DeadArgumentElimination.cpp revision dbeecede809c1bffb016e48674622c5e8cb75a0c
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constant.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Transforms/Utils/Local.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/ADT/StringExtras.h"
37#include <map>
38#include <set>
39using namespace llvm;
40
41STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
42STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
43
44namespace {
45  /// DAE - The dead argument elimination pass.
46  ///
47  class DAE : public ModulePass {
48  public:
49
50    /// Struct that represents (part of) either a return value or a function
51    /// argument.  Used so that arguments and return values can be used
52    /// interchangably.
53    struct RetOrArg {
54      RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
55               IsArg(IsArg) {}
56      const Function *F;
57      unsigned Idx;
58      bool IsArg;
59
60      /// Make RetOrArg comparable, so we can put it into a map.
61      bool operator<(const RetOrArg &O) const {
62        if (F != O.F)
63          return F < O.F;
64        else if (Idx != O.Idx)
65          return Idx < O.Idx;
66        else
67          return IsArg < O.IsArg;
68      }
69
70      /// Make RetOrArg comparable, so we can easily iterate the multimap.
71      bool operator==(const RetOrArg &O) const {
72        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
73      }
74
75      std::string getDescription() const {
76        return std::string((IsArg ? "Argument #" : "Return value #"))
77               + utostr(Idx) + " of function " + F->getNameStr();
78      }
79    };
80
81    /// Liveness enum - During our initial pass over the program, we determine
82    /// that things are either alive or maybe alive. We don't mark anything
83    /// explicitly dead (even if we know they are), since anything not alive
84    /// with no registered uses (in Uses) will never be marked alive and will
85    /// thus become dead in the end.
86    enum Liveness { Live, MaybeLive };
87
88    /// Convenience wrapper
89    RetOrArg CreateRet(const Function *F, unsigned Idx) {
90      return RetOrArg(F, Idx, false);
91    }
92    /// Convenience wrapper
93    RetOrArg CreateArg(const Function *F, unsigned Idx) {
94      return RetOrArg(F, Idx, true);
95    }
96
97    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
98    /// This maps a return value or argument to any MaybeLive return values or
99    /// arguments it uses. This allows the MaybeLive values to be marked live
100    /// when any of its users is marked live.
101    /// For example (indices are left out for clarity):
102    ///  - Uses[ret F] = ret G
103    ///    This means that F calls G, and F returns the value returned by G.
104    ///  - Uses[arg F] = ret G
105    ///    This means that some function calls G and passes its result as an
106    ///    argument to F.
107    ///  - Uses[ret F] = arg F
108    ///    This means that F returns one of its own arguments.
109    ///  - Uses[arg F] = arg G
110    ///    This means that G calls F and passes one of its own (G's) arguments
111    ///    directly to F.
112    UseMap Uses;
113
114    typedef std::set<RetOrArg> LiveSet;
115    typedef std::set<const Function*> LiveFuncSet;
116
117    /// This set contains all values that have been determined to be live.
118    LiveSet LiveValues;
119    /// This set contains all values that are cannot be changed in any way.
120    LiveFuncSet LiveFunctions;
121
122    typedef SmallVector<RetOrArg, 5> UseVector;
123
124  public:
125    static char ID; // Pass identification, replacement for typeid
126    DAE() : ModulePass(&ID) {}
127    bool runOnModule(Module &M);
128
129    virtual bool ShouldHackArguments() const { return false; }
130
131  private:
132    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
133    Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
134                       unsigned RetValNum = 0);
135    Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses);
136
137    void SurveyFunction(Function &F);
138    void MarkValue(const RetOrArg &RA, Liveness L,
139                   const UseVector &MaybeLiveUses);
140    void MarkLive(const RetOrArg &RA);
141    void MarkLive(const Function &F);
142    void PropagateLiveness(const RetOrArg &RA);
143    bool RemoveDeadStuffFromFunction(Function *F);
144    bool RemoveDeadParamsFromCallersOf(Function *F);
145    bool DeleteDeadVarargs(Function &Fn);
146  };
147}
148
149
150char DAE::ID = 0;
151static RegisterPass<DAE>
152X("deadargelim", "Dead Argument Elimination");
153
154namespace {
155  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
156  /// deletes arguments to functions which are external.  This is only for use
157  /// by bugpoint.
158  struct DAH : public DAE {
159    static char ID;
160    virtual bool ShouldHackArguments() const { return true; }
161  };
162}
163
164char DAH::ID = 0;
165static RegisterPass<DAH>
166Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
167
168/// createDeadArgEliminationPass - This pass removes arguments from functions
169/// which are not used by the body of the function.
170///
171ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
172ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
173
174/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
175/// llvm.vastart is never called, the varargs list is dead for the function.
176bool DAE::DeleteDeadVarargs(Function &Fn) {
177  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
178  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
179
180  // Ensure that the function is only directly called.
181  if (Fn.hasAddressTaken())
182    return false;
183
184  // Okay, we know we can transform this function if safe.  Scan its body
185  // looking for calls to llvm.vastart.
186  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
187    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
188      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
189        if (II->getIntrinsicID() == Intrinsic::vastart)
190          return false;
191      }
192    }
193  }
194
195  // If we get here, there are no calls to llvm.vastart in the function body,
196  // remove the "..." and adjust all the calls.
197
198  // Start by computing a new prototype for the function, which is the same as
199  // the old function, but doesn't have isVarArg set.
200  const FunctionType *FTy = Fn.getFunctionType();
201
202  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
203  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
204                                                Params, false);
205  unsigned NumArgs = Params.size();
206
207  // Create the new function body and insert it into the module...
208  Function *NF = Function::Create(NFTy, Fn.getLinkage());
209  NF->copyAttributesFrom(&Fn);
210  Fn.getParent()->getFunctionList().insert(&Fn, NF);
211  NF->takeName(&Fn);
212
213  // Loop over all of the callers of the function, transforming the call sites
214  // to pass in a smaller number of arguments into the new function.
215  //
216  std::vector<Value*> Args;
217  while (!Fn.use_empty()) {
218    CallSite CS = CallSite::get(Fn.use_back());
219    Instruction *Call = CS.getInstruction();
220
221    // Pass all the same arguments.
222    Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
223
224    // Drop any attributes that were on the vararg arguments.
225    AttrListPtr PAL = CS.getAttributes();
226    if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
227      SmallVector<AttributeWithIndex, 8> AttributesVec;
228      for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
229        AttributesVec.push_back(PAL.getSlot(i));
230      if (Attributes FnAttrs = PAL.getFnAttributes())
231        AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
232      PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
233    }
234
235    Instruction *New;
236    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
237      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
238                               Args.begin(), Args.end(), "", Call);
239      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
240      cast<InvokeInst>(New)->setAttributes(PAL);
241    } else {
242      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
243      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
244      cast<CallInst>(New)->setAttributes(PAL);
245      if (cast<CallInst>(Call)->isTailCall())
246        cast<CallInst>(New)->setTailCall();
247    }
248    Args.clear();
249
250    if (!Call->use_empty())
251      Call->replaceAllUsesWith(New);
252
253    New->takeName(Call);
254
255    // Finally, remove the old call from the program, reducing the use-count of
256    // F.
257    Call->eraseFromParent();
258  }
259
260  // Since we have now created the new function, splice the body of the old
261  // function right into the new function, leaving the old rotting hulk of the
262  // function empty.
263  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
264
265  // Loop over the argument list, transfering uses of the old arguments over to
266  // the new arguments, also transfering over the names as well.  While we're at
267  // it, remove the dead arguments from the DeadArguments list.
268  //
269  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
270       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
271    // Move the name and users over to the new version.
272    I->replaceAllUsesWith(I2);
273    I2->takeName(I);
274  }
275
276  // Finally, nuke the old function.
277  Fn.eraseFromParent();
278  return true;
279}
280
281/// Convenience function that returns the number of return values. It returns 0
282/// for void functions and 1 for functions not returning a struct. It returns
283/// the number of struct elements for functions returning a struct.
284static unsigned NumRetVals(const Function *F) {
285  if (F->getReturnType()->isVoidTy())
286    return 0;
287  else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
288    return STy->getNumElements();
289  else
290    return 1;
291}
292
293/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
294/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
295/// liveness of Use.
296DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
297  // We're live if our use or its Function is already marked as live.
298  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
299    return Live;
300
301  // We're maybe live otherwise, but remember that we must become live if
302  // Use becomes live.
303  MaybeLiveUses.push_back(Use);
304  return MaybeLive;
305}
306
307
308/// SurveyUse - This looks at a single use of an argument or return value
309/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
310/// if it causes the used value to become MaybeLive.
311///
312/// RetValNum is the return value number to use when this use is used in a
313/// return instruction. This is used in the recursion, you should always leave
314/// it at 0.
315DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
316                             unsigned RetValNum) {
317    Value *V = *U;
318    if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
319      // The value is returned from a function. It's only live when the
320      // function's return value is live. We use RetValNum here, for the case
321      // that U is really a use of an insertvalue instruction that uses the
322      // orginal Use.
323      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
324      // We might be live, depending on the liveness of Use.
325      return MarkIfNotLive(Use, MaybeLiveUses);
326    }
327    if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
328      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
329          && IV->hasIndices())
330        // The use we are examining is inserted into an aggregate. Our liveness
331        // depends on all uses of that aggregate, but if it is used as a return
332        // value, only index at which we were inserted counts.
333        RetValNum = *IV->idx_begin();
334
335      // Note that if we are used as the aggregate operand to the insertvalue,
336      // we don't change RetValNum, but do survey all our uses.
337
338      Liveness Result = MaybeLive;
339      for (Value::use_iterator I = IV->use_begin(),
340           E = V->use_end(); I != E; ++I) {
341        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
342        if (Result == Live)
343          break;
344      }
345      return Result;
346    }
347    CallSite CS = CallSite::get(V);
348    if (CS.getInstruction()) {
349      Function *F = CS.getCalledFunction();
350      if (F) {
351        // Used in a direct call.
352
353        // Find the argument number. We know for sure that this use is an
354        // argument, since if it was the function argument this would be an
355        // indirect call and the we know can't be looking at a value of the
356        // label type (for the invoke instruction).
357        unsigned ArgNo = CS.getArgumentNo(U.getOperandNo());
358
359        if (ArgNo >= F->getFunctionType()->getNumParams())
360          // The value is passed in through a vararg! Must be live.
361          return Live;
362
363        assert(CS.getArgument(ArgNo)
364               == CS.getInstruction()->getOperand(U.getOperandNo())
365               && "Argument is not where we expected it");
366
367        // Value passed to a normal call. It's only live when the corresponding
368        // argument to the called function turns out live.
369        RetOrArg Use = CreateArg(F, ArgNo);
370        return MarkIfNotLive(Use, MaybeLiveUses);
371      }
372    }
373    // Used in any other way? Value must be live.
374    return Live;
375}
376
377/// SurveyUses - This looks at all the uses of the given value
378/// Returns the Liveness deduced from the uses of this value.
379///
380/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
381/// the result is Live, MaybeLiveUses might be modified but its content should
382/// be ignored (since it might not be complete).
383DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
384  // Assume it's dead (which will only hold if there are no uses at all..).
385  Liveness Result = MaybeLive;
386  // Check each use.
387  for (Value::use_iterator I = V->use_begin(),
388       E = V->use_end(); I != E; ++I) {
389    Result = SurveyUse(I, MaybeLiveUses);
390    if (Result == Live)
391      break;
392  }
393  return Result;
394}
395
396// SurveyFunction - This performs the initial survey of the specified function,
397// checking out whether or not it uses any of its incoming arguments or whether
398// any callers use the return value.  This fills in the LiveValues set and Uses
399// map.
400//
401// We consider arguments of overridable functions to be intrinsically alive as
402// well as arguments to functions which have their "address taken".
403//
404void DAE::SurveyFunction(Function &F) {
405  unsigned RetCount = NumRetVals(&F);
406  // Assume all return values are dead
407  typedef SmallVector<Liveness, 5> RetVals;
408  RetVals RetValLiveness(RetCount, MaybeLive);
409
410  typedef SmallVector<UseVector, 5> RetUses;
411  // These vectors map each return value to the uses that make it MaybeLive, so
412  // we can add those to the Uses map if the return value really turns out to be
413  // MaybeLive. Initialized to a list of RetCount empty lists.
414  RetUses MaybeLiveRetUses(RetCount);
415
416  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
417    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
418      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
419          != F.getFunctionType()->getReturnType()) {
420        // We don't support old style multiple return values.
421        MarkLive(F);
422        return;
423      }
424
425  if ((F.isDeclaration() || F.mayBeOverridden()) &&
426      (!ShouldHackArguments() || F.isIntrinsic())) {
427    MarkLive(F);
428    return;
429  } else if (!F.hasLocalLinkage()) {
430    DEBUG(dbgs() << "DAE - Intrinsically live return from " << F.getName()
431                 << "\n");
432    // Mark the return values alive.
433    for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
434      MarkLive(CreateRet(&F, i));
435  }
436
437  DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
438  // Keep track of the number of live retvals, so we can skip checks once all
439  // of them turn out to be live.
440  unsigned NumLiveRetVals = 0;
441  const Type *STy = dyn_cast<StructType>(F.getReturnType());
442  // Loop all uses of the function.
443  for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
444    // If the function is PASSED IN as an argument, its address has been
445    // taken.
446    CallSite CS = CallSite::get(*I);
447    if (!CS.getInstruction() || !CS.isCallee(I)) {
448      MarkLive(F);
449      return;
450    }
451
452    // If this use is anything other than a call site, the function is alive.
453    Instruction *TheCall = CS.getInstruction();
454    if (!TheCall) {   // Not a direct call site?
455      MarkLive(F);
456      return;
457    }
458
459    // If we end up here, we are looking at a direct call to our function.
460
461    // Now, check how our return value(s) is/are used in this caller. Don't
462    // bother checking return values if all of them are live already.
463    if (NumLiveRetVals != RetCount) {
464      if (STy) {
465        // Check all uses of the return value.
466        for (Value::use_iterator I = TheCall->use_begin(),
467             E = TheCall->use_end(); I != E; ++I) {
468          ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
469          if (Ext && Ext->hasIndices()) {
470            // This use uses a part of our return value, survey the uses of
471            // that part and store the results for this index only.
472            unsigned Idx = *Ext->idx_begin();
473            if (RetValLiveness[Idx] != Live) {
474              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
475              if (RetValLiveness[Idx] == Live)
476                NumLiveRetVals++;
477            }
478          } else {
479            // Used by something else than extractvalue. Mark all return
480            // values as live.
481            for (unsigned i = 0; i != RetCount; ++i )
482              RetValLiveness[i] = Live;
483            NumLiveRetVals = RetCount;
484            break;
485          }
486        }
487      } else {
488        // Single return value
489        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
490        if (RetValLiveness[0] == Live)
491          NumLiveRetVals = RetCount;
492      }
493    }
494  }
495
496  // Now we've inspected all callers, record the liveness of our return values.
497  for (unsigned i = 0; i != RetCount; ++i)
498    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
499
500  DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
501
502  // Now, check all of our arguments.
503  unsigned i = 0;
504  UseVector MaybeLiveArgUses;
505  for (Function::arg_iterator AI = F.arg_begin(),
506       E = F.arg_end(); AI != E; ++AI, ++i) {
507    // See what the effect of this use is (recording any uses that cause
508    // MaybeLive in MaybeLiveArgUses).
509    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
510    // Mark the result.
511    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
512    // Clear the vector again for the next iteration.
513    MaybeLiveArgUses.clear();
514  }
515}
516
517/// MarkValue - This function marks the liveness of RA depending on L. If L is
518/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
519/// such that RA will be marked live if any use in MaybeLiveUses gets marked
520/// live later on.
521void DAE::MarkValue(const RetOrArg &RA, Liveness L,
522                    const UseVector &MaybeLiveUses) {
523  switch (L) {
524    case Live: MarkLive(RA); break;
525    case MaybeLive:
526    {
527      // Note any uses of this value, so this return value can be
528      // marked live whenever one of the uses becomes live.
529      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
530           UE = MaybeLiveUses.end(); UI != UE; ++UI)
531        Uses.insert(std::make_pair(*UI, RA));
532      break;
533    }
534  }
535}
536
537/// MarkLive - Mark the given Function as alive, meaning that it cannot be
538/// changed in any way. Additionally,
539/// mark any values that are used as this function's parameters or by its return
540/// values (according to Uses) live as well.
541void DAE::MarkLive(const Function &F) {
542  DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
543  // Mark the function as live.
544  LiveFunctions.insert(&F);
545  // Mark all arguments as live.
546  for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
547    PropagateLiveness(CreateArg(&F, i));
548  // Mark all return values as live.
549  for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
550    PropagateLiveness(CreateRet(&F, i));
551}
552
553/// MarkLive - Mark the given return value or argument as live. Additionally,
554/// mark any values that are used by this value (according to Uses) live as
555/// well.
556void DAE::MarkLive(const RetOrArg &RA) {
557  if (LiveFunctions.count(RA.F))
558    return; // Function was already marked Live.
559
560  if (!LiveValues.insert(RA).second)
561    return; // We were already marked Live.
562
563  DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
564  PropagateLiveness(RA);
565}
566
567/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
568/// to any other values it uses (according to Uses).
569void DAE::PropagateLiveness(const RetOrArg &RA) {
570  // We don't use upper_bound (or equal_range) here, because our recursive call
571  // to ourselves is likely to cause the upper_bound (which is the first value
572  // not belonging to RA) to become erased and the iterator invalidated.
573  UseMap::iterator Begin = Uses.lower_bound(RA);
574  UseMap::iterator E = Uses.end();
575  UseMap::iterator I;
576  for (I = Begin; I != E && I->first == RA; ++I)
577    MarkLive(I->second);
578
579  // Erase RA from the Uses map (from the lower bound to wherever we ended up
580  // after the loop).
581  Uses.erase(Begin, I);
582}
583
584// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
585// that are not in LiveValues. Transform the function and all of the callees of
586// the function to not have these arguments and return values.
587//
588bool DAE::RemoveDeadStuffFromFunction(Function *F) {
589  // Don't modify fully live functions
590  if (LiveFunctions.count(F))
591    return false;
592
593  // Start by computing a new prototype for the function, which is the same as
594  // the old function, but has fewer arguments and a different return type.
595  const FunctionType *FTy = F->getFunctionType();
596  std::vector<const Type*> Params;
597
598  // Set up to build a new list of parameter attributes.
599  SmallVector<AttributeWithIndex, 8> AttributesVec;
600  const AttrListPtr &PAL = F->getAttributes();
601
602  // The existing function return attributes.
603  Attributes RAttrs = PAL.getRetAttributes();
604  Attributes FnAttrs = PAL.getFnAttributes();
605
606  // Find out the new return value.
607
608  const Type *RetTy = FTy->getReturnType();
609  const Type *NRetTy = NULL;
610  unsigned RetCount = NumRetVals(F);
611
612  // -1 means unused, other numbers are the new index
613  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
614  std::vector<const Type*> RetTypes;
615  if (RetTy->isVoidTy()) {
616    NRetTy = RetTy;
617  } else {
618    const StructType *STy = dyn_cast<StructType>(RetTy);
619    if (STy)
620      // Look at each of the original return values individually.
621      for (unsigned i = 0; i != RetCount; ++i) {
622        RetOrArg Ret = CreateRet(F, i);
623        if (LiveValues.erase(Ret)) {
624          RetTypes.push_back(STy->getElementType(i));
625          NewRetIdxs[i] = RetTypes.size() - 1;
626        } else {
627          ++NumRetValsEliminated;
628          DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
629                << F->getName() << "\n");
630        }
631      }
632    else
633      // We used to return a single value.
634      if (LiveValues.erase(CreateRet(F, 0))) {
635        RetTypes.push_back(RetTy);
636        NewRetIdxs[0] = 0;
637      } else {
638        DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
639              << "\n");
640        ++NumRetValsEliminated;
641      }
642    if (RetTypes.size() > 1)
643      // More than one return type? Return a struct with them. Also, if we used
644      // to return a struct and didn't change the number of return values,
645      // return a struct again. This prevents changing {something} into
646      // something and {} into void.
647      // Make the new struct packed if we used to return a packed struct
648      // already.
649      NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
650    else if (RetTypes.size() == 1)
651      // One return type? Just a simple value then, but only if we didn't use to
652      // return a struct with that simple value before.
653      NRetTy = RetTypes.front();
654    else if (RetTypes.size() == 0)
655      // No return types? Make it void, but only if we didn't use to return {}.
656      NRetTy = Type::getVoidTy(F->getContext());
657  }
658
659  assert(NRetTy && "No new return type found?");
660
661  // Remove any incompatible attributes, but only if we removed all return
662  // values. Otherwise, ensure that we don't have any conflicting attributes
663  // here. Currently, this should not be possible, but special handling might be
664  // required when new return value attributes are added.
665  if (NRetTy->isVoidTy())
666    RAttrs &= ~Attribute::typeIncompatible(NRetTy);
667  else
668    assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
669           && "Return attributes no longer compatible?");
670
671  if (RAttrs)
672    AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
673
674  // Remember which arguments are still alive.
675  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
676  // Construct the new parameter list from non-dead arguments. Also construct
677  // a new set of parameter attributes to correspond. Skip the first parameter
678  // attribute, since that belongs to the return value.
679  unsigned i = 0;
680  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
681       I != E; ++I, ++i) {
682    RetOrArg Arg = CreateArg(F, i);
683    if (LiveValues.erase(Arg)) {
684      Params.push_back(I->getType());
685      ArgAlive[i] = true;
686
687      // Get the original parameter attributes (skipping the first one, that is
688      // for the return value.
689      if (Attributes Attrs = PAL.getParamAttributes(i + 1))
690        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
691    } else {
692      ++NumArgumentsEliminated;
693      DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
694            << ") from " << F->getName() << "\n");
695    }
696  }
697
698  if (FnAttrs != Attribute::None)
699    AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
700
701  // Reconstruct the AttributesList based on the vector we constructed.
702  AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
703
704  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
705  // have zero fixed arguments.
706  //
707  // Note that we apply this hack for a vararg fuction that does not have any
708  // arguments anymore, but did have them before (so don't bother fixing
709  // functions that were already broken wrt CWriter).
710  bool ExtraArgHack = false;
711  if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {
712    ExtraArgHack = true;
713    Params.push_back(Type::getInt32Ty(F->getContext()));
714  }
715
716  // Create the new function type based on the recomputed parameters.
717  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
718
719  // No change?
720  if (NFTy == FTy)
721    return false;
722
723  // Create the new function body and insert it into the module...
724  Function *NF = Function::Create(NFTy, F->getLinkage());
725  NF->copyAttributesFrom(F);
726  NF->setAttributes(NewPAL);
727  // Insert the new function before the old function, so we won't be processing
728  // it again.
729  F->getParent()->getFunctionList().insert(F, NF);
730  NF->takeName(F);
731
732  // Loop over all of the callers of the function, transforming the call sites
733  // to pass in a smaller number of arguments into the new function.
734  //
735  std::vector<Value*> Args;
736  while (!F->use_empty()) {
737    CallSite CS = CallSite::get(F->use_back());
738    Instruction *Call = CS.getInstruction();
739
740    AttributesVec.clear();
741    const AttrListPtr &CallPAL = CS.getAttributes();
742
743    // The call return attributes.
744    Attributes RAttrs = CallPAL.getRetAttributes();
745    Attributes FnAttrs = CallPAL.getFnAttributes();
746    // Adjust in case the function was changed to return void.
747    RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
748    if (RAttrs)
749      AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
750
751    // Declare these outside of the loops, so we can reuse them for the second
752    // loop, which loops the varargs.
753    CallSite::arg_iterator I = CS.arg_begin();
754    unsigned i = 0;
755    // Loop over those operands, corresponding to the normal arguments to the
756    // original function, and add those that are still alive.
757    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
758      if (ArgAlive[i]) {
759        Args.push_back(*I);
760        // Get original parameter attributes, but skip return attributes.
761        if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
762          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
763      }
764
765    if (ExtraArgHack)
766      Args.push_back(UndefValue::get(Type::getInt32Ty(F->getContext())));
767
768    // Push any varargs arguments on the list. Don't forget their attributes.
769    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
770      Args.push_back(*I);
771      if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
772        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
773    }
774
775    if (FnAttrs != Attribute::None)
776      AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
777
778    // Reconstruct the AttributesList based on the vector we constructed.
779    AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
780                                              AttributesVec.end());
781
782    Instruction *New;
783    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
784      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
785                               Args.begin(), Args.end(), "", Call);
786      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
787      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
788    } else {
789      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
790      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
791      cast<CallInst>(New)->setAttributes(NewCallPAL);
792      if (cast<CallInst>(Call)->isTailCall())
793        cast<CallInst>(New)->setTailCall();
794    }
795    Args.clear();
796
797    if (!Call->use_empty()) {
798      if (New->getType() == Call->getType()) {
799        // Return type not changed? Just replace users then.
800        Call->replaceAllUsesWith(New);
801        New->takeName(Call);
802      } else if (New->getType()->isVoidTy()) {
803        // Our return value has uses, but they will get removed later on.
804        // Replace by null for now.
805        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
806      } else {
807        assert(isa<StructType>(RetTy) &&
808               "Return type changed, but not into a void. The old return type"
809               " must have been a struct!");
810        Instruction *InsertPt = Call;
811        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
812          BasicBlock::iterator IP = II->getNormalDest()->begin();
813          while (isa<PHINode>(IP)) ++IP;
814          InsertPt = IP;
815        }
816
817        // We used to return a struct. Instead of doing smart stuff with all the
818        // uses of this struct, we will just rebuild it using
819        // extract/insertvalue chaining and let instcombine clean that up.
820        //
821        // Start out building up our return value from undef
822        Value *RetVal = UndefValue::get(RetTy);
823        for (unsigned i = 0; i != RetCount; ++i)
824          if (NewRetIdxs[i] != -1) {
825            Value *V;
826            if (RetTypes.size() > 1)
827              // We are still returning a struct, so extract the value from our
828              // return value
829              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
830                                           InsertPt);
831            else
832              // We are now returning a single element, so just insert that
833              V = New;
834            // Insert the value at the old position
835            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
836          }
837        // Now, replace all uses of the old call instruction with the return
838        // struct we built
839        Call->replaceAllUsesWith(RetVal);
840        New->takeName(Call);
841      }
842    }
843
844    // Finally, remove the old call from the program, reducing the use-count of
845    // F.
846    Call->eraseFromParent();
847  }
848
849  // Since we have now created the new function, splice the body of the old
850  // function right into the new function, leaving the old rotting hulk of the
851  // function empty.
852  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
853
854  // Loop over the argument list, transfering uses of the old arguments over to
855  // the new arguments, also transfering over the names as well.
856  i = 0;
857  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
858       I2 = NF->arg_begin(); I != E; ++I, ++i)
859    if (ArgAlive[i]) {
860      // If this is a live argument, move the name and users over to the new
861      // version.
862      I->replaceAllUsesWith(I2);
863      I2->takeName(I);
864      ++I2;
865    } else {
866      // If this argument is dead, replace any uses of it with null constants
867      // (these are guaranteed to become unused later on).
868      I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
869    }
870
871  // If we change the return value of the function we must rewrite any return
872  // instructions.  Check this now.
873  if (F->getReturnType() != NF->getReturnType())
874    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
875      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
876        Value *RetVal;
877
878        if (NFTy->getReturnType()->isVoidTy()) {
879          RetVal = 0;
880        } else {
881          assert (isa<StructType>(RetTy));
882          // The original return value was a struct, insert
883          // extractvalue/insertvalue chains to extract only the values we need
884          // to return and insert them into our new result.
885          // This does generate messy code, but we'll let it to instcombine to
886          // clean that up.
887          Value *OldRet = RI->getOperand(0);
888          // Start out building up our return value from undef
889          RetVal = UndefValue::get(NRetTy);
890          for (unsigned i = 0; i != RetCount; ++i)
891            if (NewRetIdxs[i] != -1) {
892              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
893                                                              "oldret", RI);
894              if (RetTypes.size() > 1) {
895                // We're still returning a struct, so reinsert the value into
896                // our new return value at the new index
897
898                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
899                                                 "newret", RI);
900              } else {
901                // We are now only returning a simple value, so just return the
902                // extracted value.
903                RetVal = EV;
904              }
905            }
906        }
907        // Replace the return instruction with one returning the new return
908        // value (possibly 0 if we became void).
909        ReturnInst::Create(F->getContext(), RetVal, RI);
910        BB->getInstList().erase(RI);
911      }
912
913  // Now that the old function is dead, delete it.
914  F->eraseFromParent();
915
916  return true;
917}
918
919bool DAE::RemoveDeadParamsFromCallersOf(Function *F) {
920  // Don't modify fully live functions
921  if (LiveFunctions.count(F))
922    return false;
923
924  // Make a list of the dead arguments.
925  SmallVector<int, 10> ArgDead;
926  unsigned i = 0;
927  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
928       I != E; ++I, ++i) {
929    RetOrArg Arg = CreateArg(F, i);
930    if (!LiveValues.count(Arg))
931      ArgDead.push_back(i);
932  }
933  if (ArgDead.empty())
934    return false;
935
936  bool MadeChange = false;
937  for (Function::use_iterator I = F->use_begin(), E = F->use_end();
938       I != E; ++I) {
939    CallSite CS = CallSite::get(*I);
940    if (CS.getInstruction() && CS.isCallee(I)) {
941      for (unsigned i = 0, e = ArgDead.size(); i != e; ++i) {
942        Value *A = CS.getArgument(ArgDead[i]);
943        if (!isa<UndefValue>(A)) {
944          MadeChange = true;
945          CS.setArgument(ArgDead[i], UndefValue::get(A->getType()));
946          RecursivelyDeleteTriviallyDeadInstructions(A);
947        }
948      }
949    }
950  }
951
952  return MadeChange;
953}
954
955bool DAE::runOnModule(Module &M) {
956  bool Changed = false;
957
958  // First pass: Do a simple check to see if any functions can have their "..."
959  // removed.  We can do this if they never call va_start.  This loop cannot be
960  // fused with the next loop, because deleting a function invalidates
961  // information computed while surveying other functions.
962  DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
963  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
964    Function &F = *I++;
965    if (F.getFunctionType()->isVarArg())
966      Changed |= DeleteDeadVarargs(F);
967  }
968
969  // Second phase:loop through the module, determining which arguments are live.
970  // We assume all arguments are dead unless proven otherwise (allowing us to
971  // determine that dead arguments passed into recursive functions are dead).
972  //
973  DEBUG(dbgs() << "DAE - Determining liveness\n");
974  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
975    SurveyFunction(*I);
976
977  // Now, remove all dead arguments and return values from each function in
978  // turn.
979  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
980    // Increment now, because the function will probably get removed (ie.
981    // replaced by a new one).
982    Function *F = I++;
983    if (F->hasLocalLinkage())
984      Changed |= RemoveDeadStuffFromFunction(F);
985    else
986      Changed |= RemoveDeadParamsFromCallersOf(F);
987  }
988  return Changed;
989}
990