DeadArgumentElimination.cpp revision 99faa3b4ec6d03ac7808fe4ff3fbf3d04e375502
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constant.h"
28#include "llvm/DIBuilder.h"
29#include "llvm/DebugInfo.h"
30#include "llvm/DerivedTypes.h"
31#include "llvm/Instructions.h"
32#include "llvm/IntrinsicInst.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Module.h"
35#include "llvm/Pass.h"
36#include "llvm/Support/CallSite.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/raw_ostream.h"
39#include <map>
40#include <set>
41using namespace llvm;
42
43STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
44STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
45STATISTIC(NumArgumentsReplacedWithUndef,
46          "Number of unread args replaced with undef");
47namespace {
48  /// DAE - The dead argument elimination pass.
49  ///
50  class DAE : public ModulePass {
51  public:
52
53    /// Struct that represents (part of) either a return value or a function
54    /// argument.  Used so that arguments and return values can be used
55    /// interchangeably.
56    struct RetOrArg {
57      RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
58               IsArg(IsArg) {}
59      const Function *F;
60      unsigned Idx;
61      bool IsArg;
62
63      /// Make RetOrArg comparable, so we can put it into a map.
64      bool operator<(const RetOrArg &O) const {
65        if (F != O.F)
66          return F < O.F;
67        else if (Idx != O.Idx)
68          return Idx < O.Idx;
69        else
70          return IsArg < O.IsArg;
71      }
72
73      /// Make RetOrArg comparable, so we can easily iterate the multimap.
74      bool operator==(const RetOrArg &O) const {
75        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
76      }
77
78      std::string getDescription() const {
79        return std::string((IsArg ? "Argument #" : "Return value #"))
80               + utostr(Idx) + " of function " + F->getName().str();
81      }
82    };
83
84    /// Liveness enum - During our initial pass over the program, we determine
85    /// that things are either alive or maybe alive. We don't mark anything
86    /// explicitly dead (even if we know they are), since anything not alive
87    /// with no registered uses (in Uses) will never be marked alive and will
88    /// thus become dead in the end.
89    enum Liveness { Live, MaybeLive };
90
91    /// Convenience wrapper
92    RetOrArg CreateRet(const Function *F, unsigned Idx) {
93      return RetOrArg(F, Idx, false);
94    }
95    /// Convenience wrapper
96    RetOrArg CreateArg(const Function *F, unsigned Idx) {
97      return RetOrArg(F, Idx, true);
98    }
99
100    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
101    /// This maps a return value or argument to any MaybeLive return values or
102    /// arguments it uses. This allows the MaybeLive values to be marked live
103    /// when any of its users is marked live.
104    /// For example (indices are left out for clarity):
105    ///  - Uses[ret F] = ret G
106    ///    This means that F calls G, and F returns the value returned by G.
107    ///  - Uses[arg F] = ret G
108    ///    This means that some function calls G and passes its result as an
109    ///    argument to F.
110    ///  - Uses[ret F] = arg F
111    ///    This means that F returns one of its own arguments.
112    ///  - Uses[arg F] = arg G
113    ///    This means that G calls F and passes one of its own (G's) arguments
114    ///    directly to F.
115    UseMap Uses;
116
117    typedef std::set<RetOrArg> LiveSet;
118    typedef std::set<const Function*> LiveFuncSet;
119
120    /// This set contains all values that have been determined to be live.
121    LiveSet LiveValues;
122    /// This set contains all values that are cannot be changed in any way.
123    LiveFuncSet LiveFunctions;
124
125    typedef SmallVector<RetOrArg, 5> UseVector;
126
127    // Map each LLVM function to corresponding metadata with debug info. If
128    // the function is replaced with another one, we should patch the pointer
129    // to LLVM function in metadata.
130    // As the code generation for module is finished (and DIBuilder is
131    // finalized) we assume that subprogram descriptors won't be changed, and
132    // they are stored in map for short duration anyway.
133    typedef DenseMap<Function*, DISubprogram> FunctionDIMap;
134    FunctionDIMap FunctionDIs;
135
136  protected:
137    // DAH uses this to specify a different ID.
138    explicit DAE(char &ID) : ModulePass(ID) {}
139
140  public:
141    static char ID; // Pass identification, replacement for typeid
142    DAE() : ModulePass(ID) {
143      initializeDAEPass(*PassRegistry::getPassRegistry());
144    }
145
146    bool runOnModule(Module &M);
147
148    virtual bool ShouldHackArguments() const { return false; }
149
150  private:
151    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
152    Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
153                       unsigned RetValNum = 0);
154    Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
155
156    void CollectFunctionDIs(Module &M);
157    void SurveyFunction(const Function &F);
158    void MarkValue(const RetOrArg &RA, Liveness L,
159                   const UseVector &MaybeLiveUses);
160    void MarkLive(const RetOrArg &RA);
161    void MarkLive(const Function &F);
162    void PropagateLiveness(const RetOrArg &RA);
163    bool RemoveDeadStuffFromFunction(Function *F);
164    bool DeleteDeadVarargs(Function &Fn);
165    bool RemoveDeadArgumentsFromCallers(Function &Fn);
166  };
167}
168
169
170char DAE::ID = 0;
171INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
172
173namespace {
174  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
175  /// deletes arguments to functions which are external.  This is only for use
176  /// by bugpoint.
177  struct DAH : public DAE {
178    static char ID;
179    DAH() : DAE(ID) {}
180
181    virtual bool ShouldHackArguments() const { return true; }
182  };
183}
184
185char DAH::ID = 0;
186INITIALIZE_PASS(DAH, "deadarghaX0r",
187                "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
188                false, false)
189
190/// createDeadArgEliminationPass - This pass removes arguments from functions
191/// which are not used by the body of the function.
192///
193ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
194ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
195
196/// CollectFunctionDIs - Map each function in the module to its debug info
197/// descriptor.
198void DAE::CollectFunctionDIs(Module &M) {
199  FunctionDIs.clear();
200
201  for (Module::named_metadata_iterator I = M.named_metadata_begin(),
202       E = M.named_metadata_end(); I != E; ++I) {
203    NamedMDNode &NMD = *I;
204    for (unsigned MDIndex = 0, MDNum = NMD.getNumOperands();
205         MDIndex < MDNum; ++MDIndex) {
206      MDNode *Node = NMD.getOperand(MDIndex);
207      if (!DIDescriptor(Node).isCompileUnit())
208        continue;
209      DICompileUnit CU(Node);
210      const DIArray &SPs = CU.getSubprograms();
211      for (unsigned SPIndex = 0, SPNum = SPs.getNumElements();
212           SPIndex < SPNum; ++SPIndex) {
213        DISubprogram SP(SPs.getElement(SPIndex));
214        if (!SP.Verify())
215          continue;
216        if (Function *F = SP.getFunction())
217          FunctionDIs[F] = SP;
218      }
219    }
220  }
221}
222
223/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
224/// llvm.vastart is never called, the varargs list is dead for the function.
225bool DAE::DeleteDeadVarargs(Function &Fn) {
226  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
227  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
228
229  // Ensure that the function is only directly called.
230  if (Fn.hasAddressTaken())
231    return false;
232
233  // Okay, we know we can transform this function if safe.  Scan its body
234  // looking for calls to llvm.vastart.
235  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
236    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
237      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
238        if (II->getIntrinsicID() == Intrinsic::vastart)
239          return false;
240      }
241    }
242  }
243
244  // If we get here, there are no calls to llvm.vastart in the function body,
245  // remove the "..." and adjust all the calls.
246
247  // Start by computing a new prototype for the function, which is the same as
248  // the old function, but doesn't have isVarArg set.
249  FunctionType *FTy = Fn.getFunctionType();
250
251  std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
252  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
253                                                Params, false);
254  unsigned NumArgs = Params.size();
255
256  // Create the new function body and insert it into the module...
257  Function *NF = Function::Create(NFTy, Fn.getLinkage());
258  NF->copyAttributesFrom(&Fn);
259  Fn.getParent()->getFunctionList().insert(&Fn, NF);
260  NF->takeName(&Fn);
261
262  // Loop over all of the callers of the function, transforming the call sites
263  // to pass in a smaller number of arguments into the new function.
264  //
265  std::vector<Value*> Args;
266  while (!Fn.use_empty()) {
267    CallSite CS(Fn.use_back());
268    Instruction *Call = CS.getInstruction();
269
270    // Pass all the same arguments.
271    Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
272
273    // Drop any attributes that were on the vararg arguments.
274    AttributeSet PAL = CS.getAttributes();
275    if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
276      SmallVector<AttributeWithIndex, 8> AttributesVec;
277      for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
278        AttributesVec.push_back(PAL.getSlot(i));
279      Attributes FnAttrs = PAL.getFnAttributes();
280      if (FnAttrs.hasAttributes())
281        AttributesVec.push_back(AttributeWithIndex::get(AttributeSet::FunctionIndex,
282                                                        FnAttrs));
283      PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
284    }
285
286    Instruction *New;
287    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
288      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
289                               Args, "", Call);
290      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
291      cast<InvokeInst>(New)->setAttributes(PAL);
292    } else {
293      New = CallInst::Create(NF, Args, "", Call);
294      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
295      cast<CallInst>(New)->setAttributes(PAL);
296      if (cast<CallInst>(Call)->isTailCall())
297        cast<CallInst>(New)->setTailCall();
298    }
299    New->setDebugLoc(Call->getDebugLoc());
300
301    Args.clear();
302
303    if (!Call->use_empty())
304      Call->replaceAllUsesWith(New);
305
306    New->takeName(Call);
307
308    // Finally, remove the old call from the program, reducing the use-count of
309    // F.
310    Call->eraseFromParent();
311  }
312
313  // Since we have now created the new function, splice the body of the old
314  // function right into the new function, leaving the old rotting hulk of the
315  // function empty.
316  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
317
318  // Loop over the argument list, transferring uses of the old arguments over to
319  // the new arguments, also transferring over the names as well.  While we're at
320  // it, remove the dead arguments from the DeadArguments list.
321  //
322  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
323       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
324    // Move the name and users over to the new version.
325    I->replaceAllUsesWith(I2);
326    I2->takeName(I);
327  }
328
329  // Patch the pointer to LLVM function in debug info descriptor.
330  FunctionDIMap::iterator DI = FunctionDIs.find(&Fn);
331  if (DI != FunctionDIs.end())
332    DI->second.replaceFunction(NF);
333
334  // Finally, nuke the old function.
335  Fn.eraseFromParent();
336  return true;
337}
338
339/// RemoveDeadArgumentsFromCallers - Checks if the given function has any
340/// arguments that are unused, and changes the caller parameters to be undefined
341/// instead.
342bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
343{
344  if (Fn.isDeclaration() || Fn.mayBeOverridden())
345    return false;
346
347  // Functions with local linkage should already have been handled.
348  if (Fn.hasLocalLinkage())
349    return false;
350
351  if (Fn.use_empty())
352    return false;
353
354  llvm::SmallVector<unsigned, 8> UnusedArgs;
355  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
356       I != E; ++I) {
357    Argument *Arg = I;
358
359    if (Arg->use_empty() && !Arg->hasByValAttr())
360      UnusedArgs.push_back(Arg->getArgNo());
361  }
362
363  if (UnusedArgs.empty())
364    return false;
365
366  bool Changed = false;
367
368  for (Function::use_iterator I = Fn.use_begin(), E = Fn.use_end();
369       I != E; ++I) {
370    CallSite CS(*I);
371    if (!CS || !CS.isCallee(I))
372      continue;
373
374    // Now go through all unused args and replace them with "undef".
375    for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
376      unsigned ArgNo = UnusedArgs[I];
377
378      Value *Arg = CS.getArgument(ArgNo);
379      CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
380      ++NumArgumentsReplacedWithUndef;
381      Changed = true;
382    }
383  }
384
385  return Changed;
386}
387
388/// Convenience function that returns the number of return values. It returns 0
389/// for void functions and 1 for functions not returning a struct. It returns
390/// the number of struct elements for functions returning a struct.
391static unsigned NumRetVals(const Function *F) {
392  if (F->getReturnType()->isVoidTy())
393    return 0;
394  else if (StructType *STy = dyn_cast<StructType>(F->getReturnType()))
395    return STy->getNumElements();
396  else
397    return 1;
398}
399
400/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
401/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
402/// liveness of Use.
403DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
404  // We're live if our use or its Function is already marked as live.
405  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
406    return Live;
407
408  // We're maybe live otherwise, but remember that we must become live if
409  // Use becomes live.
410  MaybeLiveUses.push_back(Use);
411  return MaybeLive;
412}
413
414
415/// SurveyUse - This looks at a single use of an argument or return value
416/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
417/// if it causes the used value to become MaybeLive.
418///
419/// RetValNum is the return value number to use when this use is used in a
420/// return instruction. This is used in the recursion, you should always leave
421/// it at 0.
422DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
423                             UseVector &MaybeLiveUses, unsigned RetValNum) {
424    const User *V = *U;
425    if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
426      // The value is returned from a function. It's only live when the
427      // function's return value is live. We use RetValNum here, for the case
428      // that U is really a use of an insertvalue instruction that uses the
429      // original Use.
430      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
431      // We might be live, depending on the liveness of Use.
432      return MarkIfNotLive(Use, MaybeLiveUses);
433    }
434    if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
435      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
436          && IV->hasIndices())
437        // The use we are examining is inserted into an aggregate. Our liveness
438        // depends on all uses of that aggregate, but if it is used as a return
439        // value, only index at which we were inserted counts.
440        RetValNum = *IV->idx_begin();
441
442      // Note that if we are used as the aggregate operand to the insertvalue,
443      // we don't change RetValNum, but do survey all our uses.
444
445      Liveness Result = MaybeLive;
446      for (Value::const_use_iterator I = IV->use_begin(),
447           E = V->use_end(); I != E; ++I) {
448        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
449        if (Result == Live)
450          break;
451      }
452      return Result;
453    }
454
455    if (ImmutableCallSite CS = V) {
456      const Function *F = CS.getCalledFunction();
457      if (F) {
458        // Used in a direct call.
459
460        // Find the argument number. We know for sure that this use is an
461        // argument, since if it was the function argument this would be an
462        // indirect call and the we know can't be looking at a value of the
463        // label type (for the invoke instruction).
464        unsigned ArgNo = CS.getArgumentNo(U);
465
466        if (ArgNo >= F->getFunctionType()->getNumParams())
467          // The value is passed in through a vararg! Must be live.
468          return Live;
469
470        assert(CS.getArgument(ArgNo)
471               == CS->getOperand(U.getOperandNo())
472               && "Argument is not where we expected it");
473
474        // Value passed to a normal call. It's only live when the corresponding
475        // argument to the called function turns out live.
476        RetOrArg Use = CreateArg(F, ArgNo);
477        return MarkIfNotLive(Use, MaybeLiveUses);
478      }
479    }
480    // Used in any other way? Value must be live.
481    return Live;
482}
483
484/// SurveyUses - This looks at all the uses of the given value
485/// Returns the Liveness deduced from the uses of this value.
486///
487/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
488/// the result is Live, MaybeLiveUses might be modified but its content should
489/// be ignored (since it might not be complete).
490DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
491  // Assume it's dead (which will only hold if there are no uses at all..).
492  Liveness Result = MaybeLive;
493  // Check each use.
494  for (Value::const_use_iterator I = V->use_begin(),
495       E = V->use_end(); I != E; ++I) {
496    Result = SurveyUse(I, MaybeLiveUses);
497    if (Result == Live)
498      break;
499  }
500  return Result;
501}
502
503// SurveyFunction - This performs the initial survey of the specified function,
504// checking out whether or not it uses any of its incoming arguments or whether
505// any callers use the return value.  This fills in the LiveValues set and Uses
506// map.
507//
508// We consider arguments of non-internal functions to be intrinsically alive as
509// well as arguments to functions which have their "address taken".
510//
511void DAE::SurveyFunction(const Function &F) {
512  unsigned RetCount = NumRetVals(&F);
513  // Assume all return values are dead
514  typedef SmallVector<Liveness, 5> RetVals;
515  RetVals RetValLiveness(RetCount, MaybeLive);
516
517  typedef SmallVector<UseVector, 5> RetUses;
518  // These vectors map each return value to the uses that make it MaybeLive, so
519  // we can add those to the Uses map if the return value really turns out to be
520  // MaybeLive. Initialized to a list of RetCount empty lists.
521  RetUses MaybeLiveRetUses(RetCount);
522
523  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
524    if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
525      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
526          != F.getFunctionType()->getReturnType()) {
527        // We don't support old style multiple return values.
528        MarkLive(F);
529        return;
530      }
531
532  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
533    MarkLive(F);
534    return;
535  }
536
537  DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
538  // Keep track of the number of live retvals, so we can skip checks once all
539  // of them turn out to be live.
540  unsigned NumLiveRetVals = 0;
541  Type *STy = dyn_cast<StructType>(F.getReturnType());
542  // Loop all uses of the function.
543  for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
544       I != E; ++I) {
545    // If the function is PASSED IN as an argument, its address has been
546    // taken.
547    ImmutableCallSite CS(*I);
548    if (!CS || !CS.isCallee(I)) {
549      MarkLive(F);
550      return;
551    }
552
553    // If this use is anything other than a call site, the function is alive.
554    const Instruction *TheCall = CS.getInstruction();
555    if (!TheCall) {   // Not a direct call site?
556      MarkLive(F);
557      return;
558    }
559
560    // If we end up here, we are looking at a direct call to our function.
561
562    // Now, check how our return value(s) is/are used in this caller. Don't
563    // bother checking return values if all of them are live already.
564    if (NumLiveRetVals != RetCount) {
565      if (STy) {
566        // Check all uses of the return value.
567        for (Value::const_use_iterator I = TheCall->use_begin(),
568             E = TheCall->use_end(); I != E; ++I) {
569          const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
570          if (Ext && Ext->hasIndices()) {
571            // This use uses a part of our return value, survey the uses of
572            // that part and store the results for this index only.
573            unsigned Idx = *Ext->idx_begin();
574            if (RetValLiveness[Idx] != Live) {
575              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
576              if (RetValLiveness[Idx] == Live)
577                NumLiveRetVals++;
578            }
579          } else {
580            // Used by something else than extractvalue. Mark all return
581            // values as live.
582            for (unsigned i = 0; i != RetCount; ++i )
583              RetValLiveness[i] = Live;
584            NumLiveRetVals = RetCount;
585            break;
586          }
587        }
588      } else {
589        // Single return value
590        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
591        if (RetValLiveness[0] == Live)
592          NumLiveRetVals = RetCount;
593      }
594    }
595  }
596
597  // Now we've inspected all callers, record the liveness of our return values.
598  for (unsigned i = 0; i != RetCount; ++i)
599    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
600
601  DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
602
603  // Now, check all of our arguments.
604  unsigned i = 0;
605  UseVector MaybeLiveArgUses;
606  for (Function::const_arg_iterator AI = F.arg_begin(),
607       E = F.arg_end(); AI != E; ++AI, ++i) {
608    // See what the effect of this use is (recording any uses that cause
609    // MaybeLive in MaybeLiveArgUses).
610    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
611    // Mark the result.
612    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
613    // Clear the vector again for the next iteration.
614    MaybeLiveArgUses.clear();
615  }
616}
617
618/// MarkValue - This function marks the liveness of RA depending on L. If L is
619/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
620/// such that RA will be marked live if any use in MaybeLiveUses gets marked
621/// live later on.
622void DAE::MarkValue(const RetOrArg &RA, Liveness L,
623                    const UseVector &MaybeLiveUses) {
624  switch (L) {
625    case Live: MarkLive(RA); break;
626    case MaybeLive:
627    {
628      // Note any uses of this value, so this return value can be
629      // marked live whenever one of the uses becomes live.
630      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
631           UE = MaybeLiveUses.end(); UI != UE; ++UI)
632        Uses.insert(std::make_pair(*UI, RA));
633      break;
634    }
635  }
636}
637
638/// MarkLive - Mark the given Function as alive, meaning that it cannot be
639/// changed in any way. Additionally,
640/// mark any values that are used as this function's parameters or by its return
641/// values (according to Uses) live as well.
642void DAE::MarkLive(const Function &F) {
643  DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
644  // Mark the function as live.
645  LiveFunctions.insert(&F);
646  // Mark all arguments as live.
647  for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
648    PropagateLiveness(CreateArg(&F, i));
649  // Mark all return values as live.
650  for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
651    PropagateLiveness(CreateRet(&F, i));
652}
653
654/// MarkLive - Mark the given return value or argument as live. Additionally,
655/// mark any values that are used by this value (according to Uses) live as
656/// well.
657void DAE::MarkLive(const RetOrArg &RA) {
658  if (LiveFunctions.count(RA.F))
659    return; // Function was already marked Live.
660
661  if (!LiveValues.insert(RA).second)
662    return; // We were already marked Live.
663
664  DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
665  PropagateLiveness(RA);
666}
667
668/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
669/// to any other values it uses (according to Uses).
670void DAE::PropagateLiveness(const RetOrArg &RA) {
671  // We don't use upper_bound (or equal_range) here, because our recursive call
672  // to ourselves is likely to cause the upper_bound (which is the first value
673  // not belonging to RA) to become erased and the iterator invalidated.
674  UseMap::iterator Begin = Uses.lower_bound(RA);
675  UseMap::iterator E = Uses.end();
676  UseMap::iterator I;
677  for (I = Begin; I != E && I->first == RA; ++I)
678    MarkLive(I->second);
679
680  // Erase RA from the Uses map (from the lower bound to wherever we ended up
681  // after the loop).
682  Uses.erase(Begin, I);
683}
684
685// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
686// that are not in LiveValues. Transform the function and all of the callees of
687// the function to not have these arguments and return values.
688//
689bool DAE::RemoveDeadStuffFromFunction(Function *F) {
690  // Don't modify fully live functions
691  if (LiveFunctions.count(F))
692    return false;
693
694  // Start by computing a new prototype for the function, which is the same as
695  // the old function, but has fewer arguments and a different return type.
696  FunctionType *FTy = F->getFunctionType();
697  std::vector<Type*> Params;
698
699  // Set up to build a new list of parameter attributes.
700  SmallVector<AttributeWithIndex, 8> AttributesVec;
701  const AttributeSet &PAL = F->getAttributes();
702
703  // The existing function return attributes.
704  Attributes RAttrs = PAL.getRetAttributes();
705  Attributes FnAttrs = PAL.getFnAttributes();
706
707  // Find out the new return value.
708
709  Type *RetTy = FTy->getReturnType();
710  Type *NRetTy = NULL;
711  unsigned RetCount = NumRetVals(F);
712
713  // -1 means unused, other numbers are the new index
714  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
715  std::vector<Type*> RetTypes;
716  if (RetTy->isVoidTy()) {
717    NRetTy = RetTy;
718  } else {
719    StructType *STy = dyn_cast<StructType>(RetTy);
720    if (STy)
721      // Look at each of the original return values individually.
722      for (unsigned i = 0; i != RetCount; ++i) {
723        RetOrArg Ret = CreateRet(F, i);
724        if (LiveValues.erase(Ret)) {
725          RetTypes.push_back(STy->getElementType(i));
726          NewRetIdxs[i] = RetTypes.size() - 1;
727        } else {
728          ++NumRetValsEliminated;
729          DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
730                << F->getName() << "\n");
731        }
732      }
733    else
734      // We used to return a single value.
735      if (LiveValues.erase(CreateRet(F, 0))) {
736        RetTypes.push_back(RetTy);
737        NewRetIdxs[0] = 0;
738      } else {
739        DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
740              << "\n");
741        ++NumRetValsEliminated;
742      }
743    if (RetTypes.size() > 1)
744      // More than one return type? Return a struct with them. Also, if we used
745      // to return a struct and didn't change the number of return values,
746      // return a struct again. This prevents changing {something} into
747      // something and {} into void.
748      // Make the new struct packed if we used to return a packed struct
749      // already.
750      NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
751    else if (RetTypes.size() == 1)
752      // One return type? Just a simple value then, but only if we didn't use to
753      // return a struct with that simple value before.
754      NRetTy = RetTypes.front();
755    else if (RetTypes.size() == 0)
756      // No return types? Make it void, but only if we didn't use to return {}.
757      NRetTy = Type::getVoidTy(F->getContext());
758  }
759
760  assert(NRetTy && "No new return type found?");
761
762  // Remove any incompatible attributes, but only if we removed all return
763  // values. Otherwise, ensure that we don't have any conflicting attributes
764  // here. Currently, this should not be possible, but special handling might be
765  // required when new return value attributes are added.
766  if (NRetTy->isVoidTy())
767    RAttrs =
768      Attributes::get(NRetTy->getContext(), AttrBuilder(RAttrs).
769                      removeAttributes(Attributes::typeIncompatible(NRetTy)));
770  else
771    assert(!AttrBuilder(RAttrs).
772             hasAttributes(Attributes::typeIncompatible(NRetTy)) &&
773           "Return attributes no longer compatible?");
774
775  if (RAttrs.hasAttributes())
776    AttributesVec.push_back(AttributeWithIndex::get(AttributeSet::ReturnIndex,
777                                                    RAttrs));
778
779  // Remember which arguments are still alive.
780  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
781  // Construct the new parameter list from non-dead arguments. Also construct
782  // a new set of parameter attributes to correspond. Skip the first parameter
783  // attribute, since that belongs to the return value.
784  unsigned i = 0;
785  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
786       I != E; ++I, ++i) {
787    RetOrArg Arg = CreateArg(F, i);
788    if (LiveValues.erase(Arg)) {
789      Params.push_back(I->getType());
790      ArgAlive[i] = true;
791
792      // Get the original parameter attributes (skipping the first one, that is
793      // for the return value.
794      Attributes Attrs = PAL.getParamAttributes(i + 1);
795      if (Attrs.hasAttributes())
796        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
797    } else {
798      ++NumArgumentsEliminated;
799      DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
800            << ") from " << F->getName() << "\n");
801    }
802  }
803
804  if (FnAttrs.hasAttributes())
805    AttributesVec.push_back(AttributeWithIndex::get(AttributeSet::FunctionIndex,
806                                                    FnAttrs));
807
808  // Reconstruct the AttributesList based on the vector we constructed.
809  AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
810
811  // Create the new function type based on the recomputed parameters.
812  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
813
814  // No change?
815  if (NFTy == FTy)
816    return false;
817
818  // Create the new function body and insert it into the module...
819  Function *NF = Function::Create(NFTy, F->getLinkage());
820  NF->copyAttributesFrom(F);
821  NF->setAttributes(NewPAL);
822  // Insert the new function before the old function, so we won't be processing
823  // it again.
824  F->getParent()->getFunctionList().insert(F, NF);
825  NF->takeName(F);
826
827  // Loop over all of the callers of the function, transforming the call sites
828  // to pass in a smaller number of arguments into the new function.
829  //
830  std::vector<Value*> Args;
831  while (!F->use_empty()) {
832    CallSite CS(F->use_back());
833    Instruction *Call = CS.getInstruction();
834
835    AttributesVec.clear();
836    const AttributeSet &CallPAL = CS.getAttributes();
837
838    // The call return attributes.
839    Attributes RAttrs = CallPAL.getRetAttributes();
840    Attributes FnAttrs = CallPAL.getFnAttributes();
841    // Adjust in case the function was changed to return void.
842    RAttrs =
843      Attributes::get(NF->getContext(), AttrBuilder(RAttrs).
844           removeAttributes(Attributes::typeIncompatible(NF->getReturnType())));
845    if (RAttrs.hasAttributes())
846      AttributesVec.push_back(AttributeWithIndex::get(AttributeSet::ReturnIndex,
847                                                      RAttrs));
848
849    // Declare these outside of the loops, so we can reuse them for the second
850    // loop, which loops the varargs.
851    CallSite::arg_iterator I = CS.arg_begin();
852    unsigned i = 0;
853    // Loop over those operands, corresponding to the normal arguments to the
854    // original function, and add those that are still alive.
855    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
856      if (ArgAlive[i]) {
857        Args.push_back(*I);
858        // Get original parameter attributes, but skip return attributes.
859        Attributes Attrs = CallPAL.getParamAttributes(i + 1);
860        if (Attrs.hasAttributes())
861          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
862      }
863
864    // Push any varargs arguments on the list. Don't forget their attributes.
865    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
866      Args.push_back(*I);
867      Attributes Attrs = CallPAL.getParamAttributes(i + 1);
868      if (Attrs.hasAttributes())
869        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
870    }
871
872    if (FnAttrs.hasAttributes())
873      AttributesVec.push_back(AttributeWithIndex::get(AttributeSet::FunctionIndex,
874                                                      FnAttrs));
875
876    // Reconstruct the AttributesList based on the vector we constructed.
877    AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
878
879    Instruction *New;
880    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
881      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
882                               Args, "", Call);
883      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
884      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
885    } else {
886      New = CallInst::Create(NF, Args, "", Call);
887      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
888      cast<CallInst>(New)->setAttributes(NewCallPAL);
889      if (cast<CallInst>(Call)->isTailCall())
890        cast<CallInst>(New)->setTailCall();
891    }
892    New->setDebugLoc(Call->getDebugLoc());
893
894    Args.clear();
895
896    if (!Call->use_empty()) {
897      if (New->getType() == Call->getType()) {
898        // Return type not changed? Just replace users then.
899        Call->replaceAllUsesWith(New);
900        New->takeName(Call);
901      } else if (New->getType()->isVoidTy()) {
902        // Our return value has uses, but they will get removed later on.
903        // Replace by null for now.
904        if (!Call->getType()->isX86_MMXTy())
905          Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
906      } else {
907        assert(RetTy->isStructTy() &&
908               "Return type changed, but not into a void. The old return type"
909               " must have been a struct!");
910        Instruction *InsertPt = Call;
911        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
912          BasicBlock::iterator IP = II->getNormalDest()->begin();
913          while (isa<PHINode>(IP)) ++IP;
914          InsertPt = IP;
915        }
916
917        // We used to return a struct. Instead of doing smart stuff with all the
918        // uses of this struct, we will just rebuild it using
919        // extract/insertvalue chaining and let instcombine clean that up.
920        //
921        // Start out building up our return value from undef
922        Value *RetVal = UndefValue::get(RetTy);
923        for (unsigned i = 0; i != RetCount; ++i)
924          if (NewRetIdxs[i] != -1) {
925            Value *V;
926            if (RetTypes.size() > 1)
927              // We are still returning a struct, so extract the value from our
928              // return value
929              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
930                                           InsertPt);
931            else
932              // We are now returning a single element, so just insert that
933              V = New;
934            // Insert the value at the old position
935            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
936          }
937        // Now, replace all uses of the old call instruction with the return
938        // struct we built
939        Call->replaceAllUsesWith(RetVal);
940        New->takeName(Call);
941      }
942    }
943
944    // Finally, remove the old call from the program, reducing the use-count of
945    // F.
946    Call->eraseFromParent();
947  }
948
949  // Since we have now created the new function, splice the body of the old
950  // function right into the new function, leaving the old rotting hulk of the
951  // function empty.
952  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
953
954  // Loop over the argument list, transferring uses of the old arguments over to
955  // the new arguments, also transferring over the names as well.
956  i = 0;
957  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
958       I2 = NF->arg_begin(); I != E; ++I, ++i)
959    if (ArgAlive[i]) {
960      // If this is a live argument, move the name and users over to the new
961      // version.
962      I->replaceAllUsesWith(I2);
963      I2->takeName(I);
964      ++I2;
965    } else {
966      // If this argument is dead, replace any uses of it with null constants
967      // (these are guaranteed to become unused later on).
968      if (!I->getType()->isX86_MMXTy())
969        I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
970    }
971
972  // If we change the return value of the function we must rewrite any return
973  // instructions.  Check this now.
974  if (F->getReturnType() != NF->getReturnType())
975    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
976      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
977        Value *RetVal;
978
979        if (NFTy->getReturnType()->isVoidTy()) {
980          RetVal = 0;
981        } else {
982          assert (RetTy->isStructTy());
983          // The original return value was a struct, insert
984          // extractvalue/insertvalue chains to extract only the values we need
985          // to return and insert them into our new result.
986          // This does generate messy code, but we'll let it to instcombine to
987          // clean that up.
988          Value *OldRet = RI->getOperand(0);
989          // Start out building up our return value from undef
990          RetVal = UndefValue::get(NRetTy);
991          for (unsigned i = 0; i != RetCount; ++i)
992            if (NewRetIdxs[i] != -1) {
993              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
994                                                              "oldret", RI);
995              if (RetTypes.size() > 1) {
996                // We're still returning a struct, so reinsert the value into
997                // our new return value at the new index
998
999                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
1000                                                 "newret", RI);
1001              } else {
1002                // We are now only returning a simple value, so just return the
1003                // extracted value.
1004                RetVal = EV;
1005              }
1006            }
1007        }
1008        // Replace the return instruction with one returning the new return
1009        // value (possibly 0 if we became void).
1010        ReturnInst::Create(F->getContext(), RetVal, RI);
1011        BB->getInstList().erase(RI);
1012      }
1013
1014  // Patch the pointer to LLVM function in debug info descriptor.
1015  FunctionDIMap::iterator DI = FunctionDIs.find(F);
1016  if (DI != FunctionDIs.end())
1017    DI->second.replaceFunction(NF);
1018
1019  // Now that the old function is dead, delete it.
1020  F->eraseFromParent();
1021
1022  return true;
1023}
1024
1025bool DAE::runOnModule(Module &M) {
1026  bool Changed = false;
1027
1028  // Collect debug info descriptors for functions.
1029  CollectFunctionDIs(M);
1030
1031  // First pass: Do a simple check to see if any functions can have their "..."
1032  // removed.  We can do this if they never call va_start.  This loop cannot be
1033  // fused with the next loop, because deleting a function invalidates
1034  // information computed while surveying other functions.
1035  DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
1036  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1037    Function &F = *I++;
1038    if (F.getFunctionType()->isVarArg())
1039      Changed |= DeleteDeadVarargs(F);
1040  }
1041
1042  // Second phase:loop through the module, determining which arguments are live.
1043  // We assume all arguments are dead unless proven otherwise (allowing us to
1044  // determine that dead arguments passed into recursive functions are dead).
1045  //
1046  DEBUG(dbgs() << "DAE - Determining liveness\n");
1047  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
1048    SurveyFunction(*I);
1049
1050  // Now, remove all dead arguments and return values from each function in
1051  // turn.
1052  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1053    // Increment now, because the function will probably get removed (ie.
1054    // replaced by a new one).
1055    Function *F = I++;
1056    Changed |= RemoveDeadStuffFromFunction(F);
1057  }
1058
1059  // Finally, look for any unused parameters in functions with non-local
1060  // linkage and replace the passed in parameters with undef.
1061  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1062    Function& F = *I;
1063
1064    Changed |= RemoveDeadArgumentsFromCallers(F);
1065  }
1066
1067  return Changed;
1068}
1069