PPCISelLowering.cpp revision ed2eee63a6858312ed17582d8cb85a6856d8eb34
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
38cl::desc("enable preincrement load/store generation on PPC (experimental)"),
39                                     cl::Hidden);
40
41PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
42  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
43
44  setPow2DivIsCheap();
45
46  // Use _setjmp/_longjmp instead of setjmp/longjmp.
47  setUseUnderscoreSetJmp(true);
48  setUseUnderscoreLongJmp(true);
49
50  // Set up the register classes.
51  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
52  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
53  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
54
55  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
56  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
57  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
58
59  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
60
61  // PowerPC has pre-inc load and store's.
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
73  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
74  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
75  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
76  // This is used in the ppcf128->int sequence.  Note it has different semantics
77  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
78  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
79
80  // PowerPC has no SREM/UREM instructions
81  setOperationAction(ISD::SREM, MVT::i32, Expand);
82  setOperationAction(ISD::UREM, MVT::i32, Expand);
83  setOperationAction(ISD::SREM, MVT::i64, Expand);
84  setOperationAction(ISD::UREM, MVT::i64, Expand);
85
86  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
87  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
88  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
89  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
90  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
91  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
92  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
93  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
94  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
95
96  // We don't support sin/cos/sqrt/fmod/pow
97  setOperationAction(ISD::FSIN , MVT::f64, Expand);
98  setOperationAction(ISD::FCOS , MVT::f64, Expand);
99  setOperationAction(ISD::FREM , MVT::f64, Expand);
100  setOperationAction(ISD::FPOW , MVT::f64, Expand);
101  setOperationAction(ISD::FSIN , MVT::f32, Expand);
102  setOperationAction(ISD::FCOS , MVT::f32, Expand);
103  setOperationAction(ISD::FREM , MVT::f32, Expand);
104  setOperationAction(ISD::FPOW , MVT::f32, Expand);
105
106  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
107
108  // If we're enabling GP optimizations, use hardware square root
109  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
110    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
111    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
112  }
113
114  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
115  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
116
117  // PowerPC does not have BSWAP, CTPOP or CTTZ
118  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
119  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
120  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
121  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
122  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
123  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
124
125  // PowerPC does not have ROTR
126  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
127  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
128
129  // PowerPC does not have Select
130  setOperationAction(ISD::SELECT, MVT::i32, Expand);
131  setOperationAction(ISD::SELECT, MVT::i64, Expand);
132  setOperationAction(ISD::SELECT, MVT::f32, Expand);
133  setOperationAction(ISD::SELECT, MVT::f64, Expand);
134
135  // PowerPC wants to turn select_cc of FP into fsel when possible.
136  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
137  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
138
139  // PowerPC wants to optimize integer setcc a bit
140  setOperationAction(ISD::SETCC, MVT::i32, Custom);
141
142  // PowerPC does not have BRCOND which requires SetCC
143  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
144
145  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
146
147  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
148  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
149
150  // PowerPC does not have [U|S]INT_TO_FP
151  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
152  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
153
154  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
155  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
156  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
157  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
158
159  // We cannot sextinreg(i1).  Expand to shifts.
160  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
161
162  // Support label based line numbers.
163  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
164  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
165
166  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
167  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
168  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
169  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
170
171
172  // We want to legalize GlobalAddress and ConstantPool nodes into the
173  // appropriate instructions to materialize the address.
174  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
175  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
176  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
177  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
178  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
179  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
180  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
181  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
182
183  // RET must be custom lowered, to meet ABI requirements.
184  setOperationAction(ISD::RET               , MVT::Other, Custom);
185
186  // TRAP is legal.
187  setOperationAction(ISD::TRAP, MVT::Other, Legal);
188
189  // TRAMPOLINE is custom lowered.
190  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
191
192  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
193  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
194
195  // VAARG is custom lowered with ELF 32 ABI
196  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
197    setOperationAction(ISD::VAARG, MVT::Other, Custom);
198  else
199    setOperationAction(ISD::VAARG, MVT::Other, Expand);
200
201  // Use the default implementation.
202  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
203  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
204  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
205  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
206  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
207  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
208
209  // We want to custom lower some of our intrinsics.
210  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
211
212  // Comparisons that require checking two conditions.
213  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
214  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
215  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
216  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
217  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
218  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
219  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
220  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
221  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
222  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
223  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
224  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
225
226  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
227    // They also have instructions for converting between i64 and fp.
228    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
229    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
230    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
231    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
232    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
233
234    // FIXME: disable this lowered code.  This generates 64-bit register values,
235    // and we don't model the fact that the top part is clobbered by calls.  We
236    // need to flag these together so that the value isn't live across a call.
237    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
238
239    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
240    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
241  } else {
242    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
243    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
244  }
245
246  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
247    // 64-bit PowerPC implementations can support i64 types directly
248    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
249    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
250    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
251    // 64-bit PowerPC wants to expand i128 shifts itself.
252    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
253    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
254    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
255  } else {
256    // 32-bit PowerPC wants to expand i64 shifts itself.
257    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
258    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
259    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
260  }
261
262  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
263    // First set operation action for all vector types to expand. Then we
264    // will selectively turn on ones that can be effectively codegen'd.
265    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
266         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
267      MVT VT = (MVT::SimpleValueType)i;
268
269      // add/sub are legal for all supported vector VT's.
270      setOperationAction(ISD::ADD , VT, Legal);
271      setOperationAction(ISD::SUB , VT, Legal);
272
273      // We promote all shuffles to v16i8.
274      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
275      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
276
277      // We promote all non-typed operations to v4i32.
278      setOperationAction(ISD::AND   , VT, Promote);
279      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
280      setOperationAction(ISD::OR    , VT, Promote);
281      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
282      setOperationAction(ISD::XOR   , VT, Promote);
283      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
284      setOperationAction(ISD::LOAD  , VT, Promote);
285      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
286      setOperationAction(ISD::SELECT, VT, Promote);
287      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
288      setOperationAction(ISD::STORE, VT, Promote);
289      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
290
291      // No other operations are legal.
292      setOperationAction(ISD::MUL , VT, Expand);
293      setOperationAction(ISD::SDIV, VT, Expand);
294      setOperationAction(ISD::SREM, VT, Expand);
295      setOperationAction(ISD::UDIV, VT, Expand);
296      setOperationAction(ISD::UREM, VT, Expand);
297      setOperationAction(ISD::FDIV, VT, Expand);
298      setOperationAction(ISD::FNEG, VT, Expand);
299      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
300      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
301      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
302      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
303      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
304      setOperationAction(ISD::UDIVREM, VT, Expand);
305      setOperationAction(ISD::SDIVREM, VT, Expand);
306      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
307      setOperationAction(ISD::FPOW, VT, Expand);
308      setOperationAction(ISD::CTPOP, VT, Expand);
309      setOperationAction(ISD::CTLZ, VT, Expand);
310      setOperationAction(ISD::CTTZ, VT, Expand);
311    }
312
313    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
314    // with merges, splats, etc.
315    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
316
317    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
318    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
319    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
320    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
321    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
322    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
323
324    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
325    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
326    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
327    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
328
329    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
330    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
331    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
332    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
333
334    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
335    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
336
337    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
338    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
339    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
340    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
341  }
342
343  setShiftAmountType(MVT::i32);
344  setBooleanContents(ZeroOrOneBooleanContent);
345
346  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
347    setStackPointerRegisterToSaveRestore(PPC::X1);
348    setExceptionPointerRegister(PPC::X3);
349    setExceptionSelectorRegister(PPC::X4);
350  } else {
351    setStackPointerRegisterToSaveRestore(PPC::R1);
352    setExceptionPointerRegister(PPC::R3);
353    setExceptionSelectorRegister(PPC::R4);
354  }
355
356  // We have target-specific dag combine patterns for the following nodes:
357  setTargetDAGCombine(ISD::SINT_TO_FP);
358  setTargetDAGCombine(ISD::STORE);
359  setTargetDAGCombine(ISD::BR_CC);
360  setTargetDAGCombine(ISD::BSWAP);
361
362  // Darwin long double math library functions have $LDBL128 appended.
363  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
364    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
365    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
366    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
367    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
368    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
369    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
370    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
371    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
372    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
373    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
374  }
375
376  computeRegisterProperties();
377}
378
379/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
380/// function arguments in the caller parameter area.
381unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
382  TargetMachine &TM = getTargetMachine();
383  // Darwin passes everything on 4 byte boundary.
384  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
385    return 4;
386  // FIXME Elf TBD
387  return 4;
388}
389
390const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
391  switch (Opcode) {
392  default: return 0;
393  case PPCISD::FSEL:            return "PPCISD::FSEL";
394  case PPCISD::FCFID:           return "PPCISD::FCFID";
395  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
396  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
397  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
398  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
399  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
400  case PPCISD::VPERM:           return "PPCISD::VPERM";
401  case PPCISD::Hi:              return "PPCISD::Hi";
402  case PPCISD::Lo:              return "PPCISD::Lo";
403  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
404  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
405  case PPCISD::SRL:             return "PPCISD::SRL";
406  case PPCISD::SRA:             return "PPCISD::SRA";
407  case PPCISD::SHL:             return "PPCISD::SHL";
408  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
409  case PPCISD::STD_32:          return "PPCISD::STD_32";
410  case PPCISD::CALL_ELF:        return "PPCISD::CALL_ELF";
411  case PPCISD::CALL_Macho:      return "PPCISD::CALL_Macho";
412  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
413  case PPCISD::BCTRL_Macho:     return "PPCISD::BCTRL_Macho";
414  case PPCISD::BCTRL_ELF:       return "PPCISD::BCTRL_ELF";
415  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
416  case PPCISD::MFCR:            return "PPCISD::MFCR";
417  case PPCISD::VCMP:            return "PPCISD::VCMP";
418  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
419  case PPCISD::LBRX:            return "PPCISD::LBRX";
420  case PPCISD::STBRX:           return "PPCISD::STBRX";
421  case PPCISD::LARX:            return "PPCISD::LARX";
422  case PPCISD::STCX:            return "PPCISD::STCX";
423  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
424  case PPCISD::MFFS:            return "PPCISD::MFFS";
425  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
426  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
427  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
428  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
429  case PPCISD::TAILCALL:        return "PPCISD::TAILCALL";
430  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
431  }
432}
433
434
435MVT PPCTargetLowering::getSetCCResultType(MVT VT) const {
436  return MVT::i32;
437}
438
439
440//===----------------------------------------------------------------------===//
441// Node matching predicates, for use by the tblgen matching code.
442//===----------------------------------------------------------------------===//
443
444/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
445static bool isFloatingPointZero(SDValue Op) {
446  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
447    return CFP->getValueAPF().isZero();
448  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
449    // Maybe this has already been legalized into the constant pool?
450    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
451      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
452        return CFP->getValueAPF().isZero();
453  }
454  return false;
455}
456
457/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
458/// true if Op is undef or if it matches the specified value.
459static bool isConstantOrUndef(SDValue Op, unsigned Val) {
460  return Op.getOpcode() == ISD::UNDEF ||
461         cast<ConstantSDNode>(Op)->getZExtValue() == Val;
462}
463
464/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
465/// VPKUHUM instruction.
466bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
467  if (!isUnary) {
468    for (unsigned i = 0; i != 16; ++i)
469      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
470        return false;
471  } else {
472    for (unsigned i = 0; i != 8; ++i)
473      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
474          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
475        return false;
476  }
477  return true;
478}
479
480/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
481/// VPKUWUM instruction.
482bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
483  if (!isUnary) {
484    for (unsigned i = 0; i != 16; i += 2)
485      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
486          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
487        return false;
488  } else {
489    for (unsigned i = 0; i != 8; i += 2)
490      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
491          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
492          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
493          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
494        return false;
495  }
496  return true;
497}
498
499/// isVMerge - Common function, used to match vmrg* shuffles.
500///
501static bool isVMerge(SDNode *N, unsigned UnitSize,
502                     unsigned LHSStart, unsigned RHSStart) {
503  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
504         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
505  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
506         "Unsupported merge size!");
507
508  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
509    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
510      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
511                             LHSStart+j+i*UnitSize) ||
512          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
513                             RHSStart+j+i*UnitSize))
514        return false;
515    }
516      return true;
517}
518
519/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
520/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
521bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
522  if (!isUnary)
523    return isVMerge(N, UnitSize, 8, 24);
524  return isVMerge(N, UnitSize, 8, 8);
525}
526
527/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
528/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
529bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
530  if (!isUnary)
531    return isVMerge(N, UnitSize, 0, 16);
532  return isVMerge(N, UnitSize, 0, 0);
533}
534
535
536/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
537/// amount, otherwise return -1.
538int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
539  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
540         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
541  // Find the first non-undef value in the shuffle mask.
542  unsigned i;
543  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
544    /*search*/;
545
546  if (i == 16) return -1;  // all undef.
547
548  // Otherwise, check to see if the rest of the elements are consequtively
549  // numbered from this value.
550  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getZExtValue();
551  if (ShiftAmt < i) return -1;
552  ShiftAmt -= i;
553
554  if (!isUnary) {
555    // Check the rest of the elements to see if they are consequtive.
556    for (++i; i != 16; ++i)
557      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
558        return -1;
559  } else {
560    // Check the rest of the elements to see if they are consequtive.
561    for (++i; i != 16; ++i)
562      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
563        return -1;
564  }
565
566  return ShiftAmt;
567}
568
569/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
570/// specifies a splat of a single element that is suitable for input to
571/// VSPLTB/VSPLTH/VSPLTW.
572bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
573  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
574         N->getNumOperands() == 16 &&
575         (EltSize == 1 || EltSize == 2 || EltSize == 4));
576
577  // This is a splat operation if each element of the permute is the same, and
578  // if the value doesn't reference the second vector.
579  unsigned ElementBase = 0;
580  SDValue Elt = N->getOperand(0);
581  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
582    ElementBase = EltV->getZExtValue();
583  else
584    return false;   // FIXME: Handle UNDEF elements too!
585
586  if (cast<ConstantSDNode>(Elt)->getZExtValue() >= 16)
587    return false;
588
589  // Check that they are consequtive.
590  for (unsigned i = 1; i != EltSize; ++i) {
591    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
592        cast<ConstantSDNode>(N->getOperand(i))->getZExtValue() != i+ElementBase)
593      return false;
594  }
595
596  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
597  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
598    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
599    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
600           "Invalid VECTOR_SHUFFLE mask!");
601    for (unsigned j = 0; j != EltSize; ++j)
602      if (N->getOperand(i+j) != N->getOperand(j))
603        return false;
604  }
605
606  return true;
607}
608
609/// isAllNegativeZeroVector - Returns true if all elements of build_vector
610/// are -0.0.
611bool PPC::isAllNegativeZeroVector(SDNode *N) {
612  assert(N->getOpcode() == ISD::BUILD_VECTOR);
613  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
614    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
615      return CFP->getValueAPF().isNegZero();
616  return false;
617}
618
619/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
620/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
621unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
622  assert(isSplatShuffleMask(N, EltSize));
623  return cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() / EltSize;
624}
625
626/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
627/// by using a vspltis[bhw] instruction of the specified element size, return
628/// the constant being splatted.  The ByteSize field indicates the number of
629/// bytes of each element [124] -> [bhw].
630SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
631  SDValue OpVal(0, 0);
632
633  // If ByteSize of the splat is bigger than the element size of the
634  // build_vector, then we have a case where we are checking for a splat where
635  // multiple elements of the buildvector are folded together into a single
636  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
637  unsigned EltSize = 16/N->getNumOperands();
638  if (EltSize < ByteSize) {
639    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
640    SDValue UniquedVals[4];
641    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
642
643    // See if all of the elements in the buildvector agree across.
644    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
645      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
646      // If the element isn't a constant, bail fully out.
647      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
648
649
650      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
651        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
652      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
653        return SDValue();  // no match.
654    }
655
656    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
657    // either constant or undef values that are identical for each chunk.  See
658    // if these chunks can form into a larger vspltis*.
659
660    // Check to see if all of the leading entries are either 0 or -1.  If
661    // neither, then this won't fit into the immediate field.
662    bool LeadingZero = true;
663    bool LeadingOnes = true;
664    for (unsigned i = 0; i != Multiple-1; ++i) {
665      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
666
667      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
668      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
669    }
670    // Finally, check the least significant entry.
671    if (LeadingZero) {
672      if (UniquedVals[Multiple-1].getNode() == 0)
673        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
674      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
675      if (Val < 16)
676        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
677    }
678    if (LeadingOnes) {
679      if (UniquedVals[Multiple-1].getNode() == 0)
680        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
681      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
682      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
683        return DAG.getTargetConstant(Val, MVT::i32);
684    }
685
686    return SDValue();
687  }
688
689  // Check to see if this buildvec has a single non-undef value in its elements.
690  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
691    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
692    if (OpVal.getNode() == 0)
693      OpVal = N->getOperand(i);
694    else if (OpVal != N->getOperand(i))
695      return SDValue();
696  }
697
698  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
699
700  unsigned ValSizeInBytes = 0;
701  uint64_t Value = 0;
702  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
703    Value = CN->getZExtValue();
704    ValSizeInBytes = CN->getValueType(0).getSizeInBits()/8;
705  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
706    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
707    Value = FloatToBits(CN->getValueAPF().convertToFloat());
708    ValSizeInBytes = 4;
709  }
710
711  // If the splat value is larger than the element value, then we can never do
712  // this splat.  The only case that we could fit the replicated bits into our
713  // immediate field for would be zero, and we prefer to use vxor for it.
714  if (ValSizeInBytes < ByteSize) return SDValue();
715
716  // If the element value is larger than the splat value, cut it in half and
717  // check to see if the two halves are equal.  Continue doing this until we
718  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
719  while (ValSizeInBytes > ByteSize) {
720    ValSizeInBytes >>= 1;
721
722    // If the top half equals the bottom half, we're still ok.
723    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
724         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
725      return SDValue();
726  }
727
728  // Properly sign extend the value.
729  int ShAmt = (4-ByteSize)*8;
730  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
731
732  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
733  if (MaskVal == 0) return SDValue();
734
735  // Finally, if this value fits in a 5 bit sext field, return it
736  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
737    return DAG.getTargetConstant(MaskVal, MVT::i32);
738  return SDValue();
739}
740
741//===----------------------------------------------------------------------===//
742//  Addressing Mode Selection
743//===----------------------------------------------------------------------===//
744
745/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
746/// or 64-bit immediate, and if the value can be accurately represented as a
747/// sign extension from a 16-bit value.  If so, this returns true and the
748/// immediate.
749static bool isIntS16Immediate(SDNode *N, short &Imm) {
750  if (N->getOpcode() != ISD::Constant)
751    return false;
752
753  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
754  if (N->getValueType(0) == MVT::i32)
755    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
756  else
757    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
758}
759static bool isIntS16Immediate(SDValue Op, short &Imm) {
760  return isIntS16Immediate(Op.getNode(), Imm);
761}
762
763
764/// SelectAddressRegReg - Given the specified addressed, check to see if it
765/// can be represented as an indexed [r+r] operation.  Returns false if it
766/// can be more efficiently represented with [r+imm].
767bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
768                                            SDValue &Index,
769                                            SelectionDAG &DAG) const {
770  short imm = 0;
771  if (N.getOpcode() == ISD::ADD) {
772    if (isIntS16Immediate(N.getOperand(1), imm))
773      return false;    // r+i
774    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
775      return false;    // r+i
776
777    Base = N.getOperand(0);
778    Index = N.getOperand(1);
779    return true;
780  } else if (N.getOpcode() == ISD::OR) {
781    if (isIntS16Immediate(N.getOperand(1), imm))
782      return false;    // r+i can fold it if we can.
783
784    // If this is an or of disjoint bitfields, we can codegen this as an add
785    // (for better address arithmetic) if the LHS and RHS of the OR are provably
786    // disjoint.
787    APInt LHSKnownZero, LHSKnownOne;
788    APInt RHSKnownZero, RHSKnownOne;
789    DAG.ComputeMaskedBits(N.getOperand(0),
790                          APInt::getAllOnesValue(N.getOperand(0)
791                            .getValueSizeInBits()),
792                          LHSKnownZero, LHSKnownOne);
793
794    if (LHSKnownZero.getBoolValue()) {
795      DAG.ComputeMaskedBits(N.getOperand(1),
796                            APInt::getAllOnesValue(N.getOperand(1)
797                              .getValueSizeInBits()),
798                            RHSKnownZero, RHSKnownOne);
799      // If all of the bits are known zero on the LHS or RHS, the add won't
800      // carry.
801      if (~(LHSKnownZero | RHSKnownZero) == 0) {
802        Base = N.getOperand(0);
803        Index = N.getOperand(1);
804        return true;
805      }
806    }
807  }
808
809  return false;
810}
811
812/// Returns true if the address N can be represented by a base register plus
813/// a signed 16-bit displacement [r+imm], and if it is not better
814/// represented as reg+reg.
815bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
816                                            SDValue &Base,
817                                            SelectionDAG &DAG) const {
818  // If this can be more profitably realized as r+r, fail.
819  if (SelectAddressRegReg(N, Disp, Base, DAG))
820    return false;
821
822  if (N.getOpcode() == ISD::ADD) {
823    short imm = 0;
824    if (isIntS16Immediate(N.getOperand(1), imm)) {
825      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
826      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
827        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
828      } else {
829        Base = N.getOperand(0);
830      }
831      return true; // [r+i]
832    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
833      // Match LOAD (ADD (X, Lo(G))).
834     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
835             && "Cannot handle constant offsets yet!");
836      Disp = N.getOperand(1).getOperand(0);  // The global address.
837      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
838             Disp.getOpcode() == ISD::TargetConstantPool ||
839             Disp.getOpcode() == ISD::TargetJumpTable);
840      Base = N.getOperand(0);
841      return true;  // [&g+r]
842    }
843  } else if (N.getOpcode() == ISD::OR) {
844    short imm = 0;
845    if (isIntS16Immediate(N.getOperand(1), imm)) {
846      // If this is an or of disjoint bitfields, we can codegen this as an add
847      // (for better address arithmetic) if the LHS and RHS of the OR are
848      // provably disjoint.
849      APInt LHSKnownZero, LHSKnownOne;
850      DAG.ComputeMaskedBits(N.getOperand(0),
851                            APInt::getAllOnesValue(N.getOperand(0)
852                                                   .getValueSizeInBits()),
853                            LHSKnownZero, LHSKnownOne);
854
855      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
856        // If all of the bits are known zero on the LHS or RHS, the add won't
857        // carry.
858        Base = N.getOperand(0);
859        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
860        return true;
861      }
862    }
863  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
864    // Loading from a constant address.
865
866    // If this address fits entirely in a 16-bit sext immediate field, codegen
867    // this as "d, 0"
868    short Imm;
869    if (isIntS16Immediate(CN, Imm)) {
870      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
871      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
872      return true;
873    }
874
875    // Handle 32-bit sext immediates with LIS + addr mode.
876    if (CN->getValueType(0) == MVT::i32 ||
877        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
878      int Addr = (int)CN->getZExtValue();
879
880      // Otherwise, break this down into an LIS + disp.
881      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
882
883      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
884      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
885      Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
886      return true;
887    }
888  }
889
890  Disp = DAG.getTargetConstant(0, getPointerTy());
891  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
892    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
893  else
894    Base = N;
895  return true;      // [r+0]
896}
897
898/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
899/// represented as an indexed [r+r] operation.
900bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
901                                                SDValue &Index,
902                                                SelectionDAG &DAG) const {
903  // Check to see if we can easily represent this as an [r+r] address.  This
904  // will fail if it thinks that the address is more profitably represented as
905  // reg+imm, e.g. where imm = 0.
906  if (SelectAddressRegReg(N, Base, Index, DAG))
907    return true;
908
909  // If the operand is an addition, always emit this as [r+r], since this is
910  // better (for code size, and execution, as the memop does the add for free)
911  // than emitting an explicit add.
912  if (N.getOpcode() == ISD::ADD) {
913    Base = N.getOperand(0);
914    Index = N.getOperand(1);
915    return true;
916  }
917
918  // Otherwise, do it the hard way, using R0 as the base register.
919  Base = DAG.getRegister(PPC::R0, N.getValueType());
920  Index = N;
921  return true;
922}
923
924/// SelectAddressRegImmShift - Returns true if the address N can be
925/// represented by a base register plus a signed 14-bit displacement
926/// [r+imm*4].  Suitable for use by STD and friends.
927bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
928                                                 SDValue &Base,
929                                                 SelectionDAG &DAG) const {
930  // If this can be more profitably realized as r+r, fail.
931  if (SelectAddressRegReg(N, Disp, Base, DAG))
932    return false;
933
934  if (N.getOpcode() == ISD::ADD) {
935    short imm = 0;
936    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
937      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
938      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
939        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
940      } else {
941        Base = N.getOperand(0);
942      }
943      return true; // [r+i]
944    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
945      // Match LOAD (ADD (X, Lo(G))).
946     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
947             && "Cannot handle constant offsets yet!");
948      Disp = N.getOperand(1).getOperand(0);  // The global address.
949      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
950             Disp.getOpcode() == ISD::TargetConstantPool ||
951             Disp.getOpcode() == ISD::TargetJumpTable);
952      Base = N.getOperand(0);
953      return true;  // [&g+r]
954    }
955  } else if (N.getOpcode() == ISD::OR) {
956    short imm = 0;
957    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
958      // If this is an or of disjoint bitfields, we can codegen this as an add
959      // (for better address arithmetic) if the LHS and RHS of the OR are
960      // provably disjoint.
961      APInt LHSKnownZero, LHSKnownOne;
962      DAG.ComputeMaskedBits(N.getOperand(0),
963                            APInt::getAllOnesValue(N.getOperand(0)
964                                                   .getValueSizeInBits()),
965                            LHSKnownZero, LHSKnownOne);
966      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
967        // If all of the bits are known zero on the LHS or RHS, the add won't
968        // carry.
969        Base = N.getOperand(0);
970        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
971        return true;
972      }
973    }
974  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
975    // Loading from a constant address.  Verify low two bits are clear.
976    if ((CN->getZExtValue() & 3) == 0) {
977      // If this address fits entirely in a 14-bit sext immediate field, codegen
978      // this as "d, 0"
979      short Imm;
980      if (isIntS16Immediate(CN, Imm)) {
981        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
982        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
983        return true;
984      }
985
986      // Fold the low-part of 32-bit absolute addresses into addr mode.
987      if (CN->getValueType(0) == MVT::i32 ||
988          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
989        int Addr = (int)CN->getZExtValue();
990
991        // Otherwise, break this down into an LIS + disp.
992        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
993
994        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
995        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
996        Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
997        return true;
998      }
999    }
1000  }
1001
1002  Disp = DAG.getTargetConstant(0, getPointerTy());
1003  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1004    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1005  else
1006    Base = N;
1007  return true;      // [r+0]
1008}
1009
1010
1011/// getPreIndexedAddressParts - returns true by value, base pointer and
1012/// offset pointer and addressing mode by reference if the node's address
1013/// can be legally represented as pre-indexed load / store address.
1014bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1015                                                  SDValue &Offset,
1016                                                  ISD::MemIndexedMode &AM,
1017                                                  SelectionDAG &DAG) const {
1018  // Disabled by default for now.
1019  if (!EnablePPCPreinc) return false;
1020
1021  SDValue Ptr;
1022  MVT VT;
1023  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1024    Ptr = LD->getBasePtr();
1025    VT = LD->getMemoryVT();
1026
1027  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1028    ST = ST;
1029    Ptr = ST->getBasePtr();
1030    VT  = ST->getMemoryVT();
1031  } else
1032    return false;
1033
1034  // PowerPC doesn't have preinc load/store instructions for vectors.
1035  if (VT.isVector())
1036    return false;
1037
1038  // TODO: Check reg+reg first.
1039
1040  // LDU/STU use reg+imm*4, others use reg+imm.
1041  if (VT != MVT::i64) {
1042    // reg + imm
1043    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1044      return false;
1045  } else {
1046    // reg + imm * 4.
1047    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1048      return false;
1049  }
1050
1051  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1052    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1053    // sext i32 to i64 when addr mode is r+i.
1054    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1055        LD->getExtensionType() == ISD::SEXTLOAD &&
1056        isa<ConstantSDNode>(Offset))
1057      return false;
1058  }
1059
1060  AM = ISD::PRE_INC;
1061  return true;
1062}
1063
1064//===----------------------------------------------------------------------===//
1065//  LowerOperation implementation
1066//===----------------------------------------------------------------------===//
1067
1068SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1069                                             SelectionDAG &DAG) {
1070  MVT PtrVT = Op.getValueType();
1071  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1072  Constant *C = CP->getConstVal();
1073  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1074  SDValue Zero = DAG.getConstant(0, PtrVT);
1075
1076  const TargetMachine &TM = DAG.getTarget();
1077
1078  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1079  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1080
1081  // If this is a non-darwin platform, we don't support non-static relo models
1082  // yet.
1083  if (TM.getRelocationModel() == Reloc::Static ||
1084      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1085    // Generate non-pic code that has direct accesses to the constant pool.
1086    // The address of the global is just (hi(&g)+lo(&g)).
1087    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1088  }
1089
1090  if (TM.getRelocationModel() == Reloc::PIC_) {
1091    // With PIC, the first instruction is actually "GR+hi(&G)".
1092    Hi = DAG.getNode(ISD::ADD, PtrVT,
1093                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1094  }
1095
1096  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1097  return Lo;
1098}
1099
1100SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1101  MVT PtrVT = Op.getValueType();
1102  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1103  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1104  SDValue Zero = DAG.getConstant(0, PtrVT);
1105
1106  const TargetMachine &TM = DAG.getTarget();
1107
1108  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1109  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1110
1111  // If this is a non-darwin platform, we don't support non-static relo models
1112  // yet.
1113  if (TM.getRelocationModel() == Reloc::Static ||
1114      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1115    // Generate non-pic code that has direct accesses to the constant pool.
1116    // The address of the global is just (hi(&g)+lo(&g)).
1117    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1118  }
1119
1120  if (TM.getRelocationModel() == Reloc::PIC_) {
1121    // With PIC, the first instruction is actually "GR+hi(&G)".
1122    Hi = DAG.getNode(ISD::ADD, PtrVT,
1123                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1124  }
1125
1126  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1127  return Lo;
1128}
1129
1130SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1131                                                   SelectionDAG &DAG) {
1132  assert(0 && "TLS not implemented for PPC.");
1133  return SDValue(); // Not reached
1134}
1135
1136SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1137                                              SelectionDAG &DAG) {
1138  MVT PtrVT = Op.getValueType();
1139  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1140  GlobalValue *GV = GSDN->getGlobal();
1141  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1142  SDValue Zero = DAG.getConstant(0, PtrVT);
1143  DebugLoc dl = GSDN->getDebugLoc();
1144
1145  const TargetMachine &TM = DAG.getTarget();
1146
1147  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
1148  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
1149
1150  // If this is a non-darwin platform, we don't support non-static relo models
1151  // yet.
1152  if (TM.getRelocationModel() == Reloc::Static ||
1153      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1154    // Generate non-pic code that has direct accesses to globals.
1155    // The address of the global is just (hi(&g)+lo(&g)).
1156    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1157  }
1158
1159  if (TM.getRelocationModel() == Reloc::PIC_) {
1160    // With PIC, the first instruction is actually "GR+hi(&G)".
1161    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1162                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1163  }
1164
1165  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1166
1167  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1168    return Lo;
1169
1170  // If the global is weak or external, we have to go through the lazy
1171  // resolution stub.
1172  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0);
1173}
1174
1175SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1176  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1177  DebugLoc dl = Op.getNode()->getDebugLoc();
1178
1179  // If we're comparing for equality to zero, expose the fact that this is
1180  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1181  // fold the new nodes.
1182  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1183    if (C->isNullValue() && CC == ISD::SETEQ) {
1184      MVT VT = Op.getOperand(0).getValueType();
1185      SDValue Zext = Op.getOperand(0);
1186      if (VT.bitsLT(MVT::i32)) {
1187        VT = MVT::i32;
1188        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1189      }
1190      unsigned Log2b = Log2_32(VT.getSizeInBits());
1191      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1192      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1193                                DAG.getConstant(Log2b, MVT::i32));
1194      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1195    }
1196    // Leave comparisons against 0 and -1 alone for now, since they're usually
1197    // optimized.  FIXME: revisit this when we can custom lower all setcc
1198    // optimizations.
1199    if (C->isAllOnesValue() || C->isNullValue())
1200      return SDValue();
1201  }
1202
1203  // If we have an integer seteq/setne, turn it into a compare against zero
1204  // by xor'ing the rhs with the lhs, which is faster than setting a
1205  // condition register, reading it back out, and masking the correct bit.  The
1206  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1207  // the result to other bit-twiddling opportunities.
1208  MVT LHSVT = Op.getOperand(0).getValueType();
1209  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1210    MVT VT = Op.getValueType();
1211    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1212                                Op.getOperand(1));
1213    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1214  }
1215  return SDValue();
1216}
1217
1218SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1219                              int VarArgsFrameIndex,
1220                              int VarArgsStackOffset,
1221                              unsigned VarArgsNumGPR,
1222                              unsigned VarArgsNumFPR,
1223                              const PPCSubtarget &Subtarget) {
1224
1225  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1226  return SDValue(); // Not reached
1227}
1228
1229SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
1230  SDValue Chain = Op.getOperand(0);
1231  SDValue Trmp = Op.getOperand(1); // trampoline
1232  SDValue FPtr = Op.getOperand(2); // nested function
1233  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1234  DebugLoc dl = Op.getNode()->getDebugLoc();
1235
1236  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1237  bool isPPC64 = (PtrVT == MVT::i64);
1238  const Type *IntPtrTy =
1239    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType();
1240
1241  TargetLowering::ArgListTy Args;
1242  TargetLowering::ArgListEntry Entry;
1243
1244  Entry.Ty = IntPtrTy;
1245  Entry.Node = Trmp; Args.push_back(Entry);
1246
1247  // TrampSize == (isPPC64 ? 48 : 40);
1248  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1249                               isPPC64 ? MVT::i64 : MVT::i32);
1250  Args.push_back(Entry);
1251
1252  Entry.Node = FPtr; Args.push_back(Entry);
1253  Entry.Node = Nest; Args.push_back(Entry);
1254
1255  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1256  std::pair<SDValue, SDValue> CallResult =
1257    LowerCallTo(Chain, Op.getValueType().getTypeForMVT(), false, false,
1258                false, false, CallingConv::C, false,
1259                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1260                Args, DAG, dl);
1261
1262  SDValue Ops[] =
1263    { CallResult.first, CallResult.second };
1264
1265  return DAG.getMergeValues(Ops, 2, dl);
1266}
1267
1268SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1269                                        int VarArgsFrameIndex,
1270                                        int VarArgsStackOffset,
1271                                        unsigned VarArgsNumGPR,
1272                                        unsigned VarArgsNumFPR,
1273                                        const PPCSubtarget &Subtarget) {
1274  DebugLoc dl = Op.getNode()->getDebugLoc();
1275
1276  if (Subtarget.isMachoABI()) {
1277    // vastart just stores the address of the VarArgsFrameIndex slot into the
1278    // memory location argument.
1279    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1280    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1281    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1282    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1283  }
1284
1285  // For ELF 32 ABI we follow the layout of the va_list struct.
1286  // We suppose the given va_list is already allocated.
1287  //
1288  // typedef struct {
1289  //  char gpr;     /* index into the array of 8 GPRs
1290  //                 * stored in the register save area
1291  //                 * gpr=0 corresponds to r3,
1292  //                 * gpr=1 to r4, etc.
1293  //                 */
1294  //  char fpr;     /* index into the array of 8 FPRs
1295  //                 * stored in the register save area
1296  //                 * fpr=0 corresponds to f1,
1297  //                 * fpr=1 to f2, etc.
1298  //                 */
1299  //  char *overflow_arg_area;
1300  //                /* location on stack that holds
1301  //                 * the next overflow argument
1302  //                 */
1303  //  char *reg_save_area;
1304  //               /* where r3:r10 and f1:f8 (if saved)
1305  //                * are stored
1306  //                */
1307  // } va_list[1];
1308
1309
1310  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1311  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1312
1313
1314  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1315
1316  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1317  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1318
1319  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1320  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1321
1322  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1323  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1324
1325  uint64_t FPROffset = 1;
1326  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1327
1328  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1329
1330  // Store first byte : number of int regs
1331  SDValue firstStore = DAG.getStore(Op.getOperand(0), dl, ArgGPR,
1332                                      Op.getOperand(1), SV, 0);
1333  uint64_t nextOffset = FPROffset;
1334  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1335                                  ConstFPROffset);
1336
1337  // Store second byte : number of float regs
1338  SDValue secondStore =
1339    DAG.getStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset);
1340  nextOffset += StackOffset;
1341  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1342
1343  // Store second word : arguments given on stack
1344  SDValue thirdStore =
1345    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset);
1346  nextOffset += FrameOffset;
1347  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1348
1349  // Store third word : arguments given in registers
1350  return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset);
1351
1352}
1353
1354#include "PPCGenCallingConv.inc"
1355
1356/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1357/// depending on which subtarget is selected.
1358static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1359  if (Subtarget.isMachoABI()) {
1360    static const unsigned FPR[] = {
1361      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1362      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1363    };
1364    return FPR;
1365  }
1366
1367
1368  static const unsigned FPR[] = {
1369    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1370    PPC::F8
1371  };
1372  return FPR;
1373}
1374
1375/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1376/// the stack.
1377static unsigned CalculateStackSlotSize(SDValue Arg, ISD::ArgFlagsTy Flags,
1378                                       bool isVarArg, unsigned PtrByteSize) {
1379  MVT ArgVT = Arg.getValueType();
1380  unsigned ArgSize =ArgVT.getSizeInBits()/8;
1381  if (Flags.isByVal())
1382    ArgSize = Flags.getByValSize();
1383  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1384
1385  return ArgSize;
1386}
1387
1388SDValue
1389PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op,
1390                                         SelectionDAG &DAG,
1391                                         int &VarArgsFrameIndex,
1392                                         int &VarArgsStackOffset,
1393                                         unsigned &VarArgsNumGPR,
1394                                         unsigned &VarArgsNumFPR,
1395                                         const PPCSubtarget &Subtarget) {
1396  // TODO: add description of PPC stack frame format, or at least some docs.
1397  //
1398  MachineFunction &MF = DAG.getMachineFunction();
1399  MachineFrameInfo *MFI = MF.getFrameInfo();
1400  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1401  SmallVector<SDValue, 8> ArgValues;
1402  SDValue Root = Op.getOperand(0);
1403  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1404  DebugLoc dl = Op.getNode()->getDebugLoc();
1405
1406  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1407  bool isPPC64 = PtrVT == MVT::i64;
1408  bool isMachoABI = Subtarget.isMachoABI();
1409  bool isELF32_ABI = Subtarget.isELF32_ABI();
1410  // Potential tail calls could cause overwriting of argument stack slots.
1411  unsigned CC = MF.getFunction()->getCallingConv();
1412  bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast));
1413  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1414
1415  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1416  // Area that is at least reserved in caller of this function.
1417  unsigned MinReservedArea = ArgOffset;
1418
1419  static const unsigned GPR_32[] = {           // 32-bit registers.
1420    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1421    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1422  };
1423  static const unsigned GPR_64[] = {           // 64-bit registers.
1424    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1425    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1426  };
1427
1428  static const unsigned *FPR = GetFPR(Subtarget);
1429
1430  static const unsigned VR[] = {
1431    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1432    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1433  };
1434
1435  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1436  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1437  const unsigned Num_VR_Regs  = array_lengthof( VR);
1438
1439  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1440
1441  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1442
1443  // In 32-bit non-varargs functions, the stack space for vectors is after the
1444  // stack space for non-vectors.  We do not use this space unless we have
1445  // too many vectors to fit in registers, something that only occurs in
1446  // constructed examples:), but we have to walk the arglist to figure
1447  // that out...for the pathological case, compute VecArgOffset as the
1448  // start of the vector parameter area.  Computing VecArgOffset is the
1449  // entire point of the following loop.
1450  // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1451  // to handle Elf here.
1452  unsigned VecArgOffset = ArgOffset;
1453  if (!isVarArg && !isPPC64) {
1454    for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues()-1; ArgNo != e;
1455         ++ArgNo) {
1456      MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1457      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1458      ISD::ArgFlagsTy Flags =
1459        cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1460
1461      if (Flags.isByVal()) {
1462        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1463        ObjSize = Flags.getByValSize();
1464        unsigned ArgSize =
1465                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1466        VecArgOffset += ArgSize;
1467        continue;
1468      }
1469
1470      switch(ObjectVT.getSimpleVT()) {
1471      default: assert(0 && "Unhandled argument type!");
1472      case MVT::i32:
1473      case MVT::f32:
1474        VecArgOffset += isPPC64 ? 8 : 4;
1475        break;
1476      case MVT::i64:  // PPC64
1477      case MVT::f64:
1478        VecArgOffset += 8;
1479        break;
1480      case MVT::v4f32:
1481      case MVT::v4i32:
1482      case MVT::v8i16:
1483      case MVT::v16i8:
1484        // Nothing to do, we're only looking at Nonvector args here.
1485        break;
1486      }
1487    }
1488  }
1489  // We've found where the vector parameter area in memory is.  Skip the
1490  // first 12 parameters; these don't use that memory.
1491  VecArgOffset = ((VecArgOffset+15)/16)*16;
1492  VecArgOffset += 12*16;
1493
1494  // Add DAG nodes to load the arguments or copy them out of registers.  On
1495  // entry to a function on PPC, the arguments start after the linkage area,
1496  // although the first ones are often in registers.
1497  //
1498  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1499  // represented with two words (long long or double) must be copied to an
1500  // even GPR_idx value or to an even ArgOffset value.
1501
1502  SmallVector<SDValue, 8> MemOps;
1503  unsigned nAltivecParamsAtEnd = 0;
1504  for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues() - 1;
1505       ArgNo != e; ++ArgNo) {
1506    SDValue ArgVal;
1507    bool needsLoad = false;
1508    MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1509    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1510    unsigned ArgSize = ObjSize;
1511    ISD::ArgFlagsTy Flags =
1512      cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1513    // See if next argument requires stack alignment in ELF
1514    bool Align = Flags.isSplit();
1515
1516    unsigned CurArgOffset = ArgOffset;
1517
1518    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1519    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1520        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1521      if (isVarArg || isPPC64) {
1522        MinReservedArea = ((MinReservedArea+15)/16)*16;
1523        MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1524                                                  Flags,
1525                                                  isVarArg,
1526                                                  PtrByteSize);
1527      } else  nAltivecParamsAtEnd++;
1528    } else
1529      // Calculate min reserved area.
1530      MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1531                                                Flags,
1532                                                isVarArg,
1533                                                PtrByteSize);
1534
1535    // FIXME alignment for ELF may not be right
1536    // FIXME the codegen can be much improved in some cases.
1537    // We do not have to keep everything in memory.
1538    if (Flags.isByVal()) {
1539      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1540      ObjSize = Flags.getByValSize();
1541      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1542      // Double word align in ELF
1543      if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1544      // Objects of size 1 and 2 are right justified, everything else is
1545      // left justified.  This means the memory address is adjusted forwards.
1546      if (ObjSize==1 || ObjSize==2) {
1547        CurArgOffset = CurArgOffset + (4 - ObjSize);
1548      }
1549      // The value of the object is its address.
1550      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1551      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1552      ArgValues.push_back(FIN);
1553      if (ObjSize==1 || ObjSize==2) {
1554        if (GPR_idx != Num_GPR_Regs) {
1555          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1556          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1557          SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
1558          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1559                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1560          MemOps.push_back(Store);
1561          ++GPR_idx;
1562          if (isMachoABI) ArgOffset += PtrByteSize;
1563        } else {
1564          ArgOffset += PtrByteSize;
1565        }
1566        continue;
1567      }
1568      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1569        // Store whatever pieces of the object are in registers
1570        // to memory.  ArgVal will be address of the beginning of
1571        // the object.
1572        if (GPR_idx != Num_GPR_Regs) {
1573          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1574          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1575          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1576          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1577          SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
1578          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1579          MemOps.push_back(Store);
1580          ++GPR_idx;
1581          if (isMachoABI) ArgOffset += PtrByteSize;
1582        } else {
1583          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1584          break;
1585        }
1586      }
1587      continue;
1588    }
1589
1590    switch (ObjectVT.getSimpleVT()) {
1591    default: assert(0 && "Unhandled argument type!");
1592    case MVT::i32:
1593      if (!isPPC64) {
1594        // Double word align in ELF
1595        if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1596
1597        if (GPR_idx != Num_GPR_Regs) {
1598          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1599          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1600          ArgVal = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32);
1601          ++GPR_idx;
1602        } else {
1603          needsLoad = true;
1604          ArgSize = PtrByteSize;
1605        }
1606        // Stack align in ELF
1607        if (needsLoad && Align && isELF32_ABI)
1608          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1609        // All int arguments reserve stack space in Macho ABI.
1610        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1611        break;
1612      }
1613      // FALLTHROUGH
1614    case MVT::i64:  // PPC64
1615      if (GPR_idx != Num_GPR_Regs) {
1616        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1617        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1618        ArgVal = DAG.getCopyFromReg(Root, dl, VReg, MVT::i64);
1619
1620        if (ObjectVT == MVT::i32) {
1621          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1622          // value to MVT::i64 and then truncate to the correct register size.
1623          if (Flags.isSExt())
1624            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1625                                 DAG.getValueType(ObjectVT));
1626          else if (Flags.isZExt())
1627            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1628                                 DAG.getValueType(ObjectVT));
1629
1630          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1631        }
1632
1633        ++GPR_idx;
1634      } else {
1635        needsLoad = true;
1636        ArgSize = PtrByteSize;
1637      }
1638      // All int arguments reserve stack space in Macho ABI.
1639      if (isMachoABI || needsLoad) ArgOffset += 8;
1640      break;
1641
1642    case MVT::f32:
1643    case MVT::f64:
1644      // Every 4 bytes of argument space consumes one of the GPRs available for
1645      // argument passing.
1646      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1647        ++GPR_idx;
1648        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1649          ++GPR_idx;
1650      }
1651      if (FPR_idx != Num_FPR_Regs) {
1652        unsigned VReg;
1653        if (ObjectVT == MVT::f32)
1654          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1655        else
1656          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1657        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1658        ArgVal = DAG.getCopyFromReg(Root, dl, VReg, ObjectVT);
1659        ++FPR_idx;
1660      } else {
1661        needsLoad = true;
1662      }
1663
1664      // Stack align in ELF
1665      if (needsLoad && Align && isELF32_ABI)
1666        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1667      // All FP arguments reserve stack space in Macho ABI.
1668      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1669      break;
1670    case MVT::v4f32:
1671    case MVT::v4i32:
1672    case MVT::v8i16:
1673    case MVT::v16i8:
1674      // Note that vector arguments in registers don't reserve stack space,
1675      // except in varargs functions.
1676      if (VR_idx != Num_VR_Regs) {
1677        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1678        RegInfo.addLiveIn(VR[VR_idx], VReg);
1679        ArgVal = DAG.getCopyFromReg(Root, dl, VReg, ObjectVT);
1680        if (isVarArg) {
1681          while ((ArgOffset % 16) != 0) {
1682            ArgOffset += PtrByteSize;
1683            if (GPR_idx != Num_GPR_Regs)
1684              GPR_idx++;
1685          }
1686          ArgOffset += 16;
1687          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1688        }
1689        ++VR_idx;
1690      } else {
1691        if (!isVarArg && !isPPC64) {
1692          // Vectors go after all the nonvectors.
1693          CurArgOffset = VecArgOffset;
1694          VecArgOffset += 16;
1695        } else {
1696          // Vectors are aligned.
1697          ArgOffset = ((ArgOffset+15)/16)*16;
1698          CurArgOffset = ArgOffset;
1699          ArgOffset += 16;
1700        }
1701        needsLoad = true;
1702      }
1703      break;
1704    }
1705
1706    // We need to load the argument to a virtual register if we determined above
1707    // that we ran out of physical registers of the appropriate type.
1708    if (needsLoad) {
1709      int FI = MFI->CreateFixedObject(ObjSize,
1710                                      CurArgOffset + (ArgSize - ObjSize),
1711                                      isImmutable);
1712      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1713      ArgVal = DAG.getLoad(ObjectVT, dl, Root, FIN, NULL, 0);
1714    }
1715
1716    ArgValues.push_back(ArgVal);
1717  }
1718
1719  // Set the size that is at least reserved in caller of this function.  Tail
1720  // call optimized function's reserved stack space needs to be aligned so that
1721  // taking the difference between two stack areas will result in an aligned
1722  // stack.
1723  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1724  // Add the Altivec parameters at the end, if needed.
1725  if (nAltivecParamsAtEnd) {
1726    MinReservedArea = ((MinReservedArea+15)/16)*16;
1727    MinReservedArea += 16*nAltivecParamsAtEnd;
1728  }
1729  MinReservedArea =
1730    std::max(MinReservedArea,
1731             PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1732  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1733    getStackAlignment();
1734  unsigned AlignMask = TargetAlign-1;
1735  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1736  FI->setMinReservedArea(MinReservedArea);
1737
1738  // If the function takes variable number of arguments, make a frame index for
1739  // the start of the first vararg value... for expansion of llvm.va_start.
1740  if (isVarArg) {
1741
1742    int depth;
1743    if (isELF32_ABI) {
1744      VarArgsNumGPR = GPR_idx;
1745      VarArgsNumFPR = FPR_idx;
1746
1747      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1748      // pointer.
1749      depth = -(Num_GPR_Regs * PtrVT.getSizeInBits()/8 +
1750                Num_FPR_Regs * MVT(MVT::f64).getSizeInBits()/8 +
1751                PtrVT.getSizeInBits()/8);
1752
1753      VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1754                                                  ArgOffset);
1755
1756    }
1757    else
1758      depth = ArgOffset;
1759
1760    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1761                                               depth);
1762    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1763
1764    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1765    // stored to the VarArgsFrameIndex on the stack.
1766    if (isELF32_ABI) {
1767      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1768        SDValue Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1769        SDValue Store = DAG.getStore(Root, dl, Val, FIN, NULL, 0);
1770        MemOps.push_back(Store);
1771        // Increment the address by four for the next argument to store
1772        SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1773        FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1774      }
1775    }
1776
1777    // If this function is vararg, store any remaining integer argument regs
1778    // to their spots on the stack so that they may be loaded by deferencing the
1779    // result of va_next.
1780    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1781      unsigned VReg;
1782      if (isPPC64)
1783        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1784      else
1785        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1786
1787      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1788      SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
1789      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1790      MemOps.push_back(Store);
1791      // Increment the address by four for the next argument to store
1792      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1793      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1794    }
1795
1796    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1797    // on the stack.
1798    if (isELF32_ABI) {
1799      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1800        SDValue Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1801        SDValue Store = DAG.getStore(Root, dl, Val, FIN, NULL, 0);
1802        MemOps.push_back(Store);
1803        // Increment the address by eight for the next argument to store
1804        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1805                                           PtrVT);
1806        FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1807      }
1808
1809      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1810        unsigned VReg;
1811        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1812
1813        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1814        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::f64);
1815        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1816        MemOps.push_back(Store);
1817        // Increment the address by eight for the next argument to store
1818        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1819                                           PtrVT);
1820        FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1821      }
1822    }
1823  }
1824
1825  if (!MemOps.empty())
1826    Root = DAG.getNode(ISD::TokenFactor, dl,
1827                       MVT::Other, &MemOps[0], MemOps.size());
1828
1829  ArgValues.push_back(Root);
1830
1831  // Return the new list of results.
1832  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1833                     &ArgValues[0], ArgValues.size());
1834}
1835
1836/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
1837/// linkage area.
1838static unsigned
1839CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
1840                                     bool isPPC64,
1841                                     bool isMachoABI,
1842                                     bool isVarArg,
1843                                     unsigned CC,
1844                                     CallSDNode *TheCall,
1845                                     unsigned &nAltivecParamsAtEnd) {
1846  // Count how many bytes are to be pushed on the stack, including the linkage
1847  // area, and parameter passing area.  We start with 24/48 bytes, which is
1848  // prereserved space for [SP][CR][LR][3 x unused].
1849  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1850  unsigned NumOps = TheCall->getNumArgs();
1851  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1852
1853  // Add up all the space actually used.
1854  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1855  // they all go in registers, but we must reserve stack space for them for
1856  // possible use by the caller.  In varargs or 64-bit calls, parameters are
1857  // assigned stack space in order, with padding so Altivec parameters are
1858  // 16-byte aligned.
1859  nAltivecParamsAtEnd = 0;
1860  for (unsigned i = 0; i != NumOps; ++i) {
1861    SDValue Arg = TheCall->getArg(i);
1862    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1863    MVT ArgVT = Arg.getValueType();
1864    // Varargs Altivec parameters are padded to a 16 byte boundary.
1865    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1866        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1867      if (!isVarArg && !isPPC64) {
1868        // Non-varargs Altivec parameters go after all the non-Altivec
1869        // parameters; handle those later so we know how much padding we need.
1870        nAltivecParamsAtEnd++;
1871        continue;
1872      }
1873      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1874      NumBytes = ((NumBytes+15)/16)*16;
1875    }
1876    NumBytes += CalculateStackSlotSize(Arg, Flags, isVarArg, PtrByteSize);
1877  }
1878
1879   // Allow for Altivec parameters at the end, if needed.
1880  if (nAltivecParamsAtEnd) {
1881    NumBytes = ((NumBytes+15)/16)*16;
1882    NumBytes += 16*nAltivecParamsAtEnd;
1883  }
1884
1885  // The prolog code of the callee may store up to 8 GPR argument registers to
1886  // the stack, allowing va_start to index over them in memory if its varargs.
1887  // Because we cannot tell if this is needed on the caller side, we have to
1888  // conservatively assume that it is needed.  As such, make sure we have at
1889  // least enough stack space for the caller to store the 8 GPRs.
1890  NumBytes = std::max(NumBytes,
1891                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1892
1893  // Tail call needs the stack to be aligned.
1894  if (CC==CallingConv::Fast && PerformTailCallOpt) {
1895    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1896      getStackAlignment();
1897    unsigned AlignMask = TargetAlign-1;
1898    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
1899  }
1900
1901  return NumBytes;
1902}
1903
1904/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
1905/// adjusted to accomodate the arguments for the tailcall.
1906static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
1907                                   unsigned ParamSize) {
1908
1909  if (!IsTailCall) return 0;
1910
1911  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
1912  unsigned CallerMinReservedArea = FI->getMinReservedArea();
1913  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
1914  // Remember only if the new adjustement is bigger.
1915  if (SPDiff < FI->getTailCallSPDelta())
1916    FI->setTailCallSPDelta(SPDiff);
1917
1918  return SPDiff;
1919}
1920
1921/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1922/// following the call is a return. A function is eligible if caller/callee
1923/// calling conventions match, currently only fastcc supports tail calls, and
1924/// the function CALL is immediatly followed by a RET.
1925bool
1926PPCTargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1927                                                     SDValue Ret,
1928                                                     SelectionDAG& DAG) const {
1929  // Variable argument functions are not supported.
1930  if (!PerformTailCallOpt || TheCall->isVarArg())
1931    return false;
1932
1933  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1934    MachineFunction &MF = DAG.getMachineFunction();
1935    unsigned CallerCC = MF.getFunction()->getCallingConv();
1936    unsigned CalleeCC = TheCall->getCallingConv();
1937    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1938      // Functions containing by val parameters are not supported.
1939      for (unsigned i = 0; i != TheCall->getNumArgs(); i++) {
1940         ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1941         if (Flags.isByVal()) return false;
1942      }
1943
1944      SDValue Callee = TheCall->getCallee();
1945      // Non PIC/GOT  tail calls are supported.
1946      if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1947        return true;
1948
1949      // At the moment we can only do local tail calls (in same module, hidden
1950      // or protected) if we are generating PIC.
1951      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1952        return G->getGlobal()->hasHiddenVisibility()
1953            || G->getGlobal()->hasProtectedVisibility();
1954    }
1955  }
1956
1957  return false;
1958}
1959
1960/// isCallCompatibleAddress - Return the immediate to use if the specified
1961/// 32-bit value is representable in the immediate field of a BxA instruction.
1962static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
1963  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1964  if (!C) return 0;
1965
1966  int Addr = C->getZExtValue();
1967  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1968      (Addr << 6 >> 6) != Addr)
1969    return 0;  // Top 6 bits have to be sext of immediate.
1970
1971  return DAG.getConstant((int)C->getZExtValue() >> 2,
1972                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
1973}
1974
1975namespace {
1976
1977struct TailCallArgumentInfo {
1978  SDValue Arg;
1979  SDValue FrameIdxOp;
1980  int       FrameIdx;
1981
1982  TailCallArgumentInfo() : FrameIdx(0) {}
1983};
1984
1985}
1986
1987/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
1988static void
1989StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
1990                                           SDValue Chain,
1991                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
1992                   SmallVector<SDValue, 8> &MemOpChains,
1993                   DebugLoc dl) {
1994  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
1995    SDValue Arg = TailCallArgs[i].Arg;
1996    SDValue FIN = TailCallArgs[i].FrameIdxOp;
1997    int FI = TailCallArgs[i].FrameIdx;
1998    // Store relative to framepointer.
1999    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2000                                       PseudoSourceValue::getFixedStack(FI),
2001                                       0));
2002  }
2003}
2004
2005/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2006/// the appropriate stack slot for the tail call optimized function call.
2007static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2008                                               MachineFunction &MF,
2009                                               SDValue Chain,
2010                                               SDValue OldRetAddr,
2011                                               SDValue OldFP,
2012                                               int SPDiff,
2013                                               bool isPPC64,
2014                                               bool isMachoABI,
2015                                               DebugLoc dl) {
2016  if (SPDiff) {
2017    // Calculate the new stack slot for the return address.
2018    int SlotSize = isPPC64 ? 8 : 4;
2019    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2020                                                                   isMachoABI);
2021    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2022                                                          NewRetAddrLoc);
2023    int NewFPLoc = SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
2024                                                                    isMachoABI);
2025    int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
2026
2027    MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2028    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2029    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2030                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
2031    SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2032    Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2033                         PseudoSourceValue::getFixedStack(NewFPIdx), 0);
2034  }
2035  return Chain;
2036}
2037
2038/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2039/// the position of the argument.
2040static void
2041CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2042                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2043                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2044  int Offset = ArgOffset + SPDiff;
2045  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2046  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
2047  MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2048  SDValue FIN = DAG.getFrameIndex(FI, VT);
2049  TailCallArgumentInfo Info;
2050  Info.Arg = Arg;
2051  Info.FrameIdxOp = FIN;
2052  Info.FrameIdx = FI;
2053  TailCallArguments.push_back(Info);
2054}
2055
2056/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2057/// stack slot. Returns the chain as result and the loaded frame pointers in
2058/// LROpOut/FPOpout. Used when tail calling.
2059SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2060                                                        int SPDiff,
2061                                                        SDValue Chain,
2062                                                        SDValue &LROpOut,
2063                                                        SDValue &FPOpOut,
2064                                                        DebugLoc dl) {
2065  if (SPDiff) {
2066    // Load the LR and FP stack slot for later adjusting.
2067    MVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2068    LROpOut = getReturnAddrFrameIndex(DAG);
2069    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0);
2070    Chain = SDValue(LROpOut.getNode(), 1);
2071    FPOpOut = getFramePointerFrameIndex(DAG);
2072    FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0);
2073    Chain = SDValue(FPOpOut.getNode(), 1);
2074  }
2075  return Chain;
2076}
2077
2078/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2079/// by "Src" to address "Dst" of size "Size".  Alignment information is
2080/// specified by the specific parameter attribute. The copy will be passed as
2081/// a byval function parameter.
2082/// Sometimes what we are copying is the end of a larger object, the part that
2083/// does not fit in registers.
2084static SDValue
2085CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2086                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2087                          unsigned Size, DebugLoc dl) {
2088  SDValue SizeNode = DAG.getConstant(Size, MVT::i32);
2089  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2090                       false, NULL, 0, NULL, 0);
2091}
2092
2093/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2094/// tail calls.
2095static void
2096LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2097                 SDValue Arg, SDValue PtrOff, int SPDiff,
2098                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2099                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2100                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments,
2101                 DebugLoc dl) {
2102  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2103  if (!isTailCall) {
2104    if (isVector) {
2105      SDValue StackPtr;
2106      if (isPPC64)
2107        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2108      else
2109        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2110      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2111                           DAG.getConstant(ArgOffset, PtrVT));
2112    }
2113    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
2114  // Calculate and remember argument location.
2115  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2116                                  TailCallArguments);
2117}
2118
2119SDValue PPCTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG,
2120                                       const PPCSubtarget &Subtarget,
2121                                       TargetMachine &TM) {
2122  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
2123  SDValue Chain  = TheCall->getChain();
2124  bool isVarArg   = TheCall->isVarArg();
2125  unsigned CC     = TheCall->getCallingConv();
2126  bool isTailCall = TheCall->isTailCall()
2127                 && CC == CallingConv::Fast && PerformTailCallOpt;
2128  SDValue Callee = TheCall->getCallee();
2129  unsigned NumOps  = TheCall->getNumArgs();
2130  DebugLoc dl = TheCall->getDebugLoc();
2131
2132  bool isMachoABI = Subtarget.isMachoABI();
2133  bool isELF32_ABI  = Subtarget.isELF32_ABI();
2134
2135  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2136  bool isPPC64 = PtrVT == MVT::i64;
2137  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2138
2139  MachineFunction &MF = DAG.getMachineFunction();
2140
2141  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
2142  // SelectExpr to use to put the arguments in the appropriate registers.
2143  std::vector<SDValue> args_to_use;
2144
2145  // Mark this function as potentially containing a function that contains a
2146  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2147  // and restoring the callers stack pointer in this functions epilog. This is
2148  // done because by tail calling the called function might overwrite the value
2149  // in this function's (MF) stack pointer stack slot 0(SP).
2150  if (PerformTailCallOpt && CC==CallingConv::Fast)
2151    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2152
2153  unsigned nAltivecParamsAtEnd = 0;
2154
2155  // Count how many bytes are to be pushed on the stack, including the linkage
2156  // area, and parameter passing area.  We start with 24/48 bytes, which is
2157  // prereserved space for [SP][CR][LR][3 x unused].
2158  unsigned NumBytes =
2159    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isMachoABI, isVarArg, CC,
2160                                         TheCall, nAltivecParamsAtEnd);
2161
2162  // Calculate by how many bytes the stack has to be adjusted in case of tail
2163  // call optimization.
2164  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2165
2166  // Adjust the stack pointer for the new arguments...
2167  // These operations are automatically eliminated by the prolog/epilog pass
2168  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2169  SDValue CallSeqStart = Chain;
2170
2171  // Load the return address and frame pointer so it can be move somewhere else
2172  // later.
2173  SDValue LROp, FPOp;
2174  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
2175
2176  // Set up a copy of the stack pointer for use loading and storing any
2177  // arguments that may not fit in the registers available for argument
2178  // passing.
2179  SDValue StackPtr;
2180  if (isPPC64)
2181    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2182  else
2183    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2184
2185  // Figure out which arguments are going to go in registers, and which in
2186  // memory.  Also, if this is a vararg function, floating point operations
2187  // must be stored to our stack, and loaded into integer regs as well, if
2188  // any integer regs are available for argument passing.
2189  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
2190  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2191
2192  static const unsigned GPR_32[] = {           // 32-bit registers.
2193    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2194    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2195  };
2196  static const unsigned GPR_64[] = {           // 64-bit registers.
2197    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2198    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2199  };
2200  static const unsigned *FPR = GetFPR(Subtarget);
2201
2202  static const unsigned VR[] = {
2203    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2204    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2205  };
2206  const unsigned NumGPRs = array_lengthof(GPR_32);
2207  const unsigned NumFPRs = isMachoABI ? 13 : 8;
2208  const unsigned NumVRs  = array_lengthof( VR);
2209
2210  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2211
2212  std::vector<std::pair<unsigned, SDValue> > RegsToPass;
2213  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2214
2215  SmallVector<SDValue, 8> MemOpChains;
2216  for (unsigned i = 0; i != NumOps; ++i) {
2217    bool inMem = false;
2218    SDValue Arg = TheCall->getArg(i);
2219    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
2220    // See if next argument requires stack alignment in ELF
2221    bool Align = Flags.isSplit();
2222
2223    // PtrOff will be used to store the current argument to the stack if a
2224    // register cannot be found for it.
2225    SDValue PtrOff;
2226
2227    // Stack align in ELF 32
2228    if (isELF32_ABI && Align)
2229      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
2230                               StackPtr.getValueType());
2231    else
2232      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2233
2234    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
2235
2236    // On PPC64, promote integers to 64-bit values.
2237    if (isPPC64 && Arg.getValueType() == MVT::i32) {
2238      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2239      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2240      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
2241    }
2242
2243    // FIXME Elf untested, what are alignment rules?
2244    // FIXME memcpy is used way more than necessary.  Correctness first.
2245    if (Flags.isByVal()) {
2246      unsigned Size = Flags.getByValSize();
2247      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2248      if (Size==1 || Size==2) {
2249        // Very small objects are passed right-justified.
2250        // Everything else is passed left-justified.
2251        MVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2252        if (GPR_idx != NumGPRs) {
2253          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
2254                                          NULL, 0, VT);
2255          MemOpChains.push_back(Load.getValue(1));
2256          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2257          if (isMachoABI)
2258            ArgOffset += PtrByteSize;
2259        } else {
2260          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2261          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
2262          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2263                                CallSeqStart.getNode()->getOperand(0),
2264                                Flags, DAG, Size, dl);
2265          // This must go outside the CALLSEQ_START..END.
2266          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2267                               CallSeqStart.getNode()->getOperand(1));
2268          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2269                                 NewCallSeqStart.getNode());
2270          Chain = CallSeqStart = NewCallSeqStart;
2271          ArgOffset += PtrByteSize;
2272        }
2273        continue;
2274      }
2275      // Copy entire object into memory.  There are cases where gcc-generated
2276      // code assumes it is there, even if it could be put entirely into
2277      // registers.  (This is not what the doc says.)
2278      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2279                            CallSeqStart.getNode()->getOperand(0),
2280                            Flags, DAG, Size, dl);
2281      // This must go outside the CALLSEQ_START..END.
2282      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2283                           CallSeqStart.getNode()->getOperand(1));
2284      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
2285      Chain = CallSeqStart = NewCallSeqStart;
2286      // And copy the pieces of it that fit into registers.
2287      for (unsigned j=0; j<Size; j+=PtrByteSize) {
2288        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2289        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2290        if (GPR_idx != NumGPRs) {
2291          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, NULL, 0);
2292          MemOpChains.push_back(Load.getValue(1));
2293          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2294          if (isMachoABI)
2295            ArgOffset += PtrByteSize;
2296        } else {
2297          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2298          break;
2299        }
2300      }
2301      continue;
2302    }
2303
2304    switch (Arg.getValueType().getSimpleVT()) {
2305    default: assert(0 && "Unexpected ValueType for argument!");
2306    case MVT::i32:
2307    case MVT::i64:
2308      // Double word align in ELF
2309      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2310      if (GPR_idx != NumGPRs) {
2311        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2312      } else {
2313        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2314                         isPPC64, isTailCall, false, MemOpChains,
2315                         TailCallArguments, dl);
2316        inMem = true;
2317      }
2318      if (inMem || isMachoABI) {
2319        // Stack align in ELF
2320        if (isELF32_ABI && Align)
2321          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2322
2323        ArgOffset += PtrByteSize;
2324      }
2325      break;
2326    case MVT::f32:
2327    case MVT::f64:
2328      if (FPR_idx != NumFPRs) {
2329        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
2330
2331        if (isVarArg) {
2332          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
2333          MemOpChains.push_back(Store);
2334
2335          // Float varargs are always shadowed in available integer registers
2336          if (GPR_idx != NumGPRs) {
2337            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
2338            MemOpChains.push_back(Load.getValue(1));
2339            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2340                                                                Load));
2341          }
2342          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
2343            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
2344            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
2345            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
2346            MemOpChains.push_back(Load.getValue(1));
2347            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2348                                                                Load));
2349          }
2350        } else {
2351          // If we have any FPRs remaining, we may also have GPRs remaining.
2352          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2353          // GPRs.
2354          if (isMachoABI) {
2355            if (GPR_idx != NumGPRs)
2356              ++GPR_idx;
2357            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2358                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2359              ++GPR_idx;
2360          }
2361        }
2362      } else {
2363        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2364                         isPPC64, isTailCall, false, MemOpChains,
2365                         TailCallArguments, dl);
2366        inMem = true;
2367      }
2368      if (inMem || isMachoABI) {
2369        // Stack align in ELF
2370        if (isELF32_ABI && Align)
2371          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2372        if (isPPC64)
2373          ArgOffset += 8;
2374        else
2375          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2376      }
2377      break;
2378    case MVT::v4f32:
2379    case MVT::v4i32:
2380    case MVT::v8i16:
2381    case MVT::v16i8:
2382      if (isVarArg) {
2383        // These go aligned on the stack, or in the corresponding R registers
2384        // when within range.  The Darwin PPC ABI doc claims they also go in
2385        // V registers; in fact gcc does this only for arguments that are
2386        // prototyped, not for those that match the ...  We do it for all
2387        // arguments, seems to work.
2388        while (ArgOffset % 16 !=0) {
2389          ArgOffset += PtrByteSize;
2390          if (GPR_idx != NumGPRs)
2391            GPR_idx++;
2392        }
2393        // We could elide this store in the case where the object fits
2394        // entirely in R registers.  Maybe later.
2395        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2396                            DAG.getConstant(ArgOffset, PtrVT));
2397        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
2398        MemOpChains.push_back(Store);
2399        if (VR_idx != NumVRs) {
2400          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, NULL, 0);
2401          MemOpChains.push_back(Load.getValue(1));
2402          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2403        }
2404        ArgOffset += 16;
2405        for (unsigned i=0; i<16; i+=PtrByteSize) {
2406          if (GPR_idx == NumGPRs)
2407            break;
2408          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
2409                                  DAG.getConstant(i, PtrVT));
2410          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, NULL, 0);
2411          MemOpChains.push_back(Load.getValue(1));
2412          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2413        }
2414        break;
2415      }
2416
2417      // Non-varargs Altivec params generally go in registers, but have
2418      // stack space allocated at the end.
2419      if (VR_idx != NumVRs) {
2420        // Doesn't have GPR space allocated.
2421        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2422      } else if (nAltivecParamsAtEnd==0) {
2423        // We are emitting Altivec params in order.
2424        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2425                         isPPC64, isTailCall, true, MemOpChains,
2426                         TailCallArguments, dl);
2427        ArgOffset += 16;
2428      }
2429      break;
2430    }
2431  }
2432  // If all Altivec parameters fit in registers, as they usually do,
2433  // they get stack space following the non-Altivec parameters.  We
2434  // don't track this here because nobody below needs it.
2435  // If there are more Altivec parameters than fit in registers emit
2436  // the stores here.
2437  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2438    unsigned j = 0;
2439    // Offset is aligned; skip 1st 12 params which go in V registers.
2440    ArgOffset = ((ArgOffset+15)/16)*16;
2441    ArgOffset += 12*16;
2442    for (unsigned i = 0; i != NumOps; ++i) {
2443      SDValue Arg = TheCall->getArg(i);
2444      MVT ArgType = Arg.getValueType();
2445      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2446          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2447        if (++j > NumVRs) {
2448          SDValue PtrOff;
2449          // We are emitting Altivec params in order.
2450          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2451                           isPPC64, isTailCall, true, MemOpChains,
2452                           TailCallArguments, dl);
2453          ArgOffset += 16;
2454        }
2455      }
2456    }
2457  }
2458
2459  if (!MemOpChains.empty())
2460    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2461                        &MemOpChains[0], MemOpChains.size());
2462
2463  // Build a sequence of copy-to-reg nodes chained together with token chain
2464  // and flag operands which copy the outgoing args into the appropriate regs.
2465  SDValue InFlag;
2466  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2467    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2468                             RegsToPass[i].second, InFlag);
2469    InFlag = Chain.getValue(1);
2470  }
2471
2472  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2473  if (isVarArg && isELF32_ABI) {
2474    SDValue SetCR(DAG.getTargetNode(PPC::CRSET, dl, MVT::i32), 0);
2475    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2476    InFlag = Chain.getValue(1);
2477  }
2478
2479  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2480  // might overwrite each other in case of tail call optimization.
2481  if (isTailCall) {
2482    SmallVector<SDValue, 8> MemOpChains2;
2483    // Do not flag preceeding copytoreg stuff together with the following stuff.
2484    InFlag = SDValue();
2485    StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2486                                      MemOpChains2, dl);
2487    if (!MemOpChains2.empty())
2488      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2489                          &MemOpChains2[0], MemOpChains2.size());
2490
2491    // Store the return address to the appropriate stack slot.
2492    Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2493                                          isPPC64, isMachoABI, dl);
2494  }
2495
2496  // Emit callseq_end just before tailcall node.
2497  if (isTailCall) {
2498    SmallVector<SDValue, 8> CallSeqOps;
2499    SDVTList CallSeqNodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2500    CallSeqOps.push_back(Chain);
2501    CallSeqOps.push_back(DAG.getIntPtrConstant(NumBytes, true));
2502    CallSeqOps.push_back(DAG.getIntPtrConstant(0, true));
2503    if (InFlag.getNode())
2504      CallSeqOps.push_back(InFlag);
2505    Chain = DAG.getNode(ISD::CALLSEQ_END, CallSeqNodeTys, &CallSeqOps[0],
2506                        CallSeqOps.size());
2507    InFlag = Chain.getValue(1);
2508  }
2509
2510  std::vector<MVT> NodeTys;
2511  NodeTys.push_back(MVT::Other);   // Returns a chain
2512  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2513
2514  SmallVector<SDValue, 8> Ops;
2515  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2516
2517  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2518  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2519  // node so that legalize doesn't hack it.
2520  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2521    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2522  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2523    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2524  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2525    // If this is an absolute destination address, use the munged value.
2526    Callee = SDValue(Dest, 0);
2527  else {
2528    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2529    // to do the call, we can't use PPCISD::CALL.
2530    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2531    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2532                        2 + (InFlag.getNode() != 0));
2533    InFlag = Chain.getValue(1);
2534
2535    // Copy the callee address into R12/X12 on darwin.
2536    if (isMachoABI) {
2537      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2538      Chain = DAG.getCopyToReg(Chain, dl, Reg, Callee, InFlag);
2539      InFlag = Chain.getValue(1);
2540    }
2541
2542    NodeTys.clear();
2543    NodeTys.push_back(MVT::Other);
2544    NodeTys.push_back(MVT::Flag);
2545    Ops.push_back(Chain);
2546    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2547    Callee.setNode(0);
2548    // Add CTR register as callee so a bctr can be emitted later.
2549    if (isTailCall)
2550      Ops.push_back(DAG.getRegister(PPC::CTR, getPointerTy()));
2551  }
2552
2553  // If this is a direct call, pass the chain and the callee.
2554  if (Callee.getNode()) {
2555    Ops.push_back(Chain);
2556    Ops.push_back(Callee);
2557  }
2558  // If this is a tail call add stack pointer delta.
2559  if (isTailCall)
2560    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2561
2562  // Add argument registers to the end of the list so that they are known live
2563  // into the call.
2564  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2565    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2566                                  RegsToPass[i].second.getValueType()));
2567
2568  // When performing tail call optimization the callee pops its arguments off
2569  // the stack. Account for this here so these bytes can be pushed back on in
2570  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2571  int BytesCalleePops =
2572    (CC==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2573
2574  if (InFlag.getNode())
2575    Ops.push_back(InFlag);
2576
2577  // Emit tail call.
2578  if (isTailCall) {
2579    assert(InFlag.getNode() &&
2580           "Flag must be set. Depend on flag being set in LowerRET");
2581    Chain = DAG.getNode(PPCISD::TAILCALL, dl,
2582                        TheCall->getVTList(), &Ops[0], Ops.size());
2583    return SDValue(Chain.getNode(), Op.getResNo());
2584  }
2585
2586  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2587  InFlag = Chain.getValue(1);
2588
2589  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2590                             DAG.getIntPtrConstant(BytesCalleePops, true),
2591                             InFlag);
2592  if (TheCall->getValueType(0) != MVT::Other)
2593    InFlag = Chain.getValue(1);
2594
2595  SmallVector<SDValue, 16> ResultVals;
2596  SmallVector<CCValAssign, 16> RVLocs;
2597  unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv();
2598  CCState CCInfo(CallerCC, isVarArg, TM, RVLocs);
2599  CCInfo.AnalyzeCallResult(TheCall, RetCC_PPC);
2600
2601  // Copy all of the result registers out of their specified physreg.
2602  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2603    CCValAssign &VA = RVLocs[i];
2604    MVT VT = VA.getValVT();
2605    assert(VA.isRegLoc() && "Can only return in registers!");
2606    Chain = DAG.getCopyFromReg(Chain, dl,
2607                               VA.getLocReg(), VT, InFlag).getValue(1);
2608    ResultVals.push_back(Chain.getValue(0));
2609    InFlag = Chain.getValue(2);
2610  }
2611
2612  // If the function returns void, just return the chain.
2613  if (RVLocs.empty())
2614    return Chain;
2615
2616  // Otherwise, merge everything together with a MERGE_VALUES node.
2617  ResultVals.push_back(Chain);
2618  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
2619                            &ResultVals[0], ResultVals.size());
2620  return Res.getValue(Op.getResNo());
2621}
2622
2623SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
2624                                      TargetMachine &TM) {
2625  SmallVector<CCValAssign, 16> RVLocs;
2626  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2627  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2628  DebugLoc dl = Op.getDebugLoc();
2629  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2630  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_PPC);
2631
2632  // If this is the first return lowered for this function, add the regs to the
2633  // liveout set for the function.
2634  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2635    for (unsigned i = 0; i != RVLocs.size(); ++i)
2636      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2637  }
2638
2639  SDValue Chain = Op.getOperand(0);
2640
2641  Chain = GetPossiblePreceedingTailCall(Chain, PPCISD::TAILCALL);
2642  if (Chain.getOpcode() == PPCISD::TAILCALL) {
2643    SDValue TailCall = Chain;
2644    SDValue TargetAddress = TailCall.getOperand(1);
2645    SDValue StackAdjustment = TailCall.getOperand(2);
2646
2647    assert(((TargetAddress.getOpcode() == ISD::Register &&
2648             cast<RegisterSDNode>(TargetAddress)->getReg() == PPC::CTR) ||
2649            TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
2650            TargetAddress.getOpcode() == ISD::TargetGlobalAddress ||
2651            isa<ConstantSDNode>(TargetAddress)) &&
2652    "Expecting an global address, external symbol, absolute value or register");
2653
2654    assert(StackAdjustment.getOpcode() == ISD::Constant &&
2655           "Expecting a const value");
2656
2657    SmallVector<SDValue,8> Operands;
2658    Operands.push_back(Chain.getOperand(0));
2659    Operands.push_back(TargetAddress);
2660    Operands.push_back(StackAdjustment);
2661    // Copy registers used by the call. Last operand is a flag so it is not
2662    // copied.
2663    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
2664      Operands.push_back(Chain.getOperand(i));
2665    }
2666    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Operands[0],
2667                       Operands.size());
2668  }
2669
2670  SDValue Flag;
2671
2672  // Copy the result values into the output registers.
2673  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2674    CCValAssign &VA = RVLocs[i];
2675    assert(VA.isRegLoc() && "Can only return in registers!");
2676    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2677                             Op.getOperand(i*2+1), Flag);
2678    Flag = Chain.getValue(1);
2679  }
2680
2681  if (Flag.getNode())
2682    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
2683  else
2684    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
2685}
2686
2687SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
2688                                   const PPCSubtarget &Subtarget) {
2689  // When we pop the dynamic allocation we need to restore the SP link.
2690  DebugLoc dl = Op.getNode()->getDebugLoc();
2691
2692  // Get the corect type for pointers.
2693  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2694
2695  // Construct the stack pointer operand.
2696  bool IsPPC64 = Subtarget.isPPC64();
2697  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2698  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
2699
2700  // Get the operands for the STACKRESTORE.
2701  SDValue Chain = Op.getOperand(0);
2702  SDValue SaveSP = Op.getOperand(1);
2703
2704  // Load the old link SP.
2705  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0);
2706
2707  // Restore the stack pointer.
2708  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
2709
2710  // Store the old link SP.
2711  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0);
2712}
2713
2714
2715
2716SDValue
2717PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
2718  MachineFunction &MF = DAG.getMachineFunction();
2719  bool IsPPC64 = PPCSubTarget.isPPC64();
2720  bool isMachoABI = PPCSubTarget.isMachoABI();
2721  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2722
2723  // Get current frame pointer save index.  The users of this index will be
2724  // primarily DYNALLOC instructions.
2725  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2726  int RASI = FI->getReturnAddrSaveIndex();
2727
2728  // If the frame pointer save index hasn't been defined yet.
2729  if (!RASI) {
2730    // Find out what the fix offset of the frame pointer save area.
2731    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isMachoABI);
2732    // Allocate the frame index for frame pointer save area.
2733    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
2734    // Save the result.
2735    FI->setReturnAddrSaveIndex(RASI);
2736  }
2737  return DAG.getFrameIndex(RASI, PtrVT);
2738}
2739
2740SDValue
2741PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
2742  MachineFunction &MF = DAG.getMachineFunction();
2743  bool IsPPC64 = PPCSubTarget.isPPC64();
2744  bool isMachoABI = PPCSubTarget.isMachoABI();
2745  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2746
2747  // Get current frame pointer save index.  The users of this index will be
2748  // primarily DYNALLOC instructions.
2749  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2750  int FPSI = FI->getFramePointerSaveIndex();
2751
2752  // If the frame pointer save index hasn't been defined yet.
2753  if (!FPSI) {
2754    // Find out what the fix offset of the frame pointer save area.
2755    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2756
2757    // Allocate the frame index for frame pointer save area.
2758    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2759    // Save the result.
2760    FI->setFramePointerSaveIndex(FPSI);
2761  }
2762  return DAG.getFrameIndex(FPSI, PtrVT);
2763}
2764
2765SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
2766                                         SelectionDAG &DAG,
2767                                         const PPCSubtarget &Subtarget) {
2768  // Get the inputs.
2769  SDValue Chain = Op.getOperand(0);
2770  SDValue Size  = Op.getOperand(1);
2771
2772  // Get the corect type for pointers.
2773  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2774  // Negate the size.
2775  SDValue NegSize = DAG.getNode(ISD::SUB, PtrVT,
2776                                  DAG.getConstant(0, PtrVT), Size);
2777  // Construct a node for the frame pointer save index.
2778  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
2779  // Build a DYNALLOC node.
2780  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
2781  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2782  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2783}
2784
2785/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2786/// possible.
2787SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
2788  // Not FP? Not a fsel.
2789  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
2790      !Op.getOperand(2).getValueType().isFloatingPoint())
2791    return SDValue();
2792
2793  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2794
2795  // Cannot handle SETEQ/SETNE.
2796  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDValue();
2797
2798  MVT ResVT = Op.getValueType();
2799  MVT CmpVT = Op.getOperand(0).getValueType();
2800  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2801  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2802
2803  // If the RHS of the comparison is a 0.0, we don't need to do the
2804  // subtraction at all.
2805  if (isFloatingPointZero(RHS))
2806    switch (CC) {
2807    default: break;       // SETUO etc aren't handled by fsel.
2808    case ISD::SETULT:
2809    case ISD::SETLT:
2810      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2811    case ISD::SETOGE:
2812    case ISD::SETGE:
2813      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2814        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2815      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2816    case ISD::SETUGT:
2817    case ISD::SETGT:
2818      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2819    case ISD::SETOLE:
2820    case ISD::SETLE:
2821      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2822        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2823      return DAG.getNode(PPCISD::FSEL, ResVT,
2824                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2825    }
2826
2827  SDValue Cmp;
2828  switch (CC) {
2829  default: break;       // SETUO etc aren't handled by fsel.
2830  case ISD::SETULT:
2831  case ISD::SETLT:
2832    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2833    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2834      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2835      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2836  case ISD::SETOGE:
2837  case ISD::SETGE:
2838    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2839    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2840      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2841      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2842  case ISD::SETUGT:
2843  case ISD::SETGT:
2844    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2845    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2846      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2847      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2848  case ISD::SETOLE:
2849  case ISD::SETLE:
2850    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2851    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2852      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2853      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2854  }
2855  return SDValue();
2856}
2857
2858// FIXME: Split this code up when LegalizeDAGTypes lands.
2859SDValue PPCTargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG,
2860                                           DebugLoc dl) {
2861  assert(Op.getOperand(0).getValueType().isFloatingPoint());
2862  SDValue Src = Op.getOperand(0);
2863  if (Src.getValueType() == MVT::f32)
2864    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
2865
2866  SDValue Tmp;
2867  switch (Op.getValueType().getSimpleVT()) {
2868  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2869  case MVT::i32:
2870    Tmp = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Src);
2871    break;
2872  case MVT::i64:
2873    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
2874    break;
2875  }
2876
2877  // Convert the FP value to an int value through memory.
2878  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
2879
2880  // Emit a store to the stack slot.
2881  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0);
2882
2883  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2884  // add in a bias.
2885  if (Op.getValueType() == MVT::i32)
2886    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
2887                        DAG.getConstant(4, FIPtr.getValueType()));
2888  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0);
2889}
2890
2891SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2892  DebugLoc dl = Op.getNode()->getDebugLoc();
2893  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2894  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2895    return SDValue();
2896
2897  if (Op.getOperand(0).getValueType() == MVT::i64) {
2898    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
2899                               MVT::f64, Op.getOperand(0));
2900    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
2901    if (Op.getValueType() == MVT::f32)
2902      FP = DAG.getNode(ISD::FP_ROUND, dl,
2903                       MVT::f32, FP, DAG.getIntPtrConstant(0));
2904    return FP;
2905  }
2906
2907  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2908         "Unhandled SINT_TO_FP type in custom expander!");
2909  // Since we only generate this in 64-bit mode, we can take advantage of
2910  // 64-bit registers.  In particular, sign extend the input value into the
2911  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2912  // then lfd it and fcfid it.
2913  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2914  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2915  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2916  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2917
2918  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
2919                                Op.getOperand(0));
2920
2921  // STD the extended value into the stack slot.
2922  MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
2923                       MachineMemOperand::MOStore, 0, 8, 8);
2924  SDValue Store = DAG.getNode(PPCISD::STD_32, dl, MVT::Other,
2925                                DAG.getEntryNode(), Ext64, FIdx,
2926                                DAG.getMemOperand(MO));
2927  // Load the value as a double.
2928  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0);
2929
2930  // FCFID it and return it.
2931  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
2932  if (Op.getValueType() == MVT::f32)
2933    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
2934  return FP;
2935}
2936
2937SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
2938  DebugLoc dl = Op.getNode()->getDebugLoc();
2939  /*
2940   The rounding mode is in bits 30:31 of FPSR, and has the following
2941   settings:
2942     00 Round to nearest
2943     01 Round to 0
2944     10 Round to +inf
2945     11 Round to -inf
2946
2947  FLT_ROUNDS, on the other hand, expects the following:
2948    -1 Undefined
2949     0 Round to 0
2950     1 Round to nearest
2951     2 Round to +inf
2952     3 Round to -inf
2953
2954  To perform the conversion, we do:
2955    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2956  */
2957
2958  MachineFunction &MF = DAG.getMachineFunction();
2959  MVT VT = Op.getValueType();
2960  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2961  std::vector<MVT> NodeTys;
2962  SDValue MFFSreg, InFlag;
2963
2964  // Save FP Control Word to register
2965  NodeTys.push_back(MVT::f64);    // return register
2966  NodeTys.push_back(MVT::Flag);   // unused in this context
2967  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
2968
2969  // Save FP register to stack slot
2970  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2971  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2972  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
2973                                 StackSlot, NULL, 0);
2974
2975  // Load FP Control Word from low 32 bits of stack slot.
2976  SDValue Four = DAG.getConstant(4, PtrVT);
2977  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
2978  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0);
2979
2980  // Transform as necessary
2981  SDValue CWD1 =
2982    DAG.getNode(ISD::AND, dl, MVT::i32,
2983                CWD, DAG.getConstant(3, MVT::i32));
2984  SDValue CWD2 =
2985    DAG.getNode(ISD::SRL, dl, MVT::i32,
2986                DAG.getNode(ISD::AND, dl, MVT::i32,
2987                            DAG.getNode(ISD::XOR, dl, MVT::i32,
2988                                        CWD, DAG.getConstant(3, MVT::i32)),
2989                            DAG.getConstant(3, MVT::i32)),
2990                DAG.getConstant(1, MVT::i32));
2991
2992  SDValue RetVal =
2993    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
2994
2995  return DAG.getNode((VT.getSizeInBits() < 16 ?
2996                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
2997}
2998
2999SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
3000  MVT VT = Op.getValueType();
3001  unsigned BitWidth = VT.getSizeInBits();
3002  DebugLoc dl = Op.getDebugLoc();
3003  assert(Op.getNumOperands() == 3 &&
3004         VT == Op.getOperand(1).getValueType() &&
3005         "Unexpected SHL!");
3006
3007  // Expand into a bunch of logical ops.  Note that these ops
3008  // depend on the PPC behavior for oversized shift amounts.
3009  SDValue Lo = Op.getOperand(0);
3010  SDValue Hi = Op.getOperand(1);
3011  SDValue Amt = Op.getOperand(2);
3012  MVT AmtVT = Amt.getValueType();
3013
3014  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3015                             DAG.getConstant(BitWidth, AmtVT), Amt);
3016  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3017  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3018  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3019  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3020                             DAG.getConstant(-BitWidth, AmtVT));
3021  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3022  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3023  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3024  SDValue OutOps[] = { OutLo, OutHi };
3025  return DAG.getMergeValues(OutOps, 2, dl);
3026}
3027
3028SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3029  MVT VT = Op.getValueType();
3030  DebugLoc dl = Op.getDebugLoc();
3031  unsigned BitWidth = VT.getSizeInBits();
3032  assert(Op.getNumOperands() == 3 &&
3033         VT == Op.getOperand(1).getValueType() &&
3034         "Unexpected SRL!");
3035
3036  // Expand into a bunch of logical ops.  Note that these ops
3037  // depend on the PPC behavior for oversized shift amounts.
3038  SDValue Lo = Op.getOperand(0);
3039  SDValue Hi = Op.getOperand(1);
3040  SDValue Amt = Op.getOperand(2);
3041  MVT AmtVT = Amt.getValueType();
3042
3043  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3044                             DAG.getConstant(BitWidth, AmtVT), Amt);
3045  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3046  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3047  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3048  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3049                             DAG.getConstant(-BitWidth, AmtVT));
3050  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3051  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3052  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3053  SDValue OutOps[] = { OutLo, OutHi };
3054  return DAG.getMergeValues(OutOps, 2, dl);
3055}
3056
3057SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3058  DebugLoc dl = Op.getNode()->getDebugLoc();
3059  MVT VT = Op.getValueType();
3060  unsigned BitWidth = VT.getSizeInBits();
3061  assert(Op.getNumOperands() == 3 &&
3062         VT == Op.getOperand(1).getValueType() &&
3063         "Unexpected SRA!");
3064
3065  // Expand into a bunch of logical ops, followed by a select_cc.
3066  SDValue Lo = Op.getOperand(0);
3067  SDValue Hi = Op.getOperand(1);
3068  SDValue Amt = Op.getOperand(2);
3069  MVT AmtVT = Amt.getValueType();
3070
3071  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3072                             DAG.getConstant(BitWidth, AmtVT), Amt);
3073  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3074  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3075  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3076  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3077                             DAG.getConstant(-BitWidth, AmtVT));
3078  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3079  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3080  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3081                                  Tmp4, Tmp6, ISD::SETLE);
3082  SDValue OutOps[] = { OutLo, OutHi };
3083  return DAG.getMergeValues(OutOps, 2, dl);
3084}
3085
3086//===----------------------------------------------------------------------===//
3087// Vector related lowering.
3088//
3089
3090// If this is a vector of constants or undefs, get the bits.  A bit in
3091// UndefBits is set if the corresponding element of the vector is an
3092// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3093// zero.   Return true if this is not an array of constants, false if it is.
3094//
3095static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
3096                                       uint64_t UndefBits[2]) {
3097  // Start with zero'd results.
3098  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
3099
3100  unsigned EltBitSize = BV->getOperand(0).getValueType().getSizeInBits();
3101  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3102    SDValue OpVal = BV->getOperand(i);
3103
3104    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
3105    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
3106
3107    uint64_t EltBits = 0;
3108    if (OpVal.getOpcode() == ISD::UNDEF) {
3109      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
3110      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
3111      continue;
3112    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
3113      EltBits = CN->getZExtValue() & (~0U >> (32-EltBitSize));
3114    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
3115      assert(CN->getValueType(0) == MVT::f32 &&
3116             "Only one legal FP vector type!");
3117      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
3118    } else {
3119      // Nonconstant element.
3120      return true;
3121    }
3122
3123    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
3124  }
3125
3126  //printf("%llx %llx  %llx %llx\n",
3127  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
3128  return false;
3129}
3130
3131// If this is a splat (repetition) of a value across the whole vector, return
3132// the smallest size that splats it.  For example, "0x01010101010101..." is a
3133// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3134// SplatSize = 1 byte.
3135static bool isConstantSplat(const uint64_t Bits128[2],
3136                            const uint64_t Undef128[2],
3137                            unsigned &SplatBits, unsigned &SplatUndef,
3138                            unsigned &SplatSize) {
3139
3140  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
3141  // the same as the lower 64-bits, ignoring undefs.
3142  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
3143    return false;  // Can't be a splat if two pieces don't match.
3144
3145  uint64_t Bits64  = Bits128[0] | Bits128[1];
3146  uint64_t Undef64 = Undef128[0] & Undef128[1];
3147
3148  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
3149  // undefs.
3150  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
3151    return false;  // Can't be a splat if two pieces don't match.
3152
3153  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
3154  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
3155
3156  // If the top 16-bits are different than the lower 16-bits, ignoring
3157  // undefs, we have an i32 splat.
3158  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
3159    SplatBits = Bits32;
3160    SplatUndef = Undef32;
3161    SplatSize = 4;
3162    return true;
3163  }
3164
3165  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
3166  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
3167
3168  // If the top 8-bits are different than the lower 8-bits, ignoring
3169  // undefs, we have an i16 splat.
3170  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
3171    SplatBits = Bits16;
3172    SplatUndef = Undef16;
3173    SplatSize = 2;
3174    return true;
3175  }
3176
3177  // Otherwise, we have an 8-bit splat.
3178  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
3179  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
3180  SplatSize = 1;
3181  return true;
3182}
3183
3184/// BuildSplatI - Build a canonical splati of Val with an element size of
3185/// SplatSize.  Cast the result to VT.
3186static SDValue BuildSplatI(int Val, unsigned SplatSize, MVT VT,
3187                             SelectionDAG &DAG, DebugLoc dl) {
3188  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3189
3190  static const MVT VTys[] = { // canonical VT to use for each size.
3191    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3192  };
3193
3194  MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3195
3196  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3197  if (Val == -1)
3198    SplatSize = 1;
3199
3200  MVT CanonicalVT = VTys[SplatSize-1];
3201
3202  // Build a canonical splat for this value.
3203  SDValue Elt = DAG.getConstant(Val, CanonicalVT.getVectorElementType());
3204  SmallVector<SDValue, 8> Ops;
3205  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3206  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3207                              &Ops[0], Ops.size());
3208  return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3209}
3210
3211/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3212/// specified intrinsic ID.
3213static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3214                                SelectionDAG &DAG, DebugLoc dl,
3215                                MVT DestVT = MVT::Other) {
3216  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3217  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3218                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3219}
3220
3221/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3222/// specified intrinsic ID.
3223static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3224                                SDValue Op2, SelectionDAG &DAG,
3225                                DebugLoc dl, MVT DestVT = MVT::Other) {
3226  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3227  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3228                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3229}
3230
3231
3232/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3233/// amount.  The result has the specified value type.
3234static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3235                             MVT VT, SelectionDAG &DAG, DebugLoc dl) {
3236  // Force LHS/RHS to be the right type.
3237  LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3238  RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3239
3240  SDValue Ops[16];
3241  for (unsigned i = 0; i != 16; ++i)
3242    Ops[i] = DAG.getConstant(i+Amt, MVT::i8);
3243  SDValue T = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v16i8, LHS, RHS,
3244                        DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, Ops,16));
3245  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3246}
3247
3248// If this is a case we can't handle, return null and let the default
3249// expansion code take care of it.  If we CAN select this case, and if it
3250// selects to a single instruction, return Op.  Otherwise, if we can codegen
3251// this case more efficiently than a constant pool load, lower it to the
3252// sequence of ops that should be used.
3253SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3254                                               SelectionDAG &DAG) {
3255  // If this is a vector of constants or undefs, get the bits.  A bit in
3256  // UndefBits is set if the corresponding element of the vector is an
3257  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3258  // zero.
3259  uint64_t VectorBits[2];
3260  uint64_t UndefBits[2];
3261  DebugLoc dl = Op.getDebugLoc();
3262  if (GetConstantBuildVectorBits(Op.getNode(), VectorBits, UndefBits))
3263    return SDValue();   // Not a constant vector.
3264
3265  // If this is a splat (repetition) of a value across the whole vector, return
3266  // the smallest size that splats it.  For example, "0x01010101010101..." is a
3267  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3268  // SplatSize = 1 byte.
3269  unsigned SplatBits, SplatUndef, SplatSize;
3270  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
3271    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
3272
3273    // First, handle single instruction cases.
3274
3275    // All zeros?
3276    if (SplatBits == 0) {
3277      // Canonicalize all zero vectors to be v4i32.
3278      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3279        SDValue Z = DAG.getConstant(0, MVT::i32);
3280        Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3281        Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3282      }
3283      return Op;
3284    }
3285
3286    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3287    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
3288    if (SextVal >= -16 && SextVal <= 15)
3289      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3290
3291
3292    // Two instruction sequences.
3293
3294    // If this value is in the range [-32,30] and is even, use:
3295    //    tmp = VSPLTI[bhw], result = add tmp, tmp
3296    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3297      SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3298      Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3299      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3300    }
3301
3302    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3303    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3304    // for fneg/fabs.
3305    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3306      // Make -1 and vspltisw -1:
3307      SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3308
3309      // Make the VSLW intrinsic, computing 0x8000_0000.
3310      SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3311                                       OnesV, DAG, dl);
3312
3313      // xor by OnesV to invert it.
3314      Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3315      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3316    }
3317
3318    // Check to see if this is a wide variety of vsplti*, binop self cases.
3319    unsigned SplatBitSize = SplatSize*8;
3320    static const signed char SplatCsts[] = {
3321      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3322      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3323    };
3324
3325    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3326      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3327      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3328      int i = SplatCsts[idx];
3329
3330      // Figure out what shift amount will be used by altivec if shifted by i in
3331      // this splat size.
3332      unsigned TypeShiftAmt = i & (SplatBitSize-1);
3333
3334      // vsplti + shl self.
3335      if (SextVal == (i << (int)TypeShiftAmt)) {
3336        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3337        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3338          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3339          Intrinsic::ppc_altivec_vslw
3340        };
3341        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3342        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3343      }
3344
3345      // vsplti + srl self.
3346      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3347        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3348        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3349          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3350          Intrinsic::ppc_altivec_vsrw
3351        };
3352        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3353        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3354      }
3355
3356      // vsplti + sra self.
3357      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3358        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3359        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3360          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3361          Intrinsic::ppc_altivec_vsraw
3362        };
3363        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3364        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3365      }
3366
3367      // vsplti + rol self.
3368      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3369                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3370        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3371        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3372          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3373          Intrinsic::ppc_altivec_vrlw
3374        };
3375        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3376        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3377      }
3378
3379      // t = vsplti c, result = vsldoi t, t, 1
3380      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3381        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3382        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3383      }
3384      // t = vsplti c, result = vsldoi t, t, 2
3385      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3386        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3387        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3388      }
3389      // t = vsplti c, result = vsldoi t, t, 3
3390      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3391        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3392        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3393      }
3394    }
3395
3396    // Three instruction sequences.
3397
3398    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3399    if (SextVal >= 0 && SextVal <= 31) {
3400      SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3401      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3402      LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3403      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3404    }
3405    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3406    if (SextVal >= -31 && SextVal <= 0) {
3407      SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3408      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3409      LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3410      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3411    }
3412  }
3413
3414  return SDValue();
3415}
3416
3417/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3418/// the specified operations to build the shuffle.
3419static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3420                                      SDValue RHS, SelectionDAG &DAG,
3421                                      DebugLoc dl) {
3422  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3423  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3424  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3425
3426  enum {
3427    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3428    OP_VMRGHW,
3429    OP_VMRGLW,
3430    OP_VSPLTISW0,
3431    OP_VSPLTISW1,
3432    OP_VSPLTISW2,
3433    OP_VSPLTISW3,
3434    OP_VSLDOI4,
3435    OP_VSLDOI8,
3436    OP_VSLDOI12
3437  };
3438
3439  if (OpNum == OP_COPY) {
3440    if (LHSID == (1*9+2)*9+3) return LHS;
3441    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3442    return RHS;
3443  }
3444
3445  SDValue OpLHS, OpRHS;
3446  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3447  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3448
3449  unsigned ShufIdxs[16];
3450  switch (OpNum) {
3451  default: assert(0 && "Unknown i32 permute!");
3452  case OP_VMRGHW:
3453    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3454    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3455    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3456    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3457    break;
3458  case OP_VMRGLW:
3459    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3460    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3461    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3462    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3463    break;
3464  case OP_VSPLTISW0:
3465    for (unsigned i = 0; i != 16; ++i)
3466      ShufIdxs[i] = (i&3)+0;
3467    break;
3468  case OP_VSPLTISW1:
3469    for (unsigned i = 0; i != 16; ++i)
3470      ShufIdxs[i] = (i&3)+4;
3471    break;
3472  case OP_VSPLTISW2:
3473    for (unsigned i = 0; i != 16; ++i)
3474      ShufIdxs[i] = (i&3)+8;
3475    break;
3476  case OP_VSPLTISW3:
3477    for (unsigned i = 0; i != 16; ++i)
3478      ShufIdxs[i] = (i&3)+12;
3479    break;
3480  case OP_VSLDOI4:
3481    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
3482  case OP_VSLDOI8:
3483    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
3484  case OP_VSLDOI12:
3485    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
3486  }
3487  SDValue Ops[16];
3488  for (unsigned i = 0; i != 16; ++i)
3489    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i8);
3490
3491  return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, OpLHS.getValueType(),
3492                     OpLHS, OpRHS,
3493                     DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, Ops, 16));
3494}
3495
3496/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3497/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3498/// return the code it can be lowered into.  Worst case, it can always be
3499/// lowered into a vperm.
3500SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3501                                                 SelectionDAG &DAG) {
3502  DebugLoc dl = Op.getDebugLoc();
3503  SDValue V1 = Op.getOperand(0);
3504  SDValue V2 = Op.getOperand(1);
3505  SDValue PermMask = Op.getOperand(2);
3506
3507  // Cases that are handled by instructions that take permute immediates
3508  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3509  // selected by the instruction selector.
3510  if (V2.getOpcode() == ISD::UNDEF) {
3511    if (PPC::isSplatShuffleMask(PermMask.getNode(), 1) ||
3512        PPC::isSplatShuffleMask(PermMask.getNode(), 2) ||
3513        PPC::isSplatShuffleMask(PermMask.getNode(), 4) ||
3514        PPC::isVPKUWUMShuffleMask(PermMask.getNode(), true) ||
3515        PPC::isVPKUHUMShuffleMask(PermMask.getNode(), true) ||
3516        PPC::isVSLDOIShuffleMask(PermMask.getNode(), true) != -1 ||
3517        PPC::isVMRGLShuffleMask(PermMask.getNode(), 1, true) ||
3518        PPC::isVMRGLShuffleMask(PermMask.getNode(), 2, true) ||
3519        PPC::isVMRGLShuffleMask(PermMask.getNode(), 4, true) ||
3520        PPC::isVMRGHShuffleMask(PermMask.getNode(), 1, true) ||
3521        PPC::isVMRGHShuffleMask(PermMask.getNode(), 2, true) ||
3522        PPC::isVMRGHShuffleMask(PermMask.getNode(), 4, true)) {
3523      return Op;
3524    }
3525  }
3526
3527  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3528  // and produce a fixed permutation.  If any of these match, do not lower to
3529  // VPERM.
3530  if (PPC::isVPKUWUMShuffleMask(PermMask.getNode(), false) ||
3531      PPC::isVPKUHUMShuffleMask(PermMask.getNode(), false) ||
3532      PPC::isVSLDOIShuffleMask(PermMask.getNode(), false) != -1 ||
3533      PPC::isVMRGLShuffleMask(PermMask.getNode(), 1, false) ||
3534      PPC::isVMRGLShuffleMask(PermMask.getNode(), 2, false) ||
3535      PPC::isVMRGLShuffleMask(PermMask.getNode(), 4, false) ||
3536      PPC::isVMRGHShuffleMask(PermMask.getNode(), 1, false) ||
3537      PPC::isVMRGHShuffleMask(PermMask.getNode(), 2, false) ||
3538      PPC::isVMRGHShuffleMask(PermMask.getNode(), 4, false))
3539    return Op;
3540
3541  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3542  // perfect shuffle table to emit an optimal matching sequence.
3543  unsigned PFIndexes[4];
3544  bool isFourElementShuffle = true;
3545  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3546    unsigned EltNo = 8;   // Start out undef.
3547    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3548      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3549        continue;   // Undef, ignore it.
3550
3551      unsigned ByteSource =
3552        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getZExtValue();
3553      if ((ByteSource & 3) != j) {
3554        isFourElementShuffle = false;
3555        break;
3556      }
3557
3558      if (EltNo == 8) {
3559        EltNo = ByteSource/4;
3560      } else if (EltNo != ByteSource/4) {
3561        isFourElementShuffle = false;
3562        break;
3563      }
3564    }
3565    PFIndexes[i] = EltNo;
3566  }
3567
3568  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3569  // perfect shuffle vector to determine if it is cost effective to do this as
3570  // discrete instructions, or whether we should use a vperm.
3571  if (isFourElementShuffle) {
3572    // Compute the index in the perfect shuffle table.
3573    unsigned PFTableIndex =
3574      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3575
3576    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3577    unsigned Cost  = (PFEntry >> 30);
3578
3579    // Determining when to avoid vperm is tricky.  Many things affect the cost
3580    // of vperm, particularly how many times the perm mask needs to be computed.
3581    // For example, if the perm mask can be hoisted out of a loop or is already
3582    // used (perhaps because there are multiple permutes with the same shuffle
3583    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3584    // the loop requires an extra register.
3585    //
3586    // As a compromise, we only emit discrete instructions if the shuffle can be
3587    // generated in 3 or fewer operations.  When we have loop information
3588    // available, if this block is within a loop, we should avoid using vperm
3589    // for 3-operation perms and use a constant pool load instead.
3590    if (Cost < 3)
3591      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3592  }
3593
3594  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3595  // vector that will get spilled to the constant pool.
3596  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3597
3598  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3599  // that it is in input element units, not in bytes.  Convert now.
3600  MVT EltVT = V1.getValueType().getVectorElementType();
3601  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
3602
3603  SmallVector<SDValue, 16> ResultMask;
3604  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3605    unsigned SrcElt;
3606    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3607      SrcElt = 0;
3608    else
3609      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getZExtValue();
3610
3611    for (unsigned j = 0; j != BytesPerElement; ++j)
3612      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3613                                           MVT::i8));
3614  }
3615
3616  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
3617                                    &ResultMask[0], ResultMask.size());
3618  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
3619}
3620
3621/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3622/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3623/// information about the intrinsic.
3624static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
3625                                  bool &isDot) {
3626  unsigned IntrinsicID =
3627    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
3628  CompareOpc = -1;
3629  isDot = false;
3630  switch (IntrinsicID) {
3631  default: return false;
3632    // Comparison predicates.
3633  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3634  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3635  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3636  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3637  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3638  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3639  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3640  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3641  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3642  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3643  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3644  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3645  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3646
3647    // Normal Comparisons.
3648  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3649  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3650  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3651  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3652  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3653  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3654  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3655  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
3656  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
3657  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
3658  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
3659  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
3660  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
3661  }
3662  return true;
3663}
3664
3665/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3666/// lower, do it, otherwise return null.
3667SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3668                                                     SelectionDAG &DAG) {
3669  // If this is a lowered altivec predicate compare, CompareOpc is set to the
3670  // opcode number of the comparison.
3671  DebugLoc dl = Op.getDebugLoc();
3672  int CompareOpc;
3673  bool isDot;
3674  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3675    return SDValue();    // Don't custom lower most intrinsics.
3676
3677  // If this is a non-dot comparison, make the VCMP node and we are done.
3678  if (!isDot) {
3679    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
3680                                Op.getOperand(1), Op.getOperand(2),
3681                                DAG.getConstant(CompareOpc, MVT::i32));
3682    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
3683  }
3684
3685  // Create the PPCISD altivec 'dot' comparison node.
3686  SDValue Ops[] = {
3687    Op.getOperand(2),  // LHS
3688    Op.getOperand(3),  // RHS
3689    DAG.getConstant(CompareOpc, MVT::i32)
3690  };
3691  std::vector<MVT> VTs;
3692  VTs.push_back(Op.getOperand(2).getValueType());
3693  VTs.push_back(MVT::Flag);
3694  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
3695
3696  // Now that we have the comparison, emit a copy from the CR to a GPR.
3697  // This is flagged to the above dot comparison.
3698  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
3699                                DAG.getRegister(PPC::CR6, MVT::i32),
3700                                CompNode.getValue(1));
3701
3702  // Unpack the result based on how the target uses it.
3703  unsigned BitNo;   // Bit # of CR6.
3704  bool InvertBit;   // Invert result?
3705  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
3706  default:  // Can't happen, don't crash on invalid number though.
3707  case 0:   // Return the value of the EQ bit of CR6.
3708    BitNo = 0; InvertBit = false;
3709    break;
3710  case 1:   // Return the inverted value of the EQ bit of CR6.
3711    BitNo = 0; InvertBit = true;
3712    break;
3713  case 2:   // Return the value of the LT bit of CR6.
3714    BitNo = 2; InvertBit = false;
3715    break;
3716  case 3:   // Return the inverted value of the LT bit of CR6.
3717    BitNo = 2; InvertBit = true;
3718    break;
3719  }
3720
3721  // Shift the bit into the low position.
3722  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
3723                      DAG.getConstant(8-(3-BitNo), MVT::i32));
3724  // Isolate the bit.
3725  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
3726                      DAG.getConstant(1, MVT::i32));
3727
3728  // If we are supposed to, toggle the bit.
3729  if (InvertBit)
3730    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
3731                        DAG.getConstant(1, MVT::i32));
3732  return Flags;
3733}
3734
3735SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
3736                                                   SelectionDAG &DAG) {
3737  DebugLoc dl = Op.getNode()->getDebugLoc();
3738  // Create a stack slot that is 16-byte aligned.
3739  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3740  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3741  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3742  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3743
3744  // Store the input value into Value#0 of the stack slot.
3745  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
3746                                 Op.getOperand(0), FIdx, NULL, 0);
3747  // Load it out.
3748  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0);
3749}
3750
3751SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
3752  DebugLoc dl = Op.getDebugLoc();
3753  if (Op.getValueType() == MVT::v4i32) {
3754    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3755
3756    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
3757    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
3758
3759    SDValue RHSSwap =   // = vrlw RHS, 16
3760      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
3761
3762    // Shrinkify inputs to v8i16.
3763    LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
3764    RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
3765    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
3766
3767    // Low parts multiplied together, generating 32-bit results (we ignore the
3768    // top parts).
3769    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3770                                        LHS, RHS, DAG, dl, MVT::v4i32);
3771
3772    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3773                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
3774    // Shift the high parts up 16 bits.
3775    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
3776                              Neg16, DAG, dl);
3777    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
3778  } else if (Op.getValueType() == MVT::v8i16) {
3779    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3780
3781    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
3782
3783    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3784                            LHS, RHS, Zero, DAG, dl);
3785  } else if (Op.getValueType() == MVT::v16i8) {
3786    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3787
3788    // Multiply the even 8-bit parts, producing 16-bit sums.
3789    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3790                                           LHS, RHS, DAG, dl, MVT::v8i16);
3791    EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
3792
3793    // Multiply the odd 8-bit parts, producing 16-bit sums.
3794    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3795                                          LHS, RHS, DAG, dl, MVT::v8i16);
3796    OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
3797
3798    // Merge the results together.
3799    SDValue Ops[16];
3800    for (unsigned i = 0; i != 8; ++i) {
3801      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
3802      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3803    }
3804    return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v16i8, EvenParts, OddParts,
3805                       DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, Ops, 16));
3806  } else {
3807    assert(0 && "Unknown mul to lower!");
3808    abort();
3809  }
3810}
3811
3812/// LowerOperation - Provide custom lowering hooks for some operations.
3813///
3814SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
3815  switch (Op.getOpcode()) {
3816  default: assert(0 && "Wasn't expecting to be able to lower this!");
3817  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3818  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3819  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3820  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3821  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3822  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
3823  case ISD::VASTART:
3824    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3825                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3826
3827  case ISD::VAARG:
3828    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3829                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3830
3831  case ISD::FORMAL_ARGUMENTS:
3832    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3833                                 VarArgsStackOffset, VarArgsNumGPR,
3834                                 VarArgsNumFPR, PPCSubTarget);
3835
3836  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget,
3837                                                 getTargetMachine());
3838  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3839  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3840  case ISD::DYNAMIC_STACKALLOC:
3841    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3842
3843  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3844  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG,
3845                                                       Op.getDebugLoc());
3846  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3847  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3848
3849  // Lower 64-bit shifts.
3850  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3851  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3852  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3853
3854  // Vector-related lowering.
3855  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3856  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3857  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3858  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3859  case ISD::MUL:                return LowerMUL(Op, DAG);
3860
3861  // Frame & Return address.
3862  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3863  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3864  }
3865  return SDValue();
3866}
3867
3868void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
3869                                           SmallVectorImpl<SDValue>&Results,
3870                                           SelectionDAG &DAG) {
3871  DebugLoc dl = N->getDebugLoc();
3872  switch (N->getOpcode()) {
3873  default:
3874    assert(false && "Do not know how to custom type legalize this operation!");
3875    return;
3876  case ISD::FP_ROUND_INREG: {
3877    assert(N->getValueType(0) == MVT::ppcf128);
3878    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
3879    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
3880                             MVT::f64, N->getOperand(0),
3881                             DAG.getIntPtrConstant(0));
3882    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
3883                             MVT::f64, N->getOperand(0),
3884                             DAG.getIntPtrConstant(1));
3885
3886    // This sequence changes FPSCR to do round-to-zero, adds the two halves
3887    // of the long double, and puts FPSCR back the way it was.  We do not
3888    // actually model FPSCR.
3889    std::vector<MVT> NodeTys;
3890    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
3891
3892    NodeTys.push_back(MVT::f64);   // Return register
3893    NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
3894    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3895    MFFSreg = Result.getValue(0);
3896    InFlag = Result.getValue(1);
3897
3898    NodeTys.clear();
3899    NodeTys.push_back(MVT::Flag);   // Returns a flag
3900    Ops[0] = DAG.getConstant(31, MVT::i32);
3901    Ops[1] = InFlag;
3902    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
3903    InFlag = Result.getValue(0);
3904
3905    NodeTys.clear();
3906    NodeTys.push_back(MVT::Flag);   // Returns a flag
3907    Ops[0] = DAG.getConstant(30, MVT::i32);
3908    Ops[1] = InFlag;
3909    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
3910    InFlag = Result.getValue(0);
3911
3912    NodeTys.clear();
3913    NodeTys.push_back(MVT::f64);    // result of add
3914    NodeTys.push_back(MVT::Flag);   // Returns a flag
3915    Ops[0] = Lo;
3916    Ops[1] = Hi;
3917    Ops[2] = InFlag;
3918    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
3919    FPreg = Result.getValue(0);
3920    InFlag = Result.getValue(1);
3921
3922    NodeTys.clear();
3923    NodeTys.push_back(MVT::f64);
3924    Ops[0] = DAG.getConstant(1, MVT::i32);
3925    Ops[1] = MFFSreg;
3926    Ops[2] = FPreg;
3927    Ops[3] = InFlag;
3928    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
3929    FPreg = Result.getValue(0);
3930
3931    // We know the low half is about to be thrown away, so just use something
3932    // convenient.
3933    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
3934                                FPreg, FPreg));
3935    return;
3936  }
3937  case ISD::FP_TO_SINT:
3938    Results.push_back(LowerFP_TO_SINT(SDValue(N, 0), DAG, dl));
3939    return;
3940  }
3941}
3942
3943
3944//===----------------------------------------------------------------------===//
3945//  Other Lowering Code
3946//===----------------------------------------------------------------------===//
3947
3948MachineBasicBlock *
3949PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3950                                    bool is64bit, unsigned BinOpcode) {
3951  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3952  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3953
3954  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3955  MachineFunction *F = BB->getParent();
3956  MachineFunction::iterator It = BB;
3957  ++It;
3958
3959  unsigned dest = MI->getOperand(0).getReg();
3960  unsigned ptrA = MI->getOperand(1).getReg();
3961  unsigned ptrB = MI->getOperand(2).getReg();
3962  unsigned incr = MI->getOperand(3).getReg();
3963
3964  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3965  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3966  F->insert(It, loopMBB);
3967  F->insert(It, exitMBB);
3968  exitMBB->transferSuccessors(BB);
3969
3970  MachineRegisterInfo &RegInfo = F->getRegInfo();
3971  unsigned TmpReg = (!BinOpcode) ? incr :
3972    RegInfo.createVirtualRegister(
3973       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
3974                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
3975
3976  //  thisMBB:
3977  //   ...
3978  //   fallthrough --> loopMBB
3979  BB->addSuccessor(loopMBB);
3980
3981  //  loopMBB:
3982  //   l[wd]arx dest, ptr
3983  //   add r0, dest, incr
3984  //   st[wd]cx. r0, ptr
3985  //   bne- loopMBB
3986  //   fallthrough --> exitMBB
3987  BB = loopMBB;
3988  BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
3989    .addReg(ptrA).addReg(ptrB);
3990  if (BinOpcode)
3991    BuildMI(BB, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
3992  BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
3993    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
3994  BuildMI(BB, TII->get(PPC::BCC))
3995    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
3996  BB->addSuccessor(loopMBB);
3997  BB->addSuccessor(exitMBB);
3998
3999  //  exitMBB:
4000  //   ...
4001  BB = exitMBB;
4002  return BB;
4003}
4004
4005MachineBasicBlock *
4006PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4007                                            MachineBasicBlock *BB,
4008                                            bool is8bit,    // operation
4009                                            unsigned BinOpcode) {
4010  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4011  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4012  // In 64 bit mode we have to use 64 bits for addresses, even though the
4013  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4014  // registers without caring whether they're 32 or 64, but here we're
4015  // doing actual arithmetic on the addresses.
4016  bool is64bit = PPCSubTarget.isPPC64();
4017
4018  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4019  MachineFunction *F = BB->getParent();
4020  MachineFunction::iterator It = BB;
4021  ++It;
4022
4023  unsigned dest = MI->getOperand(0).getReg();
4024  unsigned ptrA = MI->getOperand(1).getReg();
4025  unsigned ptrB = MI->getOperand(2).getReg();
4026  unsigned incr = MI->getOperand(3).getReg();
4027
4028  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4029  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4030  F->insert(It, loopMBB);
4031  F->insert(It, exitMBB);
4032  exitMBB->transferSuccessors(BB);
4033
4034  MachineRegisterInfo &RegInfo = F->getRegInfo();
4035  const TargetRegisterClass *RC =
4036    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4037              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4038  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4039  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4040  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4041  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4042  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4043  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4044  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4045  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4046  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4047  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4048  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4049  unsigned Ptr1Reg;
4050  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4051
4052  //  thisMBB:
4053  //   ...
4054  //   fallthrough --> loopMBB
4055  BB->addSuccessor(loopMBB);
4056
4057  // The 4-byte load must be aligned, while a char or short may be
4058  // anywhere in the word.  Hence all this nasty bookkeeping code.
4059  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4060  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4061  //   xori shift, shift1, 24 [16]
4062  //   rlwinm ptr, ptr1, 0, 0, 29
4063  //   slw incr2, incr, shift
4064  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4065  //   slw mask, mask2, shift
4066  //  loopMBB:
4067  //   lwarx tmpDest, ptr
4068  //   add tmp, tmpDest, incr2
4069  //   andc tmp2, tmpDest, mask
4070  //   and tmp3, tmp, mask
4071  //   or tmp4, tmp3, tmp2
4072  //   stwcx. tmp4, ptr
4073  //   bne- loopMBB
4074  //   fallthrough --> exitMBB
4075  //   srw dest, tmpDest, shift
4076
4077  if (ptrA!=PPC::R0) {
4078    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4079    BuildMI(BB, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4080      .addReg(ptrA).addReg(ptrB);
4081  } else {
4082    Ptr1Reg = ptrB;
4083  }
4084  BuildMI(BB, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4085      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4086  BuildMI(BB, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4087      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4088  if (is64bit)
4089    BuildMI(BB, TII->get(PPC::RLDICR), PtrReg)
4090      .addReg(Ptr1Reg).addImm(0).addImm(61);
4091  else
4092    BuildMI(BB, TII->get(PPC::RLWINM), PtrReg)
4093      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4094  BuildMI(BB, TII->get(PPC::SLW), Incr2Reg)
4095      .addReg(incr).addReg(ShiftReg);
4096  if (is8bit)
4097    BuildMI(BB, TII->get(PPC::LI), Mask2Reg).addImm(255);
4098  else {
4099    BuildMI(BB, TII->get(PPC::LI), Mask3Reg).addImm(0);
4100    BuildMI(BB, TII->get(PPC::ORI), Mask2Reg).addReg(Mask3Reg).addImm(65535);
4101  }
4102  BuildMI(BB, TII->get(PPC::SLW), MaskReg)
4103      .addReg(Mask2Reg).addReg(ShiftReg);
4104
4105  BB = loopMBB;
4106  BuildMI(BB, TII->get(PPC::LWARX), TmpDestReg)
4107    .addReg(PPC::R0).addReg(PtrReg);
4108  if (BinOpcode)
4109    BuildMI(BB, TII->get(BinOpcode), TmpReg)
4110      .addReg(Incr2Reg).addReg(TmpDestReg);
4111  BuildMI(BB, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4112    .addReg(TmpDestReg).addReg(MaskReg);
4113  BuildMI(BB, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4114    .addReg(TmpReg).addReg(MaskReg);
4115  BuildMI(BB, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4116    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4117  BuildMI(BB, TII->get(PPC::STWCX))
4118    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4119  BuildMI(BB, TII->get(PPC::BCC))
4120    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4121  BB->addSuccessor(loopMBB);
4122  BB->addSuccessor(exitMBB);
4123
4124  //  exitMBB:
4125  //   ...
4126  BB = exitMBB;
4127  BuildMI(BB, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4128  return BB;
4129}
4130
4131MachineBasicBlock *
4132PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4133                                               MachineBasicBlock *BB) {
4134  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4135
4136  // To "insert" these instructions we actually have to insert their
4137  // control-flow patterns.
4138  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4139  MachineFunction::iterator It = BB;
4140  ++It;
4141
4142  MachineFunction *F = BB->getParent();
4143
4144  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4145      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4146      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4147      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4148      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4149
4150    // The incoming instruction knows the destination vreg to set, the
4151    // condition code register to branch on, the true/false values to
4152    // select between, and a branch opcode to use.
4153
4154    //  thisMBB:
4155    //  ...
4156    //   TrueVal = ...
4157    //   cmpTY ccX, r1, r2
4158    //   bCC copy1MBB
4159    //   fallthrough --> copy0MBB
4160    MachineBasicBlock *thisMBB = BB;
4161    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4162    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4163    unsigned SelectPred = MI->getOperand(4).getImm();
4164    BuildMI(BB, TII->get(PPC::BCC))
4165      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4166    F->insert(It, copy0MBB);
4167    F->insert(It, sinkMBB);
4168    // Update machine-CFG edges by transferring all successors of the current
4169    // block to the new block which will contain the Phi node for the select.
4170    sinkMBB->transferSuccessors(BB);
4171    // Next, add the true and fallthrough blocks as its successors.
4172    BB->addSuccessor(copy0MBB);
4173    BB->addSuccessor(sinkMBB);
4174
4175    //  copy0MBB:
4176    //   %FalseValue = ...
4177    //   # fallthrough to sinkMBB
4178    BB = copy0MBB;
4179
4180    // Update machine-CFG edges
4181    BB->addSuccessor(sinkMBB);
4182
4183    //  sinkMBB:
4184    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4185    //  ...
4186    BB = sinkMBB;
4187    BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4188      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4189      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4190  }
4191  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4192    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4193  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4194    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4195  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4196    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4197  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4198    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4199
4200  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4201    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4202  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4203    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4204  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4205    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4206  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4207    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4208
4209  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4210    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4211  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4212    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4213  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4214    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4215  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4216    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4217
4218  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4219    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4220  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4221    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4222  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4223    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4224  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4225    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4226
4227  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4228    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4229  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4230    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4231  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4232    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4233  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4234    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4235
4236  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4237    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4238  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4239    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4240  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4241    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4242  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4243    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4244
4245  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4246    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4247  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4248    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4249  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4250    BB = EmitAtomicBinary(MI, BB, false, 0);
4251  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4252    BB = EmitAtomicBinary(MI, BB, true, 0);
4253
4254  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4255           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4256    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4257
4258    unsigned dest   = MI->getOperand(0).getReg();
4259    unsigned ptrA   = MI->getOperand(1).getReg();
4260    unsigned ptrB   = MI->getOperand(2).getReg();
4261    unsigned oldval = MI->getOperand(3).getReg();
4262    unsigned newval = MI->getOperand(4).getReg();
4263
4264    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4265    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4266    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4267    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4268    F->insert(It, loop1MBB);
4269    F->insert(It, loop2MBB);
4270    F->insert(It, midMBB);
4271    F->insert(It, exitMBB);
4272    exitMBB->transferSuccessors(BB);
4273
4274    //  thisMBB:
4275    //   ...
4276    //   fallthrough --> loopMBB
4277    BB->addSuccessor(loop1MBB);
4278
4279    // loop1MBB:
4280    //   l[wd]arx dest, ptr
4281    //   cmp[wd] dest, oldval
4282    //   bne- midMBB
4283    // loop2MBB:
4284    //   st[wd]cx. newval, ptr
4285    //   bne- loopMBB
4286    //   b exitBB
4287    // midMBB:
4288    //   st[wd]cx. dest, ptr
4289    // exitBB:
4290    BB = loop1MBB;
4291    BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4292      .addReg(ptrA).addReg(ptrB);
4293    BuildMI(BB, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4294      .addReg(oldval).addReg(dest);
4295    BuildMI(BB, TII->get(PPC::BCC))
4296      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4297    BB->addSuccessor(loop2MBB);
4298    BB->addSuccessor(midMBB);
4299
4300    BB = loop2MBB;
4301    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4302      .addReg(newval).addReg(ptrA).addReg(ptrB);
4303    BuildMI(BB, TII->get(PPC::BCC))
4304      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4305    BuildMI(BB, TII->get(PPC::B)).addMBB(exitMBB);
4306    BB->addSuccessor(loop1MBB);
4307    BB->addSuccessor(exitMBB);
4308
4309    BB = midMBB;
4310    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4311      .addReg(dest).addReg(ptrA).addReg(ptrB);
4312    BB->addSuccessor(exitMBB);
4313
4314    //  exitMBB:
4315    //   ...
4316    BB = exitMBB;
4317  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4318             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4319    // We must use 64-bit registers for addresses when targeting 64-bit,
4320    // since we're actually doing arithmetic on them.  Other registers
4321    // can be 32-bit.
4322    bool is64bit = PPCSubTarget.isPPC64();
4323    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4324
4325    unsigned dest   = MI->getOperand(0).getReg();
4326    unsigned ptrA   = MI->getOperand(1).getReg();
4327    unsigned ptrB   = MI->getOperand(2).getReg();
4328    unsigned oldval = MI->getOperand(3).getReg();
4329    unsigned newval = MI->getOperand(4).getReg();
4330
4331    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4332    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4333    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4334    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4335    F->insert(It, loop1MBB);
4336    F->insert(It, loop2MBB);
4337    F->insert(It, midMBB);
4338    F->insert(It, exitMBB);
4339    exitMBB->transferSuccessors(BB);
4340
4341    MachineRegisterInfo &RegInfo = F->getRegInfo();
4342    const TargetRegisterClass *RC =
4343      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4344                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4345    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4346    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4347    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4348    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4349    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4350    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4351    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4352    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4353    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4354    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4355    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4356    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4357    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4358    unsigned Ptr1Reg;
4359    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4360    //  thisMBB:
4361    //   ...
4362    //   fallthrough --> loopMBB
4363    BB->addSuccessor(loop1MBB);
4364
4365    // The 4-byte load must be aligned, while a char or short may be
4366    // anywhere in the word.  Hence all this nasty bookkeeping code.
4367    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4368    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4369    //   xori shift, shift1, 24 [16]
4370    //   rlwinm ptr, ptr1, 0, 0, 29
4371    //   slw newval2, newval, shift
4372    //   slw oldval2, oldval,shift
4373    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4374    //   slw mask, mask2, shift
4375    //   and newval3, newval2, mask
4376    //   and oldval3, oldval2, mask
4377    // loop1MBB:
4378    //   lwarx tmpDest, ptr
4379    //   and tmp, tmpDest, mask
4380    //   cmpw tmp, oldval3
4381    //   bne- midMBB
4382    // loop2MBB:
4383    //   andc tmp2, tmpDest, mask
4384    //   or tmp4, tmp2, newval3
4385    //   stwcx. tmp4, ptr
4386    //   bne- loop1MBB
4387    //   b exitBB
4388    // midMBB:
4389    //   stwcx. tmpDest, ptr
4390    // exitBB:
4391    //   srw dest, tmpDest, shift
4392    if (ptrA!=PPC::R0) {
4393      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4394      BuildMI(BB, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4395        .addReg(ptrA).addReg(ptrB);
4396    } else {
4397      Ptr1Reg = ptrB;
4398    }
4399    BuildMI(BB, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4400        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4401    BuildMI(BB, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4402        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4403    if (is64bit)
4404      BuildMI(BB, TII->get(PPC::RLDICR), PtrReg)
4405        .addReg(Ptr1Reg).addImm(0).addImm(61);
4406    else
4407      BuildMI(BB, TII->get(PPC::RLWINM), PtrReg)
4408        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4409    BuildMI(BB, TII->get(PPC::SLW), NewVal2Reg)
4410        .addReg(newval).addReg(ShiftReg);
4411    BuildMI(BB, TII->get(PPC::SLW), OldVal2Reg)
4412        .addReg(oldval).addReg(ShiftReg);
4413    if (is8bit)
4414      BuildMI(BB, TII->get(PPC::LI), Mask2Reg).addImm(255);
4415    else {
4416      BuildMI(BB, TII->get(PPC::LI), Mask3Reg).addImm(0);
4417      BuildMI(BB, TII->get(PPC::ORI), Mask2Reg).addReg(Mask3Reg).addImm(65535);
4418    }
4419    BuildMI(BB, TII->get(PPC::SLW), MaskReg)
4420        .addReg(Mask2Reg).addReg(ShiftReg);
4421    BuildMI(BB, TII->get(PPC::AND), NewVal3Reg)
4422        .addReg(NewVal2Reg).addReg(MaskReg);
4423    BuildMI(BB, TII->get(PPC::AND), OldVal3Reg)
4424        .addReg(OldVal2Reg).addReg(MaskReg);
4425
4426    BB = loop1MBB;
4427    BuildMI(BB, TII->get(PPC::LWARX), TmpDestReg)
4428        .addReg(PPC::R0).addReg(PtrReg);
4429    BuildMI(BB, TII->get(PPC::AND),TmpReg).addReg(TmpDestReg).addReg(MaskReg);
4430    BuildMI(BB, TII->get(PPC::CMPW), PPC::CR0)
4431        .addReg(TmpReg).addReg(OldVal3Reg);
4432    BuildMI(BB, TII->get(PPC::BCC))
4433        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4434    BB->addSuccessor(loop2MBB);
4435    BB->addSuccessor(midMBB);
4436
4437    BB = loop2MBB;
4438    BuildMI(BB, TII->get(PPC::ANDC),Tmp2Reg).addReg(TmpDestReg).addReg(MaskReg);
4439    BuildMI(BB, TII->get(PPC::OR),Tmp4Reg).addReg(Tmp2Reg).addReg(NewVal3Reg);
4440    BuildMI(BB, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
4441        .addReg(PPC::R0).addReg(PtrReg);
4442    BuildMI(BB, TII->get(PPC::BCC))
4443      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4444    BuildMI(BB, TII->get(PPC::B)).addMBB(exitMBB);
4445    BB->addSuccessor(loop1MBB);
4446    BB->addSuccessor(exitMBB);
4447
4448    BB = midMBB;
4449    BuildMI(BB, TII->get(PPC::STWCX)).addReg(TmpDestReg)
4450      .addReg(PPC::R0).addReg(PtrReg);
4451    BB->addSuccessor(exitMBB);
4452
4453    //  exitMBB:
4454    //   ...
4455    BB = exitMBB;
4456    BuildMI(BB, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
4457  } else {
4458    assert(0 && "Unexpected instr type to insert");
4459  }
4460
4461  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4462  return BB;
4463}
4464
4465//===----------------------------------------------------------------------===//
4466// Target Optimization Hooks
4467//===----------------------------------------------------------------------===//
4468
4469SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4470                                             DAGCombinerInfo &DCI) const {
4471  TargetMachine &TM = getTargetMachine();
4472  SelectionDAG &DAG = DCI.DAG;
4473  DebugLoc dl = N->getDebugLoc();
4474  switch (N->getOpcode()) {
4475  default: break;
4476  case PPCISD::SHL:
4477    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4478      if (C->getZExtValue() == 0)   // 0 << V -> 0.
4479        return N->getOperand(0);
4480    }
4481    break;
4482  case PPCISD::SRL:
4483    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4484      if (C->getZExtValue() == 0)   // 0 >>u V -> 0.
4485        return N->getOperand(0);
4486    }
4487    break;
4488  case PPCISD::SRA:
4489    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4490      if (C->getZExtValue() == 0 ||   //  0 >>s V -> 0.
4491          C->isAllOnesValue())    // -1 >>s V -> -1.
4492        return N->getOperand(0);
4493    }
4494    break;
4495
4496  case ISD::SINT_TO_FP:
4497    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4498      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4499        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4500        // We allow the src/dst to be either f32/f64, but the intermediate
4501        // type must be i64.
4502        if (N->getOperand(0).getValueType() == MVT::i64 &&
4503            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4504          SDValue Val = N->getOperand(0).getOperand(0);
4505          if (Val.getValueType() == MVT::f32) {
4506            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4507            DCI.AddToWorklist(Val.getNode());
4508          }
4509
4510          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
4511          DCI.AddToWorklist(Val.getNode());
4512          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
4513          DCI.AddToWorklist(Val.getNode());
4514          if (N->getValueType(0) == MVT::f32) {
4515            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
4516                              DAG.getIntPtrConstant(0));
4517            DCI.AddToWorklist(Val.getNode());
4518          }
4519          return Val;
4520        } else if (N->getOperand(0).getValueType() == MVT::i32) {
4521          // If the intermediate type is i32, we can avoid the load/store here
4522          // too.
4523        }
4524      }
4525    }
4526    break;
4527  case ISD::STORE:
4528    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4529    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4530        !cast<StoreSDNode>(N)->isTruncatingStore() &&
4531        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4532        N->getOperand(1).getValueType() == MVT::i32 &&
4533        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4534      SDValue Val = N->getOperand(1).getOperand(0);
4535      if (Val.getValueType() == MVT::f32) {
4536        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4537        DCI.AddToWorklist(Val.getNode());
4538      }
4539      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
4540      DCI.AddToWorklist(Val.getNode());
4541
4542      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
4543                        N->getOperand(2), N->getOperand(3));
4544      DCI.AddToWorklist(Val.getNode());
4545      return Val;
4546    }
4547
4548    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4549    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
4550        N->getOperand(1).getNode()->hasOneUse() &&
4551        (N->getOperand(1).getValueType() == MVT::i32 ||
4552         N->getOperand(1).getValueType() == MVT::i16)) {
4553      SDValue BSwapOp = N->getOperand(1).getOperand(0);
4554      // Do an any-extend to 32-bits if this is a half-word input.
4555      if (BSwapOp.getValueType() == MVT::i16)
4556        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
4557
4558      return DAG.getNode(PPCISD::STBRX, dl, MVT::Other, N->getOperand(0),
4559                         BSwapOp, N->getOperand(2), N->getOperand(3),
4560                         DAG.getValueType(N->getOperand(1).getValueType()));
4561    }
4562    break;
4563  case ISD::BSWAP:
4564    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4565    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
4566        N->getOperand(0).hasOneUse() &&
4567        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4568      SDValue Load = N->getOperand(0);
4569      LoadSDNode *LD = cast<LoadSDNode>(Load);
4570      // Create the byte-swapping load.
4571      std::vector<MVT> VTs;
4572      VTs.push_back(MVT::i32);
4573      VTs.push_back(MVT::Other);
4574      SDValue MO = DAG.getMemOperand(LD->getMemOperand());
4575      SDValue Ops[] = {
4576        LD->getChain(),    // Chain
4577        LD->getBasePtr(),  // Ptr
4578        MO,                // MemOperand
4579        DAG.getValueType(N->getValueType(0)) // VT
4580      };
4581      SDValue BSLoad = DAG.getNode(PPCISD::LBRX, dl, VTs, Ops, 4);
4582
4583      // If this is an i16 load, insert the truncate.
4584      SDValue ResVal = BSLoad;
4585      if (N->getValueType(0) == MVT::i16)
4586        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
4587
4588      // First, combine the bswap away.  This makes the value produced by the
4589      // load dead.
4590      DCI.CombineTo(N, ResVal);
4591
4592      // Next, combine the load away, we give it a bogus result value but a real
4593      // chain result.  The result value is dead because the bswap is dead.
4594      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
4595
4596      // Return N so it doesn't get rechecked!
4597      return SDValue(N, 0);
4598    }
4599
4600    break;
4601  case PPCISD::VCMP: {
4602    // If a VCMPo node already exists with exactly the same operands as this
4603    // node, use its result instead of this node (VCMPo computes both a CR6 and
4604    // a normal output).
4605    //
4606    if (!N->getOperand(0).hasOneUse() &&
4607        !N->getOperand(1).hasOneUse() &&
4608        !N->getOperand(2).hasOneUse()) {
4609
4610      // Scan all of the users of the LHS, looking for VCMPo's that match.
4611      SDNode *VCMPoNode = 0;
4612
4613      SDNode *LHSN = N->getOperand(0).getNode();
4614      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
4615           UI != E; ++UI)
4616        if (UI->getOpcode() == PPCISD::VCMPo &&
4617            UI->getOperand(1) == N->getOperand(1) &&
4618            UI->getOperand(2) == N->getOperand(2) &&
4619            UI->getOperand(0) == N->getOperand(0)) {
4620          VCMPoNode = *UI;
4621          break;
4622        }
4623
4624      // If there is no VCMPo node, or if the flag value has a single use, don't
4625      // transform this.
4626      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
4627        break;
4628
4629      // Look at the (necessarily single) use of the flag value.  If it has a
4630      // chain, this transformation is more complex.  Note that multiple things
4631      // could use the value result, which we should ignore.
4632      SDNode *FlagUser = 0;
4633      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
4634           FlagUser == 0; ++UI) {
4635        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
4636        SDNode *User = *UI;
4637        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
4638          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
4639            FlagUser = User;
4640            break;
4641          }
4642        }
4643      }
4644
4645      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
4646      // give up for right now.
4647      if (FlagUser->getOpcode() == PPCISD::MFCR)
4648        return SDValue(VCMPoNode, 0);
4649    }
4650    break;
4651  }
4652  case ISD::BR_CC: {
4653    // If this is a branch on an altivec predicate comparison, lower this so
4654    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
4655    // lowering is done pre-legalize, because the legalizer lowers the predicate
4656    // compare down to code that is difficult to reassemble.
4657    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4658    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4659    int CompareOpc;
4660    bool isDot;
4661
4662    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
4663        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
4664        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
4665      assert(isDot && "Can't compare against a vector result!");
4666
4667      // If this is a comparison against something other than 0/1, then we know
4668      // that the condition is never/always true.
4669      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
4670      if (Val != 0 && Val != 1) {
4671        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
4672          return N->getOperand(0);
4673        // Always !=, turn it into an unconditional branch.
4674        return DAG.getNode(ISD::BR, dl, MVT::Other,
4675                           N->getOperand(0), N->getOperand(4));
4676      }
4677
4678      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
4679
4680      // Create the PPCISD altivec 'dot' comparison node.
4681      std::vector<MVT> VTs;
4682      SDValue Ops[] = {
4683        LHS.getOperand(2),  // LHS of compare
4684        LHS.getOperand(3),  // RHS of compare
4685        DAG.getConstant(CompareOpc, MVT::i32)
4686      };
4687      VTs.push_back(LHS.getOperand(2).getValueType());
4688      VTs.push_back(MVT::Flag);
4689      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4690
4691      // Unpack the result based on how the target uses it.
4692      PPC::Predicate CompOpc;
4693      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
4694      default:  // Can't happen, don't crash on invalid number though.
4695      case 0:   // Branch on the value of the EQ bit of CR6.
4696        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
4697        break;
4698      case 1:   // Branch on the inverted value of the EQ bit of CR6.
4699        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
4700        break;
4701      case 2:   // Branch on the value of the LT bit of CR6.
4702        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
4703        break;
4704      case 3:   // Branch on the inverted value of the LT bit of CR6.
4705        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
4706        break;
4707      }
4708
4709      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
4710                         DAG.getConstant(CompOpc, MVT::i32),
4711                         DAG.getRegister(PPC::CR6, MVT::i32),
4712                         N->getOperand(4), CompNode.getValue(1));
4713    }
4714    break;
4715  }
4716  }
4717
4718  return SDValue();
4719}
4720
4721//===----------------------------------------------------------------------===//
4722// Inline Assembly Support
4723//===----------------------------------------------------------------------===//
4724
4725void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
4726                                                       const APInt &Mask,
4727                                                       APInt &KnownZero,
4728                                                       APInt &KnownOne,
4729                                                       const SelectionDAG &DAG,
4730                                                       unsigned Depth) const {
4731  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
4732  switch (Op.getOpcode()) {
4733  default: break;
4734  case PPCISD::LBRX: {
4735    // lhbrx is known to have the top bits cleared out.
4736    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
4737      KnownZero = 0xFFFF0000;
4738    break;
4739  }
4740  case ISD::INTRINSIC_WO_CHAIN: {
4741    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
4742    default: break;
4743    case Intrinsic::ppc_altivec_vcmpbfp_p:
4744    case Intrinsic::ppc_altivec_vcmpeqfp_p:
4745    case Intrinsic::ppc_altivec_vcmpequb_p:
4746    case Intrinsic::ppc_altivec_vcmpequh_p:
4747    case Intrinsic::ppc_altivec_vcmpequw_p:
4748    case Intrinsic::ppc_altivec_vcmpgefp_p:
4749    case Intrinsic::ppc_altivec_vcmpgtfp_p:
4750    case Intrinsic::ppc_altivec_vcmpgtsb_p:
4751    case Intrinsic::ppc_altivec_vcmpgtsh_p:
4752    case Intrinsic::ppc_altivec_vcmpgtsw_p:
4753    case Intrinsic::ppc_altivec_vcmpgtub_p:
4754    case Intrinsic::ppc_altivec_vcmpgtuh_p:
4755    case Intrinsic::ppc_altivec_vcmpgtuw_p:
4756      KnownZero = ~1U;  // All bits but the low one are known to be zero.
4757      break;
4758    }
4759  }
4760  }
4761}
4762
4763
4764/// getConstraintType - Given a constraint, return the type of
4765/// constraint it is for this target.
4766PPCTargetLowering::ConstraintType
4767PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
4768  if (Constraint.size() == 1) {
4769    switch (Constraint[0]) {
4770    default: break;
4771    case 'b':
4772    case 'r':
4773    case 'f':
4774    case 'v':
4775    case 'y':
4776      return C_RegisterClass;
4777    }
4778  }
4779  return TargetLowering::getConstraintType(Constraint);
4780}
4781
4782std::pair<unsigned, const TargetRegisterClass*>
4783PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4784                                                MVT VT) const {
4785  if (Constraint.size() == 1) {
4786    // GCC RS6000 Constraint Letters
4787    switch (Constraint[0]) {
4788    case 'b':   // R1-R31
4789    case 'r':   // R0-R31
4790      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
4791        return std::make_pair(0U, PPC::G8RCRegisterClass);
4792      return std::make_pair(0U, PPC::GPRCRegisterClass);
4793    case 'f':
4794      if (VT == MVT::f32)
4795        return std::make_pair(0U, PPC::F4RCRegisterClass);
4796      else if (VT == MVT::f64)
4797        return std::make_pair(0U, PPC::F8RCRegisterClass);
4798      break;
4799    case 'v':
4800      return std::make_pair(0U, PPC::VRRCRegisterClass);
4801    case 'y':   // crrc
4802      return std::make_pair(0U, PPC::CRRCRegisterClass);
4803    }
4804  }
4805
4806  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4807}
4808
4809
4810/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4811/// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
4812/// it means one of the asm constraint of the inline asm instruction being
4813/// processed is 'm'.
4814void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
4815                                                     bool hasMemory,
4816                                                     std::vector<SDValue>&Ops,
4817                                                     SelectionDAG &DAG) const {
4818  SDValue Result(0,0);
4819  switch (Letter) {
4820  default: break;
4821  case 'I':
4822  case 'J':
4823  case 'K':
4824  case 'L':
4825  case 'M':
4826  case 'N':
4827  case 'O':
4828  case 'P': {
4829    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
4830    if (!CST) return; // Must be an immediate to match.
4831    unsigned Value = CST->getZExtValue();
4832    switch (Letter) {
4833    default: assert(0 && "Unknown constraint letter!");
4834    case 'I':  // "I" is a signed 16-bit constant.
4835      if ((short)Value == (int)Value)
4836        Result = DAG.getTargetConstant(Value, Op.getValueType());
4837      break;
4838    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
4839    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
4840      if ((short)Value == 0)
4841        Result = DAG.getTargetConstant(Value, Op.getValueType());
4842      break;
4843    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
4844      if ((Value >> 16) == 0)
4845        Result = DAG.getTargetConstant(Value, Op.getValueType());
4846      break;
4847    case 'M':  // "M" is a constant that is greater than 31.
4848      if (Value > 31)
4849        Result = DAG.getTargetConstant(Value, Op.getValueType());
4850      break;
4851    case 'N':  // "N" is a positive constant that is an exact power of two.
4852      if ((int)Value > 0 && isPowerOf2_32(Value))
4853        Result = DAG.getTargetConstant(Value, Op.getValueType());
4854      break;
4855    case 'O':  // "O" is the constant zero.
4856      if (Value == 0)
4857        Result = DAG.getTargetConstant(Value, Op.getValueType());
4858      break;
4859    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
4860      if ((short)-Value == (int)-Value)
4861        Result = DAG.getTargetConstant(Value, Op.getValueType());
4862      break;
4863    }
4864    break;
4865  }
4866  }
4867
4868  if (Result.getNode()) {
4869    Ops.push_back(Result);
4870    return;
4871  }
4872
4873  // Handle standard constraint letters.
4874  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
4875}
4876
4877// isLegalAddressingMode - Return true if the addressing mode represented
4878// by AM is legal for this target, for a load/store of the specified type.
4879bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4880                                              const Type *Ty) const {
4881  // FIXME: PPC does not allow r+i addressing modes for vectors!
4882
4883  // PPC allows a sign-extended 16-bit immediate field.
4884  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
4885    return false;
4886
4887  // No global is ever allowed as a base.
4888  if (AM.BaseGV)
4889    return false;
4890
4891  // PPC only support r+r,
4892  switch (AM.Scale) {
4893  case 0:  // "r+i" or just "i", depending on HasBaseReg.
4894    break;
4895  case 1:
4896    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
4897      return false;
4898    // Otherwise we have r+r or r+i.
4899    break;
4900  case 2:
4901    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
4902      return false;
4903    // Allow 2*r as r+r.
4904    break;
4905  default:
4906    // No other scales are supported.
4907    return false;
4908  }
4909
4910  return true;
4911}
4912
4913/// isLegalAddressImmediate - Return true if the integer value can be used
4914/// as the offset of the target addressing mode for load / store of the
4915/// given type.
4916bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
4917  // PPC allows a sign-extended 16-bit immediate field.
4918  return (V > -(1 << 16) && V < (1 << 16)-1);
4919}
4920
4921bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
4922  return false;
4923}
4924
4925SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
4926  DebugLoc dl = Op.getNode()->getDebugLoc();
4927  // Depths > 0 not supported yet!
4928  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
4929    return SDValue();
4930
4931  MachineFunction &MF = DAG.getMachineFunction();
4932  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4933
4934  // Just load the return address off the stack.
4935  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
4936
4937  // Make sure the function really does not optimize away the store of the RA
4938  // to the stack.
4939  FuncInfo->setLRStoreRequired();
4940  return DAG.getLoad(getPointerTy(), dl,
4941                     DAG.getEntryNode(), RetAddrFI, NULL, 0);
4942}
4943
4944SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
4945  DebugLoc dl = Op.getDebugLoc();
4946  // Depths > 0 not supported yet!
4947  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
4948    return SDValue();
4949
4950  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4951  bool isPPC64 = PtrVT == MVT::i64;
4952
4953  MachineFunction &MF = DAG.getMachineFunction();
4954  MachineFrameInfo *MFI = MF.getFrameInfo();
4955  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4956                  && MFI->getStackSize();
4957
4958  if (isPPC64)
4959    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::X31 : PPC::X1,
4960      MVT::i64);
4961  else
4962    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::R31 : PPC::R1,
4963      MVT::i32);
4964}
4965
4966bool
4967PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4968  // The PowerPC target isn't yet aware of offsets.
4969  return false;
4970}
4971