PPCISelLowering.cpp revision dfebc4cc4c267f797e823b781d73586cc6fc49c5
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPCMachineFunctionInfo.h"
17#include "PPCPerfectShuffle.h"
18#include "PPCTargetMachine.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/CallingConv.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28#include "llvm/Constants.h"
29#include "llvm/DerivedTypes.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetOptions.h"
37using namespace llvm;
38
39static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
40                                     CCValAssign::LocInfo &LocInfo,
41                                     ISD::ArgFlagsTy &ArgFlags,
42                                     CCState &State);
43static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
44                                            MVT &LocVT,
45                                            CCValAssign::LocInfo &LocInfo,
46                                            ISD::ArgFlagsTy &ArgFlags,
47                                            CCState &State);
48static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
49                                              MVT &LocVT,
50                                              CCValAssign::LocInfo &LocInfo,
51                                              ISD::ArgFlagsTy &ArgFlags,
52                                              CCState &State);
53
54static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
55cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
56
57static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
58cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63
64  return new TargetLoweringObjectFileELF();
65}
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69  const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
70
71  setPow2DivIsCheap();
72
73  // Use _setjmp/_longjmp instead of setjmp/longjmp.
74  setUseUnderscoreSetJmp(true);
75  setUseUnderscoreLongJmp(true);
76
77  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
78  // arguments are at least 4/8 bytes aligned.
79  bool isPPC64 = Subtarget->isPPC64();
80  setMinStackArgumentAlignment(isPPC64 ? 8:4);
81
82  // Set up the register classes.
83  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
84  addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
85  addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
86
87  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
88  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
89  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
90
91  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
92
93  // PowerPC has pre-inc load and store's.
94  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
95  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
96  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
97  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
98  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
99  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
100  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
101  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
102  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
103  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
104
105  // This is used in the ppcf128->int sequence.  Note it has different semantics
106  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
107  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
108
109  // We do not currently implement these libm ops for PowerPC.
110  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
111  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
112  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
113  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
114  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
115
116  // PowerPC has no SREM/UREM instructions
117  setOperationAction(ISD::SREM, MVT::i32, Expand);
118  setOperationAction(ISD::UREM, MVT::i32, Expand);
119  setOperationAction(ISD::SREM, MVT::i64, Expand);
120  setOperationAction(ISD::UREM, MVT::i64, Expand);
121
122  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
123  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
124  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
125  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
126  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
127  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
128  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
129  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
130  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
131
132  // We don't support sin/cos/sqrt/fmod/pow
133  setOperationAction(ISD::FSIN , MVT::f64, Expand);
134  setOperationAction(ISD::FCOS , MVT::f64, Expand);
135  setOperationAction(ISD::FREM , MVT::f64, Expand);
136  setOperationAction(ISD::FPOW , MVT::f64, Expand);
137  setOperationAction(ISD::FMA  , MVT::f64, Legal);
138  setOperationAction(ISD::FSIN , MVT::f32, Expand);
139  setOperationAction(ISD::FCOS , MVT::f32, Expand);
140  setOperationAction(ISD::FREM , MVT::f32, Expand);
141  setOperationAction(ISD::FPOW , MVT::f32, Expand);
142  setOperationAction(ISD::FMA  , MVT::f32, Legal);
143
144  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
145
146  // If we're enabling GP optimizations, use hardware square root
147  if (!Subtarget->hasFSQRT()) {
148    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
149    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
150  }
151
152  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
153  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
154
155  // PowerPC does not have BSWAP, CTPOP or CTTZ
156  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
157  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
158  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
159  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
160  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
161  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
162  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
163  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
164  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
165  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
166
167  // PowerPC does not have ROTR
168  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
169  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
170
171  // PowerPC does not have Select
172  setOperationAction(ISD::SELECT, MVT::i32, Expand);
173  setOperationAction(ISD::SELECT, MVT::i64, Expand);
174  setOperationAction(ISD::SELECT, MVT::f32, Expand);
175  setOperationAction(ISD::SELECT, MVT::f64, Expand);
176
177  // PowerPC wants to turn select_cc of FP into fsel when possible.
178  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
179  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
180
181  // PowerPC wants to optimize integer setcc a bit
182  setOperationAction(ISD::SETCC, MVT::i32, Custom);
183
184  // PowerPC does not have BRCOND which requires SetCC
185  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
186
187  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
188
189  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
190  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
191
192  // PowerPC does not have [U|S]INT_TO_FP
193  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
194  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
195
196  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
197  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
198  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
199  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
200
201  // We cannot sextinreg(i1).  Expand to shifts.
202  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
203
204  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
205  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
206  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
207  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
208
209
210  // We want to legalize GlobalAddress and ConstantPool nodes into the
211  // appropriate instructions to materialize the address.
212  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
213  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
214  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
215  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
216  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
217  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
218  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
219  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
220  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
221  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
222
223  // TRAP is legal.
224  setOperationAction(ISD::TRAP, MVT::Other, Legal);
225
226  // TRAMPOLINE is custom lowered.
227  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
228  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
229
230  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
231  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
232
233  if (Subtarget->isSVR4ABI()) {
234    if (isPPC64) {
235      // VAARG always uses double-word chunks, so promote anything smaller.
236      setOperationAction(ISD::VAARG, MVT::i1, Promote);
237      AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
238      setOperationAction(ISD::VAARG, MVT::i8, Promote);
239      AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
240      setOperationAction(ISD::VAARG, MVT::i16, Promote);
241      AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
242      setOperationAction(ISD::VAARG, MVT::i32, Promote);
243      AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
244      setOperationAction(ISD::VAARG, MVT::Other, Expand);
245    } else {
246      // VAARG is custom lowered with the 32-bit SVR4 ABI.
247      setOperationAction(ISD::VAARG, MVT::Other, Custom);
248      setOperationAction(ISD::VAARG, MVT::i64, Custom);
249    }
250  } else
251    setOperationAction(ISD::VAARG, MVT::Other, Expand);
252
253  // Use the default implementation.
254  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
255  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
256  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
257  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
258  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
259  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
260
261  // We want to custom lower some of our intrinsics.
262  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
263
264  // Comparisons that require checking two conditions.
265  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
266  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
267  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
268  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
269  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
270  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
271  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
272  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
273  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
274  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
275  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
276  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
277
278  if (Subtarget->has64BitSupport()) {
279    // They also have instructions for converting between i64 and fp.
280    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
281    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
282    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
283    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
284    // This is just the low 32 bits of a (signed) fp->i64 conversion.
285    // We cannot do this with Promote because i64 is not a legal type.
286    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
287
288    // FIXME: disable this lowered code.  This generates 64-bit register values,
289    // and we don't model the fact that the top part is clobbered by calls.  We
290    // need to flag these together so that the value isn't live across a call.
291    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
292  } else {
293    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
294    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
295  }
296
297  if (Subtarget->use64BitRegs()) {
298    // 64-bit PowerPC implementations can support i64 types directly
299    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
300    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
301    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
302    // 64-bit PowerPC wants to expand i128 shifts itself.
303    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
304    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
305    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
306  } else {
307    // 32-bit PowerPC wants to expand i64 shifts itself.
308    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
309    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
310    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
311  }
312
313  if (Subtarget->hasAltivec()) {
314    // First set operation action for all vector types to expand. Then we
315    // will selectively turn on ones that can be effectively codegen'd.
316    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
317         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
318      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
319
320      // add/sub are legal for all supported vector VT's.
321      setOperationAction(ISD::ADD , VT, Legal);
322      setOperationAction(ISD::SUB , VT, Legal);
323
324      // We promote all shuffles to v16i8.
325      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
326      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
327
328      // We promote all non-typed operations to v4i32.
329      setOperationAction(ISD::AND   , VT, Promote);
330      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
331      setOperationAction(ISD::OR    , VT, Promote);
332      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
333      setOperationAction(ISD::XOR   , VT, Promote);
334      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
335      setOperationAction(ISD::LOAD  , VT, Promote);
336      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
337      setOperationAction(ISD::SELECT, VT, Promote);
338      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
339      setOperationAction(ISD::STORE, VT, Promote);
340      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
341
342      // No other operations are legal.
343      setOperationAction(ISD::MUL , VT, Expand);
344      setOperationAction(ISD::SDIV, VT, Expand);
345      setOperationAction(ISD::SREM, VT, Expand);
346      setOperationAction(ISD::UDIV, VT, Expand);
347      setOperationAction(ISD::UREM, VT, Expand);
348      setOperationAction(ISD::FDIV, VT, Expand);
349      setOperationAction(ISD::FNEG, VT, Expand);
350      setOperationAction(ISD::FSQRT, VT, Expand);
351      setOperationAction(ISD::FLOG, VT, Expand);
352      setOperationAction(ISD::FLOG10, VT, Expand);
353      setOperationAction(ISD::FLOG2, VT, Expand);
354      setOperationAction(ISD::FEXP, VT, Expand);
355      setOperationAction(ISD::FEXP2, VT, Expand);
356      setOperationAction(ISD::FSIN, VT, Expand);
357      setOperationAction(ISD::FCOS, VT, Expand);
358      setOperationAction(ISD::FABS, VT, Expand);
359      setOperationAction(ISD::FPOWI, VT, Expand);
360      setOperationAction(ISD::FFLOOR, VT, Expand);
361      setOperationAction(ISD::FCEIL,  VT, Expand);
362      setOperationAction(ISD::FTRUNC, VT, Expand);
363      setOperationAction(ISD::FRINT,  VT, Expand);
364      setOperationAction(ISD::FNEARBYINT, VT, Expand);
365      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
366      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
367      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
368      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
369      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
370      setOperationAction(ISD::UDIVREM, VT, Expand);
371      setOperationAction(ISD::SDIVREM, VT, Expand);
372      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
373      setOperationAction(ISD::FPOW, VT, Expand);
374      setOperationAction(ISD::CTPOP, VT, Expand);
375      setOperationAction(ISD::CTLZ, VT, Expand);
376      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
377      setOperationAction(ISD::CTTZ, VT, Expand);
378      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
379      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
380
381      for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
382           j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
383        MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
384        setTruncStoreAction(VT, InnerVT, Expand);
385      }
386      setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
387      setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
388      setLoadExtAction(ISD::EXTLOAD, VT, Expand);
389    }
390
391    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
392    // with merges, splats, etc.
393    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
394
395    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
396    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
397    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
398    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
399    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
400    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
401    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
402    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
403    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
404    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
405    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
406    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
407    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
408    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
409
410    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
411    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
412    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
413    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
414
415    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
416    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
417    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
418    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
419    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
420
421    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
422    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
423
424    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
425    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
426    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
427    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
428
429    // Altivec does not contain unordered floating-point compare instructions
430    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
431    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
432    setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
433    setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
434    setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
435    setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
436  }
437
438  if (Subtarget->has64BitSupport()) {
439    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
440    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
441  }
442
443  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
444  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
445
446  setBooleanContents(ZeroOrOneBooleanContent);
447  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
448
449  if (isPPC64) {
450    setStackPointerRegisterToSaveRestore(PPC::X1);
451    setExceptionPointerRegister(PPC::X3);
452    setExceptionSelectorRegister(PPC::X4);
453  } else {
454    setStackPointerRegisterToSaveRestore(PPC::R1);
455    setExceptionPointerRegister(PPC::R3);
456    setExceptionSelectorRegister(PPC::R4);
457  }
458
459  // We have target-specific dag combine patterns for the following nodes:
460  setTargetDAGCombine(ISD::SINT_TO_FP);
461  setTargetDAGCombine(ISD::STORE);
462  setTargetDAGCombine(ISD::BR_CC);
463  setTargetDAGCombine(ISD::BSWAP);
464
465  // Darwin long double math library functions have $LDBL128 appended.
466  if (Subtarget->isDarwin()) {
467    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
468    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
469    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
470    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
471    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
472    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
473    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
474    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
475    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
476    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
477  }
478
479  setMinFunctionAlignment(2);
480  if (PPCSubTarget.isDarwin())
481    setPrefFunctionAlignment(4);
482
483  if (isPPC64 && Subtarget->isJITCodeModel())
484    // Temporary workaround for the inability of PPC64 JIT to handle jump
485    // tables.
486    setSupportJumpTables(false);
487
488  setInsertFencesForAtomic(true);
489
490  setSchedulingPreference(Sched::Hybrid);
491
492  computeRegisterProperties();
493
494  // The Freescale cores does better with aggressive inlining of memcpy and
495  // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
496  if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
497      Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
498    maxStoresPerMemset = 32;
499    maxStoresPerMemsetOptSize = 16;
500    maxStoresPerMemcpy = 32;
501    maxStoresPerMemcpyOptSize = 8;
502    maxStoresPerMemmove = 32;
503    maxStoresPerMemmoveOptSize = 8;
504
505    setPrefFunctionAlignment(4);
506    benefitFromCodePlacementOpt = true;
507  }
508}
509
510/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
511/// function arguments in the caller parameter area.
512unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
513  const TargetMachine &TM = getTargetMachine();
514  // Darwin passes everything on 4 byte boundary.
515  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
516    return 4;
517
518  // 16byte and wider vectors are passed on 16byte boundary.
519  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
520    if (VTy->getBitWidth() >= 128)
521      return 16;
522
523  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
524   if (PPCSubTarget.isPPC64())
525     return 8;
526
527  return 4;
528}
529
530const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
531  switch (Opcode) {
532  default: return 0;
533  case PPCISD::FSEL:            return "PPCISD::FSEL";
534  case PPCISD::FCFID:           return "PPCISD::FCFID";
535  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
536  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
537  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
538  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
539  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
540  case PPCISD::VPERM:           return "PPCISD::VPERM";
541  case PPCISD::Hi:              return "PPCISD::Hi";
542  case PPCISD::Lo:              return "PPCISD::Lo";
543  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
544  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
545  case PPCISD::LOAD:            return "PPCISD::LOAD";
546  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
547  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
548  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
549  case PPCISD::SRL:             return "PPCISD::SRL";
550  case PPCISD::SRA:             return "PPCISD::SRA";
551  case PPCISD::SHL:             return "PPCISD::SHL";
552  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
553  case PPCISD::STD_32:          return "PPCISD::STD_32";
554  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
555  case PPCISD::CALL_NOP_SVR4:   return "PPCISD::CALL_NOP_SVR4";
556  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
557  case PPCISD::NOP:             return "PPCISD::NOP";
558  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
559  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
560  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
561  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
562  case PPCISD::MFCR:            return "PPCISD::MFCR";
563  case PPCISD::VCMP:            return "PPCISD::VCMP";
564  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
565  case PPCISD::LBRX:            return "PPCISD::LBRX";
566  case PPCISD::STBRX:           return "PPCISD::STBRX";
567  case PPCISD::LARX:            return "PPCISD::LARX";
568  case PPCISD::STCX:            return "PPCISD::STCX";
569  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
570  case PPCISD::MFFS:            return "PPCISD::MFFS";
571  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
572  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
573  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
574  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
575  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
576  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
577  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
578  case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA";
579  case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L";
580  case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L";
581  case PPCISD::LD_GOT_TPREL:    return "PPCISD::LD_GOT_TPREL";
582  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
583  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
584  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
585  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
586  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
587  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
588  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
589  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
590  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
591  }
592}
593
594EVT PPCTargetLowering::getSetCCResultType(EVT VT) const {
595  if (!VT.isVector())
596    return MVT::i32;
597  return VT.changeVectorElementTypeToInteger();
598}
599
600//===----------------------------------------------------------------------===//
601// Node matching predicates, for use by the tblgen matching code.
602//===----------------------------------------------------------------------===//
603
604/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
605static bool isFloatingPointZero(SDValue Op) {
606  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
607    return CFP->getValueAPF().isZero();
608  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
609    // Maybe this has already been legalized into the constant pool?
610    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
611      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
612        return CFP->getValueAPF().isZero();
613  }
614  return false;
615}
616
617/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
618/// true if Op is undef or if it matches the specified value.
619static bool isConstantOrUndef(int Op, int Val) {
620  return Op < 0 || Op == Val;
621}
622
623/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
624/// VPKUHUM instruction.
625bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
626  if (!isUnary) {
627    for (unsigned i = 0; i != 16; ++i)
628      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
629        return false;
630  } else {
631    for (unsigned i = 0; i != 8; ++i)
632      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
633          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
634        return false;
635  }
636  return true;
637}
638
639/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
640/// VPKUWUM instruction.
641bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
642  if (!isUnary) {
643    for (unsigned i = 0; i != 16; i += 2)
644      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
645          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
646        return false;
647  } else {
648    for (unsigned i = 0; i != 8; i += 2)
649      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
650          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
651          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
652          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
653        return false;
654  }
655  return true;
656}
657
658/// isVMerge - Common function, used to match vmrg* shuffles.
659///
660static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
661                     unsigned LHSStart, unsigned RHSStart) {
662  assert(N->getValueType(0) == MVT::v16i8 &&
663         "PPC only supports shuffles by bytes!");
664  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
665         "Unsupported merge size!");
666
667  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
668    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
669      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
670                             LHSStart+j+i*UnitSize) ||
671          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
672                             RHSStart+j+i*UnitSize))
673        return false;
674    }
675  return true;
676}
677
678/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
679/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
680bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
681                             bool isUnary) {
682  if (!isUnary)
683    return isVMerge(N, UnitSize, 8, 24);
684  return isVMerge(N, UnitSize, 8, 8);
685}
686
687/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
688/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
689bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
690                             bool isUnary) {
691  if (!isUnary)
692    return isVMerge(N, UnitSize, 0, 16);
693  return isVMerge(N, UnitSize, 0, 0);
694}
695
696
697/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
698/// amount, otherwise return -1.
699int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
700  assert(N->getValueType(0) == MVT::v16i8 &&
701         "PPC only supports shuffles by bytes!");
702
703  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
704
705  // Find the first non-undef value in the shuffle mask.
706  unsigned i;
707  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
708    /*search*/;
709
710  if (i == 16) return -1;  // all undef.
711
712  // Otherwise, check to see if the rest of the elements are consecutively
713  // numbered from this value.
714  unsigned ShiftAmt = SVOp->getMaskElt(i);
715  if (ShiftAmt < i) return -1;
716  ShiftAmt -= i;
717
718  if (!isUnary) {
719    // Check the rest of the elements to see if they are consecutive.
720    for (++i; i != 16; ++i)
721      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
722        return -1;
723  } else {
724    // Check the rest of the elements to see if they are consecutive.
725    for (++i; i != 16; ++i)
726      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
727        return -1;
728  }
729  return ShiftAmt;
730}
731
732/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
733/// specifies a splat of a single element that is suitable for input to
734/// VSPLTB/VSPLTH/VSPLTW.
735bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
736  assert(N->getValueType(0) == MVT::v16i8 &&
737         (EltSize == 1 || EltSize == 2 || EltSize == 4));
738
739  // This is a splat operation if each element of the permute is the same, and
740  // if the value doesn't reference the second vector.
741  unsigned ElementBase = N->getMaskElt(0);
742
743  // FIXME: Handle UNDEF elements too!
744  if (ElementBase >= 16)
745    return false;
746
747  // Check that the indices are consecutive, in the case of a multi-byte element
748  // splatted with a v16i8 mask.
749  for (unsigned i = 1; i != EltSize; ++i)
750    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
751      return false;
752
753  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
754    if (N->getMaskElt(i) < 0) continue;
755    for (unsigned j = 0; j != EltSize; ++j)
756      if (N->getMaskElt(i+j) != N->getMaskElt(j))
757        return false;
758  }
759  return true;
760}
761
762/// isAllNegativeZeroVector - Returns true if all elements of build_vector
763/// are -0.0.
764bool PPC::isAllNegativeZeroVector(SDNode *N) {
765  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
766
767  APInt APVal, APUndef;
768  unsigned BitSize;
769  bool HasAnyUndefs;
770
771  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
772    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
773      return CFP->getValueAPF().isNegZero();
774
775  return false;
776}
777
778/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
779/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
780unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
781  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
782  assert(isSplatShuffleMask(SVOp, EltSize));
783  return SVOp->getMaskElt(0) / EltSize;
784}
785
786/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
787/// by using a vspltis[bhw] instruction of the specified element size, return
788/// the constant being splatted.  The ByteSize field indicates the number of
789/// bytes of each element [124] -> [bhw].
790SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
791  SDValue OpVal(0, 0);
792
793  // If ByteSize of the splat is bigger than the element size of the
794  // build_vector, then we have a case where we are checking for a splat where
795  // multiple elements of the buildvector are folded together into a single
796  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
797  unsigned EltSize = 16/N->getNumOperands();
798  if (EltSize < ByteSize) {
799    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
800    SDValue UniquedVals[4];
801    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
802
803    // See if all of the elements in the buildvector agree across.
804    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
805      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
806      // If the element isn't a constant, bail fully out.
807      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
808
809
810      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
811        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
812      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
813        return SDValue();  // no match.
814    }
815
816    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
817    // either constant or undef values that are identical for each chunk.  See
818    // if these chunks can form into a larger vspltis*.
819
820    // Check to see if all of the leading entries are either 0 or -1.  If
821    // neither, then this won't fit into the immediate field.
822    bool LeadingZero = true;
823    bool LeadingOnes = true;
824    for (unsigned i = 0; i != Multiple-1; ++i) {
825      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
826
827      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
828      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
829    }
830    // Finally, check the least significant entry.
831    if (LeadingZero) {
832      if (UniquedVals[Multiple-1].getNode() == 0)
833        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
834      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
835      if (Val < 16)
836        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
837    }
838    if (LeadingOnes) {
839      if (UniquedVals[Multiple-1].getNode() == 0)
840        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
841      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
842      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
843        return DAG.getTargetConstant(Val, MVT::i32);
844    }
845
846    return SDValue();
847  }
848
849  // Check to see if this buildvec has a single non-undef value in its elements.
850  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
851    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
852    if (OpVal.getNode() == 0)
853      OpVal = N->getOperand(i);
854    else if (OpVal != N->getOperand(i))
855      return SDValue();
856  }
857
858  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
859
860  unsigned ValSizeInBytes = EltSize;
861  uint64_t Value = 0;
862  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
863    Value = CN->getZExtValue();
864  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
865    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
866    Value = FloatToBits(CN->getValueAPF().convertToFloat());
867  }
868
869  // If the splat value is larger than the element value, then we can never do
870  // this splat.  The only case that we could fit the replicated bits into our
871  // immediate field for would be zero, and we prefer to use vxor for it.
872  if (ValSizeInBytes < ByteSize) return SDValue();
873
874  // If the element value is larger than the splat value, cut it in half and
875  // check to see if the two halves are equal.  Continue doing this until we
876  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
877  while (ValSizeInBytes > ByteSize) {
878    ValSizeInBytes >>= 1;
879
880    // If the top half equals the bottom half, we're still ok.
881    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
882         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
883      return SDValue();
884  }
885
886  // Properly sign extend the value.
887  int MaskVal = SignExtend32(Value, ByteSize * 8);
888
889  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
890  if (MaskVal == 0) return SDValue();
891
892  // Finally, if this value fits in a 5 bit sext field, return it
893  if (SignExtend32<5>(MaskVal) == MaskVal)
894    return DAG.getTargetConstant(MaskVal, MVT::i32);
895  return SDValue();
896}
897
898//===----------------------------------------------------------------------===//
899//  Addressing Mode Selection
900//===----------------------------------------------------------------------===//
901
902/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
903/// or 64-bit immediate, and if the value can be accurately represented as a
904/// sign extension from a 16-bit value.  If so, this returns true and the
905/// immediate.
906static bool isIntS16Immediate(SDNode *N, short &Imm) {
907  if (N->getOpcode() != ISD::Constant)
908    return false;
909
910  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
911  if (N->getValueType(0) == MVT::i32)
912    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
913  else
914    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
915}
916static bool isIntS16Immediate(SDValue Op, short &Imm) {
917  return isIntS16Immediate(Op.getNode(), Imm);
918}
919
920
921/// SelectAddressRegReg - Given the specified addressed, check to see if it
922/// can be represented as an indexed [r+r] operation.  Returns false if it
923/// can be more efficiently represented with [r+imm].
924bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
925                                            SDValue &Index,
926                                            SelectionDAG &DAG) const {
927  short imm = 0;
928  if (N.getOpcode() == ISD::ADD) {
929    if (isIntS16Immediate(N.getOperand(1), imm))
930      return false;    // r+i
931    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
932      return false;    // r+i
933
934    Base = N.getOperand(0);
935    Index = N.getOperand(1);
936    return true;
937  } else if (N.getOpcode() == ISD::OR) {
938    if (isIntS16Immediate(N.getOperand(1), imm))
939      return false;    // r+i can fold it if we can.
940
941    // If this is an or of disjoint bitfields, we can codegen this as an add
942    // (for better address arithmetic) if the LHS and RHS of the OR are provably
943    // disjoint.
944    APInt LHSKnownZero, LHSKnownOne;
945    APInt RHSKnownZero, RHSKnownOne;
946    DAG.ComputeMaskedBits(N.getOperand(0),
947                          LHSKnownZero, LHSKnownOne);
948
949    if (LHSKnownZero.getBoolValue()) {
950      DAG.ComputeMaskedBits(N.getOperand(1),
951                            RHSKnownZero, RHSKnownOne);
952      // If all of the bits are known zero on the LHS or RHS, the add won't
953      // carry.
954      if (~(LHSKnownZero | RHSKnownZero) == 0) {
955        Base = N.getOperand(0);
956        Index = N.getOperand(1);
957        return true;
958      }
959    }
960  }
961
962  return false;
963}
964
965/// Returns true if the address N can be represented by a base register plus
966/// a signed 16-bit displacement [r+imm], and if it is not better
967/// represented as reg+reg.
968bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
969                                            SDValue &Base,
970                                            SelectionDAG &DAG) const {
971  // FIXME dl should come from parent load or store, not from address
972  DebugLoc dl = N.getDebugLoc();
973  // If this can be more profitably realized as r+r, fail.
974  if (SelectAddressRegReg(N, Disp, Base, DAG))
975    return false;
976
977  if (N.getOpcode() == ISD::ADD) {
978    short imm = 0;
979    if (isIntS16Immediate(N.getOperand(1), imm)) {
980      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
981      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
982        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
983      } else {
984        Base = N.getOperand(0);
985      }
986      return true; // [r+i]
987    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
988      // Match LOAD (ADD (X, Lo(G))).
989      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
990             && "Cannot handle constant offsets yet!");
991      Disp = N.getOperand(1).getOperand(0);  // The global address.
992      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
993             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
994             Disp.getOpcode() == ISD::TargetConstantPool ||
995             Disp.getOpcode() == ISD::TargetJumpTable);
996      Base = N.getOperand(0);
997      return true;  // [&g+r]
998    }
999  } else if (N.getOpcode() == ISD::OR) {
1000    short imm = 0;
1001    if (isIntS16Immediate(N.getOperand(1), imm)) {
1002      // If this is an or of disjoint bitfields, we can codegen this as an add
1003      // (for better address arithmetic) if the LHS and RHS of the OR are
1004      // provably disjoint.
1005      APInt LHSKnownZero, LHSKnownOne;
1006      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1007
1008      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1009        // If all of the bits are known zero on the LHS or RHS, the add won't
1010        // carry.
1011        Base = N.getOperand(0);
1012        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
1013        return true;
1014      }
1015    }
1016  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1017    // Loading from a constant address.
1018
1019    // If this address fits entirely in a 16-bit sext immediate field, codegen
1020    // this as "d, 0"
1021    short Imm;
1022    if (isIntS16Immediate(CN, Imm)) {
1023      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
1024      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1025                             CN->getValueType(0));
1026      return true;
1027    }
1028
1029    // Handle 32-bit sext immediates with LIS + addr mode.
1030    if (CN->getValueType(0) == MVT::i32 ||
1031        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1032      int Addr = (int)CN->getZExtValue();
1033
1034      // Otherwise, break this down into an LIS + disp.
1035      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
1036
1037      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
1038      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1039      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1040      return true;
1041    }
1042  }
1043
1044  Disp = DAG.getTargetConstant(0, getPointerTy());
1045  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1046    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1047  else
1048    Base = N;
1049  return true;      // [r+0]
1050}
1051
1052/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1053/// represented as an indexed [r+r] operation.
1054bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1055                                                SDValue &Index,
1056                                                SelectionDAG &DAG) const {
1057  // Check to see if we can easily represent this as an [r+r] address.  This
1058  // will fail if it thinks that the address is more profitably represented as
1059  // reg+imm, e.g. where imm = 0.
1060  if (SelectAddressRegReg(N, Base, Index, DAG))
1061    return true;
1062
1063  // If the operand is an addition, always emit this as [r+r], since this is
1064  // better (for code size, and execution, as the memop does the add for free)
1065  // than emitting an explicit add.
1066  if (N.getOpcode() == ISD::ADD) {
1067    Base = N.getOperand(0);
1068    Index = N.getOperand(1);
1069    return true;
1070  }
1071
1072  // Otherwise, do it the hard way, using R0 as the base register.
1073  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1074                         N.getValueType());
1075  Index = N;
1076  return true;
1077}
1078
1079/// SelectAddressRegImmShift - Returns true if the address N can be
1080/// represented by a base register plus a signed 14-bit displacement
1081/// [r+imm*4].  Suitable for use by STD and friends.
1082bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
1083                                                 SDValue &Base,
1084                                                 SelectionDAG &DAG) const {
1085  // FIXME dl should come from the parent load or store, not the address
1086  DebugLoc dl = N.getDebugLoc();
1087  // If this can be more profitably realized as r+r, fail.
1088  if (SelectAddressRegReg(N, Disp, Base, DAG))
1089    return false;
1090
1091  if (N.getOpcode() == ISD::ADD) {
1092    short imm = 0;
1093    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1094      Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1095      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1096        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1097      } else {
1098        Base = N.getOperand(0);
1099      }
1100      return true; // [r+i]
1101    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1102      // Match LOAD (ADD (X, Lo(G))).
1103      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1104             && "Cannot handle constant offsets yet!");
1105      Disp = N.getOperand(1).getOperand(0);  // The global address.
1106      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1107             Disp.getOpcode() == ISD::TargetConstantPool ||
1108             Disp.getOpcode() == ISD::TargetJumpTable);
1109      Base = N.getOperand(0);
1110      return true;  // [&g+r]
1111    }
1112  } else if (N.getOpcode() == ISD::OR) {
1113    short imm = 0;
1114    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1115      // If this is an or of disjoint bitfields, we can codegen this as an add
1116      // (for better address arithmetic) if the LHS and RHS of the OR are
1117      // provably disjoint.
1118      APInt LHSKnownZero, LHSKnownOne;
1119      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1120      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1121        // If all of the bits are known zero on the LHS or RHS, the add won't
1122        // carry.
1123        Base = N.getOperand(0);
1124        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1125        return true;
1126      }
1127    }
1128  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1129    // Loading from a constant address.  Verify low two bits are clear.
1130    if ((CN->getZExtValue() & 3) == 0) {
1131      // If this address fits entirely in a 14-bit sext immediate field, codegen
1132      // this as "d, 0"
1133      short Imm;
1134      if (isIntS16Immediate(CN, Imm)) {
1135        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1136        Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1137                               CN->getValueType(0));
1138        return true;
1139      }
1140
1141      // Fold the low-part of 32-bit absolute addresses into addr mode.
1142      if (CN->getValueType(0) == MVT::i32 ||
1143          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1144        int Addr = (int)CN->getZExtValue();
1145
1146        // Otherwise, break this down into an LIS + disp.
1147        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1148        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1149        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1150        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1151        return true;
1152      }
1153    }
1154  }
1155
1156  Disp = DAG.getTargetConstant(0, getPointerTy());
1157  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1158    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1159  else
1160    Base = N;
1161  return true;      // [r+0]
1162}
1163
1164
1165/// getPreIndexedAddressParts - returns true by value, base pointer and
1166/// offset pointer and addressing mode by reference if the node's address
1167/// can be legally represented as pre-indexed load / store address.
1168bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1169                                                  SDValue &Offset,
1170                                                  ISD::MemIndexedMode &AM,
1171                                                  SelectionDAG &DAG) const {
1172  if (DisablePPCPreinc) return false;
1173
1174  SDValue Ptr;
1175  EVT VT;
1176  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1177    Ptr = LD->getBasePtr();
1178    VT = LD->getMemoryVT();
1179
1180  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1181    Ptr = ST->getBasePtr();
1182    VT  = ST->getMemoryVT();
1183  } else
1184    return false;
1185
1186  // PowerPC doesn't have preinc load/store instructions for vectors.
1187  if (VT.isVector())
1188    return false;
1189
1190  if (SelectAddressRegReg(Ptr, Offset, Base, DAG)) {
1191    AM = ISD::PRE_INC;
1192    return true;
1193  }
1194
1195  // LDU/STU use reg+imm*4, others use reg+imm.
1196  if (VT != MVT::i64) {
1197    // reg + imm
1198    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1199      return false;
1200  } else {
1201    // reg + imm * 4.
1202    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1203      return false;
1204  }
1205
1206  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1207    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1208    // sext i32 to i64 when addr mode is r+i.
1209    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1210        LD->getExtensionType() == ISD::SEXTLOAD &&
1211        isa<ConstantSDNode>(Offset))
1212      return false;
1213  }
1214
1215  AM = ISD::PRE_INC;
1216  return true;
1217}
1218
1219//===----------------------------------------------------------------------===//
1220//  LowerOperation implementation
1221//===----------------------------------------------------------------------===//
1222
1223/// GetLabelAccessInfo - Return true if we should reference labels using a
1224/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1225static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1226                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1227  HiOpFlags = PPCII::MO_HA16;
1228  LoOpFlags = PPCII::MO_LO16;
1229
1230  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1231  // non-darwin platform.  We don't support PIC on other platforms yet.
1232  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1233               TM.getSubtarget<PPCSubtarget>().isDarwin();
1234  if (isPIC) {
1235    HiOpFlags |= PPCII::MO_PIC_FLAG;
1236    LoOpFlags |= PPCII::MO_PIC_FLAG;
1237  }
1238
1239  // If this is a reference to a global value that requires a non-lazy-ptr, make
1240  // sure that instruction lowering adds it.
1241  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1242    HiOpFlags |= PPCII::MO_NLP_FLAG;
1243    LoOpFlags |= PPCII::MO_NLP_FLAG;
1244
1245    if (GV->hasHiddenVisibility()) {
1246      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1247      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1248    }
1249  }
1250
1251  return isPIC;
1252}
1253
1254static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1255                             SelectionDAG &DAG) {
1256  EVT PtrVT = HiPart.getValueType();
1257  SDValue Zero = DAG.getConstant(0, PtrVT);
1258  DebugLoc DL = HiPart.getDebugLoc();
1259
1260  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1261  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1262
1263  // With PIC, the first instruction is actually "GR+hi(&G)".
1264  if (isPIC)
1265    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1266                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1267
1268  // Generate non-pic code that has direct accesses to the constant pool.
1269  // The address of the global is just (hi(&g)+lo(&g)).
1270  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1271}
1272
1273SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1274                                             SelectionDAG &DAG) const {
1275  EVT PtrVT = Op.getValueType();
1276  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1277  const Constant *C = CP->getConstVal();
1278
1279  // 64-bit SVR4 ABI code is always position-independent.
1280  // The actual address of the GlobalValue is stored in the TOC.
1281  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1282    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
1283    return DAG.getNode(PPCISD::TOC_ENTRY, CP->getDebugLoc(), MVT::i64, GA,
1284                       DAG.getRegister(PPC::X2, MVT::i64));
1285  }
1286
1287  unsigned MOHiFlag, MOLoFlag;
1288  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1289  SDValue CPIHi =
1290    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1291  SDValue CPILo =
1292    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1293  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1294}
1295
1296SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1297  EVT PtrVT = Op.getValueType();
1298  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1299
1300  // 64-bit SVR4 ABI code is always position-independent.
1301  // The actual address of the GlobalValue is stored in the TOC.
1302  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1303    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1304    return DAG.getNode(PPCISD::TOC_ENTRY, JT->getDebugLoc(), MVT::i64, GA,
1305                       DAG.getRegister(PPC::X2, MVT::i64));
1306  }
1307
1308  unsigned MOHiFlag, MOLoFlag;
1309  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1310  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1311  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1312  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1313}
1314
1315SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1316                                             SelectionDAG &DAG) const {
1317  EVT PtrVT = Op.getValueType();
1318
1319  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1320
1321  unsigned MOHiFlag, MOLoFlag;
1322  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1323  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
1324  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
1325  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1326}
1327
1328SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1329                                              SelectionDAG &DAG) const {
1330
1331  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1332  DebugLoc dl = GA->getDebugLoc();
1333  const GlobalValue *GV = GA->getGlobal();
1334  EVT PtrVT = getPointerTy();
1335  bool is64bit = PPCSubTarget.isPPC64();
1336
1337  TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
1338
1339  if (Model == TLSModel::LocalExec) {
1340    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1341                                               PPCII::MO_TPREL16_HA);
1342    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1343                                               PPCII::MO_TPREL16_LO);
1344    SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
1345                                     is64bit ? MVT::i64 : MVT::i32);
1346    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
1347    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
1348  }
1349
1350  if (!is64bit)
1351    llvm_unreachable("only local-exec is currently supported for ppc32");
1352
1353  if (Model == TLSModel::InitialExec) {
1354    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1355    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1356    SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL, dl,
1357                                   PtrVT, TGA, GOTReg);
1358    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGA);
1359  }
1360
1361  if (Model == TLSModel::GeneralDynamic) {
1362    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1363    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1364    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
1365                                     GOTReg, TGA);
1366    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
1367                                   GOTEntryHi, TGA);
1368
1369    // We need a chain node, and don't have one handy.  The underlying
1370    // call has no side effects, so using the function entry node
1371    // suffices.
1372    SDValue Chain = DAG.getEntryNode();
1373    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1374    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1375    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
1376                                  PtrVT, ParmReg, TGA);
1377    // The return value from GET_TLS_ADDR really is in X3 already, but
1378    // some hacks are needed here to tie everything together.  The extra
1379    // copies dissolve during subsequent transforms.
1380    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1381    return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
1382  }
1383
1384  if (Model == TLSModel::LocalDynamic) {
1385    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1386    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1387    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
1388                                     GOTReg, TGA);
1389    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
1390                                   GOTEntryHi, TGA);
1391
1392    // We need a chain node, and don't have one handy.  The underlying
1393    // call has no side effects, so using the function entry node
1394    // suffices.
1395    SDValue Chain = DAG.getEntryNode();
1396    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1397    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1398    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
1399                                  PtrVT, ParmReg, TGA);
1400    // The return value from GET_TLSLD_ADDR really is in X3 already, but
1401    // some hacks are needed here to tie everything together.  The extra
1402    // copies dissolve during subsequent transforms.
1403    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1404    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
1405                                      ParmReg, TGA, Chain);
1406    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
1407  }
1408
1409  llvm_unreachable("Unknown TLS model!");
1410}
1411
1412SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1413                                              SelectionDAG &DAG) const {
1414  EVT PtrVT = Op.getValueType();
1415  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1416  DebugLoc DL = GSDN->getDebugLoc();
1417  const GlobalValue *GV = GSDN->getGlobal();
1418
1419  // 64-bit SVR4 ABI code is always position-independent.
1420  // The actual address of the GlobalValue is stored in the TOC.
1421  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1422    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1423    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1424                       DAG.getRegister(PPC::X2, MVT::i64));
1425  }
1426
1427  unsigned MOHiFlag, MOLoFlag;
1428  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1429
1430  SDValue GAHi =
1431    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1432  SDValue GALo =
1433    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1434
1435  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1436
1437  // If the global reference is actually to a non-lazy-pointer, we have to do an
1438  // extra load to get the address of the global.
1439  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1440    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1441                      false, false, false, 0);
1442  return Ptr;
1443}
1444
1445SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1446  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1447  DebugLoc dl = Op.getDebugLoc();
1448
1449  // If we're comparing for equality to zero, expose the fact that this is
1450  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1451  // fold the new nodes.
1452  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1453    if (C->isNullValue() && CC == ISD::SETEQ) {
1454      EVT VT = Op.getOperand(0).getValueType();
1455      SDValue Zext = Op.getOperand(0);
1456      if (VT.bitsLT(MVT::i32)) {
1457        VT = MVT::i32;
1458        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1459      }
1460      unsigned Log2b = Log2_32(VT.getSizeInBits());
1461      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1462      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1463                                DAG.getConstant(Log2b, MVT::i32));
1464      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1465    }
1466    // Leave comparisons against 0 and -1 alone for now, since they're usually
1467    // optimized.  FIXME: revisit this when we can custom lower all setcc
1468    // optimizations.
1469    if (C->isAllOnesValue() || C->isNullValue())
1470      return SDValue();
1471  }
1472
1473  // If we have an integer seteq/setne, turn it into a compare against zero
1474  // by xor'ing the rhs with the lhs, which is faster than setting a
1475  // condition register, reading it back out, and masking the correct bit.  The
1476  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1477  // the result to other bit-twiddling opportunities.
1478  EVT LHSVT = Op.getOperand(0).getValueType();
1479  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1480    EVT VT = Op.getValueType();
1481    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1482                                Op.getOperand(1));
1483    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1484  }
1485  return SDValue();
1486}
1487
1488SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1489                                      const PPCSubtarget &Subtarget) const {
1490  SDNode *Node = Op.getNode();
1491  EVT VT = Node->getValueType(0);
1492  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1493  SDValue InChain = Node->getOperand(0);
1494  SDValue VAListPtr = Node->getOperand(1);
1495  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1496  DebugLoc dl = Node->getDebugLoc();
1497
1498  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1499
1500  // gpr_index
1501  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1502                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
1503                                    false, false, 0);
1504  InChain = GprIndex.getValue(1);
1505
1506  if (VT == MVT::i64) {
1507    // Check if GprIndex is even
1508    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1509                                 DAG.getConstant(1, MVT::i32));
1510    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1511                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
1512    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1513                                          DAG.getConstant(1, MVT::i32));
1514    // Align GprIndex to be even if it isn't
1515    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1516                           GprIndex);
1517  }
1518
1519  // fpr index is 1 byte after gpr
1520  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1521                               DAG.getConstant(1, MVT::i32));
1522
1523  // fpr
1524  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1525                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
1526                                    false, false, 0);
1527  InChain = FprIndex.getValue(1);
1528
1529  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1530                                       DAG.getConstant(8, MVT::i32));
1531
1532  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1533                                        DAG.getConstant(4, MVT::i32));
1534
1535  // areas
1536  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1537                                     MachinePointerInfo(), false, false,
1538                                     false, 0);
1539  InChain = OverflowArea.getValue(1);
1540
1541  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1542                                    MachinePointerInfo(), false, false,
1543                                    false, 0);
1544  InChain = RegSaveArea.getValue(1);
1545
1546  // select overflow_area if index > 8
1547  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1548                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
1549
1550  // adjustment constant gpr_index * 4/8
1551  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1552                                    VT.isInteger() ? GprIndex : FprIndex,
1553                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
1554                                                    MVT::i32));
1555
1556  // OurReg = RegSaveArea + RegConstant
1557  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1558                               RegConstant);
1559
1560  // Floating types are 32 bytes into RegSaveArea
1561  if (VT.isFloatingPoint())
1562    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1563                         DAG.getConstant(32, MVT::i32));
1564
1565  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1566  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1567                                   VT.isInteger() ? GprIndex : FprIndex,
1568                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1569                                                   MVT::i32));
1570
1571  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1572                              VT.isInteger() ? VAListPtr : FprPtr,
1573                              MachinePointerInfo(SV),
1574                              MVT::i8, false, false, 0);
1575
1576  // determine if we should load from reg_save_area or overflow_area
1577  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1578
1579  // increase overflow_area by 4/8 if gpr/fpr > 8
1580  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1581                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
1582                                          MVT::i32));
1583
1584  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1585                             OverflowAreaPlusN);
1586
1587  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1588                              OverflowAreaPtr,
1589                              MachinePointerInfo(),
1590                              MVT::i32, false, false, 0);
1591
1592  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1593                     false, false, false, 0);
1594}
1595
1596SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1597                                                  SelectionDAG &DAG) const {
1598  return Op.getOperand(0);
1599}
1600
1601SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1602                                                SelectionDAG &DAG) const {
1603  SDValue Chain = Op.getOperand(0);
1604  SDValue Trmp = Op.getOperand(1); // trampoline
1605  SDValue FPtr = Op.getOperand(2); // nested function
1606  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1607  DebugLoc dl = Op.getDebugLoc();
1608
1609  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1610  bool isPPC64 = (PtrVT == MVT::i64);
1611  Type *IntPtrTy =
1612    DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
1613                                                             *DAG.getContext());
1614
1615  TargetLowering::ArgListTy Args;
1616  TargetLowering::ArgListEntry Entry;
1617
1618  Entry.Ty = IntPtrTy;
1619  Entry.Node = Trmp; Args.push_back(Entry);
1620
1621  // TrampSize == (isPPC64 ? 48 : 40);
1622  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1623                               isPPC64 ? MVT::i64 : MVT::i32);
1624  Args.push_back(Entry);
1625
1626  Entry.Node = FPtr; Args.push_back(Entry);
1627  Entry.Node = Nest; Args.push_back(Entry);
1628
1629  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1630  TargetLowering::CallLoweringInfo CLI(Chain,
1631                                       Type::getVoidTy(*DAG.getContext()),
1632                                       false, false, false, false, 0,
1633                                       CallingConv::C,
1634                /*isTailCall=*/false,
1635                                       /*doesNotRet=*/false,
1636                                       /*isReturnValueUsed=*/true,
1637                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1638                Args, DAG, dl);
1639  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1640
1641  return CallResult.second;
1642}
1643
1644SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1645                                        const PPCSubtarget &Subtarget) const {
1646  MachineFunction &MF = DAG.getMachineFunction();
1647  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1648
1649  DebugLoc dl = Op.getDebugLoc();
1650
1651  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1652    // vastart just stores the address of the VarArgsFrameIndex slot into the
1653    // memory location argument.
1654    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1655    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1656    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1657    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1658                        MachinePointerInfo(SV),
1659                        false, false, 0);
1660  }
1661
1662  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1663  // We suppose the given va_list is already allocated.
1664  //
1665  // typedef struct {
1666  //  char gpr;     /* index into the array of 8 GPRs
1667  //                 * stored in the register save area
1668  //                 * gpr=0 corresponds to r3,
1669  //                 * gpr=1 to r4, etc.
1670  //                 */
1671  //  char fpr;     /* index into the array of 8 FPRs
1672  //                 * stored in the register save area
1673  //                 * fpr=0 corresponds to f1,
1674  //                 * fpr=1 to f2, etc.
1675  //                 */
1676  //  char *overflow_arg_area;
1677  //                /* location on stack that holds
1678  //                 * the next overflow argument
1679  //                 */
1680  //  char *reg_save_area;
1681  //               /* where r3:r10 and f1:f8 (if saved)
1682  //                * are stored
1683  //                */
1684  // } va_list[1];
1685
1686
1687  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1688  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1689
1690
1691  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1692
1693  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1694                                            PtrVT);
1695  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1696                                 PtrVT);
1697
1698  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1699  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1700
1701  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1702  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1703
1704  uint64_t FPROffset = 1;
1705  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1706
1707  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1708
1709  // Store first byte : number of int regs
1710  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1711                                         Op.getOperand(1),
1712                                         MachinePointerInfo(SV),
1713                                         MVT::i8, false, false, 0);
1714  uint64_t nextOffset = FPROffset;
1715  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1716                                  ConstFPROffset);
1717
1718  // Store second byte : number of float regs
1719  SDValue secondStore =
1720    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1721                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1722                      false, false, 0);
1723  nextOffset += StackOffset;
1724  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1725
1726  // Store second word : arguments given on stack
1727  SDValue thirdStore =
1728    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1729                 MachinePointerInfo(SV, nextOffset),
1730                 false, false, 0);
1731  nextOffset += FrameOffset;
1732  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1733
1734  // Store third word : arguments given in registers
1735  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1736                      MachinePointerInfo(SV, nextOffset),
1737                      false, false, 0);
1738
1739}
1740
1741#include "PPCGenCallingConv.inc"
1742
1743static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1744                                     CCValAssign::LocInfo &LocInfo,
1745                                     ISD::ArgFlagsTy &ArgFlags,
1746                                     CCState &State) {
1747  return true;
1748}
1749
1750static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1751                                            MVT &LocVT,
1752                                            CCValAssign::LocInfo &LocInfo,
1753                                            ISD::ArgFlagsTy &ArgFlags,
1754                                            CCState &State) {
1755  static const uint16_t ArgRegs[] = {
1756    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1757    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1758  };
1759  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1760
1761  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1762
1763  // Skip one register if the first unallocated register has an even register
1764  // number and there are still argument registers available which have not been
1765  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1766  // need to skip a register if RegNum is odd.
1767  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1768    State.AllocateReg(ArgRegs[RegNum]);
1769  }
1770
1771  // Always return false here, as this function only makes sure that the first
1772  // unallocated register has an odd register number and does not actually
1773  // allocate a register for the current argument.
1774  return false;
1775}
1776
1777static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1778                                              MVT &LocVT,
1779                                              CCValAssign::LocInfo &LocInfo,
1780                                              ISD::ArgFlagsTy &ArgFlags,
1781                                              CCState &State) {
1782  static const uint16_t ArgRegs[] = {
1783    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1784    PPC::F8
1785  };
1786
1787  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1788
1789  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1790
1791  // If there is only one Floating-point register left we need to put both f64
1792  // values of a split ppc_fp128 value on the stack.
1793  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1794    State.AllocateReg(ArgRegs[RegNum]);
1795  }
1796
1797  // Always return false here, as this function only makes sure that the two f64
1798  // values a ppc_fp128 value is split into are both passed in registers or both
1799  // passed on the stack and does not actually allocate a register for the
1800  // current argument.
1801  return false;
1802}
1803
1804/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1805/// on Darwin.
1806static const uint16_t *GetFPR() {
1807  static const uint16_t FPR[] = {
1808    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1809    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1810  };
1811
1812  return FPR;
1813}
1814
1815/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1816/// the stack.
1817static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1818                                       unsigned PtrByteSize) {
1819  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1820  if (Flags.isByVal())
1821    ArgSize = Flags.getByValSize();
1822  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1823
1824  return ArgSize;
1825}
1826
1827SDValue
1828PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1829                                        CallingConv::ID CallConv, bool isVarArg,
1830                                        const SmallVectorImpl<ISD::InputArg>
1831                                          &Ins,
1832                                        DebugLoc dl, SelectionDAG &DAG,
1833                                        SmallVectorImpl<SDValue> &InVals)
1834                                          const {
1835  if (PPCSubTarget.isSVR4ABI()) {
1836    if (PPCSubTarget.isPPC64())
1837      return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
1838                                         dl, DAG, InVals);
1839    else
1840      return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
1841                                         dl, DAG, InVals);
1842  } else {
1843    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1844                                       dl, DAG, InVals);
1845  }
1846}
1847
1848SDValue
1849PPCTargetLowering::LowerFormalArguments_32SVR4(
1850                                      SDValue Chain,
1851                                      CallingConv::ID CallConv, bool isVarArg,
1852                                      const SmallVectorImpl<ISD::InputArg>
1853                                        &Ins,
1854                                      DebugLoc dl, SelectionDAG &DAG,
1855                                      SmallVectorImpl<SDValue> &InVals) const {
1856
1857  // 32-bit SVR4 ABI Stack Frame Layout:
1858  //              +-----------------------------------+
1859  //        +-->  |            Back chain             |
1860  //        |     +-----------------------------------+
1861  //        |     | Floating-point register save area |
1862  //        |     +-----------------------------------+
1863  //        |     |    General register save area     |
1864  //        |     +-----------------------------------+
1865  //        |     |          CR save word             |
1866  //        |     +-----------------------------------+
1867  //        |     |         VRSAVE save word          |
1868  //        |     +-----------------------------------+
1869  //        |     |         Alignment padding         |
1870  //        |     +-----------------------------------+
1871  //        |     |     Vector register save area     |
1872  //        |     +-----------------------------------+
1873  //        |     |       Local variable space        |
1874  //        |     +-----------------------------------+
1875  //        |     |        Parameter list area        |
1876  //        |     +-----------------------------------+
1877  //        |     |           LR save word            |
1878  //        |     +-----------------------------------+
1879  // SP-->  +---  |            Back chain             |
1880  //              +-----------------------------------+
1881  //
1882  // Specifications:
1883  //   System V Application Binary Interface PowerPC Processor Supplement
1884  //   AltiVec Technology Programming Interface Manual
1885
1886  MachineFunction &MF = DAG.getMachineFunction();
1887  MachineFrameInfo *MFI = MF.getFrameInfo();
1888  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1889
1890  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1891  // Potential tail calls could cause overwriting of argument stack slots.
1892  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1893                       (CallConv == CallingConv::Fast));
1894  unsigned PtrByteSize = 4;
1895
1896  // Assign locations to all of the incoming arguments.
1897  SmallVector<CCValAssign, 16> ArgLocs;
1898  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1899                 getTargetMachine(), ArgLocs, *DAG.getContext());
1900
1901  // Reserve space for the linkage area on the stack.
1902  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1903
1904  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1905
1906  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1907    CCValAssign &VA = ArgLocs[i];
1908
1909    // Arguments stored in registers.
1910    if (VA.isRegLoc()) {
1911      const TargetRegisterClass *RC;
1912      EVT ValVT = VA.getValVT();
1913
1914      switch (ValVT.getSimpleVT().SimpleTy) {
1915        default:
1916          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1917        case MVT::i32:
1918          RC = &PPC::GPRCRegClass;
1919          break;
1920        case MVT::f32:
1921          RC = &PPC::F4RCRegClass;
1922          break;
1923        case MVT::f64:
1924          RC = &PPC::F8RCRegClass;
1925          break;
1926        case MVT::v16i8:
1927        case MVT::v8i16:
1928        case MVT::v4i32:
1929        case MVT::v4f32:
1930          RC = &PPC::VRRCRegClass;
1931          break;
1932      }
1933
1934      // Transform the arguments stored in physical registers into virtual ones.
1935      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1936      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1937
1938      InVals.push_back(ArgValue);
1939    } else {
1940      // Argument stored in memory.
1941      assert(VA.isMemLoc());
1942
1943      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1944      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1945                                      isImmutable);
1946
1947      // Create load nodes to retrieve arguments from the stack.
1948      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1949      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1950                                   MachinePointerInfo(),
1951                                   false, false, false, 0));
1952    }
1953  }
1954
1955  // Assign locations to all of the incoming aggregate by value arguments.
1956  // Aggregates passed by value are stored in the local variable space of the
1957  // caller's stack frame, right above the parameter list area.
1958  SmallVector<CCValAssign, 16> ByValArgLocs;
1959  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1960                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
1961
1962  // Reserve stack space for the allocations in CCInfo.
1963  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1964
1965  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1966
1967  // Area that is at least reserved in the caller of this function.
1968  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1969
1970  // Set the size that is at least reserved in caller of this function.  Tail
1971  // call optimized function's reserved stack space needs to be aligned so that
1972  // taking the difference between two stack areas will result in an aligned
1973  // stack.
1974  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1975
1976  MinReservedArea =
1977    std::max(MinReservedArea,
1978             PPCFrameLowering::getMinCallFrameSize(false, false));
1979
1980  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
1981    getStackAlignment();
1982  unsigned AlignMask = TargetAlign-1;
1983  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1984
1985  FI->setMinReservedArea(MinReservedArea);
1986
1987  SmallVector<SDValue, 8> MemOps;
1988
1989  // If the function takes variable number of arguments, make a frame index for
1990  // the start of the first vararg value... for expansion of llvm.va_start.
1991  if (isVarArg) {
1992    static const uint16_t GPArgRegs[] = {
1993      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1994      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1995    };
1996    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1997
1998    static const uint16_t FPArgRegs[] = {
1999      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2000      PPC::F8
2001    };
2002    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2003
2004    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
2005                                                          NumGPArgRegs));
2006    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
2007                                                          NumFPArgRegs));
2008
2009    // Make room for NumGPArgRegs and NumFPArgRegs.
2010    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2011                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
2012
2013    FuncInfo->setVarArgsStackOffset(
2014      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2015                             CCInfo.getNextStackOffset(), true));
2016
2017    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2018    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2019
2020    // The fixed integer arguments of a variadic function are stored to the
2021    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2022    // the result of va_next.
2023    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2024      // Get an existing live-in vreg, or add a new one.
2025      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2026      if (!VReg)
2027        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2028
2029      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2030      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2031                                   MachinePointerInfo(), false, false, 0);
2032      MemOps.push_back(Store);
2033      // Increment the address by four for the next argument to store
2034      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2035      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2036    }
2037
2038    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2039    // is set.
2040    // The double arguments are stored to the VarArgsFrameIndex
2041    // on the stack.
2042    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2043      // Get an existing live-in vreg, or add a new one.
2044      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
2045      if (!VReg)
2046        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
2047
2048      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
2049      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2050                                   MachinePointerInfo(), false, false, 0);
2051      MemOps.push_back(Store);
2052      // Increment the address by eight for the next argument to store
2053      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
2054                                         PtrVT);
2055      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2056    }
2057  }
2058
2059  if (!MemOps.empty())
2060    Chain = DAG.getNode(ISD::TokenFactor, dl,
2061                        MVT::Other, &MemOps[0], MemOps.size());
2062
2063  return Chain;
2064}
2065
2066// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2067// value to MVT::i64 and then truncate to the correct register size.
2068SDValue
2069PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
2070                                     SelectionDAG &DAG, SDValue ArgVal,
2071                                     DebugLoc dl) const {
2072  if (Flags.isSExt())
2073    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2074                         DAG.getValueType(ObjectVT));
2075  else if (Flags.isZExt())
2076    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2077                         DAG.getValueType(ObjectVT));
2078
2079  return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2080}
2081
2082// Set the size that is at least reserved in caller of this function.  Tail
2083// call optimized functions' reserved stack space needs to be aligned so that
2084// taking the difference between two stack areas will result in an aligned
2085// stack.
2086void
2087PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
2088                                      unsigned nAltivecParamsAtEnd,
2089                                      unsigned MinReservedArea,
2090                                      bool isPPC64) const {
2091  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2092  // Add the Altivec parameters at the end, if needed.
2093  if (nAltivecParamsAtEnd) {
2094    MinReservedArea = ((MinReservedArea+15)/16)*16;
2095    MinReservedArea += 16*nAltivecParamsAtEnd;
2096  }
2097  MinReservedArea =
2098    std::max(MinReservedArea,
2099             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2100  unsigned TargetAlign
2101    = DAG.getMachineFunction().getTarget().getFrameLowering()->
2102        getStackAlignment();
2103  unsigned AlignMask = TargetAlign-1;
2104  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2105  FI->setMinReservedArea(MinReservedArea);
2106}
2107
2108SDValue
2109PPCTargetLowering::LowerFormalArguments_64SVR4(
2110                                      SDValue Chain,
2111                                      CallingConv::ID CallConv, bool isVarArg,
2112                                      const SmallVectorImpl<ISD::InputArg>
2113                                        &Ins,
2114                                      DebugLoc dl, SelectionDAG &DAG,
2115                                      SmallVectorImpl<SDValue> &InVals) const {
2116  // TODO: add description of PPC stack frame format, or at least some docs.
2117  //
2118  MachineFunction &MF = DAG.getMachineFunction();
2119  MachineFrameInfo *MFI = MF.getFrameInfo();
2120  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2121
2122  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2123  // Potential tail calls could cause overwriting of argument stack slots.
2124  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2125                       (CallConv == CallingConv::Fast));
2126  unsigned PtrByteSize = 8;
2127
2128  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
2129  // Area that is at least reserved in caller of this function.
2130  unsigned MinReservedArea = ArgOffset;
2131
2132  static const uint16_t GPR[] = {
2133    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2134    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2135  };
2136
2137  static const uint16_t *FPR = GetFPR();
2138
2139  static const uint16_t VR[] = {
2140    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2141    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2142  };
2143
2144  const unsigned Num_GPR_Regs = array_lengthof(GPR);
2145  const unsigned Num_FPR_Regs = 13;
2146  const unsigned Num_VR_Regs  = array_lengthof(VR);
2147
2148  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2149
2150  // Add DAG nodes to load the arguments or copy them out of registers.  On
2151  // entry to a function on PPC, the arguments start after the linkage area,
2152  // although the first ones are often in registers.
2153
2154  SmallVector<SDValue, 8> MemOps;
2155  unsigned nAltivecParamsAtEnd = 0;
2156  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2157  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) {
2158    SDValue ArgVal;
2159    bool needsLoad = false;
2160    EVT ObjectVT = Ins[ArgNo].VT;
2161    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2162    unsigned ArgSize = ObjSize;
2163    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2164
2165    unsigned CurArgOffset = ArgOffset;
2166
2167    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2168    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2169        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2170      if (isVarArg) {
2171        MinReservedArea = ((MinReservedArea+15)/16)*16;
2172        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2173                                                  Flags,
2174                                                  PtrByteSize);
2175      } else
2176        nAltivecParamsAtEnd++;
2177    } else
2178      // Calculate min reserved area.
2179      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2180                                                Flags,
2181                                                PtrByteSize);
2182
2183    // FIXME the codegen can be much improved in some cases.
2184    // We do not have to keep everything in memory.
2185    if (Flags.isByVal()) {
2186      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2187      ObjSize = Flags.getByValSize();
2188      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2189      // Empty aggregate parameters do not take up registers.  Examples:
2190      //   struct { } a;
2191      //   union  { } b;
2192      //   int c[0];
2193      // etc.  However, we have to provide a place-holder in InVals, so
2194      // pretend we have an 8-byte item at the current address for that
2195      // purpose.
2196      if (!ObjSize) {
2197        int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2198        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2199        InVals.push_back(FIN);
2200        continue;
2201      }
2202      // All aggregates smaller than 8 bytes must be passed right-justified.
2203      if (ObjSize < PtrByteSize)
2204        CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
2205      // The value of the object is its address.
2206      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2207      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2208      InVals.push_back(FIN);
2209
2210      if (ObjSize < 8) {
2211        if (GPR_idx != Num_GPR_Regs) {
2212          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2213          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2214          SDValue Store;
2215
2216          if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
2217            EVT ObjType = (ObjSize == 1 ? MVT::i8 :
2218                           (ObjSize == 2 ? MVT::i16 : MVT::i32));
2219            Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2220                                      MachinePointerInfo(FuncArg, CurArgOffset),
2221                                      ObjType, false, false, 0);
2222          } else {
2223            // For sizes that don't fit a truncating store (3, 5, 6, 7),
2224            // store the whole register as-is to the parameter save area
2225            // slot.  The address of the parameter was already calculated
2226            // above (InVals.push_back(FIN)) to be the right-justified
2227            // offset within the slot.  For this store, we need a new
2228            // frame index that points at the beginning of the slot.
2229            int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2230            SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2231            Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2232                                 MachinePointerInfo(FuncArg, ArgOffset),
2233                                 false, false, 0);
2234          }
2235
2236          MemOps.push_back(Store);
2237          ++GPR_idx;
2238        }
2239        // Whether we copied from a register or not, advance the offset
2240        // into the parameter save area by a full doubleword.
2241        ArgOffset += PtrByteSize;
2242        continue;
2243      }
2244
2245      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2246        // Store whatever pieces of the object are in registers
2247        // to memory.  ArgOffset will be the address of the beginning
2248        // of the object.
2249        if (GPR_idx != Num_GPR_Regs) {
2250          unsigned VReg;
2251          VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2252          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2253          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2254          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2255          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2256                                       MachinePointerInfo(FuncArg, ArgOffset),
2257                                       false, false, 0);
2258          MemOps.push_back(Store);
2259          ++GPR_idx;
2260          ArgOffset += PtrByteSize;
2261        } else {
2262          ArgOffset += ArgSize - j;
2263          break;
2264        }
2265      }
2266      continue;
2267    }
2268
2269    switch (ObjectVT.getSimpleVT().SimpleTy) {
2270    default: llvm_unreachable("Unhandled argument type!");
2271    case MVT::i32:
2272    case MVT::i64:
2273      if (GPR_idx != Num_GPR_Regs) {
2274        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2275        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2276
2277        if (ObjectVT == MVT::i32)
2278          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2279          // value to MVT::i64 and then truncate to the correct register size.
2280          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2281
2282        ++GPR_idx;
2283      } else {
2284        needsLoad = true;
2285        ArgSize = PtrByteSize;
2286      }
2287      ArgOffset += 8;
2288      break;
2289
2290    case MVT::f32:
2291    case MVT::f64:
2292      // Every 8 bytes of argument space consumes one of the GPRs available for
2293      // argument passing.
2294      if (GPR_idx != Num_GPR_Regs) {
2295        ++GPR_idx;
2296      }
2297      if (FPR_idx != Num_FPR_Regs) {
2298        unsigned VReg;
2299
2300        if (ObjectVT == MVT::f32)
2301          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2302        else
2303          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2304
2305        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2306        ++FPR_idx;
2307      } else {
2308        needsLoad = true;
2309        ArgSize = PtrByteSize;
2310      }
2311
2312      ArgOffset += 8;
2313      break;
2314    case MVT::v4f32:
2315    case MVT::v4i32:
2316    case MVT::v8i16:
2317    case MVT::v16i8:
2318      // Note that vector arguments in registers don't reserve stack space,
2319      // except in varargs functions.
2320      if (VR_idx != Num_VR_Regs) {
2321        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2322        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2323        if (isVarArg) {
2324          while ((ArgOffset % 16) != 0) {
2325            ArgOffset += PtrByteSize;
2326            if (GPR_idx != Num_GPR_Regs)
2327              GPR_idx++;
2328          }
2329          ArgOffset += 16;
2330          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2331        }
2332        ++VR_idx;
2333      } else {
2334        // Vectors are aligned.
2335        ArgOffset = ((ArgOffset+15)/16)*16;
2336        CurArgOffset = ArgOffset;
2337        ArgOffset += 16;
2338        needsLoad = true;
2339      }
2340      break;
2341    }
2342
2343    // We need to load the argument to a virtual register if we determined
2344    // above that we ran out of physical registers of the appropriate type.
2345    if (needsLoad) {
2346      int FI = MFI->CreateFixedObject(ObjSize,
2347                                      CurArgOffset + (ArgSize - ObjSize),
2348                                      isImmutable);
2349      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2350      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2351                           false, false, false, 0);
2352    }
2353
2354    InVals.push_back(ArgVal);
2355  }
2356
2357  // Set the size that is at least reserved in caller of this function.  Tail
2358  // call optimized functions' reserved stack space needs to be aligned so that
2359  // taking the difference between two stack areas will result in an aligned
2360  // stack.
2361  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
2362
2363  // If the function takes variable number of arguments, make a frame index for
2364  // the start of the first vararg value... for expansion of llvm.va_start.
2365  if (isVarArg) {
2366    int Depth = ArgOffset;
2367
2368    FuncInfo->setVarArgsFrameIndex(
2369      MFI->CreateFixedObject(PtrByteSize, Depth, true));
2370    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2371
2372    // If this function is vararg, store any remaining integer argument regs
2373    // to their spots on the stack so that they may be loaded by deferencing the
2374    // result of va_next.
2375    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2376      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2377      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2378      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2379                                   MachinePointerInfo(), false, false, 0);
2380      MemOps.push_back(Store);
2381      // Increment the address by four for the next argument to store
2382      SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
2383      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2384    }
2385  }
2386
2387  if (!MemOps.empty())
2388    Chain = DAG.getNode(ISD::TokenFactor, dl,
2389                        MVT::Other, &MemOps[0], MemOps.size());
2390
2391  return Chain;
2392}
2393
2394SDValue
2395PPCTargetLowering::LowerFormalArguments_Darwin(
2396                                      SDValue Chain,
2397                                      CallingConv::ID CallConv, bool isVarArg,
2398                                      const SmallVectorImpl<ISD::InputArg>
2399                                        &Ins,
2400                                      DebugLoc dl, SelectionDAG &DAG,
2401                                      SmallVectorImpl<SDValue> &InVals) const {
2402  // TODO: add description of PPC stack frame format, or at least some docs.
2403  //
2404  MachineFunction &MF = DAG.getMachineFunction();
2405  MachineFrameInfo *MFI = MF.getFrameInfo();
2406  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2407
2408  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2409  bool isPPC64 = PtrVT == MVT::i64;
2410  // Potential tail calls could cause overwriting of argument stack slots.
2411  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2412                       (CallConv == CallingConv::Fast));
2413  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2414
2415  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
2416  // Area that is at least reserved in caller of this function.
2417  unsigned MinReservedArea = ArgOffset;
2418
2419  static const uint16_t GPR_32[] = {           // 32-bit registers.
2420    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2421    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2422  };
2423  static const uint16_t GPR_64[] = {           // 64-bit registers.
2424    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2425    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2426  };
2427
2428  static const uint16_t *FPR = GetFPR();
2429
2430  static const uint16_t VR[] = {
2431    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2432    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2433  };
2434
2435  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
2436  const unsigned Num_FPR_Regs = 13;
2437  const unsigned Num_VR_Regs  = array_lengthof( VR);
2438
2439  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2440
2441  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
2442
2443  // In 32-bit non-varargs functions, the stack space for vectors is after the
2444  // stack space for non-vectors.  We do not use this space unless we have
2445  // too many vectors to fit in registers, something that only occurs in
2446  // constructed examples:), but we have to walk the arglist to figure
2447  // that out...for the pathological case, compute VecArgOffset as the
2448  // start of the vector parameter area.  Computing VecArgOffset is the
2449  // entire point of the following loop.
2450  unsigned VecArgOffset = ArgOffset;
2451  if (!isVarArg && !isPPC64) {
2452    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
2453         ++ArgNo) {
2454      EVT ObjectVT = Ins[ArgNo].VT;
2455      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2456
2457      if (Flags.isByVal()) {
2458        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
2459        unsigned ObjSize = Flags.getByValSize();
2460        unsigned ArgSize =
2461                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2462        VecArgOffset += ArgSize;
2463        continue;
2464      }
2465
2466      switch(ObjectVT.getSimpleVT().SimpleTy) {
2467      default: llvm_unreachable("Unhandled argument type!");
2468      case MVT::i32:
2469      case MVT::f32:
2470        VecArgOffset += 4;
2471        break;
2472      case MVT::i64:  // PPC64
2473      case MVT::f64:
2474        // FIXME: We are guaranteed to be !isPPC64 at this point.
2475        // Does MVT::i64 apply?
2476        VecArgOffset += 8;
2477        break;
2478      case MVT::v4f32:
2479      case MVT::v4i32:
2480      case MVT::v8i16:
2481      case MVT::v16i8:
2482        // Nothing to do, we're only looking at Nonvector args here.
2483        break;
2484      }
2485    }
2486  }
2487  // We've found where the vector parameter area in memory is.  Skip the
2488  // first 12 parameters; these don't use that memory.
2489  VecArgOffset = ((VecArgOffset+15)/16)*16;
2490  VecArgOffset += 12*16;
2491
2492  // Add DAG nodes to load the arguments or copy them out of registers.  On
2493  // entry to a function on PPC, the arguments start after the linkage area,
2494  // although the first ones are often in registers.
2495
2496  SmallVector<SDValue, 8> MemOps;
2497  unsigned nAltivecParamsAtEnd = 0;
2498  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2499  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) {
2500    SDValue ArgVal;
2501    bool needsLoad = false;
2502    EVT ObjectVT = Ins[ArgNo].VT;
2503    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2504    unsigned ArgSize = ObjSize;
2505    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2506
2507    unsigned CurArgOffset = ArgOffset;
2508
2509    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2510    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2511        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2512      if (isVarArg || isPPC64) {
2513        MinReservedArea = ((MinReservedArea+15)/16)*16;
2514        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2515                                                  Flags,
2516                                                  PtrByteSize);
2517      } else  nAltivecParamsAtEnd++;
2518    } else
2519      // Calculate min reserved area.
2520      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2521                                                Flags,
2522                                                PtrByteSize);
2523
2524    // FIXME the codegen can be much improved in some cases.
2525    // We do not have to keep everything in memory.
2526    if (Flags.isByVal()) {
2527      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2528      ObjSize = Flags.getByValSize();
2529      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2530      // Objects of size 1 and 2 are right justified, everything else is
2531      // left justified.  This means the memory address is adjusted forwards.
2532      if (ObjSize==1 || ObjSize==2) {
2533        CurArgOffset = CurArgOffset + (4 - ObjSize);
2534      }
2535      // The value of the object is its address.
2536      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2537      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2538      InVals.push_back(FIN);
2539      if (ObjSize==1 || ObjSize==2) {
2540        if (GPR_idx != Num_GPR_Regs) {
2541          unsigned VReg;
2542          if (isPPC64)
2543            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2544          else
2545            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2546          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2547          EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
2548          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2549                                            MachinePointerInfo(FuncArg,
2550                                              CurArgOffset),
2551                                            ObjType, false, false, 0);
2552          MemOps.push_back(Store);
2553          ++GPR_idx;
2554        }
2555
2556        ArgOffset += PtrByteSize;
2557
2558        continue;
2559      }
2560      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2561        // Store whatever pieces of the object are in registers
2562        // to memory.  ArgOffset will be the address of the beginning
2563        // of the object.
2564        if (GPR_idx != Num_GPR_Regs) {
2565          unsigned VReg;
2566          if (isPPC64)
2567            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2568          else
2569            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2570          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2571          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2572          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2573          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2574                                       MachinePointerInfo(FuncArg, ArgOffset),
2575                                       false, false, 0);
2576          MemOps.push_back(Store);
2577          ++GPR_idx;
2578          ArgOffset += PtrByteSize;
2579        } else {
2580          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2581          break;
2582        }
2583      }
2584      continue;
2585    }
2586
2587    switch (ObjectVT.getSimpleVT().SimpleTy) {
2588    default: llvm_unreachable("Unhandled argument type!");
2589    case MVT::i32:
2590      if (!isPPC64) {
2591        if (GPR_idx != Num_GPR_Regs) {
2592          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2593          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2594          ++GPR_idx;
2595        } else {
2596          needsLoad = true;
2597          ArgSize = PtrByteSize;
2598        }
2599        // All int arguments reserve stack space in the Darwin ABI.
2600        ArgOffset += PtrByteSize;
2601        break;
2602      }
2603      // FALLTHROUGH
2604    case MVT::i64:  // PPC64
2605      if (GPR_idx != Num_GPR_Regs) {
2606        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2607        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2608
2609        if (ObjectVT == MVT::i32)
2610          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2611          // value to MVT::i64 and then truncate to the correct register size.
2612          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2613
2614        ++GPR_idx;
2615      } else {
2616        needsLoad = true;
2617        ArgSize = PtrByteSize;
2618      }
2619      // All int arguments reserve stack space in the Darwin ABI.
2620      ArgOffset += 8;
2621      break;
2622
2623    case MVT::f32:
2624    case MVT::f64:
2625      // Every 4 bytes of argument space consumes one of the GPRs available for
2626      // argument passing.
2627      if (GPR_idx != Num_GPR_Regs) {
2628        ++GPR_idx;
2629        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2630          ++GPR_idx;
2631      }
2632      if (FPR_idx != Num_FPR_Regs) {
2633        unsigned VReg;
2634
2635        if (ObjectVT == MVT::f32)
2636          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2637        else
2638          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2639
2640        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2641        ++FPR_idx;
2642      } else {
2643        needsLoad = true;
2644      }
2645
2646      // All FP arguments reserve stack space in the Darwin ABI.
2647      ArgOffset += isPPC64 ? 8 : ObjSize;
2648      break;
2649    case MVT::v4f32:
2650    case MVT::v4i32:
2651    case MVT::v8i16:
2652    case MVT::v16i8:
2653      // Note that vector arguments in registers don't reserve stack space,
2654      // except in varargs functions.
2655      if (VR_idx != Num_VR_Regs) {
2656        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2657        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2658        if (isVarArg) {
2659          while ((ArgOffset % 16) != 0) {
2660            ArgOffset += PtrByteSize;
2661            if (GPR_idx != Num_GPR_Regs)
2662              GPR_idx++;
2663          }
2664          ArgOffset += 16;
2665          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2666        }
2667        ++VR_idx;
2668      } else {
2669        if (!isVarArg && !isPPC64) {
2670          // Vectors go after all the nonvectors.
2671          CurArgOffset = VecArgOffset;
2672          VecArgOffset += 16;
2673        } else {
2674          // Vectors are aligned.
2675          ArgOffset = ((ArgOffset+15)/16)*16;
2676          CurArgOffset = ArgOffset;
2677          ArgOffset += 16;
2678        }
2679        needsLoad = true;
2680      }
2681      break;
2682    }
2683
2684    // We need to load the argument to a virtual register if we determined above
2685    // that we ran out of physical registers of the appropriate type.
2686    if (needsLoad) {
2687      int FI = MFI->CreateFixedObject(ObjSize,
2688                                      CurArgOffset + (ArgSize - ObjSize),
2689                                      isImmutable);
2690      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2691      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2692                           false, false, false, 0);
2693    }
2694
2695    InVals.push_back(ArgVal);
2696  }
2697
2698  // Set the size that is at least reserved in caller of this function.  Tail
2699  // call optimized functions' reserved stack space needs to be aligned so that
2700  // taking the difference between two stack areas will result in an aligned
2701  // stack.
2702  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
2703
2704  // If the function takes variable number of arguments, make a frame index for
2705  // the start of the first vararg value... for expansion of llvm.va_start.
2706  if (isVarArg) {
2707    int Depth = ArgOffset;
2708
2709    FuncInfo->setVarArgsFrameIndex(
2710      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2711                             Depth, true));
2712    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2713
2714    // If this function is vararg, store any remaining integer argument regs
2715    // to their spots on the stack so that they may be loaded by deferencing the
2716    // result of va_next.
2717    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2718      unsigned VReg;
2719
2720      if (isPPC64)
2721        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2722      else
2723        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2724
2725      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2726      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2727                                   MachinePointerInfo(), false, false, 0);
2728      MemOps.push_back(Store);
2729      // Increment the address by four for the next argument to store
2730      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2731      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2732    }
2733  }
2734
2735  if (!MemOps.empty())
2736    Chain = DAG.getNode(ISD::TokenFactor, dl,
2737                        MVT::Other, &MemOps[0], MemOps.size());
2738
2739  return Chain;
2740}
2741
2742/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
2743/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
2744static unsigned
2745CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2746                                     bool isPPC64,
2747                                     bool isVarArg,
2748                                     unsigned CC,
2749                                     const SmallVectorImpl<ISD::OutputArg>
2750                                       &Outs,
2751                                     const SmallVectorImpl<SDValue> &OutVals,
2752                                     unsigned &nAltivecParamsAtEnd) {
2753  // Count how many bytes are to be pushed on the stack, including the linkage
2754  // area, and parameter passing area.  We start with 24/48 bytes, which is
2755  // prereserved space for [SP][CR][LR][3 x unused].
2756  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2757  unsigned NumOps = Outs.size();
2758  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2759
2760  // Add up all the space actually used.
2761  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2762  // they all go in registers, but we must reserve stack space for them for
2763  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2764  // assigned stack space in order, with padding so Altivec parameters are
2765  // 16-byte aligned.
2766  nAltivecParamsAtEnd = 0;
2767  for (unsigned i = 0; i != NumOps; ++i) {
2768    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2769    EVT ArgVT = Outs[i].VT;
2770    // Varargs Altivec parameters are padded to a 16 byte boundary.
2771    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2772        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2773      if (!isVarArg && !isPPC64) {
2774        // Non-varargs Altivec parameters go after all the non-Altivec
2775        // parameters; handle those later so we know how much padding we need.
2776        nAltivecParamsAtEnd++;
2777        continue;
2778      }
2779      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2780      NumBytes = ((NumBytes+15)/16)*16;
2781    }
2782    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2783  }
2784
2785   // Allow for Altivec parameters at the end, if needed.
2786  if (nAltivecParamsAtEnd) {
2787    NumBytes = ((NumBytes+15)/16)*16;
2788    NumBytes += 16*nAltivecParamsAtEnd;
2789  }
2790
2791  // The prolog code of the callee may store up to 8 GPR argument registers to
2792  // the stack, allowing va_start to index over them in memory if its varargs.
2793  // Because we cannot tell if this is needed on the caller side, we have to
2794  // conservatively assume that it is needed.  As such, make sure we have at
2795  // least enough stack space for the caller to store the 8 GPRs.
2796  NumBytes = std::max(NumBytes,
2797                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2798
2799  // Tail call needs the stack to be aligned.
2800  if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
2801    unsigned TargetAlign = DAG.getMachineFunction().getTarget().
2802      getFrameLowering()->getStackAlignment();
2803    unsigned AlignMask = TargetAlign-1;
2804    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2805  }
2806
2807  return NumBytes;
2808}
2809
2810/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2811/// adjusted to accommodate the arguments for the tailcall.
2812static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2813                                   unsigned ParamSize) {
2814
2815  if (!isTailCall) return 0;
2816
2817  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2818  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2819  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2820  // Remember only if the new adjustement is bigger.
2821  if (SPDiff < FI->getTailCallSPDelta())
2822    FI->setTailCallSPDelta(SPDiff);
2823
2824  return SPDiff;
2825}
2826
2827/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2828/// for tail call optimization. Targets which want to do tail call
2829/// optimization should implement this function.
2830bool
2831PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2832                                                     CallingConv::ID CalleeCC,
2833                                                     bool isVarArg,
2834                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2835                                                     SelectionDAG& DAG) const {
2836  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
2837    return false;
2838
2839  // Variable argument functions are not supported.
2840  if (isVarArg)
2841    return false;
2842
2843  MachineFunction &MF = DAG.getMachineFunction();
2844  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2845  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2846    // Functions containing by val parameters are not supported.
2847    for (unsigned i = 0; i != Ins.size(); i++) {
2848       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2849       if (Flags.isByVal()) return false;
2850    }
2851
2852    // Non PIC/GOT  tail calls are supported.
2853    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2854      return true;
2855
2856    // At the moment we can only do local tail calls (in same module, hidden
2857    // or protected) if we are generating PIC.
2858    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2859      return G->getGlobal()->hasHiddenVisibility()
2860          || G->getGlobal()->hasProtectedVisibility();
2861  }
2862
2863  return false;
2864}
2865
2866/// isCallCompatibleAddress - Return the immediate to use if the specified
2867/// 32-bit value is representable in the immediate field of a BxA instruction.
2868static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2869  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2870  if (!C) return 0;
2871
2872  int Addr = C->getZExtValue();
2873  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2874      SignExtend32<26>(Addr) != Addr)
2875    return 0;  // Top 6 bits have to be sext of immediate.
2876
2877  return DAG.getConstant((int)C->getZExtValue() >> 2,
2878                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2879}
2880
2881namespace {
2882
2883struct TailCallArgumentInfo {
2884  SDValue Arg;
2885  SDValue FrameIdxOp;
2886  int       FrameIdx;
2887
2888  TailCallArgumentInfo() : FrameIdx(0) {}
2889};
2890
2891}
2892
2893/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2894static void
2895StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2896                                           SDValue Chain,
2897                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2898                   SmallVector<SDValue, 8> &MemOpChains,
2899                   DebugLoc dl) {
2900  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2901    SDValue Arg = TailCallArgs[i].Arg;
2902    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2903    int FI = TailCallArgs[i].FrameIdx;
2904    // Store relative to framepointer.
2905    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2906                                       MachinePointerInfo::getFixedStack(FI),
2907                                       false, false, 0));
2908  }
2909}
2910
2911/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2912/// the appropriate stack slot for the tail call optimized function call.
2913static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2914                                               MachineFunction &MF,
2915                                               SDValue Chain,
2916                                               SDValue OldRetAddr,
2917                                               SDValue OldFP,
2918                                               int SPDiff,
2919                                               bool isPPC64,
2920                                               bool isDarwinABI,
2921                                               DebugLoc dl) {
2922  if (SPDiff) {
2923    // Calculate the new stack slot for the return address.
2924    int SlotSize = isPPC64 ? 8 : 4;
2925    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2926                                                                   isDarwinABI);
2927    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2928                                                          NewRetAddrLoc, true);
2929    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2930    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2931    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2932                         MachinePointerInfo::getFixedStack(NewRetAddr),
2933                         false, false, 0);
2934
2935    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2936    // slot as the FP is never overwritten.
2937    if (isDarwinABI) {
2938      int NewFPLoc =
2939        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2940      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2941                                                          true);
2942      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2943      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2944                           MachinePointerInfo::getFixedStack(NewFPIdx),
2945                           false, false, 0);
2946    }
2947  }
2948  return Chain;
2949}
2950
2951/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2952/// the position of the argument.
2953static void
2954CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2955                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2956                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2957  int Offset = ArgOffset + SPDiff;
2958  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2959  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2960  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2961  SDValue FIN = DAG.getFrameIndex(FI, VT);
2962  TailCallArgumentInfo Info;
2963  Info.Arg = Arg;
2964  Info.FrameIdxOp = FIN;
2965  Info.FrameIdx = FI;
2966  TailCallArguments.push_back(Info);
2967}
2968
2969/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2970/// stack slot. Returns the chain as result and the loaded frame pointers in
2971/// LROpOut/FPOpout. Used when tail calling.
2972SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2973                                                        int SPDiff,
2974                                                        SDValue Chain,
2975                                                        SDValue &LROpOut,
2976                                                        SDValue &FPOpOut,
2977                                                        bool isDarwinABI,
2978                                                        DebugLoc dl) const {
2979  if (SPDiff) {
2980    // Load the LR and FP stack slot for later adjusting.
2981    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2982    LROpOut = getReturnAddrFrameIndex(DAG);
2983    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2984                          false, false, false, 0);
2985    Chain = SDValue(LROpOut.getNode(), 1);
2986
2987    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2988    // slot as the FP is never overwritten.
2989    if (isDarwinABI) {
2990      FPOpOut = getFramePointerFrameIndex(DAG);
2991      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2992                            false, false, false, 0);
2993      Chain = SDValue(FPOpOut.getNode(), 1);
2994    }
2995  }
2996  return Chain;
2997}
2998
2999/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
3000/// by "Src" to address "Dst" of size "Size".  Alignment information is
3001/// specified by the specific parameter attribute. The copy will be passed as
3002/// a byval function parameter.
3003/// Sometimes what we are copying is the end of a larger object, the part that
3004/// does not fit in registers.
3005static SDValue
3006CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
3007                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
3008                          DebugLoc dl) {
3009  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
3010  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
3011                       false, false, MachinePointerInfo(0),
3012                       MachinePointerInfo(0));
3013}
3014
3015/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
3016/// tail calls.
3017static void
3018LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
3019                 SDValue Arg, SDValue PtrOff, int SPDiff,
3020                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
3021                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
3022                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
3023                 DebugLoc dl) {
3024  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3025  if (!isTailCall) {
3026    if (isVector) {
3027      SDValue StackPtr;
3028      if (isPPC64)
3029        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3030      else
3031        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3032      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3033                           DAG.getConstant(ArgOffset, PtrVT));
3034    }
3035    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3036                                       MachinePointerInfo(), false, false, 0));
3037  // Calculate and remember argument location.
3038  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
3039                                  TailCallArguments);
3040}
3041
3042static
3043void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
3044                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
3045                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
3046                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
3047  MachineFunction &MF = DAG.getMachineFunction();
3048
3049  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
3050  // might overwrite each other in case of tail call optimization.
3051  SmallVector<SDValue, 8> MemOpChains2;
3052  // Do not flag preceding copytoreg stuff together with the following stuff.
3053  InFlag = SDValue();
3054  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
3055                                    MemOpChains2, dl);
3056  if (!MemOpChains2.empty())
3057    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3058                        &MemOpChains2[0], MemOpChains2.size());
3059
3060  // Store the return address to the appropriate stack slot.
3061  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
3062                                        isPPC64, isDarwinABI, dl);
3063
3064  // Emit callseq_end just before tailcall node.
3065  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3066                             DAG.getIntPtrConstant(0, true), InFlag);
3067  InFlag = Chain.getValue(1);
3068}
3069
3070static
3071unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
3072                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
3073                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
3074                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
3075                     const PPCSubtarget &PPCSubTarget) {
3076
3077  bool isPPC64 = PPCSubTarget.isPPC64();
3078  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
3079
3080  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3081  NodeTys.push_back(MVT::Other);   // Returns a chain
3082  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
3083
3084  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
3085
3086  bool needIndirectCall = true;
3087  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
3088    // If this is an absolute destination address, use the munged value.
3089    Callee = SDValue(Dest, 0);
3090    needIndirectCall = false;
3091  }
3092
3093  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3094    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
3095    // Use indirect calls for ALL functions calls in JIT mode, since the
3096    // far-call stubs may be outside relocation limits for a BL instruction.
3097    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
3098      unsigned OpFlags = 0;
3099      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3100          (PPCSubTarget.getTargetTriple().isMacOSX() &&
3101           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
3102          (G->getGlobal()->isDeclaration() ||
3103           G->getGlobal()->isWeakForLinker())) {
3104        // PC-relative references to external symbols should go through $stub,
3105        // unless we're building with the leopard linker or later, which
3106        // automatically synthesizes these stubs.
3107        OpFlags = PPCII::MO_DARWIN_STUB;
3108      }
3109
3110      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
3111      // every direct call is) turn it into a TargetGlobalAddress /
3112      // TargetExternalSymbol node so that legalize doesn't hack it.
3113      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
3114                                          Callee.getValueType(),
3115                                          0, OpFlags);
3116      needIndirectCall = false;
3117    }
3118  }
3119
3120  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3121    unsigned char OpFlags = 0;
3122
3123    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3124        (PPCSubTarget.getTargetTriple().isMacOSX() &&
3125         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
3126      // PC-relative references to external symbols should go through $stub,
3127      // unless we're building with the leopard linker or later, which
3128      // automatically synthesizes these stubs.
3129      OpFlags = PPCII::MO_DARWIN_STUB;
3130    }
3131
3132    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
3133                                         OpFlags);
3134    needIndirectCall = false;
3135  }
3136
3137  if (needIndirectCall) {
3138    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
3139    // to do the call, we can't use PPCISD::CALL.
3140    SDValue MTCTROps[] = {Chain, Callee, InFlag};
3141
3142    if (isSVR4ABI && isPPC64) {
3143      // Function pointers in the 64-bit SVR4 ABI do not point to the function
3144      // entry point, but to the function descriptor (the function entry point
3145      // address is part of the function descriptor though).
3146      // The function descriptor is a three doubleword structure with the
3147      // following fields: function entry point, TOC base address and
3148      // environment pointer.
3149      // Thus for a call through a function pointer, the following actions need
3150      // to be performed:
3151      //   1. Save the TOC of the caller in the TOC save area of its stack
3152      //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
3153      //   2. Load the address of the function entry point from the function
3154      //      descriptor.
3155      //   3. Load the TOC of the callee from the function descriptor into r2.
3156      //   4. Load the environment pointer from the function descriptor into
3157      //      r11.
3158      //   5. Branch to the function entry point address.
3159      //   6. On return of the callee, the TOC of the caller needs to be
3160      //      restored (this is done in FinishCall()).
3161      //
3162      // All those operations are flagged together to ensure that no other
3163      // operations can be scheduled in between. E.g. without flagging the
3164      // operations together, a TOC access in the caller could be scheduled
3165      // between the load of the callee TOC and the branch to the callee, which
3166      // results in the TOC access going through the TOC of the callee instead
3167      // of going through the TOC of the caller, which leads to incorrect code.
3168
3169      // Load the address of the function entry point from the function
3170      // descriptor.
3171      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
3172      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
3173                                        InFlag.getNode() ? 3 : 2);
3174      Chain = LoadFuncPtr.getValue(1);
3175      InFlag = LoadFuncPtr.getValue(2);
3176
3177      // Load environment pointer into r11.
3178      // Offset of the environment pointer within the function descriptor.
3179      SDValue PtrOff = DAG.getIntPtrConstant(16);
3180
3181      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
3182      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
3183                                       InFlag);
3184      Chain = LoadEnvPtr.getValue(1);
3185      InFlag = LoadEnvPtr.getValue(2);
3186
3187      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
3188                                        InFlag);
3189      Chain = EnvVal.getValue(0);
3190      InFlag = EnvVal.getValue(1);
3191
3192      // Load TOC of the callee into r2. We are using a target-specific load
3193      // with r2 hard coded, because the result of a target-independent load
3194      // would never go directly into r2, since r2 is a reserved register (which
3195      // prevents the register allocator from allocating it), resulting in an
3196      // additional register being allocated and an unnecessary move instruction
3197      // being generated.
3198      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3199      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
3200                                       Callee, InFlag);
3201      Chain = LoadTOCPtr.getValue(0);
3202      InFlag = LoadTOCPtr.getValue(1);
3203
3204      MTCTROps[0] = Chain;
3205      MTCTROps[1] = LoadFuncPtr;
3206      MTCTROps[2] = InFlag;
3207    }
3208
3209    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
3210                        2 + (InFlag.getNode() != 0));
3211    InFlag = Chain.getValue(1);
3212
3213    NodeTys.clear();
3214    NodeTys.push_back(MVT::Other);
3215    NodeTys.push_back(MVT::Glue);
3216    Ops.push_back(Chain);
3217    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
3218    Callee.setNode(0);
3219    // Add CTR register as callee so a bctr can be emitted later.
3220    if (isTailCall)
3221      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
3222  }
3223
3224  // If this is a direct call, pass the chain and the callee.
3225  if (Callee.getNode()) {
3226    Ops.push_back(Chain);
3227    Ops.push_back(Callee);
3228  }
3229  // If this is a tail call add stack pointer delta.
3230  if (isTailCall)
3231    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
3232
3233  // Add argument registers to the end of the list so that they are known live
3234  // into the call.
3235  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3236    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3237                                  RegsToPass[i].second.getValueType()));
3238
3239  return CallOpc;
3240}
3241
3242static
3243bool isLocalCall(const SDValue &Callee)
3244{
3245  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3246    return !G->getGlobal()->isDeclaration() &&
3247           !G->getGlobal()->isWeakForLinker();
3248  return false;
3249}
3250
3251SDValue
3252PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3253                                   CallingConv::ID CallConv, bool isVarArg,
3254                                   const SmallVectorImpl<ISD::InputArg> &Ins,
3255                                   DebugLoc dl, SelectionDAG &DAG,
3256                                   SmallVectorImpl<SDValue> &InVals) const {
3257
3258  SmallVector<CCValAssign, 16> RVLocs;
3259  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3260                    getTargetMachine(), RVLocs, *DAG.getContext());
3261  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3262
3263  // Copy all of the result registers out of their specified physreg.
3264  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3265    CCValAssign &VA = RVLocs[i];
3266    assert(VA.isRegLoc() && "Can only return in registers!");
3267
3268    SDValue Val = DAG.getCopyFromReg(Chain, dl,
3269                                     VA.getLocReg(), VA.getLocVT(), InFlag);
3270    Chain = Val.getValue(1);
3271    InFlag = Val.getValue(2);
3272
3273    switch (VA.getLocInfo()) {
3274    default: llvm_unreachable("Unknown loc info!");
3275    case CCValAssign::Full: break;
3276    case CCValAssign::AExt:
3277      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3278      break;
3279    case CCValAssign::ZExt:
3280      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
3281                        DAG.getValueType(VA.getValVT()));
3282      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3283      break;
3284    case CCValAssign::SExt:
3285      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
3286                        DAG.getValueType(VA.getValVT()));
3287      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3288      break;
3289    }
3290
3291    InVals.push_back(Val);
3292  }
3293
3294  return Chain;
3295}
3296
3297SDValue
3298PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
3299                              bool isTailCall, bool isVarArg,
3300                              SelectionDAG &DAG,
3301                              SmallVector<std::pair<unsigned, SDValue>, 8>
3302                                &RegsToPass,
3303                              SDValue InFlag, SDValue Chain,
3304                              SDValue &Callee,
3305                              int SPDiff, unsigned NumBytes,
3306                              const SmallVectorImpl<ISD::InputArg> &Ins,
3307                              SmallVectorImpl<SDValue> &InVals) const {
3308  std::vector<EVT> NodeTys;
3309  SmallVector<SDValue, 8> Ops;
3310  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
3311                                 isTailCall, RegsToPass, Ops, NodeTys,
3312                                 PPCSubTarget);
3313
3314  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
3315  if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
3316    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
3317
3318  // When performing tail call optimization the callee pops its arguments off
3319  // the stack. Account for this here so these bytes can be pushed back on in
3320  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
3321  int BytesCalleePops =
3322    (CallConv == CallingConv::Fast &&
3323     getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
3324
3325  // Add a register mask operand representing the call-preserved registers.
3326  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3327  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3328  assert(Mask && "Missing call preserved mask for calling convention");
3329  Ops.push_back(DAG.getRegisterMask(Mask));
3330
3331  if (InFlag.getNode())
3332    Ops.push_back(InFlag);
3333
3334  // Emit tail call.
3335  if (isTailCall) {
3336    // If this is the first return lowered for this function, add the regs
3337    // to the liveout set for the function.
3338    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3339      SmallVector<CCValAssign, 16> RVLocs;
3340      CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3341                     getTargetMachine(), RVLocs, *DAG.getContext());
3342      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3343      for (unsigned i = 0; i != RVLocs.size(); ++i)
3344        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3345    }
3346
3347    assert(((Callee.getOpcode() == ISD::Register &&
3348             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
3349            Callee.getOpcode() == ISD::TargetExternalSymbol ||
3350            Callee.getOpcode() == ISD::TargetGlobalAddress ||
3351            isa<ConstantSDNode>(Callee)) &&
3352    "Expecting an global address, external symbol, absolute value or register");
3353
3354    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
3355  }
3356
3357  // Add a NOP immediately after the branch instruction when using the 64-bit
3358  // SVR4 ABI. At link time, if caller and callee are in a different module and
3359  // thus have a different TOC, the call will be replaced with a call to a stub
3360  // function which saves the current TOC, loads the TOC of the callee and
3361  // branches to the callee. The NOP will be replaced with a load instruction
3362  // which restores the TOC of the caller from the TOC save slot of the current
3363  // stack frame. If caller and callee belong to the same module (and have the
3364  // same TOC), the NOP will remain unchanged.
3365
3366  bool needsTOCRestore = false;
3367  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
3368    if (CallOpc == PPCISD::BCTRL_SVR4) {
3369      // This is a call through a function pointer.
3370      // Restore the caller TOC from the save area into R2.
3371      // See PrepareCall() for more information about calls through function
3372      // pointers in the 64-bit SVR4 ABI.
3373      // We are using a target-specific load with r2 hard coded, because the
3374      // result of a target-independent load would never go directly into r2,
3375      // since r2 is a reserved register (which prevents the register allocator
3376      // from allocating it), resulting in an additional register being
3377      // allocated and an unnecessary move instruction being generated.
3378      needsTOCRestore = true;
3379    } else if ((CallOpc == PPCISD::CALL_SVR4) && !isLocalCall(Callee)) {
3380      // Otherwise insert NOP for non-local calls.
3381      CallOpc = PPCISD::CALL_NOP_SVR4;
3382    }
3383  }
3384
3385  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
3386  InFlag = Chain.getValue(1);
3387
3388  if (needsTOCRestore) {
3389    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3390    Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
3391    InFlag = Chain.getValue(1);
3392  }
3393
3394  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3395                             DAG.getIntPtrConstant(BytesCalleePops, true),
3396                             InFlag);
3397  if (!Ins.empty())
3398    InFlag = Chain.getValue(1);
3399
3400  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3401                         Ins, dl, DAG, InVals);
3402}
3403
3404SDValue
3405PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3406                             SmallVectorImpl<SDValue> &InVals) const {
3407  SelectionDAG &DAG                     = CLI.DAG;
3408  DebugLoc &dl                          = CLI.DL;
3409  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3410  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
3411  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
3412  SDValue Chain                         = CLI.Chain;
3413  SDValue Callee                        = CLI.Callee;
3414  bool &isTailCall                      = CLI.IsTailCall;
3415  CallingConv::ID CallConv              = CLI.CallConv;
3416  bool isVarArg                         = CLI.IsVarArg;
3417
3418  if (isTailCall)
3419    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
3420                                                   Ins, DAG);
3421
3422  if (PPCSubTarget.isSVR4ABI()) {
3423    if (PPCSubTarget.isPPC64())
3424      return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
3425                              isTailCall, Outs, OutVals, Ins,
3426                              dl, DAG, InVals);
3427    else
3428      return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
3429                              isTailCall, Outs, OutVals, Ins,
3430                              dl, DAG, InVals);
3431  }
3432
3433  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
3434                          isTailCall, Outs, OutVals, Ins,
3435                          dl, DAG, InVals);
3436}
3437
3438SDValue
3439PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
3440                                    CallingConv::ID CallConv, bool isVarArg,
3441                                    bool isTailCall,
3442                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3443                                    const SmallVectorImpl<SDValue> &OutVals,
3444                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3445                                    DebugLoc dl, SelectionDAG &DAG,
3446                                    SmallVectorImpl<SDValue> &InVals) const {
3447  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
3448  // of the 32-bit SVR4 ABI stack frame layout.
3449
3450  assert((CallConv == CallingConv::C ||
3451          CallConv == CallingConv::Fast) && "Unknown calling convention!");
3452
3453  unsigned PtrByteSize = 4;
3454
3455  MachineFunction &MF = DAG.getMachineFunction();
3456
3457  // Mark this function as potentially containing a function that contains a
3458  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3459  // and restoring the callers stack pointer in this functions epilog. This is
3460  // done because by tail calling the called function might overwrite the value
3461  // in this function's (MF) stack pointer stack slot 0(SP).
3462  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3463      CallConv == CallingConv::Fast)
3464    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3465
3466  // Count how many bytes are to be pushed on the stack, including the linkage
3467  // area, parameter list area and the part of the local variable space which
3468  // contains copies of aggregates which are passed by value.
3469
3470  // Assign locations to all of the outgoing arguments.
3471  SmallVector<CCValAssign, 16> ArgLocs;
3472  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3473                 getTargetMachine(), ArgLocs, *DAG.getContext());
3474
3475  // Reserve space for the linkage area on the stack.
3476  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
3477
3478  if (isVarArg) {
3479    // Handle fixed and variable vector arguments differently.
3480    // Fixed vector arguments go into registers as long as registers are
3481    // available. Variable vector arguments always go into memory.
3482    unsigned NumArgs = Outs.size();
3483
3484    for (unsigned i = 0; i != NumArgs; ++i) {
3485      MVT ArgVT = Outs[i].VT;
3486      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3487      bool Result;
3488
3489      if (Outs[i].IsFixed) {
3490        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
3491                             CCInfo);
3492      } else {
3493        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
3494                                    ArgFlags, CCInfo);
3495      }
3496
3497      if (Result) {
3498#ifndef NDEBUG
3499        errs() << "Call operand #" << i << " has unhandled type "
3500             << EVT(ArgVT).getEVTString() << "\n";
3501#endif
3502        llvm_unreachable(0);
3503      }
3504    }
3505  } else {
3506    // All arguments are treated the same.
3507    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
3508  }
3509
3510  // Assign locations to all of the outgoing aggregate by value arguments.
3511  SmallVector<CCValAssign, 16> ByValArgLocs;
3512  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3513                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
3514
3515  // Reserve stack space for the allocations in CCInfo.
3516  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3517
3518  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
3519
3520  // Size of the linkage area, parameter list area and the part of the local
3521  // space variable where copies of aggregates which are passed by value are
3522  // stored.
3523  unsigned NumBytes = CCByValInfo.getNextStackOffset();
3524
3525  // Calculate by how many bytes the stack has to be adjusted in case of tail
3526  // call optimization.
3527  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3528
3529  // Adjust the stack pointer for the new arguments...
3530  // These operations are automatically eliminated by the prolog/epilog pass
3531  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3532  SDValue CallSeqStart = Chain;
3533
3534  // Load the return address and frame pointer so it can be moved somewhere else
3535  // later.
3536  SDValue LROp, FPOp;
3537  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
3538                                       dl);
3539
3540  // Set up a copy of the stack pointer for use loading and storing any
3541  // arguments that may not fit in the registers available for argument
3542  // passing.
3543  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3544
3545  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3546  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3547  SmallVector<SDValue, 8> MemOpChains;
3548
3549  bool seenFloatArg = false;
3550  // Walk the register/memloc assignments, inserting copies/loads.
3551  for (unsigned i = 0, j = 0, e = ArgLocs.size();
3552       i != e;
3553       ++i) {
3554    CCValAssign &VA = ArgLocs[i];
3555    SDValue Arg = OutVals[i];
3556    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3557
3558    if (Flags.isByVal()) {
3559      // Argument is an aggregate which is passed by value, thus we need to
3560      // create a copy of it in the local variable space of the current stack
3561      // frame (which is the stack frame of the caller) and pass the address of
3562      // this copy to the callee.
3563      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3564      CCValAssign &ByValVA = ByValArgLocs[j++];
3565      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3566
3567      // Memory reserved in the local variable space of the callers stack frame.
3568      unsigned LocMemOffset = ByValVA.getLocMemOffset();
3569
3570      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3571      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3572
3573      // Create a copy of the argument in the local area of the current
3574      // stack frame.
3575      SDValue MemcpyCall =
3576        CreateCopyOfByValArgument(Arg, PtrOff,
3577                                  CallSeqStart.getNode()->getOperand(0),
3578                                  Flags, DAG, dl);
3579
3580      // This must go outside the CALLSEQ_START..END.
3581      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3582                           CallSeqStart.getNode()->getOperand(1));
3583      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3584                             NewCallSeqStart.getNode());
3585      Chain = CallSeqStart = NewCallSeqStart;
3586
3587      // Pass the address of the aggregate copy on the stack either in a
3588      // physical register or in the parameter list area of the current stack
3589      // frame to the callee.
3590      Arg = PtrOff;
3591    }
3592
3593    if (VA.isRegLoc()) {
3594      seenFloatArg |= VA.getLocVT().isFloatingPoint();
3595      // Put argument in a physical register.
3596      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3597    } else {
3598      // Put argument in the parameter list area of the current stack frame.
3599      assert(VA.isMemLoc());
3600      unsigned LocMemOffset = VA.getLocMemOffset();
3601
3602      if (!isTailCall) {
3603        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3604        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3605
3606        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3607                                           MachinePointerInfo(),
3608                                           false, false, 0));
3609      } else {
3610        // Calculate and remember argument location.
3611        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3612                                 TailCallArguments);
3613      }
3614    }
3615  }
3616
3617  if (!MemOpChains.empty())
3618    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3619                        &MemOpChains[0], MemOpChains.size());
3620
3621  // Build a sequence of copy-to-reg nodes chained together with token chain
3622  // and flag operands which copy the outgoing args into the appropriate regs.
3623  SDValue InFlag;
3624  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3625    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3626                             RegsToPass[i].second, InFlag);
3627    InFlag = Chain.getValue(1);
3628  }
3629
3630  // Set CR bit 6 to true if this is a vararg call with floating args passed in
3631  // registers.
3632  if (isVarArg) {
3633    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3634    SDValue Ops[] = { Chain, InFlag };
3635
3636    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
3637                        dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
3638
3639    InFlag = Chain.getValue(1);
3640  }
3641
3642  if (isTailCall)
3643    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3644                    false, TailCallArguments);
3645
3646  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3647                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3648                    Ins, InVals);
3649}
3650
3651// Copy an argument into memory, being careful to do this outside the
3652// call sequence for the call to which the argument belongs.
3653SDValue
3654PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
3655                                              SDValue CallSeqStart,
3656                                              ISD::ArgFlagsTy Flags,
3657                                              SelectionDAG &DAG,
3658                                              DebugLoc dl) const {
3659  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3660                        CallSeqStart.getNode()->getOperand(0),
3661                        Flags, DAG, dl);
3662  // The MEMCPY must go outside the CALLSEQ_START..END.
3663  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3664                             CallSeqStart.getNode()->getOperand(1));
3665  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3666                         NewCallSeqStart.getNode());
3667  return NewCallSeqStart;
3668}
3669
3670SDValue
3671PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
3672                                    CallingConv::ID CallConv, bool isVarArg,
3673                                    bool isTailCall,
3674                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3675                                    const SmallVectorImpl<SDValue> &OutVals,
3676                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3677                                    DebugLoc dl, SelectionDAG &DAG,
3678                                    SmallVectorImpl<SDValue> &InVals) const {
3679
3680  unsigned NumOps = Outs.size();
3681
3682  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3683  unsigned PtrByteSize = 8;
3684
3685  MachineFunction &MF = DAG.getMachineFunction();
3686
3687  // Mark this function as potentially containing a function that contains a
3688  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3689  // and restoring the callers stack pointer in this functions epilog. This is
3690  // done because by tail calling the called function might overwrite the value
3691  // in this function's (MF) stack pointer stack slot 0(SP).
3692  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3693      CallConv == CallingConv::Fast)
3694    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3695
3696  unsigned nAltivecParamsAtEnd = 0;
3697
3698  // Count how many bytes are to be pushed on the stack, including the linkage
3699  // area, and parameter passing area.  We start with at least 48 bytes, which
3700  // is reserved space for [SP][CR][LR][3 x unused].
3701  // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
3702  // of this call.
3703  unsigned NumBytes =
3704    CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
3705                                         Outs, OutVals, nAltivecParamsAtEnd);
3706
3707  // Calculate by how many bytes the stack has to be adjusted in case of tail
3708  // call optimization.
3709  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3710
3711  // To protect arguments on the stack from being clobbered in a tail call,
3712  // force all the loads to happen before doing any other lowering.
3713  if (isTailCall)
3714    Chain = DAG.getStackArgumentTokenFactor(Chain);
3715
3716  // Adjust the stack pointer for the new arguments...
3717  // These operations are automatically eliminated by the prolog/epilog pass
3718  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3719  SDValue CallSeqStart = Chain;
3720
3721  // Load the return address and frame pointer so it can be move somewhere else
3722  // later.
3723  SDValue LROp, FPOp;
3724  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3725                                       dl);
3726
3727  // Set up a copy of the stack pointer for use loading and storing any
3728  // arguments that may not fit in the registers available for argument
3729  // passing.
3730  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3731
3732  // Figure out which arguments are going to go in registers, and which in
3733  // memory.  Also, if this is a vararg function, floating point operations
3734  // must be stored to our stack, and loaded into integer regs as well, if
3735  // any integer regs are available for argument passing.
3736  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
3737  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3738
3739  static const uint16_t GPR[] = {
3740    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3741    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3742  };
3743  static const uint16_t *FPR = GetFPR();
3744
3745  static const uint16_t VR[] = {
3746    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3747    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3748  };
3749  const unsigned NumGPRs = array_lengthof(GPR);
3750  const unsigned NumFPRs = 13;
3751  const unsigned NumVRs  = array_lengthof(VR);
3752
3753  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3754  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3755
3756  SmallVector<SDValue, 8> MemOpChains;
3757  for (unsigned i = 0; i != NumOps; ++i) {
3758    SDValue Arg = OutVals[i];
3759    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3760
3761    // PtrOff will be used to store the current argument to the stack if a
3762    // register cannot be found for it.
3763    SDValue PtrOff;
3764
3765    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3766
3767    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3768
3769    // Promote integers to 64-bit values.
3770    if (Arg.getValueType() == MVT::i32) {
3771      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3772      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3773      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3774    }
3775
3776    // FIXME memcpy is used way more than necessary.  Correctness first.
3777    // Note: "by value" is code for passing a structure by value, not
3778    // basic types.
3779    if (Flags.isByVal()) {
3780      // Note: Size includes alignment padding, so
3781      //   struct x { short a; char b; }
3782      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
3783      // These are the proper values we need for right-justifying the
3784      // aggregate in a parameter register.
3785      unsigned Size = Flags.getByValSize();
3786
3787      // An empty aggregate parameter takes up no storage and no
3788      // registers.
3789      if (Size == 0)
3790        continue;
3791
3792      // All aggregates smaller than 8 bytes must be passed right-justified.
3793      if (Size==1 || Size==2 || Size==4) {
3794        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
3795        if (GPR_idx != NumGPRs) {
3796          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3797                                        MachinePointerInfo(), VT,
3798                                        false, false, 0);
3799          MemOpChains.push_back(Load.getValue(1));
3800          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3801
3802          ArgOffset += PtrByteSize;
3803          continue;
3804        }
3805      }
3806
3807      if (GPR_idx == NumGPRs && Size < 8) {
3808        SDValue Const = DAG.getConstant(PtrByteSize - Size,
3809                                        PtrOff.getValueType());
3810        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3811        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3812                                                          CallSeqStart,
3813                                                          Flags, DAG, dl);
3814        ArgOffset += PtrByteSize;
3815        continue;
3816      }
3817      // Copy entire object into memory.  There are cases where gcc-generated
3818      // code assumes it is there, even if it could be put entirely into
3819      // registers.  (This is not what the doc says.)
3820
3821      // FIXME: The above statement is likely due to a misunderstanding of the
3822      // documents.  All arguments must be copied into the parameter area BY
3823      // THE CALLEE in the event that the callee takes the address of any
3824      // formal argument.  That has not yet been implemented.  However, it is
3825      // reasonable to use the stack area as a staging area for the register
3826      // load.
3827
3828      // Skip this for small aggregates, as we will use the same slot for a
3829      // right-justified copy, below.
3830      if (Size >= 8)
3831        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
3832                                                          CallSeqStart,
3833                                                          Flags, DAG, dl);
3834
3835      // When a register is available, pass a small aggregate right-justified.
3836      if (Size < 8 && GPR_idx != NumGPRs) {
3837        // The easiest way to get this right-justified in a register
3838        // is to copy the structure into the rightmost portion of a
3839        // local variable slot, then load the whole slot into the
3840        // register.
3841        // FIXME: The memcpy seems to produce pretty awful code for
3842        // small aggregates, particularly for packed ones.
3843        // FIXME: It would be preferable to use the slot in the
3844        // parameter save area instead of a new local variable.
3845        SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
3846        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3847        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3848                                                          CallSeqStart,
3849                                                          Flags, DAG, dl);
3850
3851        // Load the slot into the register.
3852        SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
3853                                   MachinePointerInfo(),
3854                                   false, false, false, 0);
3855        MemOpChains.push_back(Load.getValue(1));
3856        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3857
3858        // Done with this argument.
3859        ArgOffset += PtrByteSize;
3860        continue;
3861      }
3862
3863      // For aggregates larger than PtrByteSize, copy the pieces of the
3864      // object that fit into registers from the parameter save area.
3865      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3866        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3867        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3868        if (GPR_idx != NumGPRs) {
3869          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3870                                     MachinePointerInfo(),
3871                                     false, false, false, 0);
3872          MemOpChains.push_back(Load.getValue(1));
3873          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3874          ArgOffset += PtrByteSize;
3875        } else {
3876          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3877          break;
3878        }
3879      }
3880      continue;
3881    }
3882
3883    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3884    default: llvm_unreachable("Unexpected ValueType for argument!");
3885    case MVT::i32:
3886    case MVT::i64:
3887      if (GPR_idx != NumGPRs) {
3888        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3889      } else {
3890        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3891                         true, isTailCall, false, MemOpChains,
3892                         TailCallArguments, dl);
3893      }
3894      ArgOffset += PtrByteSize;
3895      break;
3896    case MVT::f32:
3897    case MVT::f64:
3898      if (FPR_idx != NumFPRs) {
3899        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3900
3901        if (isVarArg) {
3902          // A single float or an aggregate containing only a single float
3903          // must be passed right-justified in the stack doubleword, and
3904          // in the GPR, if one is available.
3905          SDValue StoreOff;
3906          if (Arg.getValueType().getSimpleVT().SimpleTy == MVT::f32) {
3907            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3908            StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3909          } else
3910            StoreOff = PtrOff;
3911
3912          SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
3913                                       MachinePointerInfo(), false, false, 0);
3914          MemOpChains.push_back(Store);
3915
3916          // Float varargs are always shadowed in available integer registers
3917          if (GPR_idx != NumGPRs) {
3918            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3919                                       MachinePointerInfo(), false, false,
3920                                       false, 0);
3921            MemOpChains.push_back(Load.getValue(1));
3922            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3923          }
3924        } else if (GPR_idx != NumGPRs)
3925          // If we have any FPRs remaining, we may also have GPRs remaining.
3926          ++GPR_idx;
3927      } else {
3928        // Single-precision floating-point values are mapped to the
3929        // second (rightmost) word of the stack doubleword.
3930        if (Arg.getValueType() == MVT::f32) {
3931          SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3932          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3933        }
3934
3935        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3936                         true, isTailCall, false, MemOpChains,
3937                         TailCallArguments, dl);
3938      }
3939      ArgOffset += 8;
3940      break;
3941    case MVT::v4f32:
3942    case MVT::v4i32:
3943    case MVT::v8i16:
3944    case MVT::v16i8:
3945      if (isVarArg) {
3946        // These go aligned on the stack, or in the corresponding R registers
3947        // when within range.  The Darwin PPC ABI doc claims they also go in
3948        // V registers; in fact gcc does this only for arguments that are
3949        // prototyped, not for those that match the ...  We do it for all
3950        // arguments, seems to work.
3951        while (ArgOffset % 16 !=0) {
3952          ArgOffset += PtrByteSize;
3953          if (GPR_idx != NumGPRs)
3954            GPR_idx++;
3955        }
3956        // We could elide this store in the case where the object fits
3957        // entirely in R registers.  Maybe later.
3958        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3959                            DAG.getConstant(ArgOffset, PtrVT));
3960        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3961                                     MachinePointerInfo(), false, false, 0);
3962        MemOpChains.push_back(Store);
3963        if (VR_idx != NumVRs) {
3964          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3965                                     MachinePointerInfo(),
3966                                     false, false, false, 0);
3967          MemOpChains.push_back(Load.getValue(1));
3968          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3969        }
3970        ArgOffset += 16;
3971        for (unsigned i=0; i<16; i+=PtrByteSize) {
3972          if (GPR_idx == NumGPRs)
3973            break;
3974          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3975                                  DAG.getConstant(i, PtrVT));
3976          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3977                                     false, false, false, 0);
3978          MemOpChains.push_back(Load.getValue(1));
3979          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3980        }
3981        break;
3982      }
3983
3984      // Non-varargs Altivec params generally go in registers, but have
3985      // stack space allocated at the end.
3986      if (VR_idx != NumVRs) {
3987        // Doesn't have GPR space allocated.
3988        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3989      } else {
3990        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3991                         true, isTailCall, true, MemOpChains,
3992                         TailCallArguments, dl);
3993        ArgOffset += 16;
3994      }
3995      break;
3996    }
3997  }
3998
3999  if (!MemOpChains.empty())
4000    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4001                        &MemOpChains[0], MemOpChains.size());
4002
4003  // Check if this is an indirect call (MTCTR/BCTRL).
4004  // See PrepareCall() for more information about calls through function
4005  // pointers in the 64-bit SVR4 ABI.
4006  if (!isTailCall &&
4007      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4008      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4009      !isBLACompatibleAddress(Callee, DAG)) {
4010    // Load r2 into a virtual register and store it to the TOC save area.
4011    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
4012    // TOC save area offset.
4013    SDValue PtrOff = DAG.getIntPtrConstant(40);
4014    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4015    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
4016                         false, false, 0);
4017    // R12 must contain the address of an indirect callee.  This does not
4018    // mean the MTCTR instruction must use R12; it's easier to model this
4019    // as an extra parameter, so do that.
4020    RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
4021  }
4022
4023  // Build a sequence of copy-to-reg nodes chained together with token chain
4024  // and flag operands which copy the outgoing args into the appropriate regs.
4025  SDValue InFlag;
4026  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4027    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4028                             RegsToPass[i].second, InFlag);
4029    InFlag = Chain.getValue(1);
4030  }
4031
4032  if (isTailCall)
4033    PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
4034                    FPOp, true, TailCallArguments);
4035
4036  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4037                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4038                    Ins, InVals);
4039}
4040
4041SDValue
4042PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
4043                                    CallingConv::ID CallConv, bool isVarArg,
4044                                    bool isTailCall,
4045                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
4046                                    const SmallVectorImpl<SDValue> &OutVals,
4047                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4048                                    DebugLoc dl, SelectionDAG &DAG,
4049                                    SmallVectorImpl<SDValue> &InVals) const {
4050
4051  unsigned NumOps = Outs.size();
4052
4053  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4054  bool isPPC64 = PtrVT == MVT::i64;
4055  unsigned PtrByteSize = isPPC64 ? 8 : 4;
4056
4057  MachineFunction &MF = DAG.getMachineFunction();
4058
4059  // Mark this function as potentially containing a function that contains a
4060  // tail call. As a consequence the frame pointer will be used for dynamicalloc
4061  // and restoring the callers stack pointer in this functions epilog. This is
4062  // done because by tail calling the called function might overwrite the value
4063  // in this function's (MF) stack pointer stack slot 0(SP).
4064  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4065      CallConv == CallingConv::Fast)
4066    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4067
4068  unsigned nAltivecParamsAtEnd = 0;
4069
4070  // Count how many bytes are to be pushed on the stack, including the linkage
4071  // area, and parameter passing area.  We start with 24/48 bytes, which is
4072  // prereserved space for [SP][CR][LR][3 x unused].
4073  unsigned NumBytes =
4074    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
4075                                         Outs, OutVals,
4076                                         nAltivecParamsAtEnd);
4077
4078  // Calculate by how many bytes the stack has to be adjusted in case of tail
4079  // call optimization.
4080  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4081
4082  // To protect arguments on the stack from being clobbered in a tail call,
4083  // force all the loads to happen before doing any other lowering.
4084  if (isTailCall)
4085    Chain = DAG.getStackArgumentTokenFactor(Chain);
4086
4087  // Adjust the stack pointer for the new arguments...
4088  // These operations are automatically eliminated by the prolog/epilog pass
4089  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
4090  SDValue CallSeqStart = Chain;
4091
4092  // Load the return address and frame pointer so it can be move somewhere else
4093  // later.
4094  SDValue LROp, FPOp;
4095  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4096                                       dl);
4097
4098  // Set up a copy of the stack pointer for use loading and storing any
4099  // arguments that may not fit in the registers available for argument
4100  // passing.
4101  SDValue StackPtr;
4102  if (isPPC64)
4103    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4104  else
4105    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4106
4107  // Figure out which arguments are going to go in registers, and which in
4108  // memory.  Also, if this is a vararg function, floating point operations
4109  // must be stored to our stack, and loaded into integer regs as well, if
4110  // any integer regs are available for argument passing.
4111  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
4112  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4113
4114  static const uint16_t GPR_32[] = {           // 32-bit registers.
4115    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4116    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4117  };
4118  static const uint16_t GPR_64[] = {           // 64-bit registers.
4119    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4120    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4121  };
4122  static const uint16_t *FPR = GetFPR();
4123
4124  static const uint16_t VR[] = {
4125    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4126    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4127  };
4128  const unsigned NumGPRs = array_lengthof(GPR_32);
4129  const unsigned NumFPRs = 13;
4130  const unsigned NumVRs  = array_lengthof(VR);
4131
4132  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
4133
4134  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4135  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4136
4137  SmallVector<SDValue, 8> MemOpChains;
4138  for (unsigned i = 0; i != NumOps; ++i) {
4139    SDValue Arg = OutVals[i];
4140    ISD::ArgFlagsTy Flags = Outs[i].Flags;
4141
4142    // PtrOff will be used to store the current argument to the stack if a
4143    // register cannot be found for it.
4144    SDValue PtrOff;
4145
4146    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4147
4148    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4149
4150    // On PPC64, promote integers to 64-bit values.
4151    if (isPPC64 && Arg.getValueType() == MVT::i32) {
4152      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4153      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4154      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4155    }
4156
4157    // FIXME memcpy is used way more than necessary.  Correctness first.
4158    // Note: "by value" is code for passing a structure by value, not
4159    // basic types.
4160    if (Flags.isByVal()) {
4161      unsigned Size = Flags.getByValSize();
4162      // Very small objects are passed right-justified.  Everything else is
4163      // passed left-justified.
4164      if (Size==1 || Size==2) {
4165        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
4166        if (GPR_idx != NumGPRs) {
4167          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4168                                        MachinePointerInfo(), VT,
4169                                        false, false, 0);
4170          MemOpChains.push_back(Load.getValue(1));
4171          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4172
4173          ArgOffset += PtrByteSize;
4174        } else {
4175          SDValue Const = DAG.getConstant(PtrByteSize - Size,
4176                                          PtrOff.getValueType());
4177          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4178          Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4179                                                            CallSeqStart,
4180                                                            Flags, DAG, dl);
4181          ArgOffset += PtrByteSize;
4182        }
4183        continue;
4184      }
4185      // Copy entire object into memory.  There are cases where gcc-generated
4186      // code assumes it is there, even if it could be put entirely into
4187      // registers.  (This is not what the doc says.)
4188      Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4189                                                        CallSeqStart,
4190                                                        Flags, DAG, dl);
4191
4192      // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
4193      // copy the pieces of the object that fit into registers from the
4194      // parameter save area.
4195      for (unsigned j=0; j<Size; j+=PtrByteSize) {
4196        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4197        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4198        if (GPR_idx != NumGPRs) {
4199          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4200                                     MachinePointerInfo(),
4201                                     false, false, false, 0);
4202          MemOpChains.push_back(Load.getValue(1));
4203          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4204          ArgOffset += PtrByteSize;
4205        } else {
4206          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4207          break;
4208        }
4209      }
4210      continue;
4211    }
4212
4213    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
4214    default: llvm_unreachable("Unexpected ValueType for argument!");
4215    case MVT::i32:
4216    case MVT::i64:
4217      if (GPR_idx != NumGPRs) {
4218        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
4219      } else {
4220        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4221                         isPPC64, isTailCall, false, MemOpChains,
4222                         TailCallArguments, dl);
4223      }
4224      ArgOffset += PtrByteSize;
4225      break;
4226    case MVT::f32:
4227    case MVT::f64:
4228      if (FPR_idx != NumFPRs) {
4229        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4230
4231        if (isVarArg) {
4232          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4233                                       MachinePointerInfo(), false, false, 0);
4234          MemOpChains.push_back(Store);
4235
4236          // Float varargs are always shadowed in available integer registers
4237          if (GPR_idx != NumGPRs) {
4238            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4239                                       MachinePointerInfo(), false, false,
4240                                       false, 0);
4241            MemOpChains.push_back(Load.getValue(1));
4242            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4243          }
4244          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
4245            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4246            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4247            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4248                                       MachinePointerInfo(),
4249                                       false, false, false, 0);
4250            MemOpChains.push_back(Load.getValue(1));
4251            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4252          }
4253        } else {
4254          // If we have any FPRs remaining, we may also have GPRs remaining.
4255          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
4256          // GPRs.
4257          if (GPR_idx != NumGPRs)
4258            ++GPR_idx;
4259          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
4260              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
4261            ++GPR_idx;
4262        }
4263      } else
4264        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4265                         isPPC64, isTailCall, false, MemOpChains,
4266                         TailCallArguments, dl);
4267      if (isPPC64)
4268        ArgOffset += 8;
4269      else
4270        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
4271      break;
4272    case MVT::v4f32:
4273    case MVT::v4i32:
4274    case MVT::v8i16:
4275    case MVT::v16i8:
4276      if (isVarArg) {
4277        // These go aligned on the stack, or in the corresponding R registers
4278        // when within range.  The Darwin PPC ABI doc claims they also go in
4279        // V registers; in fact gcc does this only for arguments that are
4280        // prototyped, not for those that match the ...  We do it for all
4281        // arguments, seems to work.
4282        while (ArgOffset % 16 !=0) {
4283          ArgOffset += PtrByteSize;
4284          if (GPR_idx != NumGPRs)
4285            GPR_idx++;
4286        }
4287        // We could elide this store in the case where the object fits
4288        // entirely in R registers.  Maybe later.
4289        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4290                            DAG.getConstant(ArgOffset, PtrVT));
4291        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4292                                     MachinePointerInfo(), false, false, 0);
4293        MemOpChains.push_back(Store);
4294        if (VR_idx != NumVRs) {
4295          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4296                                     MachinePointerInfo(),
4297                                     false, false, false, 0);
4298          MemOpChains.push_back(Load.getValue(1));
4299          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4300        }
4301        ArgOffset += 16;
4302        for (unsigned i=0; i<16; i+=PtrByteSize) {
4303          if (GPR_idx == NumGPRs)
4304            break;
4305          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4306                                  DAG.getConstant(i, PtrVT));
4307          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4308                                     false, false, false, 0);
4309          MemOpChains.push_back(Load.getValue(1));
4310          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4311        }
4312        break;
4313      }
4314
4315      // Non-varargs Altivec params generally go in registers, but have
4316      // stack space allocated at the end.
4317      if (VR_idx != NumVRs) {
4318        // Doesn't have GPR space allocated.
4319        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4320      } else if (nAltivecParamsAtEnd==0) {
4321        // We are emitting Altivec params in order.
4322        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4323                         isPPC64, isTailCall, true, MemOpChains,
4324                         TailCallArguments, dl);
4325        ArgOffset += 16;
4326      }
4327      break;
4328    }
4329  }
4330  // If all Altivec parameters fit in registers, as they usually do,
4331  // they get stack space following the non-Altivec parameters.  We
4332  // don't track this here because nobody below needs it.
4333  // If there are more Altivec parameters than fit in registers emit
4334  // the stores here.
4335  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
4336    unsigned j = 0;
4337    // Offset is aligned; skip 1st 12 params which go in V registers.
4338    ArgOffset = ((ArgOffset+15)/16)*16;
4339    ArgOffset += 12*16;
4340    for (unsigned i = 0; i != NumOps; ++i) {
4341      SDValue Arg = OutVals[i];
4342      EVT ArgType = Outs[i].VT;
4343      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
4344          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
4345        if (++j > NumVRs) {
4346          SDValue PtrOff;
4347          // We are emitting Altivec params in order.
4348          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4349                           isPPC64, isTailCall, true, MemOpChains,
4350                           TailCallArguments, dl);
4351          ArgOffset += 16;
4352        }
4353      }
4354    }
4355  }
4356
4357  if (!MemOpChains.empty())
4358    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4359                        &MemOpChains[0], MemOpChains.size());
4360
4361  // On Darwin, R12 must contain the address of an indirect callee.  This does
4362  // not mean the MTCTR instruction must use R12; it's easier to model this as
4363  // an extra parameter, so do that.
4364  if (!isTailCall &&
4365      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4366      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4367      !isBLACompatibleAddress(Callee, DAG))
4368    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
4369                                                   PPC::R12), Callee));
4370
4371  // Build a sequence of copy-to-reg nodes chained together with token chain
4372  // and flag operands which copy the outgoing args into the appropriate regs.
4373  SDValue InFlag;
4374  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4375    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4376                             RegsToPass[i].second, InFlag);
4377    InFlag = Chain.getValue(1);
4378  }
4379
4380  if (isTailCall)
4381    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
4382                    FPOp, true, TailCallArguments);
4383
4384  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4385                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4386                    Ins, InVals);
4387}
4388
4389bool
4390PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
4391                                  MachineFunction &MF, bool isVarArg,
4392                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
4393                                  LLVMContext &Context) const {
4394  SmallVector<CCValAssign, 16> RVLocs;
4395  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
4396                 RVLocs, Context);
4397  return CCInfo.CheckReturn(Outs, RetCC_PPC);
4398}
4399
4400SDValue
4401PPCTargetLowering::LowerReturn(SDValue Chain,
4402                               CallingConv::ID CallConv, bool isVarArg,
4403                               const SmallVectorImpl<ISD::OutputArg> &Outs,
4404                               const SmallVectorImpl<SDValue> &OutVals,
4405                               DebugLoc dl, SelectionDAG &DAG) const {
4406
4407  SmallVector<CCValAssign, 16> RVLocs;
4408  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4409                 getTargetMachine(), RVLocs, *DAG.getContext());
4410  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
4411
4412  // If this is the first return lowered for this function, add the regs to the
4413  // liveout set for the function.
4414  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
4415    for (unsigned i = 0; i != RVLocs.size(); ++i)
4416      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
4417  }
4418
4419  SDValue Flag;
4420
4421  // Copy the result values into the output registers.
4422  for (unsigned i = 0; i != RVLocs.size(); ++i) {
4423    CCValAssign &VA = RVLocs[i];
4424    assert(VA.isRegLoc() && "Can only return in registers!");
4425
4426    SDValue Arg = OutVals[i];
4427
4428    switch (VA.getLocInfo()) {
4429    default: llvm_unreachable("Unknown loc info!");
4430    case CCValAssign::Full: break;
4431    case CCValAssign::AExt:
4432      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
4433      break;
4434    case CCValAssign::ZExt:
4435      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
4436      break;
4437    case CCValAssign::SExt:
4438      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
4439      break;
4440    }
4441
4442    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
4443    Flag = Chain.getValue(1);
4444  }
4445
4446  if (Flag.getNode())
4447    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
4448  else
4449    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
4450}
4451
4452SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
4453                                   const PPCSubtarget &Subtarget) const {
4454  // When we pop the dynamic allocation we need to restore the SP link.
4455  DebugLoc dl = Op.getDebugLoc();
4456
4457  // Get the corect type for pointers.
4458  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4459
4460  // Construct the stack pointer operand.
4461  bool isPPC64 = Subtarget.isPPC64();
4462  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
4463  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
4464
4465  // Get the operands for the STACKRESTORE.
4466  SDValue Chain = Op.getOperand(0);
4467  SDValue SaveSP = Op.getOperand(1);
4468
4469  // Load the old link SP.
4470  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
4471                                   MachinePointerInfo(),
4472                                   false, false, false, 0);
4473
4474  // Restore the stack pointer.
4475  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
4476
4477  // Store the old link SP.
4478  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
4479                      false, false, 0);
4480}
4481
4482
4483
4484SDValue
4485PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
4486  MachineFunction &MF = DAG.getMachineFunction();
4487  bool isPPC64 = PPCSubTarget.isPPC64();
4488  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4489  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4490
4491  // Get current frame pointer save index.  The users of this index will be
4492  // primarily DYNALLOC instructions.
4493  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4494  int RASI = FI->getReturnAddrSaveIndex();
4495
4496  // If the frame pointer save index hasn't been defined yet.
4497  if (!RASI) {
4498    // Find out what the fix offset of the frame pointer save area.
4499    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
4500    // Allocate the frame index for frame pointer save area.
4501    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
4502    // Save the result.
4503    FI->setReturnAddrSaveIndex(RASI);
4504  }
4505  return DAG.getFrameIndex(RASI, PtrVT);
4506}
4507
4508SDValue
4509PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
4510  MachineFunction &MF = DAG.getMachineFunction();
4511  bool isPPC64 = PPCSubTarget.isPPC64();
4512  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4513  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4514
4515  // Get current frame pointer save index.  The users of this index will be
4516  // primarily DYNALLOC instructions.
4517  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4518  int FPSI = FI->getFramePointerSaveIndex();
4519
4520  // If the frame pointer save index hasn't been defined yet.
4521  if (!FPSI) {
4522    // Find out what the fix offset of the frame pointer save area.
4523    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
4524                                                           isDarwinABI);
4525
4526    // Allocate the frame index for frame pointer save area.
4527    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
4528    // Save the result.
4529    FI->setFramePointerSaveIndex(FPSI);
4530  }
4531  return DAG.getFrameIndex(FPSI, PtrVT);
4532}
4533
4534SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
4535                                         SelectionDAG &DAG,
4536                                         const PPCSubtarget &Subtarget) const {
4537  // Get the inputs.
4538  SDValue Chain = Op.getOperand(0);
4539  SDValue Size  = Op.getOperand(1);
4540  DebugLoc dl = Op.getDebugLoc();
4541
4542  // Get the corect type for pointers.
4543  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4544  // Negate the size.
4545  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
4546                                  DAG.getConstant(0, PtrVT), Size);
4547  // Construct a node for the frame pointer save index.
4548  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
4549  // Build a DYNALLOC node.
4550  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
4551  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
4552  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
4553}
4554
4555/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
4556/// possible.
4557SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4558  // Not FP? Not a fsel.
4559  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
4560      !Op.getOperand(2).getValueType().isFloatingPoint())
4561    return Op;
4562
4563  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4564
4565  // Cannot handle SETEQ/SETNE.
4566  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
4567
4568  EVT ResVT = Op.getValueType();
4569  EVT CmpVT = Op.getOperand(0).getValueType();
4570  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4571  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
4572  DebugLoc dl = Op.getDebugLoc();
4573
4574  // If the RHS of the comparison is a 0.0, we don't need to do the
4575  // subtraction at all.
4576  if (isFloatingPointZero(RHS))
4577    switch (CC) {
4578    default: break;       // SETUO etc aren't handled by fsel.
4579    case ISD::SETULT:
4580    case ISD::SETLT:
4581      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4582    case ISD::SETOGE:
4583    case ISD::SETGE:
4584      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4585        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4586      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4587    case ISD::SETUGT:
4588    case ISD::SETGT:
4589      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4590    case ISD::SETOLE:
4591    case ISD::SETLE:
4592      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4593        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4594      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4595                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
4596    }
4597
4598  SDValue Cmp;
4599  switch (CC) {
4600  default: break;       // SETUO etc aren't handled by fsel.
4601  case ISD::SETULT:
4602  case ISD::SETLT:
4603    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4604    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4605      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4606      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4607  case ISD::SETOGE:
4608  case ISD::SETGE:
4609    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4610    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4611      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4612      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4613  case ISD::SETUGT:
4614  case ISD::SETGT:
4615    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4616    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4617      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4618      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4619  case ISD::SETOLE:
4620  case ISD::SETLE:
4621    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4622    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4623      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4624      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4625  }
4626  return Op;
4627}
4628
4629// FIXME: Split this code up when LegalizeDAGTypes lands.
4630SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
4631                                           DebugLoc dl) const {
4632  assert(Op.getOperand(0).getValueType().isFloatingPoint());
4633  SDValue Src = Op.getOperand(0);
4634  if (Src.getValueType() == MVT::f32)
4635    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
4636
4637  SDValue Tmp;
4638  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4639  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
4640  case MVT::i32:
4641    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
4642                                                         PPCISD::FCTIDZ,
4643                      dl, MVT::f64, Src);
4644    break;
4645  case MVT::i64:
4646    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
4647    break;
4648  }
4649
4650  // Convert the FP value to an int value through memory.
4651  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
4652
4653  // Emit a store to the stack slot.
4654  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
4655                               MachinePointerInfo(), false, false, 0);
4656
4657  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
4658  // add in a bias.
4659  if (Op.getValueType() == MVT::i32)
4660    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
4661                        DAG.getConstant(4, FIPtr.getValueType()));
4662  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
4663                     false, false, false, 0);
4664}
4665
4666SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
4667                                           SelectionDAG &DAG) const {
4668  DebugLoc dl = Op.getDebugLoc();
4669  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
4670  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
4671    return SDValue();
4672
4673  if (Op.getOperand(0).getValueType() == MVT::i64) {
4674    SDValue SINT = Op.getOperand(0);
4675    // When converting to single-precision, we actually need to convert
4676    // to double-precision first and then round to single-precision.
4677    // To avoid double-rounding effects during that operation, we have
4678    // to prepare the input operand.  Bits that might be truncated when
4679    // converting to double-precision are replaced by a bit that won't
4680    // be lost at this stage, but is below the single-precision rounding
4681    // position.
4682    //
4683    // However, if -enable-unsafe-fp-math is in effect, accept double
4684    // rounding to avoid the extra overhead.
4685    if (Op.getValueType() == MVT::f32 &&
4686        !DAG.getTarget().Options.UnsafeFPMath) {
4687
4688      // Twiddle input to make sure the low 11 bits are zero.  (If this
4689      // is the case, we are guaranteed the value will fit into the 53 bit
4690      // mantissa of an IEEE double-precision value without rounding.)
4691      // If any of those low 11 bits were not zero originally, make sure
4692      // bit 12 (value 2048) is set instead, so that the final rounding
4693      // to single-precision gets the correct result.
4694      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4695                                  SINT, DAG.getConstant(2047, MVT::i64));
4696      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
4697                          Round, DAG.getConstant(2047, MVT::i64));
4698      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
4699      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4700                          Round, DAG.getConstant(-2048, MVT::i64));
4701
4702      // However, we cannot use that value unconditionally: if the magnitude
4703      // of the input value is small, the bit-twiddling we did above might
4704      // end up visibly changing the output.  Fortunately, in that case, we
4705      // don't need to twiddle bits since the original input will convert
4706      // exactly to double-precision floating-point already.  Therefore,
4707      // construct a conditional to use the original value if the top 11
4708      // bits are all sign-bit copies, and use the rounded value computed
4709      // above otherwise.
4710      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
4711                                 SINT, DAG.getConstant(53, MVT::i32));
4712      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
4713                         Cond, DAG.getConstant(1, MVT::i64));
4714      Cond = DAG.getSetCC(dl, MVT::i32,
4715                          Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
4716
4717      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
4718    }
4719    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
4720    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
4721    if (Op.getValueType() == MVT::f32)
4722      FP = DAG.getNode(ISD::FP_ROUND, dl,
4723                       MVT::f32, FP, DAG.getIntPtrConstant(0));
4724    return FP;
4725  }
4726
4727  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
4728         "Unhandled SINT_TO_FP type in custom expander!");
4729  // Since we only generate this in 64-bit mode, we can take advantage of
4730  // 64-bit registers.  In particular, sign extend the input value into the
4731  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
4732  // then lfd it and fcfid it.
4733  MachineFunction &MF = DAG.getMachineFunction();
4734  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
4735  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
4736  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4737  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4738
4739  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
4740                                Op.getOperand(0));
4741
4742  // STD the extended value into the stack slot.
4743  MachineMemOperand *MMO =
4744    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
4745                            MachineMemOperand::MOStore, 8, 8);
4746  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
4747  SDValue Store =
4748    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
4749                            Ops, 4, MVT::i64, MMO);
4750  // Load the value as a double.
4751  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
4752                           false, false, false, 0);
4753
4754  // FCFID it and return it.
4755  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
4756  if (Op.getValueType() == MVT::f32)
4757    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
4758  return FP;
4759}
4760
4761SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4762                                            SelectionDAG &DAG) const {
4763  DebugLoc dl = Op.getDebugLoc();
4764  /*
4765   The rounding mode is in bits 30:31 of FPSR, and has the following
4766   settings:
4767     00 Round to nearest
4768     01 Round to 0
4769     10 Round to +inf
4770     11 Round to -inf
4771
4772  FLT_ROUNDS, on the other hand, expects the following:
4773    -1 Undefined
4774     0 Round to 0
4775     1 Round to nearest
4776     2 Round to +inf
4777     3 Round to -inf
4778
4779  To perform the conversion, we do:
4780    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
4781  */
4782
4783  MachineFunction &MF = DAG.getMachineFunction();
4784  EVT VT = Op.getValueType();
4785  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4786  std::vector<EVT> NodeTys;
4787  SDValue MFFSreg, InFlag;
4788
4789  // Save FP Control Word to register
4790  NodeTys.push_back(MVT::f64);    // return register
4791  NodeTys.push_back(MVT::Glue);   // unused in this context
4792  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4793
4794  // Save FP register to stack slot
4795  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
4796  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
4797  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
4798                               StackSlot, MachinePointerInfo(), false, false,0);
4799
4800  // Load FP Control Word from low 32 bits of stack slot.
4801  SDValue Four = DAG.getConstant(4, PtrVT);
4802  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
4803  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
4804                            false, false, false, 0);
4805
4806  // Transform as necessary
4807  SDValue CWD1 =
4808    DAG.getNode(ISD::AND, dl, MVT::i32,
4809                CWD, DAG.getConstant(3, MVT::i32));
4810  SDValue CWD2 =
4811    DAG.getNode(ISD::SRL, dl, MVT::i32,
4812                DAG.getNode(ISD::AND, dl, MVT::i32,
4813                            DAG.getNode(ISD::XOR, dl, MVT::i32,
4814                                        CWD, DAG.getConstant(3, MVT::i32)),
4815                            DAG.getConstant(3, MVT::i32)),
4816                DAG.getConstant(1, MVT::i32));
4817
4818  SDValue RetVal =
4819    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
4820
4821  return DAG.getNode((VT.getSizeInBits() < 16 ?
4822                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
4823}
4824
4825SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4826  EVT VT = Op.getValueType();
4827  unsigned BitWidth = VT.getSizeInBits();
4828  DebugLoc dl = Op.getDebugLoc();
4829  assert(Op.getNumOperands() == 3 &&
4830         VT == Op.getOperand(1).getValueType() &&
4831         "Unexpected SHL!");
4832
4833  // Expand into a bunch of logical ops.  Note that these ops
4834  // depend on the PPC behavior for oversized shift amounts.
4835  SDValue Lo = Op.getOperand(0);
4836  SDValue Hi = Op.getOperand(1);
4837  SDValue Amt = Op.getOperand(2);
4838  EVT AmtVT = Amt.getValueType();
4839
4840  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4841                             DAG.getConstant(BitWidth, AmtVT), Amt);
4842  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
4843  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
4844  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
4845  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4846                             DAG.getConstant(-BitWidth, AmtVT));
4847  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
4848  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4849  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
4850  SDValue OutOps[] = { OutLo, OutHi };
4851  return DAG.getMergeValues(OutOps, 2, dl);
4852}
4853
4854SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4855  EVT VT = Op.getValueType();
4856  DebugLoc dl = Op.getDebugLoc();
4857  unsigned BitWidth = VT.getSizeInBits();
4858  assert(Op.getNumOperands() == 3 &&
4859         VT == Op.getOperand(1).getValueType() &&
4860         "Unexpected SRL!");
4861
4862  // Expand into a bunch of logical ops.  Note that these ops
4863  // depend on the PPC behavior for oversized shift amounts.
4864  SDValue Lo = Op.getOperand(0);
4865  SDValue Hi = Op.getOperand(1);
4866  SDValue Amt = Op.getOperand(2);
4867  EVT AmtVT = Amt.getValueType();
4868
4869  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4870                             DAG.getConstant(BitWidth, AmtVT), Amt);
4871  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
4872  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
4873  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
4874  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4875                             DAG.getConstant(-BitWidth, AmtVT));
4876  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
4877  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4878  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
4879  SDValue OutOps[] = { OutLo, OutHi };
4880  return DAG.getMergeValues(OutOps, 2, dl);
4881}
4882
4883SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
4884  DebugLoc dl = Op.getDebugLoc();
4885  EVT VT = Op.getValueType();
4886  unsigned BitWidth = VT.getSizeInBits();
4887  assert(Op.getNumOperands() == 3 &&
4888         VT == Op.getOperand(1).getValueType() &&
4889         "Unexpected SRA!");
4890
4891  // Expand into a bunch of logical ops, followed by a select_cc.
4892  SDValue Lo = Op.getOperand(0);
4893  SDValue Hi = Op.getOperand(1);
4894  SDValue Amt = Op.getOperand(2);
4895  EVT AmtVT = Amt.getValueType();
4896
4897  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4898                             DAG.getConstant(BitWidth, AmtVT), Amt);
4899  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
4900  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
4901  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
4902  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4903                             DAG.getConstant(-BitWidth, AmtVT));
4904  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
4905  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
4906  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
4907                                  Tmp4, Tmp6, ISD::SETLE);
4908  SDValue OutOps[] = { OutLo, OutHi };
4909  return DAG.getMergeValues(OutOps, 2, dl);
4910}
4911
4912//===----------------------------------------------------------------------===//
4913// Vector related lowering.
4914//
4915
4916/// BuildSplatI - Build a canonical splati of Val with an element size of
4917/// SplatSize.  Cast the result to VT.
4918static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
4919                             SelectionDAG &DAG, DebugLoc dl) {
4920  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
4921
4922  static const EVT VTys[] = { // canonical VT to use for each size.
4923    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
4924  };
4925
4926  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
4927
4928  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
4929  if (Val == -1)
4930    SplatSize = 1;
4931
4932  EVT CanonicalVT = VTys[SplatSize-1];
4933
4934  // Build a canonical splat for this value.
4935  SDValue Elt = DAG.getConstant(Val, MVT::i32);
4936  SmallVector<SDValue, 8> Ops;
4937  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
4938  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
4939                              &Ops[0], Ops.size());
4940  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
4941}
4942
4943/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
4944/// specified intrinsic ID.
4945static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
4946                                SelectionDAG &DAG, DebugLoc dl,
4947                                EVT DestVT = MVT::Other) {
4948  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
4949  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4950                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
4951}
4952
4953/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
4954/// specified intrinsic ID.
4955static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
4956                                SDValue Op2, SelectionDAG &DAG,
4957                                DebugLoc dl, EVT DestVT = MVT::Other) {
4958  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
4959  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4960                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
4961}
4962
4963
4964/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
4965/// amount.  The result has the specified value type.
4966static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
4967                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4968  // Force LHS/RHS to be the right type.
4969  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
4970  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
4971
4972  int Ops[16];
4973  for (unsigned i = 0; i != 16; ++i)
4974    Ops[i] = i + Amt;
4975  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
4976  return DAG.getNode(ISD::BITCAST, dl, VT, T);
4977}
4978
4979// If this is a case we can't handle, return null and let the default
4980// expansion code take care of it.  If we CAN select this case, and if it
4981// selects to a single instruction, return Op.  Otherwise, if we can codegen
4982// this case more efficiently than a constant pool load, lower it to the
4983// sequence of ops that should be used.
4984SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
4985                                             SelectionDAG &DAG) const {
4986  DebugLoc dl = Op.getDebugLoc();
4987  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
4988  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
4989
4990  // Check if this is a splat of a constant value.
4991  APInt APSplatBits, APSplatUndef;
4992  unsigned SplatBitSize;
4993  bool HasAnyUndefs;
4994  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
4995                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
4996    return SDValue();
4997
4998  unsigned SplatBits = APSplatBits.getZExtValue();
4999  unsigned SplatUndef = APSplatUndef.getZExtValue();
5000  unsigned SplatSize = SplatBitSize / 8;
5001
5002  // First, handle single instruction cases.
5003
5004  // All zeros?
5005  if (SplatBits == 0) {
5006    // Canonicalize all zero vectors to be v4i32.
5007    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
5008      SDValue Z = DAG.getConstant(0, MVT::i32);
5009      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
5010      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
5011    }
5012    return Op;
5013  }
5014
5015  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
5016  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
5017                    (32-SplatBitSize));
5018  if (SextVal >= -16 && SextVal <= 15)
5019    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
5020
5021
5022  // Two instruction sequences.
5023
5024  // If this value is in the range [-32,30] and is even, use:
5025  //    tmp = VSPLTI[bhw], result = add tmp, tmp
5026  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
5027    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
5028    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
5029    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5030  }
5031
5032  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
5033  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
5034  // for fneg/fabs.
5035  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
5036    // Make -1 and vspltisw -1:
5037    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
5038
5039    // Make the VSLW intrinsic, computing 0x8000_0000.
5040    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
5041                                   OnesV, DAG, dl);
5042
5043    // xor by OnesV to invert it.
5044    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
5045    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5046  }
5047
5048  // Check to see if this is a wide variety of vsplti*, binop self cases.
5049  static const signed char SplatCsts[] = {
5050    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
5051    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
5052  };
5053
5054  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
5055    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
5056    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
5057    int i = SplatCsts[idx];
5058
5059    // Figure out what shift amount will be used by altivec if shifted by i in
5060    // this splat size.
5061    unsigned TypeShiftAmt = i & (SplatBitSize-1);
5062
5063    // vsplti + shl self.
5064    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
5065      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5066      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5067        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
5068        Intrinsic::ppc_altivec_vslw
5069      };
5070      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5071      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5072    }
5073
5074    // vsplti + srl self.
5075    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5076      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5077      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5078        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
5079        Intrinsic::ppc_altivec_vsrw
5080      };
5081      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5082      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5083    }
5084
5085    // vsplti + sra self.
5086    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5087      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5088      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5089        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
5090        Intrinsic::ppc_altivec_vsraw
5091      };
5092      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5093      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5094    }
5095
5096    // vsplti + rol self.
5097    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
5098                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
5099      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5100      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5101        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
5102        Intrinsic::ppc_altivec_vrlw
5103      };
5104      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5105      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5106    }
5107
5108    // t = vsplti c, result = vsldoi t, t, 1
5109    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
5110      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5111      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
5112    }
5113    // t = vsplti c, result = vsldoi t, t, 2
5114    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
5115      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5116      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
5117    }
5118    // t = vsplti c, result = vsldoi t, t, 3
5119    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
5120      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5121      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
5122    }
5123  }
5124
5125  // Three instruction sequences.
5126
5127  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
5128  if (SextVal >= 0 && SextVal <= 31) {
5129    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
5130    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
5131    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
5132    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
5133  }
5134  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
5135  if (SextVal >= -31 && SextVal <= 0) {
5136    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
5137    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
5138    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
5139    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
5140  }
5141
5142  return SDValue();
5143}
5144
5145/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5146/// the specified operations to build the shuffle.
5147static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5148                                      SDValue RHS, SelectionDAG &DAG,
5149                                      DebugLoc dl) {
5150  unsigned OpNum = (PFEntry >> 26) & 0x0F;
5151  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5152  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
5153
5154  enum {
5155    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5156    OP_VMRGHW,
5157    OP_VMRGLW,
5158    OP_VSPLTISW0,
5159    OP_VSPLTISW1,
5160    OP_VSPLTISW2,
5161    OP_VSPLTISW3,
5162    OP_VSLDOI4,
5163    OP_VSLDOI8,
5164    OP_VSLDOI12
5165  };
5166
5167  if (OpNum == OP_COPY) {
5168    if (LHSID == (1*9+2)*9+3) return LHS;
5169    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5170    return RHS;
5171  }
5172
5173  SDValue OpLHS, OpRHS;
5174  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5175  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5176
5177  int ShufIdxs[16];
5178  switch (OpNum) {
5179  default: llvm_unreachable("Unknown i32 permute!");
5180  case OP_VMRGHW:
5181    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
5182    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
5183    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
5184    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
5185    break;
5186  case OP_VMRGLW:
5187    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
5188    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
5189    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
5190    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
5191    break;
5192  case OP_VSPLTISW0:
5193    for (unsigned i = 0; i != 16; ++i)
5194      ShufIdxs[i] = (i&3)+0;
5195    break;
5196  case OP_VSPLTISW1:
5197    for (unsigned i = 0; i != 16; ++i)
5198      ShufIdxs[i] = (i&3)+4;
5199    break;
5200  case OP_VSPLTISW2:
5201    for (unsigned i = 0; i != 16; ++i)
5202      ShufIdxs[i] = (i&3)+8;
5203    break;
5204  case OP_VSPLTISW3:
5205    for (unsigned i = 0; i != 16; ++i)
5206      ShufIdxs[i] = (i&3)+12;
5207    break;
5208  case OP_VSLDOI4:
5209    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
5210  case OP_VSLDOI8:
5211    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
5212  case OP_VSLDOI12:
5213    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
5214  }
5215  EVT VT = OpLHS.getValueType();
5216  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
5217  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
5218  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
5219  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5220}
5221
5222/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
5223/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
5224/// return the code it can be lowered into.  Worst case, it can always be
5225/// lowered into a vperm.
5226SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5227                                               SelectionDAG &DAG) const {
5228  DebugLoc dl = Op.getDebugLoc();
5229  SDValue V1 = Op.getOperand(0);
5230  SDValue V2 = Op.getOperand(1);
5231  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5232  EVT VT = Op.getValueType();
5233
5234  // Cases that are handled by instructions that take permute immediates
5235  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
5236  // selected by the instruction selector.
5237  if (V2.getOpcode() == ISD::UNDEF) {
5238    if (PPC::isSplatShuffleMask(SVOp, 1) ||
5239        PPC::isSplatShuffleMask(SVOp, 2) ||
5240        PPC::isSplatShuffleMask(SVOp, 4) ||
5241        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
5242        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
5243        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
5244        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
5245        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
5246        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
5247        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
5248        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
5249        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
5250      return Op;
5251    }
5252  }
5253
5254  // Altivec has a variety of "shuffle immediates" that take two vector inputs
5255  // and produce a fixed permutation.  If any of these match, do not lower to
5256  // VPERM.
5257  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
5258      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
5259      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
5260      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
5261      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
5262      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
5263      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
5264      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
5265      PPC::isVMRGHShuffleMask(SVOp, 4, false))
5266    return Op;
5267
5268  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
5269  // perfect shuffle table to emit an optimal matching sequence.
5270  ArrayRef<int> PermMask = SVOp->getMask();
5271
5272  unsigned PFIndexes[4];
5273  bool isFourElementShuffle = true;
5274  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
5275    unsigned EltNo = 8;   // Start out undef.
5276    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
5277      if (PermMask[i*4+j] < 0)
5278        continue;   // Undef, ignore it.
5279
5280      unsigned ByteSource = PermMask[i*4+j];
5281      if ((ByteSource & 3) != j) {
5282        isFourElementShuffle = false;
5283        break;
5284      }
5285
5286      if (EltNo == 8) {
5287        EltNo = ByteSource/4;
5288      } else if (EltNo != ByteSource/4) {
5289        isFourElementShuffle = false;
5290        break;
5291      }
5292    }
5293    PFIndexes[i] = EltNo;
5294  }
5295
5296  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
5297  // perfect shuffle vector to determine if it is cost effective to do this as
5298  // discrete instructions, or whether we should use a vperm.
5299  if (isFourElementShuffle) {
5300    // Compute the index in the perfect shuffle table.
5301    unsigned PFTableIndex =
5302      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5303
5304    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5305    unsigned Cost  = (PFEntry >> 30);
5306
5307    // Determining when to avoid vperm is tricky.  Many things affect the cost
5308    // of vperm, particularly how many times the perm mask needs to be computed.
5309    // For example, if the perm mask can be hoisted out of a loop or is already
5310    // used (perhaps because there are multiple permutes with the same shuffle
5311    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
5312    // the loop requires an extra register.
5313    //
5314    // As a compromise, we only emit discrete instructions if the shuffle can be
5315    // generated in 3 or fewer operations.  When we have loop information
5316    // available, if this block is within a loop, we should avoid using vperm
5317    // for 3-operation perms and use a constant pool load instead.
5318    if (Cost < 3)
5319      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5320  }
5321
5322  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
5323  // vector that will get spilled to the constant pool.
5324  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
5325
5326  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
5327  // that it is in input element units, not in bytes.  Convert now.
5328  EVT EltVT = V1.getValueType().getVectorElementType();
5329  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
5330
5331  SmallVector<SDValue, 16> ResultMask;
5332  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5333    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
5334
5335    for (unsigned j = 0; j != BytesPerElement; ++j)
5336      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
5337                                           MVT::i32));
5338  }
5339
5340  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
5341                                    &ResultMask[0], ResultMask.size());
5342  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
5343}
5344
5345/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
5346/// altivec comparison.  If it is, return true and fill in Opc/isDot with
5347/// information about the intrinsic.
5348static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
5349                                  bool &isDot) {
5350  unsigned IntrinsicID =
5351    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
5352  CompareOpc = -1;
5353  isDot = false;
5354  switch (IntrinsicID) {
5355  default: return false;
5356    // Comparison predicates.
5357  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
5358  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
5359  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
5360  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
5361  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
5362  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
5363  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
5364  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
5365  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
5366  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
5367  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
5368  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
5369  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
5370
5371    // Normal Comparisons.
5372  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
5373  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
5374  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
5375  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
5376  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
5377  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
5378  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
5379  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
5380  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
5381  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
5382  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
5383  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
5384  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
5385  }
5386  return true;
5387}
5388
5389/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
5390/// lower, do it, otherwise return null.
5391SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5392                                                   SelectionDAG &DAG) const {
5393  // If this is a lowered altivec predicate compare, CompareOpc is set to the
5394  // opcode number of the comparison.
5395  DebugLoc dl = Op.getDebugLoc();
5396  int CompareOpc;
5397  bool isDot;
5398  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
5399    return SDValue();    // Don't custom lower most intrinsics.
5400
5401  // If this is a non-dot comparison, make the VCMP node and we are done.
5402  if (!isDot) {
5403    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
5404                              Op.getOperand(1), Op.getOperand(2),
5405                              DAG.getConstant(CompareOpc, MVT::i32));
5406    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
5407  }
5408
5409  // Create the PPCISD altivec 'dot' comparison node.
5410  SDValue Ops[] = {
5411    Op.getOperand(2),  // LHS
5412    Op.getOperand(3),  // RHS
5413    DAG.getConstant(CompareOpc, MVT::i32)
5414  };
5415  std::vector<EVT> VTs;
5416  VTs.push_back(Op.getOperand(2).getValueType());
5417  VTs.push_back(MVT::Glue);
5418  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5419
5420  // Now that we have the comparison, emit a copy from the CR to a GPR.
5421  // This is flagged to the above dot comparison.
5422  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
5423                                DAG.getRegister(PPC::CR6, MVT::i32),
5424                                CompNode.getValue(1));
5425
5426  // Unpack the result based on how the target uses it.
5427  unsigned BitNo;   // Bit # of CR6.
5428  bool InvertBit;   // Invert result?
5429  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
5430  default:  // Can't happen, don't crash on invalid number though.
5431  case 0:   // Return the value of the EQ bit of CR6.
5432    BitNo = 0; InvertBit = false;
5433    break;
5434  case 1:   // Return the inverted value of the EQ bit of CR6.
5435    BitNo = 0; InvertBit = true;
5436    break;
5437  case 2:   // Return the value of the LT bit of CR6.
5438    BitNo = 2; InvertBit = false;
5439    break;
5440  case 3:   // Return the inverted value of the LT bit of CR6.
5441    BitNo = 2; InvertBit = true;
5442    break;
5443  }
5444
5445  // Shift the bit into the low position.
5446  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
5447                      DAG.getConstant(8-(3-BitNo), MVT::i32));
5448  // Isolate the bit.
5449  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
5450                      DAG.getConstant(1, MVT::i32));
5451
5452  // If we are supposed to, toggle the bit.
5453  if (InvertBit)
5454    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
5455                        DAG.getConstant(1, MVT::i32));
5456  return Flags;
5457}
5458
5459SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
5460                                                   SelectionDAG &DAG) const {
5461  DebugLoc dl = Op.getDebugLoc();
5462  // Create a stack slot that is 16-byte aligned.
5463  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
5464  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
5465  EVT PtrVT = getPointerTy();
5466  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5467
5468  // Store the input value into Value#0 of the stack slot.
5469  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
5470                               Op.getOperand(0), FIdx, MachinePointerInfo(),
5471                               false, false, 0);
5472  // Load it out.
5473  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
5474                     false, false, false, 0);
5475}
5476
5477SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
5478  DebugLoc dl = Op.getDebugLoc();
5479  if (Op.getValueType() == MVT::v4i32) {
5480    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5481
5482    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
5483    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
5484
5485    SDValue RHSSwap =   // = vrlw RHS, 16
5486      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
5487
5488    // Shrinkify inputs to v8i16.
5489    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
5490    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
5491    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
5492
5493    // Low parts multiplied together, generating 32-bit results (we ignore the
5494    // top parts).
5495    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
5496                                        LHS, RHS, DAG, dl, MVT::v4i32);
5497
5498    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
5499                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
5500    // Shift the high parts up 16 bits.
5501    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
5502                              Neg16, DAG, dl);
5503    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
5504  } else if (Op.getValueType() == MVT::v8i16) {
5505    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5506
5507    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
5508
5509    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
5510                            LHS, RHS, Zero, DAG, dl);
5511  } else if (Op.getValueType() == MVT::v16i8) {
5512    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5513
5514    // Multiply the even 8-bit parts, producing 16-bit sums.
5515    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
5516                                           LHS, RHS, DAG, dl, MVT::v8i16);
5517    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
5518
5519    // Multiply the odd 8-bit parts, producing 16-bit sums.
5520    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
5521                                          LHS, RHS, DAG, dl, MVT::v8i16);
5522    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
5523
5524    // Merge the results together.
5525    int Ops[16];
5526    for (unsigned i = 0; i != 8; ++i) {
5527      Ops[i*2  ] = 2*i+1;
5528      Ops[i*2+1] = 2*i+1+16;
5529    }
5530    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
5531  } else {
5532    llvm_unreachable("Unknown mul to lower!");
5533  }
5534}
5535
5536/// LowerOperation - Provide custom lowering hooks for some operations.
5537///
5538SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5539  switch (Op.getOpcode()) {
5540  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
5541  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5542  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
5543  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5544  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5545  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5546  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5547  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
5548  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
5549  case ISD::VASTART:
5550    return LowerVASTART(Op, DAG, PPCSubTarget);
5551
5552  case ISD::VAARG:
5553    return LowerVAARG(Op, DAG, PPCSubTarget);
5554
5555  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
5556  case ISD::DYNAMIC_STACKALLOC:
5557    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
5558
5559  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
5560  case ISD::FP_TO_UINT:
5561  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
5562                                                       Op.getDebugLoc());
5563  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5564  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5565
5566  // Lower 64-bit shifts.
5567  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
5568  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
5569  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
5570
5571  // Vector-related lowering.
5572  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5573  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5574  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5575  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5576  case ISD::MUL:                return LowerMUL(Op, DAG);
5577
5578  // Frame & Return address.
5579  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5580  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5581  }
5582}
5583
5584void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
5585                                           SmallVectorImpl<SDValue>&Results,
5586                                           SelectionDAG &DAG) const {
5587  const TargetMachine &TM = getTargetMachine();
5588  DebugLoc dl = N->getDebugLoc();
5589  switch (N->getOpcode()) {
5590  default:
5591    llvm_unreachable("Do not know how to custom type legalize this operation!");
5592  case ISD::VAARG: {
5593    if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
5594        || TM.getSubtarget<PPCSubtarget>().isPPC64())
5595      return;
5596
5597    EVT VT = N->getValueType(0);
5598
5599    if (VT == MVT::i64) {
5600      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
5601
5602      Results.push_back(NewNode);
5603      Results.push_back(NewNode.getValue(1));
5604    }
5605    return;
5606  }
5607  case ISD::FP_ROUND_INREG: {
5608    assert(N->getValueType(0) == MVT::ppcf128);
5609    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
5610    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5611                             MVT::f64, N->getOperand(0),
5612                             DAG.getIntPtrConstant(0));
5613    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5614                             MVT::f64, N->getOperand(0),
5615                             DAG.getIntPtrConstant(1));
5616
5617    // This sequence changes FPSCR to do round-to-zero, adds the two halves
5618    // of the long double, and puts FPSCR back the way it was.  We do not
5619    // actually model FPSCR.
5620    std::vector<EVT> NodeTys;
5621    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
5622
5623    NodeTys.push_back(MVT::f64);   // Return register
5624    NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
5625    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
5626    MFFSreg = Result.getValue(0);
5627    InFlag = Result.getValue(1);
5628
5629    NodeTys.clear();
5630    NodeTys.push_back(MVT::Glue);   // Returns a flag
5631    Ops[0] = DAG.getConstant(31, MVT::i32);
5632    Ops[1] = InFlag;
5633    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
5634    InFlag = Result.getValue(0);
5635
5636    NodeTys.clear();
5637    NodeTys.push_back(MVT::Glue);   // Returns a flag
5638    Ops[0] = DAG.getConstant(30, MVT::i32);
5639    Ops[1] = InFlag;
5640    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
5641    InFlag = Result.getValue(0);
5642
5643    NodeTys.clear();
5644    NodeTys.push_back(MVT::f64);    // result of add
5645    NodeTys.push_back(MVT::Glue);   // Returns a flag
5646    Ops[0] = Lo;
5647    Ops[1] = Hi;
5648    Ops[2] = InFlag;
5649    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
5650    FPreg = Result.getValue(0);
5651    InFlag = Result.getValue(1);
5652
5653    NodeTys.clear();
5654    NodeTys.push_back(MVT::f64);
5655    Ops[0] = DAG.getConstant(1, MVT::i32);
5656    Ops[1] = MFFSreg;
5657    Ops[2] = FPreg;
5658    Ops[3] = InFlag;
5659    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
5660    FPreg = Result.getValue(0);
5661
5662    // We know the low half is about to be thrown away, so just use something
5663    // convenient.
5664    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
5665                                FPreg, FPreg));
5666    return;
5667  }
5668  case ISD::FP_TO_SINT:
5669    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
5670    return;
5671  }
5672}
5673
5674
5675//===----------------------------------------------------------------------===//
5676//  Other Lowering Code
5677//===----------------------------------------------------------------------===//
5678
5679MachineBasicBlock *
5680PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5681                                    bool is64bit, unsigned BinOpcode) const {
5682  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5683  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5684
5685  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5686  MachineFunction *F = BB->getParent();
5687  MachineFunction::iterator It = BB;
5688  ++It;
5689
5690  unsigned dest = MI->getOperand(0).getReg();
5691  unsigned ptrA = MI->getOperand(1).getReg();
5692  unsigned ptrB = MI->getOperand(2).getReg();
5693  unsigned incr = MI->getOperand(3).getReg();
5694  DebugLoc dl = MI->getDebugLoc();
5695
5696  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5697  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5698  F->insert(It, loopMBB);
5699  F->insert(It, exitMBB);
5700  exitMBB->splice(exitMBB->begin(), BB,
5701                  llvm::next(MachineBasicBlock::iterator(MI)),
5702                  BB->end());
5703  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5704
5705  MachineRegisterInfo &RegInfo = F->getRegInfo();
5706  unsigned TmpReg = (!BinOpcode) ? incr :
5707    RegInfo.createVirtualRegister(
5708       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5709                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
5710
5711  //  thisMBB:
5712  //   ...
5713  //   fallthrough --> loopMBB
5714  BB->addSuccessor(loopMBB);
5715
5716  //  loopMBB:
5717  //   l[wd]arx dest, ptr
5718  //   add r0, dest, incr
5719  //   st[wd]cx. r0, ptr
5720  //   bne- loopMBB
5721  //   fallthrough --> exitMBB
5722  BB = loopMBB;
5723  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5724    .addReg(ptrA).addReg(ptrB);
5725  if (BinOpcode)
5726    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
5727  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5728    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
5729  BuildMI(BB, dl, TII->get(PPC::BCC))
5730    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5731  BB->addSuccessor(loopMBB);
5732  BB->addSuccessor(exitMBB);
5733
5734  //  exitMBB:
5735  //   ...
5736  BB = exitMBB;
5737  return BB;
5738}
5739
5740MachineBasicBlock *
5741PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
5742                                            MachineBasicBlock *BB,
5743                                            bool is8bit,    // operation
5744                                            unsigned BinOpcode) const {
5745  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5746  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5747  // In 64 bit mode we have to use 64 bits for addresses, even though the
5748  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
5749  // registers without caring whether they're 32 or 64, but here we're
5750  // doing actual arithmetic on the addresses.
5751  bool is64bit = PPCSubTarget.isPPC64();
5752  unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
5753
5754  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5755  MachineFunction *F = BB->getParent();
5756  MachineFunction::iterator It = BB;
5757  ++It;
5758
5759  unsigned dest = MI->getOperand(0).getReg();
5760  unsigned ptrA = MI->getOperand(1).getReg();
5761  unsigned ptrB = MI->getOperand(2).getReg();
5762  unsigned incr = MI->getOperand(3).getReg();
5763  DebugLoc dl = MI->getDebugLoc();
5764
5765  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5766  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5767  F->insert(It, loopMBB);
5768  F->insert(It, exitMBB);
5769  exitMBB->splice(exitMBB->begin(), BB,
5770                  llvm::next(MachineBasicBlock::iterator(MI)),
5771                  BB->end());
5772  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5773
5774  MachineRegisterInfo &RegInfo = F->getRegInfo();
5775  const TargetRegisterClass *RC =
5776    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5777              (const TargetRegisterClass *) &PPC::GPRCRegClass;
5778  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5779  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5780  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5781  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
5782  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5783  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5784  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5785  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5786  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
5787  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5788  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5789  unsigned Ptr1Reg;
5790  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
5791
5792  //  thisMBB:
5793  //   ...
5794  //   fallthrough --> loopMBB
5795  BB->addSuccessor(loopMBB);
5796
5797  // The 4-byte load must be aligned, while a char or short may be
5798  // anywhere in the word.  Hence all this nasty bookkeeping code.
5799  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5800  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5801  //   xori shift, shift1, 24 [16]
5802  //   rlwinm ptr, ptr1, 0, 0, 29
5803  //   slw incr2, incr, shift
5804  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5805  //   slw mask, mask2, shift
5806  //  loopMBB:
5807  //   lwarx tmpDest, ptr
5808  //   add tmp, tmpDest, incr2
5809  //   andc tmp2, tmpDest, mask
5810  //   and tmp3, tmp, mask
5811  //   or tmp4, tmp3, tmp2
5812  //   stwcx. tmp4, ptr
5813  //   bne- loopMBB
5814  //   fallthrough --> exitMBB
5815  //   srw dest, tmpDest, shift
5816  if (ptrA != ZeroReg) {
5817    Ptr1Reg = RegInfo.createVirtualRegister(RC);
5818    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5819      .addReg(ptrA).addReg(ptrB);
5820  } else {
5821    Ptr1Reg = ptrB;
5822  }
5823  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5824      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5825  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5826      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5827  if (is64bit)
5828    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5829      .addReg(Ptr1Reg).addImm(0).addImm(61);
5830  else
5831    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5832      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5833  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
5834      .addReg(incr).addReg(ShiftReg);
5835  if (is8bit)
5836    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5837  else {
5838    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5839    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
5840  }
5841  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5842      .addReg(Mask2Reg).addReg(ShiftReg);
5843
5844  BB = loopMBB;
5845  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5846    .addReg(ZeroReg).addReg(PtrReg);
5847  if (BinOpcode)
5848    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
5849      .addReg(Incr2Reg).addReg(TmpDestReg);
5850  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
5851    .addReg(TmpDestReg).addReg(MaskReg);
5852  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
5853    .addReg(TmpReg).addReg(MaskReg);
5854  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
5855    .addReg(Tmp3Reg).addReg(Tmp2Reg);
5856  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5857    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
5858  BuildMI(BB, dl, TII->get(PPC::BCC))
5859    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5860  BB->addSuccessor(loopMBB);
5861  BB->addSuccessor(exitMBB);
5862
5863  //  exitMBB:
5864  //   ...
5865  BB = exitMBB;
5866  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
5867    .addReg(ShiftReg);
5868  return BB;
5869}
5870
5871MachineBasicBlock *
5872PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5873                                               MachineBasicBlock *BB) const {
5874  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5875
5876  // To "insert" these instructions we actually have to insert their
5877  // control-flow patterns.
5878  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5879  MachineFunction::iterator It = BB;
5880  ++It;
5881
5882  MachineFunction *F = BB->getParent();
5883
5884  if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
5885                                 MI->getOpcode() == PPC::SELECT_CC_I8)) {
5886    unsigned OpCode = MI->getOpcode() == PPC::SELECT_CC_I8 ?
5887                                         PPC::ISEL8 : PPC::ISEL;
5888    unsigned SelectPred = MI->getOperand(4).getImm();
5889    DebugLoc dl = MI->getDebugLoc();
5890
5891    // The SelectPred is ((BI << 5) | BO) for a BCC
5892    unsigned BO = SelectPred & 0xF;
5893    assert((BO == 12 || BO == 4) && "invalid predicate BO field for isel");
5894
5895    unsigned TrueOpNo, FalseOpNo;
5896    if (BO == 12) {
5897      TrueOpNo = 2;
5898      FalseOpNo = 3;
5899    } else {
5900      TrueOpNo = 3;
5901      FalseOpNo = 2;
5902      SelectPred = PPC::InvertPredicate((PPC::Predicate)SelectPred);
5903    }
5904
5905    BuildMI(*BB, MI, dl, TII->get(OpCode), MI->getOperand(0).getReg())
5906      .addReg(MI->getOperand(TrueOpNo).getReg())
5907      .addReg(MI->getOperand(FalseOpNo).getReg())
5908      .addImm(SelectPred).addReg(MI->getOperand(1).getReg());
5909  } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
5910             MI->getOpcode() == PPC::SELECT_CC_I8 ||
5911             MI->getOpcode() == PPC::SELECT_CC_F4 ||
5912             MI->getOpcode() == PPC::SELECT_CC_F8 ||
5913             MI->getOpcode() == PPC::SELECT_CC_VRRC) {
5914
5915
5916    // The incoming instruction knows the destination vreg to set, the
5917    // condition code register to branch on, the true/false values to
5918    // select between, and a branch opcode to use.
5919
5920    //  thisMBB:
5921    //  ...
5922    //   TrueVal = ...
5923    //   cmpTY ccX, r1, r2
5924    //   bCC copy1MBB
5925    //   fallthrough --> copy0MBB
5926    MachineBasicBlock *thisMBB = BB;
5927    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
5928    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
5929    unsigned SelectPred = MI->getOperand(4).getImm();
5930    DebugLoc dl = MI->getDebugLoc();
5931    F->insert(It, copy0MBB);
5932    F->insert(It, sinkMBB);
5933
5934    // Transfer the remainder of BB and its successor edges to sinkMBB.
5935    sinkMBB->splice(sinkMBB->begin(), BB,
5936                    llvm::next(MachineBasicBlock::iterator(MI)),
5937                    BB->end());
5938    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
5939
5940    // Next, add the true and fallthrough blocks as its successors.
5941    BB->addSuccessor(copy0MBB);
5942    BB->addSuccessor(sinkMBB);
5943
5944    BuildMI(BB, dl, TII->get(PPC::BCC))
5945      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
5946
5947    //  copy0MBB:
5948    //   %FalseValue = ...
5949    //   # fallthrough to sinkMBB
5950    BB = copy0MBB;
5951
5952    // Update machine-CFG edges
5953    BB->addSuccessor(sinkMBB);
5954
5955    //  sinkMBB:
5956    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5957    //  ...
5958    BB = sinkMBB;
5959    BuildMI(*BB, BB->begin(), dl,
5960            TII->get(PPC::PHI), MI->getOperand(0).getReg())
5961      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
5962      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5963  }
5964  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
5965    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
5966  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
5967    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
5968  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
5969    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
5970  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
5971    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
5972
5973  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
5974    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
5975  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
5976    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
5977  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
5978    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
5979  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
5980    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
5981
5982  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
5983    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
5984  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
5985    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
5986  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
5987    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
5988  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
5989    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
5990
5991  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
5992    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
5993  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
5994    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
5995  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
5996    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
5997  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
5998    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
5999
6000  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
6001    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
6002  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
6003    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
6004  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
6005    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
6006  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
6007    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
6008
6009  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
6010    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
6011  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
6012    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
6013  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
6014    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
6015  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
6016    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
6017
6018  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
6019    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
6020  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
6021    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
6022  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
6023    BB = EmitAtomicBinary(MI, BB, false, 0);
6024  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
6025    BB = EmitAtomicBinary(MI, BB, true, 0);
6026
6027  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
6028           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
6029    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
6030
6031    unsigned dest   = MI->getOperand(0).getReg();
6032    unsigned ptrA   = MI->getOperand(1).getReg();
6033    unsigned ptrB   = MI->getOperand(2).getReg();
6034    unsigned oldval = MI->getOperand(3).getReg();
6035    unsigned newval = MI->getOperand(4).getReg();
6036    DebugLoc dl     = MI->getDebugLoc();
6037
6038    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6039    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6040    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6041    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6042    F->insert(It, loop1MBB);
6043    F->insert(It, loop2MBB);
6044    F->insert(It, midMBB);
6045    F->insert(It, exitMBB);
6046    exitMBB->splice(exitMBB->begin(), BB,
6047                    llvm::next(MachineBasicBlock::iterator(MI)),
6048                    BB->end());
6049    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6050
6051    //  thisMBB:
6052    //   ...
6053    //   fallthrough --> loopMBB
6054    BB->addSuccessor(loop1MBB);
6055
6056    // loop1MBB:
6057    //   l[wd]arx dest, ptr
6058    //   cmp[wd] dest, oldval
6059    //   bne- midMBB
6060    // loop2MBB:
6061    //   st[wd]cx. newval, ptr
6062    //   bne- loopMBB
6063    //   b exitBB
6064    // midMBB:
6065    //   st[wd]cx. dest, ptr
6066    // exitBB:
6067    BB = loop1MBB;
6068    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
6069      .addReg(ptrA).addReg(ptrB);
6070    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
6071      .addReg(oldval).addReg(dest);
6072    BuildMI(BB, dl, TII->get(PPC::BCC))
6073      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6074    BB->addSuccessor(loop2MBB);
6075    BB->addSuccessor(midMBB);
6076
6077    BB = loop2MBB;
6078    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6079      .addReg(newval).addReg(ptrA).addReg(ptrB);
6080    BuildMI(BB, dl, TII->get(PPC::BCC))
6081      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6082    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6083    BB->addSuccessor(loop1MBB);
6084    BB->addSuccessor(exitMBB);
6085
6086    BB = midMBB;
6087    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6088      .addReg(dest).addReg(ptrA).addReg(ptrB);
6089    BB->addSuccessor(exitMBB);
6090
6091    //  exitMBB:
6092    //   ...
6093    BB = exitMBB;
6094  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
6095             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
6096    // We must use 64-bit registers for addresses when targeting 64-bit,
6097    // since we're actually doing arithmetic on them.  Other registers
6098    // can be 32-bit.
6099    bool is64bit = PPCSubTarget.isPPC64();
6100    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
6101
6102    unsigned dest   = MI->getOperand(0).getReg();
6103    unsigned ptrA   = MI->getOperand(1).getReg();
6104    unsigned ptrB   = MI->getOperand(2).getReg();
6105    unsigned oldval = MI->getOperand(3).getReg();
6106    unsigned newval = MI->getOperand(4).getReg();
6107    DebugLoc dl     = MI->getDebugLoc();
6108
6109    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6110    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6111    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6112    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6113    F->insert(It, loop1MBB);
6114    F->insert(It, loop2MBB);
6115    F->insert(It, midMBB);
6116    F->insert(It, exitMBB);
6117    exitMBB->splice(exitMBB->begin(), BB,
6118                    llvm::next(MachineBasicBlock::iterator(MI)),
6119                    BB->end());
6120    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6121
6122    MachineRegisterInfo &RegInfo = F->getRegInfo();
6123    const TargetRegisterClass *RC =
6124      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6125                (const TargetRegisterClass *) &PPC::GPRCRegClass;
6126    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
6127    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
6128    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
6129    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
6130    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
6131    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
6132    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
6133    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6134    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6135    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6136    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6137    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6138    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6139    unsigned Ptr1Reg;
6140    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
6141    unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
6142    //  thisMBB:
6143    //   ...
6144    //   fallthrough --> loopMBB
6145    BB->addSuccessor(loop1MBB);
6146
6147    // The 4-byte load must be aligned, while a char or short may be
6148    // anywhere in the word.  Hence all this nasty bookkeeping code.
6149    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
6150    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6151    //   xori shift, shift1, 24 [16]
6152    //   rlwinm ptr, ptr1, 0, 0, 29
6153    //   slw newval2, newval, shift
6154    //   slw oldval2, oldval,shift
6155    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6156    //   slw mask, mask2, shift
6157    //   and newval3, newval2, mask
6158    //   and oldval3, oldval2, mask
6159    // loop1MBB:
6160    //   lwarx tmpDest, ptr
6161    //   and tmp, tmpDest, mask
6162    //   cmpw tmp, oldval3
6163    //   bne- midMBB
6164    // loop2MBB:
6165    //   andc tmp2, tmpDest, mask
6166    //   or tmp4, tmp2, newval3
6167    //   stwcx. tmp4, ptr
6168    //   bne- loop1MBB
6169    //   b exitBB
6170    // midMBB:
6171    //   stwcx. tmpDest, ptr
6172    // exitBB:
6173    //   srw dest, tmpDest, shift
6174    if (ptrA != ZeroReg) {
6175      Ptr1Reg = RegInfo.createVirtualRegister(RC);
6176      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
6177        .addReg(ptrA).addReg(ptrB);
6178    } else {
6179      Ptr1Reg = ptrB;
6180    }
6181    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
6182        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
6183    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
6184        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
6185    if (is64bit)
6186      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
6187        .addReg(Ptr1Reg).addImm(0).addImm(61);
6188    else
6189      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
6190        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
6191    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
6192        .addReg(newval).addReg(ShiftReg);
6193    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
6194        .addReg(oldval).addReg(ShiftReg);
6195    if (is8bit)
6196      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
6197    else {
6198      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
6199      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
6200        .addReg(Mask3Reg).addImm(65535);
6201    }
6202    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
6203        .addReg(Mask2Reg).addReg(ShiftReg);
6204    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
6205        .addReg(NewVal2Reg).addReg(MaskReg);
6206    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
6207        .addReg(OldVal2Reg).addReg(MaskReg);
6208
6209    BB = loop1MBB;
6210    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
6211        .addReg(ZeroReg).addReg(PtrReg);
6212    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
6213        .addReg(TmpDestReg).addReg(MaskReg);
6214    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
6215        .addReg(TmpReg).addReg(OldVal3Reg);
6216    BuildMI(BB, dl, TII->get(PPC::BCC))
6217        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6218    BB->addSuccessor(loop2MBB);
6219    BB->addSuccessor(midMBB);
6220
6221    BB = loop2MBB;
6222    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
6223        .addReg(TmpDestReg).addReg(MaskReg);
6224    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
6225        .addReg(Tmp2Reg).addReg(NewVal3Reg);
6226    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
6227        .addReg(ZeroReg).addReg(PtrReg);
6228    BuildMI(BB, dl, TII->get(PPC::BCC))
6229      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6230    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6231    BB->addSuccessor(loop1MBB);
6232    BB->addSuccessor(exitMBB);
6233
6234    BB = midMBB;
6235    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
6236      .addReg(ZeroReg).addReg(PtrReg);
6237    BB->addSuccessor(exitMBB);
6238
6239    //  exitMBB:
6240    //   ...
6241    BB = exitMBB;
6242    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
6243      .addReg(ShiftReg);
6244  } else {
6245    llvm_unreachable("Unexpected instr type to insert");
6246  }
6247
6248  MI->eraseFromParent();   // The pseudo instruction is gone now.
6249  return BB;
6250}
6251
6252//===----------------------------------------------------------------------===//
6253// Target Optimization Hooks
6254//===----------------------------------------------------------------------===//
6255
6256SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
6257                                             DAGCombinerInfo &DCI) const {
6258  const TargetMachine &TM = getTargetMachine();
6259  SelectionDAG &DAG = DCI.DAG;
6260  DebugLoc dl = N->getDebugLoc();
6261  switch (N->getOpcode()) {
6262  default: break;
6263  case PPCISD::SHL:
6264    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6265      if (C->isNullValue())   // 0 << V -> 0.
6266        return N->getOperand(0);
6267    }
6268    break;
6269  case PPCISD::SRL:
6270    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6271      if (C->isNullValue())   // 0 >>u V -> 0.
6272        return N->getOperand(0);
6273    }
6274    break;
6275  case PPCISD::SRA:
6276    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6277      if (C->isNullValue() ||   //  0 >>s V -> 0.
6278          C->isAllOnesValue())    // -1 >>s V -> -1.
6279        return N->getOperand(0);
6280    }
6281    break;
6282
6283  case ISD::SINT_TO_FP:
6284    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
6285      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
6286        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
6287        // We allow the src/dst to be either f32/f64, but the intermediate
6288        // type must be i64.
6289        if (N->getOperand(0).getValueType() == MVT::i64 &&
6290            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
6291          SDValue Val = N->getOperand(0).getOperand(0);
6292          if (Val.getValueType() == MVT::f32) {
6293            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
6294            DCI.AddToWorklist(Val.getNode());
6295          }
6296
6297          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
6298          DCI.AddToWorklist(Val.getNode());
6299          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
6300          DCI.AddToWorklist(Val.getNode());
6301          if (N->getValueType(0) == MVT::f32) {
6302            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
6303                              DAG.getIntPtrConstant(0));
6304            DCI.AddToWorklist(Val.getNode());
6305          }
6306          return Val;
6307        } else if (N->getOperand(0).getValueType() == MVT::i32) {
6308          // If the intermediate type is i32, we can avoid the load/store here
6309          // too.
6310        }
6311      }
6312    }
6313    break;
6314  case ISD::STORE:
6315    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
6316    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
6317        !cast<StoreSDNode>(N)->isTruncatingStore() &&
6318        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
6319        N->getOperand(1).getValueType() == MVT::i32 &&
6320        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
6321      SDValue Val = N->getOperand(1).getOperand(0);
6322      if (Val.getValueType() == MVT::f32) {
6323        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
6324        DCI.AddToWorklist(Val.getNode());
6325      }
6326      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
6327      DCI.AddToWorklist(Val.getNode());
6328
6329      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
6330                        N->getOperand(2), N->getOperand(3));
6331      DCI.AddToWorklist(Val.getNode());
6332      return Val;
6333    }
6334
6335    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
6336    if (cast<StoreSDNode>(N)->isUnindexed() &&
6337        N->getOperand(1).getOpcode() == ISD::BSWAP &&
6338        N->getOperand(1).getNode()->hasOneUse() &&
6339        (N->getOperand(1).getValueType() == MVT::i32 ||
6340         N->getOperand(1).getValueType() == MVT::i16)) {
6341      SDValue BSwapOp = N->getOperand(1).getOperand(0);
6342      // Do an any-extend to 32-bits if this is a half-word input.
6343      if (BSwapOp.getValueType() == MVT::i16)
6344        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
6345
6346      SDValue Ops[] = {
6347        N->getOperand(0), BSwapOp, N->getOperand(2),
6348        DAG.getValueType(N->getOperand(1).getValueType())
6349      };
6350      return
6351        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
6352                                Ops, array_lengthof(Ops),
6353                                cast<StoreSDNode>(N)->getMemoryVT(),
6354                                cast<StoreSDNode>(N)->getMemOperand());
6355    }
6356    break;
6357  case ISD::BSWAP:
6358    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
6359    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6360        N->getOperand(0).hasOneUse() &&
6361        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
6362      SDValue Load = N->getOperand(0);
6363      LoadSDNode *LD = cast<LoadSDNode>(Load);
6364      // Create the byte-swapping load.
6365      SDValue Ops[] = {
6366        LD->getChain(),    // Chain
6367        LD->getBasePtr(),  // Ptr
6368        DAG.getValueType(N->getValueType(0)) // VT
6369      };
6370      SDValue BSLoad =
6371        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
6372                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
6373                                LD->getMemoryVT(), LD->getMemOperand());
6374
6375      // If this is an i16 load, insert the truncate.
6376      SDValue ResVal = BSLoad;
6377      if (N->getValueType(0) == MVT::i16)
6378        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
6379
6380      // First, combine the bswap away.  This makes the value produced by the
6381      // load dead.
6382      DCI.CombineTo(N, ResVal);
6383
6384      // Next, combine the load away, we give it a bogus result value but a real
6385      // chain result.  The result value is dead because the bswap is dead.
6386      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6387
6388      // Return N so it doesn't get rechecked!
6389      return SDValue(N, 0);
6390    }
6391
6392    break;
6393  case PPCISD::VCMP: {
6394    // If a VCMPo node already exists with exactly the same operands as this
6395    // node, use its result instead of this node (VCMPo computes both a CR6 and
6396    // a normal output).
6397    //
6398    if (!N->getOperand(0).hasOneUse() &&
6399        !N->getOperand(1).hasOneUse() &&
6400        !N->getOperand(2).hasOneUse()) {
6401
6402      // Scan all of the users of the LHS, looking for VCMPo's that match.
6403      SDNode *VCMPoNode = 0;
6404
6405      SDNode *LHSN = N->getOperand(0).getNode();
6406      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
6407           UI != E; ++UI)
6408        if (UI->getOpcode() == PPCISD::VCMPo &&
6409            UI->getOperand(1) == N->getOperand(1) &&
6410            UI->getOperand(2) == N->getOperand(2) &&
6411            UI->getOperand(0) == N->getOperand(0)) {
6412          VCMPoNode = *UI;
6413          break;
6414        }
6415
6416      // If there is no VCMPo node, or if the flag value has a single use, don't
6417      // transform this.
6418      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
6419        break;
6420
6421      // Look at the (necessarily single) use of the flag value.  If it has a
6422      // chain, this transformation is more complex.  Note that multiple things
6423      // could use the value result, which we should ignore.
6424      SDNode *FlagUser = 0;
6425      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
6426           FlagUser == 0; ++UI) {
6427        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
6428        SDNode *User = *UI;
6429        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
6430          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
6431            FlagUser = User;
6432            break;
6433          }
6434        }
6435      }
6436
6437      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
6438      // give up for right now.
6439      if (FlagUser->getOpcode() == PPCISD::MFCR)
6440        return SDValue(VCMPoNode, 0);
6441    }
6442    break;
6443  }
6444  case ISD::BR_CC: {
6445    // If this is a branch on an altivec predicate comparison, lower this so
6446    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
6447    // lowering is done pre-legalize, because the legalizer lowers the predicate
6448    // compare down to code that is difficult to reassemble.
6449    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
6450    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
6451    int CompareOpc;
6452    bool isDot;
6453
6454    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
6455        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
6456        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
6457      assert(isDot && "Can't compare against a vector result!");
6458
6459      // If this is a comparison against something other than 0/1, then we know
6460      // that the condition is never/always true.
6461      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
6462      if (Val != 0 && Val != 1) {
6463        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
6464          return N->getOperand(0);
6465        // Always !=, turn it into an unconditional branch.
6466        return DAG.getNode(ISD::BR, dl, MVT::Other,
6467                           N->getOperand(0), N->getOperand(4));
6468      }
6469
6470      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
6471
6472      // Create the PPCISD altivec 'dot' comparison node.
6473      std::vector<EVT> VTs;
6474      SDValue Ops[] = {
6475        LHS.getOperand(2),  // LHS of compare
6476        LHS.getOperand(3),  // RHS of compare
6477        DAG.getConstant(CompareOpc, MVT::i32)
6478      };
6479      VTs.push_back(LHS.getOperand(2).getValueType());
6480      VTs.push_back(MVT::Glue);
6481      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
6482
6483      // Unpack the result based on how the target uses it.
6484      PPC::Predicate CompOpc;
6485      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
6486      default:  // Can't happen, don't crash on invalid number though.
6487      case 0:   // Branch on the value of the EQ bit of CR6.
6488        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
6489        break;
6490      case 1:   // Branch on the inverted value of the EQ bit of CR6.
6491        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
6492        break;
6493      case 2:   // Branch on the value of the LT bit of CR6.
6494        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
6495        break;
6496      case 3:   // Branch on the inverted value of the LT bit of CR6.
6497        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
6498        break;
6499      }
6500
6501      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
6502                         DAG.getConstant(CompOpc, MVT::i32),
6503                         DAG.getRegister(PPC::CR6, MVT::i32),
6504                         N->getOperand(4), CompNode.getValue(1));
6505    }
6506    break;
6507  }
6508  }
6509
6510  return SDValue();
6511}
6512
6513//===----------------------------------------------------------------------===//
6514// Inline Assembly Support
6515//===----------------------------------------------------------------------===//
6516
6517void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
6518                                                       APInt &KnownZero,
6519                                                       APInt &KnownOne,
6520                                                       const SelectionDAG &DAG,
6521                                                       unsigned Depth) const {
6522  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
6523  switch (Op.getOpcode()) {
6524  default: break;
6525  case PPCISD::LBRX: {
6526    // lhbrx is known to have the top bits cleared out.
6527    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
6528      KnownZero = 0xFFFF0000;
6529    break;
6530  }
6531  case ISD::INTRINSIC_WO_CHAIN: {
6532    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
6533    default: break;
6534    case Intrinsic::ppc_altivec_vcmpbfp_p:
6535    case Intrinsic::ppc_altivec_vcmpeqfp_p:
6536    case Intrinsic::ppc_altivec_vcmpequb_p:
6537    case Intrinsic::ppc_altivec_vcmpequh_p:
6538    case Intrinsic::ppc_altivec_vcmpequw_p:
6539    case Intrinsic::ppc_altivec_vcmpgefp_p:
6540    case Intrinsic::ppc_altivec_vcmpgtfp_p:
6541    case Intrinsic::ppc_altivec_vcmpgtsb_p:
6542    case Intrinsic::ppc_altivec_vcmpgtsh_p:
6543    case Intrinsic::ppc_altivec_vcmpgtsw_p:
6544    case Intrinsic::ppc_altivec_vcmpgtub_p:
6545    case Intrinsic::ppc_altivec_vcmpgtuh_p:
6546    case Intrinsic::ppc_altivec_vcmpgtuw_p:
6547      KnownZero = ~1U;  // All bits but the low one are known to be zero.
6548      break;
6549    }
6550  }
6551  }
6552}
6553
6554
6555/// getConstraintType - Given a constraint, return the type of
6556/// constraint it is for this target.
6557PPCTargetLowering::ConstraintType
6558PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
6559  if (Constraint.size() == 1) {
6560    switch (Constraint[0]) {
6561    default: break;
6562    case 'b':
6563    case 'r':
6564    case 'f':
6565    case 'v':
6566    case 'y':
6567      return C_RegisterClass;
6568    case 'Z':
6569      // FIXME: While Z does indicate a memory constraint, it specifically
6570      // indicates an r+r address (used in conjunction with the 'y' modifier
6571      // in the replacement string). Currently, we're forcing the base
6572      // register to be r0 in the asm printer (which is interpreted as zero)
6573      // and forming the complete address in the second register. This is
6574      // suboptimal.
6575      return C_Memory;
6576    }
6577  }
6578  return TargetLowering::getConstraintType(Constraint);
6579}
6580
6581/// Examine constraint type and operand type and determine a weight value.
6582/// This object must already have been set up with the operand type
6583/// and the current alternative constraint selected.
6584TargetLowering::ConstraintWeight
6585PPCTargetLowering::getSingleConstraintMatchWeight(
6586    AsmOperandInfo &info, const char *constraint) const {
6587  ConstraintWeight weight = CW_Invalid;
6588  Value *CallOperandVal = info.CallOperandVal;
6589    // If we don't have a value, we can't do a match,
6590    // but allow it at the lowest weight.
6591  if (CallOperandVal == NULL)
6592    return CW_Default;
6593  Type *type = CallOperandVal->getType();
6594  // Look at the constraint type.
6595  switch (*constraint) {
6596  default:
6597    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
6598    break;
6599  case 'b':
6600    if (type->isIntegerTy())
6601      weight = CW_Register;
6602    break;
6603  case 'f':
6604    if (type->isFloatTy())
6605      weight = CW_Register;
6606    break;
6607  case 'd':
6608    if (type->isDoubleTy())
6609      weight = CW_Register;
6610    break;
6611  case 'v':
6612    if (type->isVectorTy())
6613      weight = CW_Register;
6614    break;
6615  case 'y':
6616    weight = CW_Register;
6617    break;
6618  case 'Z':
6619    weight = CW_Memory;
6620    break;
6621  }
6622  return weight;
6623}
6624
6625std::pair<unsigned, const TargetRegisterClass*>
6626PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6627                                                EVT VT) const {
6628  if (Constraint.size() == 1) {
6629    // GCC RS6000 Constraint Letters
6630    switch (Constraint[0]) {
6631    case 'b':   // R1-R31
6632    case 'r':   // R0-R31
6633      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
6634        return std::make_pair(0U, &PPC::G8RCRegClass);
6635      return std::make_pair(0U, &PPC::GPRCRegClass);
6636    case 'f':
6637      if (VT == MVT::f32 || VT == MVT::i32)
6638        return std::make_pair(0U, &PPC::F4RCRegClass);
6639      if (VT == MVT::f64 || VT == MVT::i64)
6640        return std::make_pair(0U, &PPC::F8RCRegClass);
6641      break;
6642    case 'v':
6643      return std::make_pair(0U, &PPC::VRRCRegClass);
6644    case 'y':   // crrc
6645      return std::make_pair(0U, &PPC::CRRCRegClass);
6646    }
6647  }
6648
6649  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6650}
6651
6652
6653/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6654/// vector.  If it is invalid, don't add anything to Ops.
6655void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
6656                                                     std::string &Constraint,
6657                                                     std::vector<SDValue>&Ops,
6658                                                     SelectionDAG &DAG) const {
6659  SDValue Result(0,0);
6660
6661  // Only support length 1 constraints.
6662  if (Constraint.length() > 1) return;
6663
6664  char Letter = Constraint[0];
6665  switch (Letter) {
6666  default: break;
6667  case 'I':
6668  case 'J':
6669  case 'K':
6670  case 'L':
6671  case 'M':
6672  case 'N':
6673  case 'O':
6674  case 'P': {
6675    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
6676    if (!CST) return; // Must be an immediate to match.
6677    unsigned Value = CST->getZExtValue();
6678    switch (Letter) {
6679    default: llvm_unreachable("Unknown constraint letter!");
6680    case 'I':  // "I" is a signed 16-bit constant.
6681      if ((short)Value == (int)Value)
6682        Result = DAG.getTargetConstant(Value, Op.getValueType());
6683      break;
6684    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
6685    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
6686      if ((short)Value == 0)
6687        Result = DAG.getTargetConstant(Value, Op.getValueType());
6688      break;
6689    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
6690      if ((Value >> 16) == 0)
6691        Result = DAG.getTargetConstant(Value, Op.getValueType());
6692      break;
6693    case 'M':  // "M" is a constant that is greater than 31.
6694      if (Value > 31)
6695        Result = DAG.getTargetConstant(Value, Op.getValueType());
6696      break;
6697    case 'N':  // "N" is a positive constant that is an exact power of two.
6698      if ((int)Value > 0 && isPowerOf2_32(Value))
6699        Result = DAG.getTargetConstant(Value, Op.getValueType());
6700      break;
6701    case 'O':  // "O" is the constant zero.
6702      if (Value == 0)
6703        Result = DAG.getTargetConstant(Value, Op.getValueType());
6704      break;
6705    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
6706      if ((short)-Value == (int)-Value)
6707        Result = DAG.getTargetConstant(Value, Op.getValueType());
6708      break;
6709    }
6710    break;
6711  }
6712  }
6713
6714  if (Result.getNode()) {
6715    Ops.push_back(Result);
6716    return;
6717  }
6718
6719  // Handle standard constraint letters.
6720  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6721}
6722
6723// isLegalAddressingMode - Return true if the addressing mode represented
6724// by AM is legal for this target, for a load/store of the specified type.
6725bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
6726                                              Type *Ty) const {
6727  // FIXME: PPC does not allow r+i addressing modes for vectors!
6728
6729  // PPC allows a sign-extended 16-bit immediate field.
6730  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
6731    return false;
6732
6733  // No global is ever allowed as a base.
6734  if (AM.BaseGV)
6735    return false;
6736
6737  // PPC only support r+r,
6738  switch (AM.Scale) {
6739  case 0:  // "r+i" or just "i", depending on HasBaseReg.
6740    break;
6741  case 1:
6742    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
6743      return false;
6744    // Otherwise we have r+r or r+i.
6745    break;
6746  case 2:
6747    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
6748      return false;
6749    // Allow 2*r as r+r.
6750    break;
6751  default:
6752    // No other scales are supported.
6753    return false;
6754  }
6755
6756  return true;
6757}
6758
6759/// isLegalAddressImmediate - Return true if the integer value can be used
6760/// as the offset of the target addressing mode for load / store of the
6761/// given type.
6762bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{
6763  // PPC allows a sign-extended 16-bit immediate field.
6764  return (V > -(1 << 16) && V < (1 << 16)-1);
6765}
6766
6767bool PPCTargetLowering::isLegalAddressImmediate(GlobalValue* GV) const {
6768  return false;
6769}
6770
6771SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
6772                                           SelectionDAG &DAG) const {
6773  MachineFunction &MF = DAG.getMachineFunction();
6774  MachineFrameInfo *MFI = MF.getFrameInfo();
6775  MFI->setReturnAddressIsTaken(true);
6776
6777  DebugLoc dl = Op.getDebugLoc();
6778  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6779
6780  // Make sure the function does not optimize away the store of the RA to
6781  // the stack.
6782  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6783  FuncInfo->setLRStoreRequired();
6784  bool isPPC64 = PPCSubTarget.isPPC64();
6785  bool isDarwinABI = PPCSubTarget.isDarwinABI();
6786
6787  if (Depth > 0) {
6788    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6789    SDValue Offset =
6790
6791      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
6792                      isPPC64? MVT::i64 : MVT::i32);
6793    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6794                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6795                                   FrameAddr, Offset),
6796                       MachinePointerInfo(), false, false, false, 0);
6797  }
6798
6799  // Just load the return address off the stack.
6800  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
6801  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6802                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
6803}
6804
6805SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
6806                                          SelectionDAG &DAG) const {
6807  DebugLoc dl = Op.getDebugLoc();
6808  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6809
6810  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
6811  bool isPPC64 = PtrVT == MVT::i64;
6812
6813  MachineFunction &MF = DAG.getMachineFunction();
6814  MachineFrameInfo *MFI = MF.getFrameInfo();
6815  MFI->setFrameAddressIsTaken(true);
6816  bool is31 = (getTargetMachine().Options.DisableFramePointerElim(MF) ||
6817               MFI->hasVarSizedObjects()) &&
6818                  MFI->getStackSize() &&
6819                  !MF.getFunction()->getFnAttributes().
6820                    hasAttribute(Attributes::Naked);
6821  unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
6822                                (is31 ? PPC::R31 : PPC::R1);
6823  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
6824                                         PtrVT);
6825  while (Depth--)
6826    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
6827                            FrameAddr, MachinePointerInfo(), false, false,
6828                            false, 0);
6829  return FrameAddr;
6830}
6831
6832bool
6833PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
6834  // The PowerPC target isn't yet aware of offsets.
6835  return false;
6836}
6837
6838/// getOptimalMemOpType - Returns the target specific optimal type for load
6839/// and store operations as a result of memset, memcpy, and memmove
6840/// lowering. If DstAlign is zero that means it's safe to destination
6841/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
6842/// means there isn't a need to check it against alignment requirement,
6843/// probably because the source does not need to be loaded. If 'IsMemset' is
6844/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
6845/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
6846/// source is constant so it does not need to be loaded.
6847/// It returns EVT::Other if the type should be determined using generic
6848/// target-independent logic.
6849EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
6850                                           unsigned DstAlign, unsigned SrcAlign,
6851                                           bool IsMemset, bool ZeroMemset,
6852                                           bool MemcpyStrSrc,
6853                                           MachineFunction &MF) const {
6854  if (this->PPCSubTarget.isPPC64()) {
6855    return MVT::i64;
6856  } else {
6857    return MVT::i32;
6858  }
6859}
6860
6861/// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
6862/// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
6863/// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
6864/// is expanded to mul + add.
6865bool PPCTargetLowering::isFMAFasterThanMulAndAdd(EVT VT) const {
6866  if (!VT.isSimple())
6867    return false;
6868
6869  switch (VT.getSimpleVT().SimpleTy) {
6870  case MVT::f32:
6871  case MVT::f64:
6872  case MVT::v4f32:
6873    return true;
6874  default:
6875    break;
6876  }
6877
6878  return false;
6879}
6880
6881Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
6882  if (DisableILPPref)
6883    return TargetLowering::getSchedulingPreference(N);
6884
6885  return Sched::ILP;
6886}
6887
6888