroOrOneSetCCResult);
324
325  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
326    setStackPointerRegisterToSaveRestore(PPC::X1);
327    setExceptionPointerRegister(PPC::X3);
328    setExceptionSelectorRegister(PPC::X4);
329  } else {
330    setStackPointerRegisterToSaveRestore(PPC::R1);
331    setExceptionPointerRegister(PPC::R3);
332    setExceptionSelectorRegister(PPC::R4);
333  }
334
335  // We have target-specific dag combine patterns for the following nodes:
336  setTargetDAGCombine(ISD::SINT_TO_FP);
337  setTargetDAGCombine(ISD::STORE);
338  setTargetDAGCombine(ISD::BR_CC);
339  setTargetDAGCombine(ISD::BSWAP);
340
341  // Darwin long double math library functions have $LDBL128 appended.
342  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
343    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
344    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
345    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
346    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
347    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
348  }
349
350  computeRegisterProperties();
351}
352
353const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
354  switch (Opcode) {
355  default: return 0;
356  case PPCISD::FSEL:          return "PPCISD::FSEL";
357  case PPCISD::FCFID:         return "PPCISD::FCFID";
358  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
359  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
360  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
361  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
362  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
363  case PPCISD::VPERM:         return "PPCISD::VPERM";
364  case PPCISD::Hi:            return "PPCISD::Hi";
365  case PPCISD::Lo:            return "PPCISD::Lo";
366  case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC";
367  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
368  case PPCISD::SRL:           return "PPCISD::SRL";
369  case PPCISD::SRA:           return "PPCISD::SRA";
370  case PPCISD::SHL:           return "PPCISD::SHL";
371  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
372  case PPCISD::STD_32:        return "PPCISD::STD_32";
373  case PPCISD::CALL_ELF:      return "PPCISD::CALL_ELF";
374  case PPCISD::CALL_Macho:    return "PPCISD::CALL_Macho";
375  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
376  case PPCISD::BCTRL_Macho:   return "PPCISD::BCTRL_Macho";
377  case PPCISD::BCTRL_ELF:     return "PPCISD::BCTRL_ELF";
378  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
379  case PPCISD::MFCR:          return "PPCISD::MFCR";
380  case PPCISD::VCMP:          return "PPCISD::VCMP";
381  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
382  case PPCISD::LBRX:          return "PPCISD::LBRX";
383  case PPCISD::STBRX:         return "PPCISD::STBRX";
384  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
385  }
386}
387
388//===----------------------------------------------------------------------===//
389// Node matching predicates, for use by the tblgen matching code.
390//===----------------------------------------------------------------------===//
391
392/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
393static bool isFloatingPointZero(SDOperand Op) {
394  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
395    return CFP->getValueAPF().isZero();
396  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
397    // Maybe this has already been legalized into the constant pool?
398    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
399      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
400        return CFP->getValueAPF().isZero();
401  }
402  return false;
403}
404
405/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
406/// true if Op is undef or if it matches the specified value.
407static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
408  return Op.getOpcode() == ISD::UNDEF ||
409         cast<ConstantSDNode>(Op)->getValue() == Val;
410}
411
412/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
413/// VPKUHUM instruction.
414bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
415  if (!isUnary) {
416    for (unsigned i = 0; i != 16; ++i)
417      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
418        return false;
419  } else {
420    for (unsigned i = 0; i != 8; ++i)
421      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
422          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
423        return false;
424  }
425  return true;
426}
427
428/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
429/// VPKUWUM instruction.
430bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
431  if (!isUnary) {
432    for (unsigned i = 0; i != 16; i += 2)
433      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
434          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
435        return false;
436  } else {
437    for (unsigned i = 0; i != 8; i += 2)
438      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
439          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
440          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
441          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
442        return false;
443  }
444  return true;
445}
446
447/// isVMerge - Common function, used to match vmrg* shuffles.
448///
449static bool isVMerge(SDNode *N, unsigned UnitSize,
450                     unsigned LHSStart, unsigned RHSStart) {
451  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
452         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
453  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
454         "Unsupported merge size!");
455
456  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
457    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
458      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
459                             LHSStart+j+i*UnitSize) ||
460          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
461                             RHSStart+j+i*UnitSize))
462        return false;
463    }
464      return true;
465}
466
467/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
468/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
469bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
470  if (!isUnary)
471    return isVMerge(N, UnitSize, 8, 24);
472  return isVMerge(N, UnitSize, 8, 8);
473}
474
475/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
476/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
477bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
478  if (!isUnary)
479    return isVMerge(N, UnitSize, 0, 16);
480  return isVMerge(N, UnitSize, 0, 0);
481}
482
483
484/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
485/// amount, otherwise return -1.
486int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
487  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
488         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
489  // Find the first non-undef value in the shuffle mask.
490  unsigned i;
491  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
492    /*search*/;
493
494  if (i == 16) return -1;  // all undef.
495
496  // Otherwise, check to see if the rest of the elements are consequtively
497  // numbered from this value.
498  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
499  if (ShiftAmt < i) return -1;
500  ShiftAmt -= i;
501
502  if (!isUnary) {
503    // Check the rest of the elements to see if they are consequtive.
504    for (++i; i != 16; ++i)
505      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
506        return -1;
507  } else {
508    // Check the rest of the elements to see if they are consequtive.
509    for (++i; i != 16; ++i)
510      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
511        return -1;
512  }
513
514  return ShiftAmt;
515}
516
517/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
518/// specifies a splat of a single element that is suitable for input to
519/// VSPLTB/VSPLTH/VSPLTW.
520bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
521  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
522         N->getNumOperands() == 16 &&
523         (EltSize == 1 || EltSize == 2 || EltSize == 4));
524
525  // This is a splat operation if each element of the permute is the same, and
526  // if the value doesn't reference the second vector.
527  unsigned ElementBase = 0;
528  SDOperand Elt = N->getOperand(0);
529  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
530    ElementBase = EltV->getValue();
531  else
532    return false;   // FIXME: Handle UNDEF elements too!
533
534  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
535    return false;
536
537  // Check that they are consequtive.
538  for (unsigned i = 1; i != EltSize; ++i) {
539    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
540        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
541      return false;
542  }
543
544  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
545  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
546    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
547    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
548           "Invalid VECTOR_SHUFFLE mask!");
549    for (unsigned j = 0; j != EltSize; ++j)
550      if (N->getOperand(i+j) != N->getOperand(j))
551        return false;
552  }
553
554  return true;
555}
556
557/// isAllNegativeZeroVector - Returns true if all elements of build_vector
558/// are -0.0.
559bool PPC::isAllNegativeZeroVector(SDNode *N) {
560  assert(N->getOpcode() == ISD::BUILD_VECTOR);
561  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
562    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
563      return CFP->getValueAPF().isNegZero();
564  return false;
565}
566
567/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
568/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
569unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
570  assert(isSplatShuffleMask(N, EltSize));
571  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
572}
573
574/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
575/// by using a vspltis[bhw] instruction of the specified element size, return
576/// the constant being splatted.  The ByteSize field indicates the number of
577/// bytes of each element [124] -> [bhw].
578SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
579  SDOperand OpVal(0, 0);
580
581  // If ByteSize of the splat is bigger than the element size of the
582  // build_vector, then we have a case where we are checking for a splat where
583  // multiple elements of the buildvector are folded together into a single
584  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
585  unsigned EltSize = 16/N->getNumOperands();
586  if (EltSize < ByteSize) {
587    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
588    SDOperand UniquedVals[4];
589    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
590
591    // See if all of the elements in the buildvector agree across.
592    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
593      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
594      // If the element isn't a constant, bail fully out.
595      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
596
597
598      if (UniquedVals[i&(Multiple-1)].Val == 0)
599        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
600      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
601        return SDOperand();  // no match.
602    }
603
604    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
605    // either constant or undef values that are identical for each chunk.  See
606    // if these chunks can form into a larger vspltis*.
607
608    // Check to see if all of the leading entries are either 0 or -1.  If
609    // neither, then this won't fit into the immediate field.
610    bool LeadingZero = true;
611    bool LeadingOnes = true;
612    for (unsigned i = 0; i != Multiple-1; ++i) {
613      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
614
615      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
616      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
617    }
618    // Finally, check the least significant entry.
619    if (LeadingZero) {
620      if (UniquedVals[Multiple-1].Val == 0)
621        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
622      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
623      if (Val < 16)
624        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
625    }
626    if (LeadingOnes) {
627      if (UniquedVals[Multiple-1].Val == 0)
628        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
629      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
630      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
631        return DAG.getTargetConstant(Val, MVT::i32);
632    }
633
634    return SDOperand();
635  }
636
637  // Check to see if this buildvec has a single non-undef value in its elements.
638  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
639    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
640    if (OpVal.Val == 0)
641      OpVal = N->getOperand(i);
642    else if (OpVal != N->getOperand(i))
643      return SDOperand();
644  }
645
646  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
647
648  unsigned ValSizeInBytes = 0;
649  uint64_t Value = 0;
650  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
651    Value = CN->getValue();
652    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
653  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
654    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
655    Value = FloatToBits(CN->getValueAPF().convertToFloat());
656    ValSizeInBytes = 4;
657  }
658
659  // If the splat value is larger than the element value, then we can never do
660  // this splat.  The only case that we could fit the replicated bits into our
661  // immediate field for would be zero, and we prefer to use vxor for it.
662  if (ValSizeInBytes < ByteSize) return SDOperand();
663
664  // If the element value is larger than the splat value, cut it in half and
665  // check to see if the two halves are equal.  Continue doing this until we
666  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
667  while (ValSizeInBytes > ByteSize) {
668    ValSizeInBytes >>= 1;
669
670    // If the top half equals the bottom half, we're still ok.
671    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
672         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
673      return SDOperand();
674  }
675
676  // Properly sign extend the value.
677  int ShAmt = (4-ByteSize)*8;
678  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
679
680  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
681  if (MaskVal == 0) return SDOperand();
682
683  // Finally, if this value fits in a 5 bit sext field, return it
684  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
685    return DAG.getTargetConstant(MaskVal, MVT::i32);
686  return SDOperand();
687}
688
689//===----------------------------------------------------------------------===//
690//  Addressing Mode Selection
691//===----------------------------------------------------------------------===//
692
693/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
694/// or 64-bit immediate, and if the value can be accurately represented as a
695/// sign extension from a 16-bit value.  If so, this returns true and the
696/// immediate.
697static bool isIntS16Immediate(SDNode *N, short &Imm) {
698  if (N->getOpcode() != ISD::Constant)
699    return false;
700
701  Imm = (short)cast<ConstantSDNode>(N)->getValue();
702  if (N->getValueType(0) == MVT::i32)
703    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
704  else
705    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
706}
707static bool isIntS16Immediate(SDOperand Op, short &Imm) {
708  return isIntS16Immediate(Op.Val, Imm);
709}
710
711
712/// SelectAddressRegReg - Given the specified addressed, check to see if it
713/// can be represented as an indexed [r+r] operation.  Returns false if it
714/// can be more efficiently represented with [r+imm].
715bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
716                                            SDOperand &Index,
717                                            SelectionDAG &DAG) {
718  short imm = 0;
719  if (N.getOpcode() == ISD::ADD) {
720    if (isIntS16Immediate(N.getOperand(1), imm))
721      return false;    // r+i
722    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
723      return false;    // r+i
724
725    Base = N.getOperand(0);
726    Index = N.getOperand(1);
727    return true;
728  } else if (N.getOpcode() == ISD::OR) {
729    if (isIntS16Immediate(N.getOperand(1), imm))
730      return false;    // r+i can fold it if we can.
731
732    // If this is an or of disjoint bitfields, we can codegen this as an add
733    // (for better address arithmetic) if the LHS and RHS of the OR are provably
734    // disjoint.
735    uint64_t LHSKnownZero, LHSKnownOne;
736    uint64_t RHSKnownZero, RHSKnownOne;
737    DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
738
739    if (LHSKnownZero) {
740      DAG.ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
741      // If all of the bits are known zero on the LHS or RHS, the add won't
742      // carry.
743      if ((LHSKnownZero | RHSKnownZero) == ~0U) {
744        Base = N.getOperand(0);
745        Index = N.getOperand(1);
746        return true;
747      }
748    }
749  }
750
751  return false;
752}
753
754/// Returns true if the address N can be represented by a base register plus
755/// a signed 16-bit displacement [r+imm], and if it is not better
756/// represented as reg+reg.
757bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
758                                            SDOperand &Base, SelectionDAG &DAG){
759  // If this can be more profitably realized as r+r, fail.
760  if (SelectAddressRegReg(N, Disp, Base, DAG))
761    return false;
762
763  if (N.getOpcode() == ISD::ADD) {
764    short imm = 0;
765    if (isIntS16Immediate(N.getOperand(1), imm)) {
766      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
767      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
768        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
769      } else {
770        Base = N.getOperand(0);
771      }
772      return true; // [r+i]
773    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
774      // Match LOAD (ADD (X, Lo(G))).
775      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
776             && "Cannot handle constant offsets yet!");
777      Disp = N.getOperand(1).getOperand(0);  // The global address.
778      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
779             Disp.getOpcode() == ISD::TargetConstantPool ||
780             Disp.getOpcode() == ISD::TargetJumpTable);
781      Base = N.getOperand(0);
782      return true;  // [&g+r]
783    }
784  } else if (N.getOpcode() == ISD::OR) {
785    short imm = 0;
786    if (isIntS16Immediate(N.getOperand(1), imm)) {
787      // If this is an or of disjoint bitfields, we can codegen this as an add
788      // (for better address arithmetic) if the LHS and RHS of the OR are
789      // provably disjoint.
790      uint64_t LHSKnownZero, LHSKnownOne;
791      DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
792      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
793        // If all of the bits are known zero on the LHS or RHS, the add won't
794        // carry.
795        Base = N.getOperand(0);
796        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
797        return true;
798      }
799    }
800  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
801    // Loading from a constant address.
802
803    // If this address fits entirely in a 16-bit sext immediate field, codegen
804    // this as "d, 0"
805    short Imm;
806    if (isIntS16Immediate(CN, Imm)) {
807      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
808      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
809      return true;
810    }
811
812    // Handle 32-bit sext immediates with LIS + addr mode.
813    if (CN->getValueType(0) == MVT::i32 ||
814        (int64_t)CN->getValue() == (int)CN->getValue()) {
815      int Addr = (int)CN->getValue();
816
817      // Otherwise, break this down into an LIS + disp.
818      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
819
820      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
821      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
822      Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
823      return true;
824    }
825  }
826
827  Disp = DAG.getTargetConstant(0, getPointerTy());
828  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
829    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
830  else
831    Base = N;
832  return true;      // [r+0]
833}
834
835/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
836/// represented as an indexed [r+r] operation.
837bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
838                                                SDOperand &Index,
839                                                SelectionDAG &DAG) {
840  // Check to see if we can easily represent this as an [r+r] address.  This
841  // will fail if it thinks that the address is more profitably represented as
842  // reg+imm, e.g. where imm = 0.
843  if (SelectAddressRegReg(N, Base, Index, DAG))
844    return true;
845
846  // If the operand is an addition, always emit this as [r+r], since this is
847  // better (for code size, and execution, as the memop does the add for free)
848  // than emitting an explicit add.
849  if (N.getOpcode() == ISD::ADD) {
850    Base = N.getOperand(0);
851    Index = N.getOperand(1);
852    return true;
853  }
854
855  // Otherwise, do it the hard way, using R0 as the base register.
856  Base = DAG.getRegister(PPC::R0, N.getValueType());
857  Index = N;
858  return true;
859}
860
861/// SelectAddressRegImmShift - Returns true if the address N can be
862/// represented by a base register plus a signed 14-bit displacement
863/// [r+imm*4].  Suitable for use by STD and friends.
864bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
865                                                 SDOperand &Base,
866                                                 SelectionDAG &DAG) {
867  // If this can be more profitably realized as r+r, fail.
868  if (SelectAddressRegReg(N, Disp, Base, DAG))
869    return false;
870
871  if (N.getOpcode() == ISD::ADD) {
872    short imm = 0;
873    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
874      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
875      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
876        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
877      } else {
878        Base = N.getOperand(0);
879      }
880      return true; // [r+i]
881    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
882      // Match LOAD (ADD (X, Lo(G))).
883      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
884             && "Cannot handle constant offsets yet!");
885      Disp = N.getOperand(1).getOperand(0);  // The global address.
886      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
887             Disp.getOpcode() == ISD::TargetConstantPool ||
888             Disp.getOpcode() == ISD::TargetJumpTable);
889      Base = N.getOperand(0);
890      return true;  // [&g+r]
891    }
892  } else if (N.getOpcode() == ISD::OR) {
893    short imm = 0;
894    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
895      // If this is an or of disjoint bitfields, we can codegen this as an add
896      // (for better address arithmetic) if the LHS and RHS of the OR are
897      // provably disjoint.
898      uint64_t LHSKnownZero, LHSKnownOne;
899      DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
900      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
901        // If all of the bits are known zero on the LHS or RHS, the add won't
902        // carry.
903        Base = N.getOperand(0);
904        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
905        return true;
906      }
907    }
908  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
909    // Loading from a constant address.  Verify low two bits are clear.
910    if ((CN->getValue() & 3) == 0) {
911      // If this address fits entirely in a 14-bit sext immediate field, codegen
912      // this as "d, 0"
913      short Imm;
914      if (isIntS16Immediate(CN, Imm)) {
915        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
916        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
917        return true;
918      }
919
920      // Fold the low-part of 32-bit absolute addresses into addr mode.
921      if (CN->getValueType(0) == MVT::i32 ||
922          (int64_t)CN->getValue() == (int)CN->getValue()) {
923        int Addr = (int)CN->getValue();
924
925        // Otherwise, break this down into an LIS + disp.
926        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
927
928        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
929        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
930        Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
931        return true;
932      }
933    }
934  }
935
936  Disp = DAG.getTargetConstant(0, getPointerTy());
937  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
938    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
939  else
940    Base = N;
941  return true;      // [r+0]
942}
943
944
945/// getPreIndexedAddressParts - returns true by value, base pointer and
946/// offset pointer and addressing mode by reference if the node's address
947/// can be legally represented as pre-indexed load / store address.
948bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
949                                                  SDOperand &Offset,
950                                                  ISD::MemIndexedMode &AM,
951                                                  SelectionDAG &DAG) {
952  // Disabled by default for now.
953  if (!EnablePPCPreinc) return false;
954
955  SDOperand Ptr;
956  MVT::ValueType VT;
957  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
958    Ptr = LD->getBasePtr();
959    VT = LD->getLoadedVT();
960
961  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
962    ST = ST;
963    Ptr = ST->getBasePtr();
964    VT  = ST->getStoredVT();
965  } else
966    return false;
967
968  // PowerPC doesn't have preinc load/store instructions for vectors.
969  if (MVT::isVector(VT))
970    return false;
971
972  // TODO: Check reg+reg first.
973
974  // LDU/STU use reg+imm*4, others use reg+imm.
975  if (VT != MVT::i64) {
976    // reg + imm
977    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
978      return false;
979  } else {
980    // reg + imm * 4.
981    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
982      return false;
983  }
984
985  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
986    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
987    // sext i32 to i64 when addr mode is r+i.
988    if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
989        LD->getExtensionType() == ISD::SEXTLOAD &&
990        isa<ConstantSDNode>(Offset))
991      return false;
992  }
993
994  AM = ISD::PRE_INC;
995  return true;
996}
997
998//===----------------------------------------------------------------------===//
999//  LowerOperation implementation
1000//===----------------------------------------------------------------------===//
1001
1002static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
1003  MVT::ValueType PtrVT = Op.getValueType();
1004  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1005  Constant *C = CP->getConstVal();
1006  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1007  SDOperand Zero = DAG.getConstant(0, PtrVT);
1008
1009  const TargetMachine &TM = DAG.getTarget();
1010
1011  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1012  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1013
1014  // If this is a non-darwin platform, we don't support non-static relo models
1015  // yet.
1016  if (TM.getRelocationModel() == Reloc::Static ||
1017      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1018    // Generate non-pic code that has direct accesses to the constant pool.
1019    // The address of the global is just (hi(&g)+lo(&g)).
1020    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1021  }
1022
1023  if (TM.getRelocationModel() == Reloc::PIC_) {
1024    // With PIC, the first instruction is actually "GR+hi(&G)".
1025    Hi = DAG.getNode(ISD::ADD, PtrVT,
1026                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1027  }
1028
1029  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1030  return Lo;
1031}
1032
1033static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1034  MVT::ValueType PtrVT = Op.getValueType();
1035  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1036  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1037  SDOperand Zero = DAG.getConstant(0, PtrVT);
1038
1039  const TargetMachine &TM = DAG.getTarget();
1040
1041  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1042  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1043
1044  // If this is a non-darwin platform, we don't support non-static relo models
1045  // yet.
1046  if (TM.getRelocationModel() == Reloc::Static ||
1047      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1048    // Generate non-pic code that has direct accesses to the constant pool.
1049    // The address of the global is just (hi(&g)+lo(&g)).
1050    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1051  }
1052
1053  if (TM.getRelocationModel() == Reloc::PIC_) {
1054    // With PIC, the first instruction is actually "GR+hi(&G)".
1055    Hi = DAG.getNode(ISD::ADD, PtrVT,
1056                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1057  }
1058
1059  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1060  return Lo;
1061}
1062
1063static SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
1064  assert(0 && "TLS not implemented for PPC.");
1065}
1066
1067static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
1068  MVT::ValueType PtrVT = Op.getValueType();
1069  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1070  GlobalValue *GV = GSDN->getGlobal();
1071  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1072  SDOperand Zero = DAG.getConstant(0, PtrVT);
1073
1074  const TargetMachine &TM = DAG.getTarget();
1075
1076  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1077  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1078
1079  // If this is a non-darwin platform, we don't support non-static relo models
1080  // yet.
1081  if (TM.getRelocationModel() == Reloc::Static ||
1082      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1083    // Generate non-pic code that has direct accesses to globals.
1084    // The address of the global is just (hi(&g)+lo(&g)).
1085    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1086  }
1087
1088  if (TM.getRelocationModel() == Reloc::PIC_) {
1089    // With PIC, the first instruction is actually "GR+hi(&G)".
1090    Hi = DAG.getNode(ISD::ADD, PtrVT,
1091                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1092  }
1093
1094  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1095
1096  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1097    return Lo;
1098
1099  // If the global is weak or external, we have to go through the lazy
1100  // resolution stub.
1101  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1102}
1103
1104static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1105  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1106
1107  // If we're comparing for equality to zero, expose the fact that this is
1108  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1109  // fold the new nodes.
1110  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1111    if (C->isNullValue() && CC == ISD::SETEQ) {
1112      MVT::ValueType VT = Op.getOperand(0).getValueType();
1113      SDOperand Zext = Op.getOperand(0);
1114      if (VT < MVT::i32) {
1115        VT = MVT::i32;
1116        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1117      }
1118      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1119      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1120      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1121                                  DAG.getConstant(Log2b, MVT::i32));
1122      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1123    }
1124    // Leave comparisons against 0 and -1 alone for now, since they're usually
1125    // optimized.  FIXME: revisit this when we can custom lower all setcc
1126    // optimizations.
1127    if (C->isAllOnesValue() || C->isNullValue())
1128      return SDOperand();
1129  }
1130
1131  // If we have an integer seteq/setne, turn it into a compare against zero
1132  // by xor'ing the rhs with the lhs, which is faster than setting a
1133  // condition register, reading it back out, and masking the correct bit.  The
1134  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1135  // the result to other bit-twiddling opportunities.
1136  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1137  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1138    MVT::ValueType VT = Op.getValueType();
1139    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1140                                Op.getOperand(1));
1141    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1142  }
1143  return SDOperand();
1144}
1145
1146static SDOperand LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1147                              int VarArgsFrameIndex,
1148                              int VarArgsStackOffset,
1149                              unsigned VarArgsNumGPR,
1150                              unsigned VarArgsNumFPR,
1151                              const PPCSubtarget &Subtarget) {
1152
1153  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1154}
1155
1156static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1157                              int VarArgsFrameIndex,
1158                              int VarArgsStackOffset,
1159                              unsigned VarArgsNumGPR,
1160                              unsigned VarArgsNumFPR,
1161                              const PPCSubtarget &Subtarget) {
1162
1163  if (Subtarget.isMachoABI()) {
1164    // vastart just stores the address of the VarArgsFrameIndex slot into the
1165    // memory location argument.
1166    MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1167    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1168    SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1169    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1170                        SV->getOffset());
1171  }
1172
1173  // For ELF 32 ABI we follow the layout of the va_list struct.
1174  // We suppose the given va_list is already allocated.
1175  //
1176  // typedef struct {
1177  //  char gpr;     /* index into the array of 8 GPRs
1178  //                 * stored in the register save area
1179  //                 * gpr=0 corresponds to r3,
1180  //                 * gpr=1 to r4, etc.
1181  //                 */
1182  //  char fpr;     /* index into the array of 8 FPRs
1183  //                 * stored in the register save area
1184  //                 * fpr=0 corresponds to f1,
1185  //                 * fpr=1 to f2, etc.
1186  //                 */
1187  //  char *overflow_arg_area;
1188  //                /* location on stack that holds
1189  //                 * the next overflow argument
1190  //                 */
1191  //  char *reg_save_area;
1192  //               /* where r3:r10 and f1:f8 (if saved)
1193  //                * are stored
1194  //                */
1195  // } va_list[1];
1196
1197
1198  SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1199  SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1200
1201
1202  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1203
1204  SDOperand StackOffset = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1205  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1206
1207  SDOperand ConstFrameOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8,
1208                                               PtrVT);
1209  SDOperand ConstStackOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8 - 1,
1210                                               PtrVT);
1211  SDOperand ConstFPROffset   = DAG.getConstant(1, PtrVT);
1212
1213  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1214
1215  // Store first byte : number of int regs
1216  SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1217                                      Op.getOperand(1), SV->getValue(),
1218                                      SV->getOffset());
1219  SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1220                                  ConstFPROffset);
1221
1222  // Store second byte : number of float regs
1223  SDOperand secondStore = DAG.getStore(firstStore, ArgFPR, nextPtr,
1224                                       SV->getValue(), SV->getOffset());
1225  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1226
1227  // Store second word : arguments given on stack
1228  SDOperand thirdStore = DAG.getStore(secondStore, StackOffset, nextPtr,
1229                                      SV->getValue(), SV->getOffset());
1230  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1231
1232  // Store third word : arguments given in registers
1233  return DAG.getStore(thirdStore, FR, nextPtr, SV->getValue(),
1234                      SV->getOffset());
1235
1236}
1237
1238#include "PPCGenCallingConv.inc"
1239
1240/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1241/// depending on which subtarget is selected.
1242static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1243  if (Subtarget.isMachoABI()) {
1244    static const unsigned FPR[] = {
1245      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1246      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1247    };
1248    return FPR;
1249  }
1250
1251
1252  static const unsigned FPR[] = {
1253    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1254    PPC::F8
1255  };
1256  return FPR;
1257}
1258
1259static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1260                                       int &VarArgsFrameIndex,
1261                                       int &VarArgsStackOffset,
1262                                       unsigned &VarArgsNumGPR,
1263                                       unsigned &VarArgsNumFPR,
1264                                       const PPCSubtarget &Subtarget) {
1265  // TODO: add description of PPC stack frame format, or at least some docs.
1266  //
1267  MachineFunction &MF = DAG.getMachineFunction();
1268  MachineFrameInfo *MFI = MF.getFrameInfo();
1269  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1270  SmallVector<SDOperand, 8> ArgValues;
1271  SDOperand Root = Op.getOperand(0);
1272
1273  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1274  bool isPPC64 = PtrVT == MVT::i64;
1275  bool isMachoABI = Subtarget.isMachoABI();
1276  bool isELF32_ABI = Subtarget.isELF32_ABI();
1277  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1278
1279  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1280
1281  static const unsigned GPR_32[] = {           // 32-bit registers.
1282    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1283    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1284  };
1285  static const unsigned GPR_64[] = {           // 64-bit registers.
1286    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1287    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1288  };
1289
1290  static const unsigned *FPR = GetFPR(Subtarget);
1291
1292  static const unsigned VR[] = {
1293    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1294    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1295  };
1296
1297  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1298  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1299  const unsigned Num_VR_Regs  = array_lengthof( VR);
1300
1301  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1302
1303  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1304
1305  // Add DAG nodes to load the arguments or copy them out of registers.  On
1306  // entry to a function on PPC, the arguments start after the linkage area,
1307  // although the first ones are often in registers.
1308  //
1309  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1310  // represented with two words (long long or double) must be copied to an
1311  // even GPR_idx value or to an even ArgOffset value.
1312
1313  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1314    SDOperand ArgVal;
1315    bool needsLoad = false;
1316    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1317    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1318    unsigned ArgSize = ObjSize;
1319    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1320    unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1321    // See if next argument requires stack alignment in ELF
1322    bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1323      (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1324      (!(Flags & AlignFlag)));
1325
1326    unsigned CurArgOffset = ArgOffset;
1327    switch (ObjectVT) {
1328    default: assert(0 && "Unhandled argument type!");
1329    case MVT::i32:
1330      // Double word align in ELF
1331      if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1332      if (GPR_idx != Num_GPR_Regs) {
1333        unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1334        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1335        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1336        ++GPR_idx;
1337      } else {
1338        needsLoad = true;
1339        ArgSize = PtrByteSize;
1340      }
1341      // Stack align in ELF
1342      if (needsLoad && Expand && isELF32_ABI)
1343        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1344      // All int arguments reserve stack space in Macho ABI.
1345      if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1346      break;
1347
1348    case MVT::i64:  // PPC64
1349      if (GPR_idx != Num_GPR_Regs) {
1350        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1351        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1352        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1353        ++GPR_idx;
1354      } else {
1355        needsLoad = true;
1356      }
1357      // All int arguments reserve stack space in Macho ABI.
1358      if (isMachoABI || needsLoad) ArgOffset += 8;
1359      break;
1360
1361    case MVT::f32:
1362    case MVT::f64:
1363      // Every 4 bytes of argument space consumes one of the GPRs available for
1364      // argument passing.
1365      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1366        ++GPR_idx;
1367        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1368          ++GPR_idx;
1369      }
1370      if (FPR_idx != Num_FPR_Regs) {
1371        unsigned VReg;
1372        if (ObjectVT == MVT::f32)
1373          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1374        else
1375          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1376        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1377        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1378        ++FPR_idx;
1379      } else {
1380        needsLoad = true;
1381      }
1382
1383      // Stack align in ELF
1384      if (needsLoad && Expand && isELF32_ABI)
1385        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1386      // All FP arguments reserve stack space in Macho ABI.
1387      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1388      break;
1389    case MVT::v4f32:
1390    case MVT::v4i32:
1391    case MVT::v8i16:
1392    case MVT::v16i8:
1393      // Note that vector arguments in registers don't reserve stack space.
1394      if (VR_idx != Num_VR_Regs) {
1395        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1396        RegInfo.addLiveIn(VR[VR_idx], VReg);
1397        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1398        ++VR_idx;
1399      } else {
1400        // This should be simple, but requires getting 16-byte aligned stack
1401        // values.
1402        assert(0 && "Loading VR argument not implemented yet!");
1403        needsLoad = true;
1404      }
1405      break;
1406    }
1407
1408    // We need to load the argument to a virtual register if we determined above
1409    // that we ran out of physical registers of the appropriate type
1410    if (needsLoad) {
1411      // If the argument is actually used, emit a load from the right stack
1412      // slot.
1413      if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1414        int FI = MFI->CreateFixedObject(ObjSize,
1415                                        CurArgOffset + (ArgSize - ObjSize));
1416        SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1417        ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1418      } else {
1419        // Don't emit a dead load.
1420        ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1421      }
1422    }
1423
1424    ArgValues.push_back(ArgVal);
1425  }
1426
1427  // If the function takes variable number of arguments, make a frame index for
1428  // the start of the first vararg value... for expansion of llvm.va_start.
1429  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1430  if (isVarArg) {
1431
1432    int depth;
1433    if (isELF32_ABI) {
1434      VarArgsNumGPR = GPR_idx;
1435      VarArgsNumFPR = FPR_idx;
1436
1437      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1438      // pointer.
1439      depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1440                Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1441                MVT::getSizeInBits(PtrVT)/8);
1442
1443      VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1444                                                  ArgOffset);
1445
1446    }
1447    else
1448      depth = ArgOffset;
1449
1450    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1451                                               depth);
1452    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1453
1454    SmallVector<SDOperand, 8> MemOps;
1455
1456    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1457    // stored to the VarArgsFrameIndex on the stack.
1458    if (isELF32_ABI) {
1459      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1460        SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1461        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1462        MemOps.push_back(Store);
1463        // Increment the address by four for the next argument to store
1464        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1465        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1466      }
1467    }
1468
1469    // If this function is vararg, store any remaining integer argument regs
1470    // to their spots on the stack so that they may be loaded by deferencing the
1471    // result of va_next.
1472    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1473      unsigned VReg;
1474      if (isPPC64)
1475        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1476      else
1477        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1478
1479      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1480      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1481      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1482      MemOps.push_back(Store);
1483      // Increment the address by four for the next argument to store
1484      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1485      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1486    }
1487
1488    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1489    // on the stack.
1490    if (isELF32_ABI) {
1491      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1492        SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1493        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1494        MemOps.push_back(Store);
1495        // Increment the address by eight for the next argument to store
1496        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1497                                           PtrVT);
1498        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1499      }
1500
1501      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1502        unsigned VReg;
1503        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1504
1505        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1506        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1507        SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1508        MemOps.push_back(Store);
1509        // Increment the address by eight for the next argument to store
1510        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1511                                           PtrVT);
1512        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1513      }
1514    }
1515
1516    if (!MemOps.empty())
1517      Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1518  }
1519
1520  ArgValues.push_back(Root);
1521
1522  // Return the new list of results.
1523  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1524                                    Op.Val->value_end());
1525  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1526}
1527
1528/// isCallCompatibleAddress - Return the immediate to use if the specified
1529/// 32-bit value is representable in the immediate field of a BxA instruction.
1530static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1531  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1532  if (!C) return 0;
1533
1534  int Addr = C->getValue();
1535  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1536      (Addr << 6 >> 6) != Addr)
1537    return 0;  // Top 6 bits have to be sext of immediate.
1538
1539  return DAG.getConstant((int)C->getValue() >> 2,
1540                         DAG.getTargetLoweringInfo().getPointerTy()).Val;
1541}
1542
1543
1544static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG,
1545                           const PPCSubtarget &Subtarget) {
1546  SDOperand Chain  = Op.getOperand(0);
1547  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1548  SDOperand Callee = Op.getOperand(4);
1549  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
1550
1551  bool isMachoABI = Subtarget.isMachoABI();
1552  bool isELF32_ABI  = Subtarget.isELF32_ABI();
1553
1554  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1555  bool isPPC64 = PtrVT == MVT::i64;
1556  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1557
1558  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1559  // SelectExpr to use to put the arguments in the appropriate registers.
1560  std::vector<SDOperand> args_to_use;
1561
1562  // Count how many bytes are to be pushed on the stack, including the linkage
1563  // area, and parameter passing area.  We start with 24/48 bytes, which is
1564  // prereserved space for [SP][CR][LR][3 x unused].
1565  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1566
1567  // Add up all the space actually used.
1568  for (unsigned i = 0; i != NumOps; ++i) {
1569    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1570    ArgSize = std::max(ArgSize, PtrByteSize);
1571    NumBytes += ArgSize;
1572  }
1573
1574  // The prolog code of the callee may store up to 8 GPR argument registers to
1575  // the stack, allowing va_start to index over them in memory if its varargs.
1576  // Because we cannot tell if this is needed on the caller side, we have to
1577  // conservatively assume that it is needed.  As such, make sure we have at
1578  // least enough stack space for the caller to store the 8 GPRs.
1579  NumBytes = std::max(NumBytes,
1580                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1581
1582  // Adjust the stack pointer for the new arguments...
1583  // These operations are automatically eliminated by the prolog/epilog pass
1584  Chain = DAG.getCALLSEQ_START(Chain,
1585                               DAG.getConstant(NumBytes, PtrVT));
1586
1587  // Set up a copy of the stack pointer for use loading and storing any
1588  // arguments that may not fit in the registers available for argument
1589  // passing.
1590  SDOperand StackPtr;
1591  if (isPPC64)
1592    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1593  else
1594    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1595
1596  // Figure out which arguments are going to go in registers, and which in
1597  // memory.  Also, if this is a vararg function, floating point operations
1598  // must be stored to our stack, and loaded into integer regs as well, if
1599  // any integer regs are available for argument passing.
1600  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1601  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1602
1603  static const unsigned GPR_32[] = {           // 32-bit registers.
1604    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1605    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1606  };
1607  static const unsigned GPR_64[] = {           // 64-bit registers.
1608    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1609    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1610  };
1611  static const unsigned *FPR = GetFPR(Subtarget);
1612
1613  static const unsigned VR[] = {
1614    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1615    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1616  };
1617  const unsigned NumGPRs = array_lengthof(GPR_32);
1618  const unsigned NumFPRs = isMachoABI ? 13 : 8;
1619  const unsigned NumVRs  = array_lengthof( VR);
1620
1621  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1622
1623  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1624  SmallVector<SDOperand, 8> MemOpChains;
1625  for (unsigned i = 0; i != NumOps; ++i) {
1626    bool inMem = false;
1627    SDOperand Arg = Op.getOperand(5+2*i);
1628    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1629    unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1630    // See if next argument requires stack alignment in ELF
1631    unsigned next = 5+2*(i+1)+1;
1632    bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1633      (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1634      (!(Flags & AlignFlag)));
1635
1636    // PtrOff will be used to store the current argument to the stack if a
1637    // register cannot be found for it.
1638    SDOperand PtrOff;
1639
1640    // Stack align in ELF 32
1641    if (isELF32_ABI && Expand)
1642      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1643                               StackPtr.getValueType());
1644    else
1645      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1646
1647    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1648
1649    // On PPC64, promote integers to 64-bit values.
1650    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1651      unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1652
1653      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1654    }
1655
1656    switch (Arg.getValueType()) {
1657    default: assert(0 && "Unexpected ValueType for argument!");
1658    case MVT::i32:
1659    case MVT::i64:
1660      // Double word align in ELF
1661      if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1662      if (GPR_idx != NumGPRs) {
1663        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1664      } else {
1665        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1666        inMem = true;
1667      }
1668      if (inMem || isMachoABI) {
1669        // Stack align in ELF
1670        if (isELF32_ABI && Expand)
1671          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1672
1673        ArgOffset += PtrByteSize;
1674      }
1675      break;
1676    case MVT::f32:
1677    case MVT::f64:
1678      if (isVarArg) {
1679        // Float varargs need to be promoted to double.
1680        if (Arg.getValueType() == MVT::f32)
1681          Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1682      }
1683
1684      if (FPR_idx != NumFPRs) {
1685        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1686
1687        if (isVarArg) {
1688          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1689          MemOpChains.push_back(Store);
1690
1691          // Float varargs are always shadowed in available integer registers
1692          if (GPR_idx != NumGPRs) {
1693            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1694            MemOpChains.push_back(Load.getValue(1));
1695            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1696                                                                Load));
1697          }
1698          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1699            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1700            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1701            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1702            MemOpChains.push_back(Load.getValue(1));
1703            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1704                                                                Load));
1705          }
1706        } else {
1707          // If we have any FPRs remaining, we may also have GPRs remaining.
1708          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1709          // GPRs.
1710          if (isMachoABI) {
1711            if (GPR_idx != NumGPRs)
1712              ++GPR_idx;
1713            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1714                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
1715              ++GPR_idx;
1716          }
1717        }
1718      } else {
1719        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1720        inMem = true;
1721      }
1722      if (inMem || isMachoABI) {
1723        // Stack align in ELF
1724        if (isELF32_ABI && Expand)
1725          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1726        if (isPPC64)
1727          ArgOffset += 8;
1728        else
1729          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1730      }
1731      break;
1732    case MVT::v4f32:
1733    case MVT::v4i32:
1734    case MVT::v8i16:
1735    case MVT::v16i8:
1736      assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1737      assert(VR_idx != NumVRs &&
1738             "Don't support passing more than 12 vector args yet!");
1739      RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1740      break;
1741    }
1742  }
1743  if (!MemOpChains.empty())
1744    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1745                        &MemOpChains[0], MemOpChains.size());
1746
1747  // Build a sequence of copy-to-reg nodes chained together with token chain
1748  // and flag operands which copy the outgoing args into the appropriate regs.
1749  SDOperand InFlag;
1750  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1751    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1752                             InFlag);
1753    InFlag = Chain.getValue(1);
1754  }
1755
1756  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1757  if (isVarArg && isELF32_ABI) {
1758    SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1759    Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1760    InFlag = Chain.getValue(1);
1761  }
1762
1763  std::vector<MVT::ValueType> NodeTys;
1764  NodeTys.push_back(MVT::Other);   // Returns a chain
1765  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1766
1767  SmallVector<SDOperand, 8> Ops;
1768  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1769
1770  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1771  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1772  // node so that legalize doesn't hack it.
1773  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1774    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1775  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1776    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1777  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1778    // If this is an absolute destination address, use the munged value.
1779    Callee = SDOperand(Dest, 0);
1780  else {
1781    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
1782    // to do the call, we can't use PPCISD::CALL.
1783    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1784    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1785    InFlag = Chain.getValue(1);
1786
1787    // Copy the callee address into R12 on darwin.
1788    if (isMachoABI) {
1789      Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1790      InFlag = Chain.getValue(1);
1791    }
1792
1793    NodeTys.clear();
1794    NodeTys.push_back(MVT::Other);
1795    NodeTys.push_back(MVT::Flag);
1796    Ops.push_back(Chain);
1797    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1798    Callee.Val = 0;
1799  }
1800
1801  // If this is a direct call, pass the chain and the callee.
1802  if (Callee.Val) {
1803    Ops.push_back(Chain);
1804    Ops.push_back(Callee);
1805  }
1806
1807  // Add argument registers to the end of the list so that they are known live
1808  // into the call.
1809  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1810    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1811                                  RegsToPass[i].second.getValueType()));
1812
1813  if (InFlag.Val)
1814    Ops.push_back(InFlag);
1815  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1816  InFlag = Chain.getValue(1);
1817
1818  Chain = DAG.getCALLSEQ_END(Chain,
1819                             DAG.getConstant(NumBytes, PtrVT),
1820                             DAG.getConstant(0, PtrVT),
1821                             InFlag);
1822  if (Op.Val->getValueType(0) != MVT::Other)
1823    InFlag = Chain.getValue(1);
1824
1825  SDOperand ResultVals[3];
1826  unsigned NumResults = 0;
1827  NodeTys.clear();
1828
1829  // If the call has results, copy the values out of the ret val registers.
1830  switch (Op.Val->getValueType(0)) {
1831  default: assert(0 && "Unexpected ret value!");
1832  case MVT::Other: break;
1833  case MVT::i32:
1834    if (Op.Val->getValueType(1) == MVT::i32) {
1835      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1836      ResultVals[0] = Chain.getValue(0);
1837      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
1838                                 Chain.getValue(2)).getValue(1);
1839      ResultVals[1] = Chain.getValue(0);
1840      NumResults = 2;
1841      NodeTys.push_back(MVT::i32);
1842    } else {
1843      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1844      ResultVals[0] = Chain.getValue(0);
1845      NumResults = 1;
1846    }
1847    NodeTys.push_back(MVT::i32);
1848    break;
1849  case MVT::i64:
1850    Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1851    ResultVals[0] = Chain.getValue(0);
1852    NumResults = 1;
1853    NodeTys.push_back(MVT::i64);
1854    break;
1855  case MVT::f64:
1856    if (Op.Val->getValueType(1) == MVT::f64) {
1857      Chain = DAG.getCopyFromReg(Chain, PPC::F1, MVT::f64, InFlag).getValue(1);
1858      ResultVals[0] = Chain.getValue(0);
1859      Chain = DAG.getCopyFromReg(Chain, PPC::F2, MVT::f64,
1860                                 Chain.getValue(2)).getValue(1);
1861      ResultVals[1] = Chain.getValue(0);
1862      NumResults = 2;
1863      NodeTys.push_back(MVT::f64);
1864      NodeTys.push_back(MVT::f64);
1865      break;
1866    }
1867    // else fall through
1868  case MVT::f32:
1869    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1870                               InFlag).getValue(1);
1871    ResultVals[0] = Chain.getValue(0);
1872    NumResults = 1;
1873    NodeTys.push_back(Op.Val->getValueType(0));
1874    break;
1875  case MVT::v4f32:
1876  case MVT::v4i32:
1877  case MVT::v8i16:
1878  case MVT::v16i8:
1879    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1880                                   InFlag).getValue(1);
1881    ResultVals[0] = Chain.getValue(0);
1882    NumResults = 1;
1883    NodeTys.push_back(Op.Val->getValueType(0));
1884    break;
1885  }
1886
1887  NodeTys.push_back(MVT::Other);
1888
1889  // If the function returns void, just return the chain.
1890  if (NumResults == 0)
1891    return Chain;
1892
1893  // Otherwise, merge everything together with a MERGE_VALUES node.
1894  ResultVals[NumResults++] = Chain;
1895  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1896                              ResultVals, NumResults);
1897  return Res.getValue(Op.ResNo);
1898}
1899
1900static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM) {
1901  SmallVector<CCValAssign, 16> RVLocs;
1902  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1903  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1904  CCState CCInfo(CC, isVarArg, TM, RVLocs);
1905  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
1906
1907  // If this is the first return lowered for this function, add the regs to the
1908  // liveout set for the function.
1909  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1910    for (unsigned i = 0; i != RVLocs.size(); ++i)
1911      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1912  }
1913
1914  SDOperand Chain = Op.getOperand(0);
1915  SDOperand Flag;
1916
1917  // Copy the result values into the output registers.
1918  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1919    CCValAssign &VA = RVLocs[i];
1920    assert(VA.isRegLoc() && "Can only return in registers!");
1921    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
1922    Flag = Chain.getValue(1);
1923  }
1924
1925  if (Flag.Val)
1926    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
1927  else
1928    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
1929}
1930
1931static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
1932                                   const PPCSubtarget &Subtarget) {
1933  // When we pop the dynamic allocation we need to restore the SP link.
1934
1935  // Get the corect type for pointers.
1936  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1937
1938  // Construct the stack pointer operand.
1939  bool IsPPC64 = Subtarget.isPPC64();
1940  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
1941  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
1942
1943  // Get the operands for the STACKRESTORE.
1944  SDOperand Chain = Op.getOperand(0);
1945  SDOperand SaveSP = Op.getOperand(1);
1946
1947  // Load the old link SP.
1948  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
1949
1950  // Restore the stack pointer.
1951  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
1952
1953  // Store the old link SP.
1954  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
1955}
1956
1957static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1958                                         const PPCSubtarget &Subtarget) {
1959  MachineFunction &MF = DAG.getMachineFunction();
1960  bool IsPPC64 = Subtarget.isPPC64();
1961  bool isMachoABI = Subtarget.isMachoABI();
1962
1963  // Get current frame pointer save index.  The users of this index will be
1964  // primarily DYNALLOC instructions.
1965  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1966  int FPSI = FI->getFramePointerSaveIndex();
1967
1968  // If the frame pointer save index hasn't been defined yet.
1969  if (!FPSI) {
1970    // Find out what the fix offset of the frame pointer save area.
1971    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
1972
1973    // Allocate the frame index for frame pointer save area.
1974    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
1975    // Save the result.
1976    FI->setFramePointerSaveIndex(FPSI);
1977  }
1978
1979  // Get the inputs.
1980  SDOperand Chain = Op.getOperand(0);
1981  SDOperand Size  = Op.getOperand(1);
1982
1983  // Get the corect type for pointers.
1984  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1985  // Negate the size.
1986  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1987                                  DAG.getConstant(0, PtrVT), Size);
1988  // Construct a node for the frame pointer save index.
1989  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
1990  // Build a DYNALLOC node.
1991  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
1992  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
1993  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
1994}
1995
1996
1997/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1998/// possible.
1999static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
2000  // Not FP? Not a fsel.
2001  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
2002      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
2003    return SDOperand();
2004
2005  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2006
2007  // Cannot handle SETEQ/SETNE.
2008  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2009
2010  MVT::ValueType ResVT = Op.getValueType();
2011  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2012  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2013  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2014
2015  // If the RHS of the comparison is a 0.0, we don't need to do the
2016  // subtraction at all.
2017  if (isFloatingPointZero(RHS))
2018    switch (CC) {
2019    default: break;       // SETUO etc aren't handled by fsel.
2020    case ISD::SETULT:
2021    case ISD::SETOLT:
2022    case ISD::SETLT:
2023      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2024    case ISD::SETUGE:
2025    case ISD::SETOGE:
2026    case ISD::SETGE:
2027      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2028        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2029      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2030    case ISD::SETUGT:
2031    case ISD::SETOGT:
2032    case ISD::SETGT:
2033      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2034    case ISD::SETULE:
2035    case ISD::SETOLE:
2036    case ISD::SETLE:
2037      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2038        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2039      return DAG.getNode(PPCISD::FSEL, ResVT,
2040                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2041    }
2042
2043  SDOperand Cmp;
2044  switch (CC) {
2045  default: break;       // SETUO etc aren't handled by fsel.
2046  case ISD::SETULT:
2047  case ISD::SETOLT:
2048  case ISD::SETLT:
2049    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2050    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2051      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2052      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2053  case ISD::SETUGE:
2054  case ISD::SETOGE:
2055  case ISD::SETGE:
2056    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2057    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2058      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2059      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2060  case ISD::SETUGT:
2061  case ISD::SETOGT:
2062  case ISD::SETGT:
2063    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2064    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2065      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2066      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2067  case ISD::SETULE:
2068  case ISD::SETOLE:
2069  case ISD::SETLE:
2070    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2071    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2072      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2073      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2074  }
2075  return SDOperand();
2076}
2077
2078// FIXME: Split this code up when LegalizeDAGTypes lands.
2079static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2080  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2081  SDOperand Src = Op.getOperand(0);
2082  if (Src.getValueType() == MVT::f32)
2083    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2084
2085  SDOperand Tmp;
2086  switch (Op.getValueType()) {
2087  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2088  case MVT::i32:
2089    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2090    break;
2091  case MVT::i64:
2092    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2093    break;
2094  }
2095
2096  // Convert the FP value to an int value through memory.
2097  SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2098
2099  // Emit a store to the stack slot.
2100  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2101
2102  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2103  // add in a bias.
2104  if (Op.getValueType() == MVT::i32)
2105    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2106                        DAG.getConstant(4, FIPtr.getValueType()));
2107  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2108}
2109
2110static SDOperand LowerFP_ROUND_INREG(SDOperand Op, SelectionDAG &DAG) {
2111  assert(Op.getValueType() == MVT::ppcf128);
2112  SDNode *Node = Op.Val;
2113  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2114  assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
2115  SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2116  SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2117
2118  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2119  // of the long double, and puts FPSCR back the way it was.  We do not
2120  // actually model FPSCR.
2121  std::vector<MVT::ValueType> NodeTys;
2122  SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2123
2124  NodeTys.push_back(MVT::f64);   // Return register
2125  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2126  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2127  MFFSreg = Result.getValue(0);
2128  InFlag = Result.getValue(1);
2129
2130  NodeTys.clear();
2131  NodeTys.push_back(MVT::Flag);   // Returns a flag
2132  Ops[0] = DAG.getConstant(31, MVT::i32);
2133  Ops[1] = InFlag;
2134  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2135  InFlag = Result.getValue(0);
2136
2137  NodeTys.clear();
2138  NodeTys.push_back(MVT::Flag);   // Returns a flag
2139  Ops[0] = DAG.getConstant(30, MVT::i32);
2140  Ops[1] = InFlag;
2141  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2142  InFlag = Result.getValue(0);
2143
2144  NodeTys.clear();
2145  NodeTys.push_back(MVT::f64);    // result of add
2146  NodeTys.push_back(MVT::Flag);   // Returns a flag
2147  Ops[0] = Lo;
2148  Ops[1] = Hi;
2149  Ops[2] = InFlag;
2150  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2151  FPreg = Result.getValue(0);
2152  InFlag = Result.getValue(1);
2153
2154  NodeTys.clear();
2155  NodeTys.push_back(MVT::f64);
2156  Ops[0] = DAG.getConstant(1, MVT::i32);
2157  Ops[1] = MFFSreg;
2158  Ops[2] = FPreg;
2159  Ops[3] = InFlag;
2160  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2161  FPreg = Result.getValue(0);
2162
2163  // We know the low half is about to be thrown away, so just use something
2164  // convenient.
2165  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2166}
2167
2168static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2169  if (Op.getOperand(0).getValueType() == MVT::i64) {
2170    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2171    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2172    if (Op.getValueType() == MVT::f32)
2173      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2174    return FP;
2175  }
2176
2177  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2178         "Unhandled SINT_TO_FP type in custom expander!");
2179  // Since we only generate this in 64-bit mode, we can take advantage of
2180  // 64-bit registers.  In particular, sign extend the input value into the
2181  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2182  // then lfd it and fcfid it.
2183  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2184  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2185  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2186  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2187
2188  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2189                                Op.getOperand(0));
2190
2191  // STD the extended value into the stack slot.
2192  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2193                                DAG.getEntryNode(), Ext64, FIdx,
2194                                DAG.getSrcValue(NULL));
2195  // Load the value as a double.
2196  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2197
2198  // FCFID it and return it.
2199  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2200  if (Op.getValueType() == MVT::f32)
2201    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2202  return FP;
2203}
2204
2205static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2206  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2207         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
2208
2209  // Expand into a bunch of logical ops.  Note that these ops
2210  // depend on the PPC behavior for oversized shift amounts.
2211  SDOperand Lo = Op.getOperand(0);
2212  SDOperand Hi = Op.getOperand(1);
2213  SDOperand Amt = Op.getOperand(2);
2214
2215  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2216                               DAG.getConstant(32, MVT::i32), Amt);
2217  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
2218  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
2219  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2220  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2221                               DAG.getConstant(-32U, MVT::i32));
2222  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
2223  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2224  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
2225  SDOperand OutOps[] = { OutLo, OutHi };
2226  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2227                     OutOps, 2);
2228}
2229
2230static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2231  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2232         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
2233
2234  // Otherwise, expand into a bunch of logical ops.  Note that these ops
2235  // depend on the PPC behavior for oversized shift amounts.
2236  SDOperand Lo = Op.getOperand(0);
2237  SDOperand Hi = Op.getOperand(1);
2238  SDOperand Amt = Op.getOperand(2);
2239
2240  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2241                               DAG.getConstant(32, MVT::i32), Amt);
2242  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2243  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2244  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2245  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2246                               DAG.getConstant(-32U, MVT::i32));
2247  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
2248  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2249  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
2250  SDOperand OutOps[] = { OutLo, OutHi };
2251  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2252                     OutOps, 2);
2253}
2254
2255static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2256  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2257         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
2258
2259  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
2260  SDOperand Lo = Op.getOperand(0);
2261  SDOperand Hi = Op.getOperand(1);
2262  SDOperand Amt = Op.getOperand(2);
2263
2264  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2265                               DAG.getConstant(32, MVT::i32), Amt);
2266  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2267  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2268  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2269  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2270                               DAG.getConstant(-32U, MVT::i32));
2271  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
2272  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
2273  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
2274                                    Tmp4, Tmp6, ISD::SETLE);
2275  SDOperand OutOps[] = { OutLo, OutHi };
2276  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2277                     OutOps, 2);
2278}
2279
2280//===----------------------------------------------------------------------===//
2281// Vector related lowering.
2282//
2283
2284// If this is a vector of constants or undefs, get the bits.  A bit in
2285// UndefBits is set if the corresponding element of the vector is an
2286// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2287// zero.   Return true if this is not an array of constants, false if it is.
2288//
2289static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2290                                       uint64_t UndefBits[2]) {
2291  // Start with zero'd results.
2292  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2293
2294  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2295  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2296    SDOperand OpVal = BV->getOperand(i);
2297
2298    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
2299    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
2300
2301    uint64_t EltBits = 0;
2302    if (OpVal.getOpcode() == ISD::UNDEF) {
2303      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2304      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2305      continue;
2306    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2307      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2308    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2309      assert(CN->getValueType(0) == MVT::f32 &&
2310             "Only one legal FP vector type!");
2311      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
2312    } else {
2313      // Nonconstant element.
2314      return true;
2315    }
2316
2317    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2318  }
2319
2320  //printf("%llx %llx  %llx %llx\n",
2321  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2322  return false;
2323}
2324
2325// If this is a splat (repetition) of a value across the whole vector, return
2326// the smallest size that splats it.  For example, "0x01010101010101..." is a
2327// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2328// SplatSize = 1 byte.
2329static bool isConstantSplat(const uint64_t Bits128[2],
2330                            const uint64_t Undef128[2],
2331                            unsigned &SplatBits, unsigned &SplatUndef,
2332                            unsigned &SplatSize) {
2333
2334  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
2335  // the same as the lower 64-bits, ignoring undefs.
2336  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2337    return false;  // Can't be a splat if two pieces don't match.
2338
2339  uint64_t Bits64  = Bits128[0] | Bits128[1];
2340  uint64_t Undef64 = Undef128[0] & Undef128[1];
2341
2342  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2343  // undefs.
2344  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2345    return false;  // Can't be a splat if two pieces don't match.
2346
2347  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2348  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2349
2350  // If the top 16-bits are different than the lower 16-bits, ignoring
2351  // undefs, we have an i32 splat.
2352  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2353    SplatBits = Bits32;
2354    SplatUndef = Undef32;
2355    SplatSize = 4;
2356    return true;
2357  }
2358
2359  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
2360  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2361
2362  // If the top 8-bits are different than the lower 8-bits, ignoring
2363  // undefs, we have an i16 splat.
2364  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2365    SplatBits = Bits16;
2366    SplatUndef = Undef16;
2367    SplatSize = 2;
2368    return true;
2369  }
2370
2371  // Otherwise, we have an 8-bit splat.
2372  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
2373  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2374  SplatSize = 1;
2375  return true;
2376}
2377
2378/// BuildSplatI - Build a canonical splati of Val with an element size of
2379/// SplatSize.  Cast the result to VT.
2380static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2381                             SelectionDAG &DAG) {
2382  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2383
2384  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2385    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2386  };
2387
2388  MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2389
2390  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2391  if (Val == -1)
2392    SplatSize = 1;
2393
2394  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2395
2396  // Build a canonical splat for this value.
2397  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2398  SmallVector<SDOperand, 8> Ops;
2399  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2400  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2401                              &Ops[0], Ops.size());
2402  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2403}
2404
2405/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2406/// specified intrinsic ID.
2407static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2408                                  SelectionDAG &DAG,
2409                                  MVT::ValueType DestVT = MVT::Other) {
2410  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2411  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2412                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
2413}
2414
2415/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2416/// specified intrinsic ID.
2417static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2418                                  SDOperand Op2, SelectionDAG &DAG,
2419                                  MVT::ValueType DestVT = MVT::Other) {
2420  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2421  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2422                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2423}
2424
2425
2426/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2427/// amount.  The result has the specified value type.
2428static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2429                             MVT::ValueType VT, SelectionDAG &DAG) {
2430  // Force LHS/RHS to be the right type.
2431  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2432  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2433
2434  SDOperand Ops[16];
2435  for (unsigned i = 0; i != 16; ++i)
2436    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2437  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2438                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2439  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2440}
2441
2442// If this is a case we can't handle, return null and let the default
2443// expansion code take care of it.  If we CAN select this case, and if it
2444// selects to a single instruction, return Op.  Otherwise, if we can codegen
2445// this case more efficiently than a constant pool load, lower it to the
2446// sequence of ops that should be used.
2447static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2448  // If this is a vector of constants or undefs, get the bits.  A bit in
2449  // UndefBits is set if the corresponding element of the vector is an
2450  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2451  // zero.
2452  uint64_t VectorBits[2];
2453  uint64_t UndefBits[2];
2454  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2455    return SDOperand();   // Not a constant vector.
2456
2457  // If this is a splat (repetition) of a value across the whole vector, return
2458  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2459  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2460  // SplatSize = 1 byte.
2461  unsigned SplatBits, SplatUndef, SplatSize;
2462  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2463    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2464
2465    // First, handle single instruction cases.
2466
2467    // All zeros?
2468    if (SplatBits == 0) {
2469      // Canonicalize all zero vectors to be v4i32.
2470      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2471        SDOperand Z = DAG.getConstant(0, MVT::i32);
2472        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2473        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2474      }
2475      return Op;
2476    }
2477
2478    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2479    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2480    if (SextVal >= -16 && SextVal <= 15)
2481      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2482
2483
2484    // Two instruction sequences.
2485
2486    // If this value is in the range [-32,30] and is even, use:
2487    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2488    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2489      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2490      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2491    }
2492
2493    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2494    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2495    // for fneg/fabs.
2496    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2497      // Make -1 and vspltisw -1:
2498      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2499
2500      // Make the VSLW intrinsic, computing 0x8000_0000.
2501      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2502                                       OnesV, DAG);
2503
2504      // xor by OnesV to invert it.
2505      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2506      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2507    }
2508
2509    // Check to see if this is a wide variety of vsplti*, binop self cases.
2510    unsigned SplatBitSize = SplatSize*8;
2511    static const signed char SplatCsts[] = {
2512      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2513      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2514    };
2515
2516    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
2517      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2518      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2519      int i = SplatCsts[idx];
2520
2521      // Figure out what shift amount will be used by altivec if shifted by i in
2522      // this splat size.
2523      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2524
2525      // vsplti + shl self.
2526      if (SextVal == (i << (int)TypeShiftAmt)) {
2527        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2528        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2529          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2530          Intrinsic::ppc_altivec_vslw
2531        };
2532        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2533        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2534      }
2535
2536      // vsplti + srl self.
2537      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2538        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2539        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2540          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2541          Intrinsic::ppc_altivec_vsrw
2542        };
2543        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2544        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2545      }
2546
2547      // vsplti + sra self.
2548      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2549        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2550        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2551          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2552          Intrinsic::ppc_altivec_vsraw
2553        };
2554        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2555        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2556      }
2557
2558      // vsplti + rol self.
2559      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2560                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2561        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2562        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2563          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2564          Intrinsic::ppc_altivec_vrlw
2565        };
2566        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2567        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2568      }
2569
2570      // t = vsplti c, result = vsldoi t, t, 1
2571      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2572        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2573        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2574      }
2575      // t = vsplti c, result = vsldoi t, t, 2
2576      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2577        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2578        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2579      }
2580      // t = vsplti c, result = vsldoi t, t, 3
2581      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2582        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2583        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2584      }
2585    }
2586
2587    // Three instruction sequences.
2588
2589    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2590    if (SextVal >= 0 && SextVal <= 31) {
2591      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2592      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2593      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
2594      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2595    }
2596    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2597    if (SextVal >= -31 && SextVal <= 0) {
2598      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2599      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2600      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
2601      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2602    }
2603  }
2604
2605  return SDOperand();
2606}
2607
2608/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2609/// the specified operations to build the shuffle.
2610static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2611                                        SDOperand RHS, SelectionDAG &DAG) {
2612  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2613  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
2614  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2615
2616  enum {
2617    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2618    OP_VMRGHW,
2619    OP_VMRGLW,
2620    OP_VSPLTISW0,
2621    OP_VSPLTISW1,
2622    OP_VSPLTISW2,
2623    OP_VSPLTISW3,
2624    OP_VSLDOI4,
2625    OP_VSLDOI8,
2626    OP_VSLDOI12
2627  };
2628
2629  if (OpNum == OP_COPY) {
2630    if (LHSID == (1*9+2)*9+3) return LHS;
2631    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2632    return RHS;
2633  }
2634
2635  SDOperand OpLHS, OpRHS;
2636  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2637  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2638
2639  unsigned ShufIdxs[16];
2640  switch (OpNum) {
2641  default: assert(0 && "Unknown i32 permute!");
2642  case OP_VMRGHW:
2643    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
2644    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2645    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
2646    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2647    break;
2648  case OP_VMRGLW:
2649    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2650    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2651    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2652    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2653    break;
2654  case OP_VSPLTISW0:
2655    for (unsigned i = 0; i != 16; ++i)
2656      ShufIdxs[i] = (i&3)+0;
2657    break;
2658  case OP_VSPLTISW1:
2659    for (unsigned i = 0; i != 16; ++i)
2660      ShufIdxs[i] = (i&3)+4;
2661    break;
2662  case OP_VSPLTISW2:
2663    for (unsigned i = 0; i != 16; ++i)
2664      ShufIdxs[i] = (i&3)+8;
2665    break;
2666  case OP_VSPLTISW3:
2667    for (unsigned i = 0; i != 16; ++i)
2668      ShufIdxs[i] = (i&3)+12;
2669    break;
2670  case OP_VSLDOI4:
2671    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2672  case OP_VSLDOI8:
2673    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2674  case OP_VSLDOI12:
2675    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2676  }
2677  SDOperand Ops[16];
2678  for (unsigned i = 0; i != 16; ++i)
2679    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2680
2681  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2682                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2683}
2684
2685/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
2686/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
2687/// return the code it can be lowered into.  Worst case, it can always be
2688/// lowered into a vperm.
2689static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2690  SDOperand V1 = Op.getOperand(0);
2691  SDOperand V2 = Op.getOperand(1);
2692  SDOperand PermMask = Op.getOperand(2);
2693
2694  // Cases that are handled by instructions that take permute immediates
2695  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2696  // selected by the instruction selector.
2697  if (V2.getOpcode() == ISD::UNDEF) {
2698    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2699        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2700        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2701        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2702        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2703        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2704        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2705        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2706        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2707        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2708        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2709        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2710      return Op;
2711    }
2712  }
2713
2714  // Altivec has a variety of "shuffle immediates" that take two vector inputs
2715  // and produce a fixed permutation.  If any of these match, do not lower to
2716  // VPERM.
2717  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2718      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2719      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2720      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2721      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2722      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2723      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2724      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2725      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2726    return Op;
2727
2728  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
2729  // perfect shuffle table to emit an optimal matching sequence.
2730  unsigned PFIndexes[4];
2731  bool isFourElementShuffle = true;
2732  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2733    unsigned EltNo = 8;   // Start out undef.
2734    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
2735      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2736        continue;   // Undef, ignore it.
2737
2738      unsigned ByteSource =
2739        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2740      if ((ByteSource & 3) != j) {
2741        isFourElementShuffle = false;
2742        break;
2743      }
2744
2745      if (EltNo == 8) {
2746        EltNo = ByteSource/4;
2747      } else if (EltNo != ByteSource/4) {
2748        isFourElementShuffle = false;
2749        break;
2750      }
2751    }
2752    PFIndexes[i] = EltNo;
2753  }
2754
2755  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2756  // perfect shuffle vector to determine if it is cost effective to do this as
2757  // discrete instructions, or whether we should use a vperm.
2758  if (isFourElementShuffle) {
2759    // Compute the index in the perfect shuffle table.
2760    unsigned PFTableIndex =
2761      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2762
2763    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2764    unsigned Cost  = (PFEntry >> 30);
2765
2766    // Determining when to avoid vperm is tricky.  Many things affect the cost
2767    // of vperm, particularly how many times the perm mask needs to be computed.
2768    // For example, if the perm mask can be hoisted out of a loop or is already
2769    // used (perhaps because there are multiple permutes with the same shuffle
2770    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
2771    // the loop requires an extra register.
2772    //
2773    // As a compromise, we only emit discrete instructions if the shuffle can be
2774    // generated in 3 or fewer operations.  When we have loop information
2775    // available, if this block is within a loop, we should avoid using vperm
2776    // for 3-operation perms and use a constant pool load instead.
2777    if (Cost < 3)
2778      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2779  }
2780
2781  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2782  // vector that will get spilled to the constant pool.
2783  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2784
2785  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2786  // that it is in input element units, not in bytes.  Convert now.
2787  MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
2788  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2789
2790  SmallVector<SDOperand, 16> ResultMask;
2791  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2792    unsigned SrcElt;
2793    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2794      SrcElt = 0;
2795    else
2796      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2797
2798    for (unsigned j = 0; j != BytesPerElement; ++j)
2799      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2800                                           MVT::i8));
2801  }
2802
2803  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2804                                    &ResultMask[0], ResultMask.size());
2805  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2806}
2807
2808/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2809/// altivec comparison.  If it is, return true and fill in Opc/isDot with
2810/// information about the intrinsic.
2811static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2812                                  bool &isDot) {
2813  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2814  CompareOpc = -1;
2815  isDot = false;
2816  switch (IntrinsicID) {
2817  default: return false;
2818    // Comparison predicates.
2819  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
2820  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2821  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
2822  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
2823  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2824  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2825  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2826  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2827  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2828  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2829  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2830  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2831  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2832
2833    // Normal Comparisons.
2834  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
2835  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
2836  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
2837  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
2838  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
2839  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
2840  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
2841  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
2842  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
2843  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
2844  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
2845  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
2846  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
2847  }
2848  return true;
2849}
2850
2851/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2852/// lower, do it, otherwise return null.
2853static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2854  // If this is a lowered altivec predicate compare, CompareOpc is set to the
2855  // opcode number of the comparison.
2856  int CompareOpc;
2857  bool isDot;
2858  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2859    return SDOperand();    // Don't custom lower most intrinsics.
2860
2861  // If this is a non-dot comparison, make the VCMP node and we are done.
2862  if (!isDot) {
2863    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2864                                Op.getOperand(1), Op.getOperand(2),
2865                                DAG.getConstant(CompareOpc, MVT::i32));
2866    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2867  }
2868
2869  // Create the PPCISD altivec 'dot' comparison node.
2870  SDOperand Ops[] = {
2871    Op.getOperand(2),  // LHS
2872    Op.getOperand(3),  // RHS
2873    DAG.getConstant(CompareOpc, MVT::i32)
2874  };
2875  std::vector<MVT::ValueType> VTs;
2876  VTs.push_back(Op.getOperand(2).getValueType());
2877  VTs.push_back(MVT::Flag);
2878  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2879
2880  // Now that we have the comparison, emit a copy from the CR to a GPR.
2881  // This is flagged to the above dot comparison.
2882  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2883                                DAG.getRegister(PPC::CR6, MVT::i32),
2884                                CompNode.getValue(1));
2885
2886  // Unpack the result based on how the target uses it.
2887  unsigned BitNo;   // Bit # of CR6.
2888  bool InvertBit;   // Invert result?
2889  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2890  default:  // Can't happen, don't crash on invalid number though.
2891  case 0:   // Return the value of the EQ bit of CR6.
2892    BitNo = 0; InvertBit = false;
2893    break;
2894  case 1:   // Return the inverted value of the EQ bit of CR6.
2895    BitNo = 0; InvertBit = true;
2896    break;
2897  case 2:   // Return the value of the LT bit of CR6.
2898    BitNo = 2; InvertBit = false;
2899    break;
2900  case 3:   // Return the inverted value of the LT bit of CR6.
2901    BitNo = 2; InvertBit = true;
2902    break;
2903  }
2904
2905  // Shift the bit into the low position.
2906  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2907                      DAG.getConstant(8-(3-BitNo), MVT::i32));
2908  // Isolate the bit.
2909  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2910                      DAG.getConstant(1, MVT::i32));
2911
2912  // If we are supposed to, toggle the bit.
2913  if (InvertBit)
2914    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2915                        DAG.getConstant(1, MVT::i32));
2916  return Flags;
2917}
2918
2919static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2920  // Create a stack slot that is 16-byte aligned.
2921  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2922  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2923  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2924  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2925
2926  // Store the input value into Value#0 of the stack slot.
2927  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2928                                 Op.getOperand(0), FIdx, NULL, 0);
2929  // Load it out.
2930  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2931}
2932
2933static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2934  if (Op.getValueType() == MVT::v4i32) {
2935    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2936
2937    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
2938    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2939
2940    SDOperand RHSSwap =   // = vrlw RHS, 16
2941      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2942
2943    // Shrinkify inputs to v8i16.
2944    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2945    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2946    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2947
2948    // Low parts multiplied together, generating 32-bit results (we ignore the
2949    // top parts).
2950    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2951                                        LHS, RHS, DAG, MVT::v4i32);
2952
2953    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2954                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2955    // Shift the high parts up 16 bits.
2956    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2957    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2958  } else if (Op.getValueType() == MVT::v8i16) {
2959    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2960
2961    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2962
2963    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2964                            LHS, RHS, Zero, DAG);
2965  } else if (Op.getValueType() == MVT::v16i8) {
2966    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2967
2968    // Multiply the even 8-bit parts, producing 16-bit sums.
2969    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2970                                           LHS, RHS, DAG, MVT::v8i16);
2971    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2972
2973    // Multiply the odd 8-bit parts, producing 16-bit sums.
2974    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2975                                          LHS, RHS, DAG, MVT::v8i16);
2976    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2977
2978    // Merge the results together.
2979    SDOperand Ops[16];
2980    for (unsigned i = 0; i != 8; ++i) {
2981      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
2982      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2983    }
2984    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2985                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2986  } else {
2987    assert(0 && "Unknown mul to lower!");
2988    abort();
2989  }
2990}
2991
2992/// LowerOperation - Provide custom lowering hooks for some operations.
2993///
2994SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2995  switch (Op.getOpcode()) {
2996  default: assert(0 && "Wasn't expecting to be able to lower this!");
2997  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
2998  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
2999  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3000  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3001  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3002  case ISD::VASTART:
3003    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3004                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3005
3006  case ISD::VAARG:
3007    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3008                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3009
3010  case ISD::FORMAL_ARGUMENTS:
3011    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3012                                 VarArgsStackOffset, VarArgsNumGPR,
3013                                 VarArgsNumFPR, PPCSubTarget);
3014
3015  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget);
3016  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3017  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3018  case ISD::DYNAMIC_STACKALLOC:
3019    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3020
3021  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3022  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3023  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3024  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3025
3026  // Lower 64-bit shifts.
3027  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3028  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3029  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3030
3031  // Vector-related lowering.
3032  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3033  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3034  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3035  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3036  case ISD::MUL:                return LowerMUL(Op, DAG);
3037
3038  // Frame & Return address.
3039  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3040  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3041  }
3042  return SDOperand();
3043}
3044
3045SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3046  switch (N->getOpcode()) {
3047  default: assert(0 && "Wasn't expecting to be able to lower this!");
3048  case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3049  }
3050}
3051
3052
3053//===----------------------------------------------------------------------===//
3054//  Other Lowering Code
3055//===----------------------------------------------------------------------===//
3056
3057MachineBasicBlock *
3058PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3059                                           MachineBasicBlock *BB) {
3060  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3061  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3062          MI->getOpcode() == PPC::SELECT_CC_I8 ||
3063          MI->getOpcode() == PPC::SELECT_CC_F4 ||
3064          MI->getOpcode() == PPC::SELECT_CC_F8 ||
3065          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3066         "Unexpected instr type to insert");
3067
3068  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3069  // control-flow pattern.  The incoming instruction knows the destination vreg
3070  // to set, the condition code register to branch on, the true/false values to
3071  // select between, and a branch opcode to use.
3072  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3073  ilist<MachineBasicBlock>::iterator It = BB;
3074  ++It;
3075
3076  //  thisMBB:
3077  //  ...
3078  //   TrueVal = ...
3079  //   cmpTY ccX, r1, r2
3080  //   bCC copy1MBB
3081  //   fallthrough --> copy0MBB
3082  MachineBasicBlock *thisMBB = BB;
3083  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3084  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3085  unsigned SelectPred = MI->getOperand(4).getImm();
3086  BuildMI(BB, TII->get(PPC::BCC))
3087    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3088  MachineFunction *F = BB->getParent();
3089  F->getBasicBlockList().insert(It, copy0MBB);
3090  F->getBasicBlockList().insert(It, sinkMBB);
3091  // Update machine-CFG edges by first adding all successors of the current
3092  // block to the new block which will contain the Phi node for the select.
3093  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3094      e = BB->succ_end(); i != e; ++i)
3095    sinkMBB->addSuccessor(*i);
3096  // Next, remove all successors of the current block, and add the true
3097  // and fallthrough blocks as its successors.
3098  while(!BB->succ_empty())
3099    BB->removeSuccessor(BB->succ_begin());
3100  BB->addSuccessor(copy0MBB);
3101  BB->addSuccessor(sinkMBB);
3102
3103  //  copy0MBB:
3104  //   %FalseValue = ...
3105  //   # fallthrough to sinkMBB
3106  BB = copy0MBB;
3107
3108  // Update machine-CFG edges
3109  BB->addSuccessor(sinkMBB);
3110
3111  //  sinkMBB:
3112  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3113  //  ...
3114  BB = sinkMBB;
3115  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3116    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3117    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3118
3119  delete MI;   // The pseudo instruction is gone now.
3120  return BB;
3121}
3122
3123//===----------------------------------------------------------------------===//
3124// Target Optimization Hooks
3125//===----------------------------------------------------------------------===//
3126
3127SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3128                                               DAGCombinerInfo &DCI) const {
3129  TargetMachine &TM = getTargetMachine();
3130  SelectionDAG &DAG = DCI.DAG;
3131  switch (N->getOpcode()) {
3132  default: break;
3133  case PPCISD::SHL:
3134    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3135      if (C->getValue() == 0)   // 0 << V -> 0.
3136        return N->getOperand(0);
3137    }
3138    break;
3139  case PPCISD::SRL:
3140    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3141      if (C->getValue() == 0)   // 0 >>u V -> 0.
3142        return N->getOperand(0);
3143    }
3144    break;
3145  case PPCISD::SRA:
3146    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3147      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
3148          C->isAllOnesValue())    // -1 >>s V -> -1.
3149        return N->getOperand(0);
3150    }
3151    break;
3152
3153  case ISD::SINT_TO_FP:
3154    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3155      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3156        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3157        // We allow the src/dst to be either f32/f64, but the intermediate
3158        // type must be i64.
3159        if (N->getOperand(0).getValueType() == MVT::i64 &&
3160            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
3161          SDOperand Val = N->getOperand(0).getOperand(0);
3162          if (Val.getValueType() == MVT::f32) {
3163            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3164            DCI.AddToWorklist(Val.Val);
3165          }
3166
3167          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3168          DCI.AddToWorklist(Val.Val);
3169          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3170          DCI.AddToWorklist(Val.Val);
3171          if (N->getValueType(0) == MVT::f32) {
3172            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
3173                              DAG.getIntPtrConstant(0));
3174            DCI.AddToWorklist(Val.Val);
3175          }
3176          return Val;
3177        } else if (N->getOperand(0).getValueType() == MVT::i32) {
3178          // If the intermediate type is i32, we can avoid the load/store here
3179          // too.
3180        }
3181      }
3182    }
3183    break;
3184  case ISD::STORE:
3185    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3186    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3187        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3188        N->getOperand(1).getValueType() == MVT::i32 &&
3189        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
3190      SDOperand Val = N->getOperand(1).getOperand(0);
3191      if (Val.getValueType() == MVT::f32) {
3192        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3193        DCI.AddToWorklist(Val.Val);
3194      }
3195      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3196      DCI.AddToWorklist(Val.Val);
3197
3198      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3199                        N->getOperand(2), N->getOperand(3));
3200      DCI.AddToWorklist(Val.Val);
3201      return Val;
3202    }
3203
3204    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3205    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3206        N->getOperand(1).Val->hasOneUse() &&
3207        (N->getOperand(1).getValueType() == MVT::i32 ||
3208         N->getOperand(1).getValueType() == MVT::i16)) {
3209      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3210      // Do an any-extend to 32-bits if this is a half-word input.
3211      if (BSwapOp.getValueType() == MVT::i16)
3212        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3213
3214      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3215                         N->getOperand(2), N->getOperand(3),
3216                         DAG.getValueType(N->getOperand(1).getValueType()));
3217    }
3218    break;
3219  case ISD::BSWAP:
3220    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3221    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3222        N->getOperand(0).hasOneUse() &&
3223        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3224      SDOperand Load = N->getOperand(0);
3225      LoadSDNode *LD = cast<LoadSDNode>(Load);
3226      // Create the byte-swapping load.
3227      std::vector<MVT::ValueType> VTs;
3228      VTs.push_back(MVT::i32);
3229      VTs.push_back(MVT::Other);
3230      SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
3231      SDOperand Ops[] = {
3232        LD->getChain(),    // Chain
3233        LD->getBasePtr(),  // Ptr
3234        SV,                // SrcValue
3235        DAG.getValueType(N->getValueType(0)) // VT
3236      };
3237      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3238
3239      // If this is an i16 load, insert the truncate.
3240      SDOperand ResVal = BSLoad;
3241      if (N->getValueType(0) == MVT::i16)
3242        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3243
3244      // First, combine the bswap away.  This makes the value produced by the
3245      // load dead.
3246      DCI.CombineTo(N, ResVal);
3247
3248      // Next, combine the load away, we give it a bogus result value but a real
3249      // chain result.  The result value is dead because the bswap is dead.
3250      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3251
3252      // Return N so it doesn't get rechecked!
3253      return SDOperand(N, 0);
3254    }
3255
3256    break;
3257  case PPCISD::VCMP: {
3258    // If a VCMPo node already exists with exactly the same operands as this
3259    // node, use its result instead of this node (VCMPo computes both a CR6 and
3260    // a normal output).
3261    //
3262    if (!N->getOperand(0).hasOneUse() &&
3263        !N->getOperand(1).hasOneUse() &&
3264        !N->getOperand(2).hasOneUse()) {
3265
3266      // Scan all of the users of the LHS, looking for VCMPo's that match.
3267      SDNode *VCMPoNode = 0;
3268
3269      SDNode *LHSN = N->getOperand(0).Val;
3270      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3271           UI != E; ++UI)
3272        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3273            (*UI)->getOperand(1) == N->getOperand(1) &&
3274            (*UI)->getOperand(2) == N->getOperand(2) &&
3275            (*UI)->getOperand(0) == N->getOperand(0)) {
3276          VCMPoNode = *UI;
3277          break;
3278        }
3279
3280      // If there is no VCMPo node, or if the flag value has a single use, don't
3281      // transform this.
3282      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3283        break;
3284
3285      // Look at the (necessarily single) use of the flag value.  If it has a
3286      // chain, this transformation is more complex.  Note that multiple things
3287      // could use the value result, which we should ignore.
3288      SDNode *FlagUser = 0;
3289      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3290           FlagUser == 0; ++UI) {
3291        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3292        SDNode *User = *UI;
3293        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3294          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3295            FlagUser = User;
3296            break;
3297          }
3298        }
3299      }
3300
3301      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
3302      // give up for right now.
3303      if (FlagUser->getOpcode() == PPCISD::MFCR)
3304        return SDOperand(VCMPoNode, 0);
3305    }
3306    break;
3307  }
3308  case ISD::BR_CC: {
3309    // If this is a branch on an altivec predicate comparison, lower this so
3310    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
3311    // lowering is done pre-legalize, because the legalizer lowers the predicate
3312    // compare down to code that is difficult to reassemble.
3313    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3314    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3315    int CompareOpc;
3316    bool isDot;
3317
3318    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3319        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3320        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3321      assert(isDot && "Can't compare against a vector result!");
3322
3323      // If this is a comparison against something other than 0/1, then we know
3324      // that the condition is never/always true.
3325      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3326      if (Val != 0 && Val != 1) {
3327        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
3328          return N->getOperand(0);
3329        // Always !=, turn it into an unconditional branch.
3330        return DAG.getNode(ISD::BR, MVT::Other,
3331                           N->getOperand(0), N->getOperand(4));
3332      }
3333
3334      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3335
3336      // Create the PPCISD altivec 'dot' comparison node.
3337      std::vector<MVT::ValueType> VTs;
3338      SDOperand Ops[] = {
3339        LHS.getOperand(2),  // LHS of compare
3340        LHS.getOperand(3),  // RHS of compare
3341        DAG.getConstant(CompareOpc, MVT::i32)
3342      };
3343      VTs.push_back(LHS.getOperand(2).getValueType());
3344      VTs.push_back(MVT::Flag);
3345      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3346
3347      // Unpack the result based on how the target uses it.
3348      PPC::Predicate CompOpc;
3349      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3350      default:  // Can't happen, don't crash on invalid number though.
3351      case 0:   // Branch on the value of the EQ bit of CR6.
3352        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3353        break;
3354      case 1:   // Branch on the inverted value of the EQ bit of CR6.
3355        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3356        break;
3357      case 2:   // Branch on the value of the LT bit of CR6.
3358        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3359        break;
3360      case 3:   // Branch on the inverted value of the LT bit of CR6.
3361        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3362        break;
3363      }
3364
3365      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3366                         DAG.getConstant(CompOpc, MVT::i32),
3367                         DAG.getRegister(PPC::CR6, MVT::i32),
3368                         N->getOperand(4), CompNode.getValue(1));
3369    }
3370    break;
3371  }
3372  }
3373
3374  return SDOperand();
3375}
3376
3377//===----------------------------------------------------------------------===//
3378// Inline Assembly Support
3379//===----------------------------------------------------------------------===//
3380
3381void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3382                                                       uint64_t Mask,
3383                                                       uint64_t &KnownZero,
3384                                                       uint64_t &KnownOne,
3385                                                       const SelectionDAG &DAG,
3386                                                       unsigned Depth) const {
3387  KnownZero = 0;
3388  KnownOne = 0;
3389  switch (Op.getOpcode()) {
3390  default: break;
3391  case PPCISD::LBRX: {
3392    // lhbrx is known to have the top bits cleared out.
3393    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3394      KnownZero = 0xFFFF0000;
3395    break;
3396  }
3397  case ISD::INTRINSIC_WO_CHAIN: {
3398    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3399    default: break;
3400    case Intrinsic::ppc_altivec_vcmpbfp_p:
3401    case Intrinsic::ppc_altivec_vcmpeqfp_p:
3402    case Intrinsic::ppc_altivec_vcmpequb_p:
3403    case Intrinsic::ppc_altivec_vcmpequh_p:
3404    case Intrinsic::ppc_altivec_vcmpequw_p:
3405    case Intrinsic::ppc_altivec_vcmpgefp_p:
3406    case Intrinsic::ppc_altivec_vcmpgtfp_p:
3407    case Intrinsic::ppc_altivec_vcmpgtsb_p:
3408    case Intrinsic::ppc_altivec_vcmpgtsh_p:
3409    case Intrinsic::ppc_altivec_vcmpgtsw_p:
3410    case Intrinsic::ppc_altivec_vcmpgtub_p:
3411    case Intrinsic::ppc_altivec_vcmpgtuh_p:
3412    case Intrinsic::ppc_altivec_vcmpgtuw_p:
3413      KnownZero = ~1U;  // All bits but the low one are known to be zero.
3414      break;
3415    }
3416  }
3417  }
3418}
3419
3420
3421/// getConstraintType - Given a constraint, return the type of
3422/// constraint it is for this target.
3423PPCTargetLowering::ConstraintType
3424PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3425  if (Constraint.size() == 1) {
3426    switch (Constraint[0]) {
3427    default: break;
3428    case 'b':
3429    case 'r':
3430    case 'f':
3431    case 'v':
3432    case 'y':
3433      return C_RegisterClass;
3434    }
3435  }
3436  return TargetLowering::getConstraintType(Constraint);
3437}
3438
3439std::pair<unsigned, const TargetRegisterClass*>
3440PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3441                                                MVT::ValueType VT) const {
3442  if (Constraint.size() == 1) {
3443    // GCC RS6000 Constraint Letters
3444    switch (Constraint[0]) {
3445    case 'b':   // R1-R31
3446    case 'r':   // R0-R31
3447      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3448        return std::make_pair(0U, PPC::G8RCRegisterClass);
3449      return std::make_pair(0U, PPC::GPRCRegisterClass);
3450    case 'f':
3451      if (VT == MVT::f32)
3452        return std::make_pair(0U, PPC::F4RCRegisterClass);
3453      else if (VT == MVT::f64)
3454        return std::make_pair(0U, PPC::F8RCRegisterClass);
3455      break;
3456    case 'v':
3457      return std::make_pair(0U, PPC::VRRCRegisterClass);
3458    case 'y':   // crrc
3459      return std::make_pair(0U, PPC::CRRCRegisterClass);
3460    }
3461  }
3462
3463  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3464}
3465
3466
3467/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3468/// vector.  If it is invalid, don't add anything to Ops.
3469void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3470                                                     std::vector<SDOperand>&Ops,
3471                                                     SelectionDAG &DAG) {
3472  SDOperand Result(0,0);
3473  switch (Letter) {
3474  default: break;
3475  case 'I':
3476  case 'J':
3477  case 'K':
3478  case 'L':
3479  case 'M':
3480  case 'N':
3481  case 'O':
3482  case 'P': {
3483    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
3484    if (!CST) return; // Must be an immediate to match.
3485    unsigned Value = CST->getValue();
3486    switch (Letter) {
3487    default: assert(0 && "Unknown constraint letter!");
3488    case 'I':  // "I" is a signed 16-bit constant.
3489      if ((short)Value == (int)Value)
3490        Result = DAG.getTargetConstant(Value, Op.getValueType());
3491      break;
3492    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
3493    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
3494      if ((short)Value == 0)
3495        Result = DAG.getTargetConstant(Value, Op.getValueType());
3496      break;
3497    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
3498      if ((Value >> 16) == 0)
3499        Result = DAG.getTargetConstant(Value, Op.getValueType());
3500      break;
3501    case 'M':  // "M" is a constant that is greater than 31.
3502      if (Value > 31)
3503        Result = DAG.getTargetConstant(Value, Op.getValueType());
3504      break;
3505    case 'N':  // "N" is a positive constant that is an exact power of two.
3506      if ((int)Value > 0 && isPowerOf2_32(Value))
3507        Result = DAG.getTargetConstant(Value, Op.getValueType());
3508      break;
3509    case 'O':  // "O" is the constant zero.
3510      if (Value == 0)
3511        Result = DAG.getTargetConstant(Value, Op.getValueType());
3512      break;
3513    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
3514      if ((short)-Value == (int)-Value)
3515        Result = DAG.getTargetConstant(Value, Op.getValueType());
3516      break;
3517    }
3518    break;
3519  }
3520  }
3521
3522  if (Result.Val) {
3523    Ops.push_back(Result);
3524    return;
3525  }
3526
3527  // Handle standard constraint letters.
3528  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
3529}
3530
3531// isLegalAddressingMode - Return true if the addressing mode represented
3532// by AM is legal for this target, for a load/store of the specified type.
3533bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3534                                              const Type *Ty) const {
3535  // FIXME: PPC does not allow r+i addressing modes for vectors!
3536
3537  // PPC allows a sign-extended 16-bit immediate field.
3538  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3539    return false;
3540
3541  // No global is ever allowed as a base.
3542  if (AM.BaseGV)
3543    return false;
3544
3545  // PPC only support r+r,
3546  switch (AM.Scale) {
3547  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3548    break;
3549  case 1:
3550    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3551      return false;
3552    // Otherwise we have r+r or r+i.
3553    break;
3554  case 2:
3555    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3556      return false;
3557    // Allow 2*r as r+r.
3558    break;
3559  default:
3560    // No other scales are supported.
3561    return false;
3562  }
3563
3564  return true;
3565}
3566
3567/// isLegalAddressImmediate - Return true if the integer value can be used
3568/// as the offset of the target addressing mode for load / store of the
3569/// given type.
3570bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3571  // PPC allows a sign-extended 16-bit immediate field.
3572  return (V > -(1 << 16) && V < (1 << 16)-1);
3573}
3574
3575bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3576  return false;
3577}
3578
3579SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
3580  // Depths > 0 not supported yet!
3581  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3582    return SDOperand();
3583
3584  MachineFunction &MF = DAG.getMachineFunction();
3585  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3586  int RAIdx = FuncInfo->getReturnAddrSaveIndex();
3587  if (RAIdx == 0) {
3588    bool isPPC64 = PPCSubTarget.isPPC64();
3589    int Offset =
3590      PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI());
3591
3592    // Set up a frame object for the return address.
3593    RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset);
3594
3595    // Remember it for next time.
3596    FuncInfo->setReturnAddrSaveIndex(RAIdx);
3597
3598    // Make sure the function really does not optimize away the store of the RA
3599    // to the stack.
3600    FuncInfo->setLRStoreRequired();
3601  }
3602
3603  // Just load the return address off the stack.
3604  SDOperand RetAddrFI =  DAG.getFrameIndex(RAIdx, getPointerTy());
3605  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
3606}
3607
3608SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
3609  // Depths > 0 not supported yet!
3610  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3611    return SDOperand();
3612
3613  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3614  bool isPPC64 = PtrVT == MVT::i64;
3615
3616  MachineFunction &MF = DAG.getMachineFunction();
3617  MachineFrameInfo *MFI = MF.getFrameInfo();
3618  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3619                  && MFI->getStackSize();
3620
3621  if (isPPC64)
3622    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
3623      MVT::i64);
3624  else
3625    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3626      MVT::i32);
3627}
3628