DeadArgumentElimination.cpp revision e74365462a39529ae48ef4d34ec76b4543b8ea29
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/DIBuilder.h"
27#include "llvm/DebugInfo.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/Constant.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Instructions.h"
32#include "llvm/IR/IntrinsicInst.h"
33#include "llvm/IR/LLVMContext.h"
34#include "llvm/IR/Module.h"
35#include "llvm/Pass.h"
36#include "llvm/Support/CallSite.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/raw_ostream.h"
39#include <map>
40#include <set>
41using namespace llvm;
42
43STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
44STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
45STATISTIC(NumArgumentsReplacedWithUndef,
46          "Number of unread args replaced with undef");
47namespace {
48  /// DAE - The dead argument elimination pass.
49  ///
50  class DAE : public ModulePass {
51  public:
52
53    /// Struct that represents (part of) either a return value or a function
54    /// argument.  Used so that arguments and return values can be used
55    /// interchangeably.
56    struct RetOrArg {
57      RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
58               IsArg(IsArg) {}
59      const Function *F;
60      unsigned Idx;
61      bool IsArg;
62
63      /// Make RetOrArg comparable, so we can put it into a map.
64      bool operator<(const RetOrArg &O) const {
65        if (F != O.F)
66          return F < O.F;
67        else if (Idx != O.Idx)
68          return Idx < O.Idx;
69        else
70          return IsArg < O.IsArg;
71      }
72
73      /// Make RetOrArg comparable, so we can easily iterate the multimap.
74      bool operator==(const RetOrArg &O) const {
75        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
76      }
77
78      std::string getDescription() const {
79        return std::string((IsArg ? "Argument #" : "Return value #"))
80               + utostr(Idx) + " of function " + F->getName().str();
81      }
82    };
83
84    /// Liveness enum - During our initial pass over the program, we determine
85    /// that things are either alive or maybe alive. We don't mark anything
86    /// explicitly dead (even if we know they are), since anything not alive
87    /// with no registered uses (in Uses) will never be marked alive and will
88    /// thus become dead in the end.
89    enum Liveness { Live, MaybeLive };
90
91    /// Convenience wrapper
92    RetOrArg CreateRet(const Function *F, unsigned Idx) {
93      return RetOrArg(F, Idx, false);
94    }
95    /// Convenience wrapper
96    RetOrArg CreateArg(const Function *F, unsigned Idx) {
97      return RetOrArg(F, Idx, true);
98    }
99
100    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
101    /// This maps a return value or argument to any MaybeLive return values or
102    /// arguments it uses. This allows the MaybeLive values to be marked live
103    /// when any of its users is marked live.
104    /// For example (indices are left out for clarity):
105    ///  - Uses[ret F] = ret G
106    ///    This means that F calls G, and F returns the value returned by G.
107    ///  - Uses[arg F] = ret G
108    ///    This means that some function calls G and passes its result as an
109    ///    argument to F.
110    ///  - Uses[ret F] = arg F
111    ///    This means that F returns one of its own arguments.
112    ///  - Uses[arg F] = arg G
113    ///    This means that G calls F and passes one of its own (G's) arguments
114    ///    directly to F.
115    UseMap Uses;
116
117    typedef std::set<RetOrArg> LiveSet;
118    typedef std::set<const Function*> LiveFuncSet;
119
120    /// This set contains all values that have been determined to be live.
121    LiveSet LiveValues;
122    /// This set contains all values that are cannot be changed in any way.
123    LiveFuncSet LiveFunctions;
124
125    typedef SmallVector<RetOrArg, 5> UseVector;
126
127    // Map each LLVM function to corresponding metadata with debug info. If
128    // the function is replaced with another one, we should patch the pointer
129    // to LLVM function in metadata.
130    // As the code generation for module is finished (and DIBuilder is
131    // finalized) we assume that subprogram descriptors won't be changed, and
132    // they are stored in map for short duration anyway.
133    typedef DenseMap<Function*, DISubprogram> FunctionDIMap;
134    FunctionDIMap FunctionDIs;
135
136  protected:
137    // DAH uses this to specify a different ID.
138    explicit DAE(char &ID) : ModulePass(ID) {}
139
140  public:
141    static char ID; // Pass identification, replacement for typeid
142    DAE() : ModulePass(ID) {
143      initializeDAEPass(*PassRegistry::getPassRegistry());
144    }
145
146    bool runOnModule(Module &M);
147
148    virtual bool ShouldHackArguments() const { return false; }
149
150  private:
151    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
152    Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
153                       unsigned RetValNum = 0);
154    Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
155
156    void CollectFunctionDIs(Module &M);
157    void SurveyFunction(const Function &F);
158    void MarkValue(const RetOrArg &RA, Liveness L,
159                   const UseVector &MaybeLiveUses);
160    void MarkLive(const RetOrArg &RA);
161    void MarkLive(const Function &F);
162    void PropagateLiveness(const RetOrArg &RA);
163    bool RemoveDeadStuffFromFunction(Function *F);
164    bool DeleteDeadVarargs(Function &Fn);
165    bool RemoveDeadArgumentsFromCallers(Function &Fn);
166  };
167}
168
169
170char DAE::ID = 0;
171INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
172
173namespace {
174  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
175  /// deletes arguments to functions which are external.  This is only for use
176  /// by bugpoint.
177  struct DAH : public DAE {
178    static char ID;
179    DAH() : DAE(ID) {}
180
181    virtual bool ShouldHackArguments() const { return true; }
182  };
183}
184
185char DAH::ID = 0;
186INITIALIZE_PASS(DAH, "deadarghaX0r",
187                "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
188                false, false)
189
190/// createDeadArgEliminationPass - This pass removes arguments from functions
191/// which are not used by the body of the function.
192///
193ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
194ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
195
196/// CollectFunctionDIs - Map each function in the module to its debug info
197/// descriptor.
198void DAE::CollectFunctionDIs(Module &M) {
199  FunctionDIs.clear();
200
201  for (Module::named_metadata_iterator I = M.named_metadata_begin(),
202       E = M.named_metadata_end(); I != E; ++I) {
203    NamedMDNode &NMD = *I;
204    for (unsigned MDIndex = 0, MDNum = NMD.getNumOperands();
205         MDIndex < MDNum; ++MDIndex) {
206      MDNode *Node = NMD.getOperand(MDIndex);
207      if (!DIDescriptor(Node).isCompileUnit())
208        continue;
209      DICompileUnit CU(Node);
210      const DIArray &SPs = CU.getSubprograms();
211      for (unsigned SPIndex = 0, SPNum = SPs.getNumElements();
212           SPIndex < SPNum; ++SPIndex) {
213        DISubprogram SP(SPs.getElement(SPIndex));
214        if (!SP.Verify())
215          continue;
216        if (Function *F = SP.getFunction())
217          FunctionDIs[F] = SP;
218      }
219    }
220  }
221}
222
223/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
224/// llvm.vastart is never called, the varargs list is dead for the function.
225bool DAE::DeleteDeadVarargs(Function &Fn) {
226  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
227  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
228
229  // Ensure that the function is only directly called.
230  if (Fn.hasAddressTaken())
231    return false;
232
233  // Okay, we know we can transform this function if safe.  Scan its body
234  // looking for calls to llvm.vastart.
235  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
236    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
237      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
238        if (II->getIntrinsicID() == Intrinsic::vastart)
239          return false;
240      }
241    }
242  }
243
244  // If we get here, there are no calls to llvm.vastart in the function body,
245  // remove the "..." and adjust all the calls.
246
247  // Start by computing a new prototype for the function, which is the same as
248  // the old function, but doesn't have isVarArg set.
249  FunctionType *FTy = Fn.getFunctionType();
250
251  std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
252  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
253                                                Params, false);
254  unsigned NumArgs = Params.size();
255
256  // Create the new function body and insert it into the module...
257  Function *NF = Function::Create(NFTy, Fn.getLinkage());
258  NF->copyAttributesFrom(&Fn);
259  Fn.getParent()->getFunctionList().insert(&Fn, NF);
260  NF->takeName(&Fn);
261
262  // Loop over all of the callers of the function, transforming the call sites
263  // to pass in a smaller number of arguments into the new function.
264  //
265  std::vector<Value*> Args;
266  while (!Fn.use_empty()) {
267    CallSite CS(Fn.use_back());
268    Instruction *Call = CS.getInstruction();
269
270    // Pass all the same arguments.
271    Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
272
273    // Drop any attributes that were on the vararg arguments.
274    AttributeSet PAL = CS.getAttributes();
275    if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
276      SmallVector<AttributeSet, 8> AttributesVec;
277      for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
278        AttributesVec.push_back(PAL.getSlotAttributes(i));
279      if (PAL.hasAttributes(AttributeSet::FunctionIndex))
280        AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
281                                                  PAL.getFnAttributes()));
282      PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
283    }
284
285    Instruction *New;
286    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
287      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
288                               Args, "", Call);
289      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
290      cast<InvokeInst>(New)->setAttributes(PAL);
291    } else {
292      New = CallInst::Create(NF, Args, "", Call);
293      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
294      cast<CallInst>(New)->setAttributes(PAL);
295      if (cast<CallInst>(Call)->isTailCall())
296        cast<CallInst>(New)->setTailCall();
297    }
298    New->setDebugLoc(Call->getDebugLoc());
299
300    Args.clear();
301
302    if (!Call->use_empty())
303      Call->replaceAllUsesWith(New);
304
305    New->takeName(Call);
306
307    // Finally, remove the old call from the program, reducing the use-count of
308    // F.
309    Call->eraseFromParent();
310  }
311
312  // Since we have now created the new function, splice the body of the old
313  // function right into the new function, leaving the old rotting hulk of the
314  // function empty.
315  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
316
317  // Loop over the argument list, transferring uses of the old arguments over to
318  // the new arguments, also transferring over the names as well.  While we're at
319  // it, remove the dead arguments from the DeadArguments list.
320  //
321  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
322       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
323    // Move the name and users over to the new version.
324    I->replaceAllUsesWith(I2);
325    I2->takeName(I);
326  }
327
328  // Patch the pointer to LLVM function in debug info descriptor.
329  FunctionDIMap::iterator DI = FunctionDIs.find(&Fn);
330  if (DI != FunctionDIs.end())
331    DI->second.replaceFunction(NF);
332
333  // Finally, nuke the old function.
334  Fn.eraseFromParent();
335  return true;
336}
337
338/// RemoveDeadArgumentsFromCallers - Checks if the given function has any
339/// arguments that are unused, and changes the caller parameters to be undefined
340/// instead.
341bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
342{
343  if (Fn.isDeclaration() || Fn.mayBeOverridden())
344    return false;
345
346  // Functions with local linkage should already have been handled.
347  if (Fn.hasLocalLinkage())
348    return false;
349
350  if (Fn.use_empty())
351    return false;
352
353  SmallVector<unsigned, 8> UnusedArgs;
354  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
355       I != E; ++I) {
356    Argument *Arg = I;
357
358    if (Arg->use_empty() && !Arg->hasByValAttr())
359      UnusedArgs.push_back(Arg->getArgNo());
360  }
361
362  if (UnusedArgs.empty())
363    return false;
364
365  bool Changed = false;
366
367  for (Function::use_iterator I = Fn.use_begin(), E = Fn.use_end();
368       I != E; ++I) {
369    CallSite CS(*I);
370    if (!CS || !CS.isCallee(I))
371      continue;
372
373    // Now go through all unused args and replace them with "undef".
374    for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
375      unsigned ArgNo = UnusedArgs[I];
376
377      Value *Arg = CS.getArgument(ArgNo);
378      CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
379      ++NumArgumentsReplacedWithUndef;
380      Changed = true;
381    }
382  }
383
384  return Changed;
385}
386
387/// Convenience function that returns the number of return values. It returns 0
388/// for void functions and 1 for functions not returning a struct. It returns
389/// the number of struct elements for functions returning a struct.
390static unsigned NumRetVals(const Function *F) {
391  if (F->getReturnType()->isVoidTy())
392    return 0;
393  else if (StructType *STy = dyn_cast<StructType>(F->getReturnType()))
394    return STy->getNumElements();
395  else
396    return 1;
397}
398
399/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
400/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
401/// liveness of Use.
402DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
403  // We're live if our use or its Function is already marked as live.
404  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
405    return Live;
406
407  // We're maybe live otherwise, but remember that we must become live if
408  // Use becomes live.
409  MaybeLiveUses.push_back(Use);
410  return MaybeLive;
411}
412
413
414/// SurveyUse - This looks at a single use of an argument or return value
415/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
416/// if it causes the used value to become MaybeLive.
417///
418/// RetValNum is the return value number to use when this use is used in a
419/// return instruction. This is used in the recursion, you should always leave
420/// it at 0.
421DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
422                             UseVector &MaybeLiveUses, unsigned RetValNum) {
423    const User *V = *U;
424    if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
425      // The value is returned from a function. It's only live when the
426      // function's return value is live. We use RetValNum here, for the case
427      // that U is really a use of an insertvalue instruction that uses the
428      // original Use.
429      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
430      // We might be live, depending on the liveness of Use.
431      return MarkIfNotLive(Use, MaybeLiveUses);
432    }
433    if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
434      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
435          && IV->hasIndices())
436        // The use we are examining is inserted into an aggregate. Our liveness
437        // depends on all uses of that aggregate, but if it is used as a return
438        // value, only index at which we were inserted counts.
439        RetValNum = *IV->idx_begin();
440
441      // Note that if we are used as the aggregate operand to the insertvalue,
442      // we don't change RetValNum, but do survey all our uses.
443
444      Liveness Result = MaybeLive;
445      for (Value::const_use_iterator I = IV->use_begin(),
446           E = V->use_end(); I != E; ++I) {
447        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
448        if (Result == Live)
449          break;
450      }
451      return Result;
452    }
453
454    if (ImmutableCallSite CS = V) {
455      const Function *F = CS.getCalledFunction();
456      if (F) {
457        // Used in a direct call.
458
459        // Find the argument number. We know for sure that this use is an
460        // argument, since if it was the function argument this would be an
461        // indirect call and the we know can't be looking at a value of the
462        // label type (for the invoke instruction).
463        unsigned ArgNo = CS.getArgumentNo(U);
464
465        if (ArgNo >= F->getFunctionType()->getNumParams())
466          // The value is passed in through a vararg! Must be live.
467          return Live;
468
469        assert(CS.getArgument(ArgNo)
470               == CS->getOperand(U.getOperandNo())
471               && "Argument is not where we expected it");
472
473        // Value passed to a normal call. It's only live when the corresponding
474        // argument to the called function turns out live.
475        RetOrArg Use = CreateArg(F, ArgNo);
476        return MarkIfNotLive(Use, MaybeLiveUses);
477      }
478    }
479    // Used in any other way? Value must be live.
480    return Live;
481}
482
483/// SurveyUses - This looks at all the uses of the given value
484/// Returns the Liveness deduced from the uses of this value.
485///
486/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
487/// the result is Live, MaybeLiveUses might be modified but its content should
488/// be ignored (since it might not be complete).
489DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
490  // Assume it's dead (which will only hold if there are no uses at all..).
491  Liveness Result = MaybeLive;
492  // Check each use.
493  for (Value::const_use_iterator I = V->use_begin(),
494       E = V->use_end(); I != E; ++I) {
495    Result = SurveyUse(I, MaybeLiveUses);
496    if (Result == Live)
497      break;
498  }
499  return Result;
500}
501
502// SurveyFunction - This performs the initial survey of the specified function,
503// checking out whether or not it uses any of its incoming arguments or whether
504// any callers use the return value.  This fills in the LiveValues set and Uses
505// map.
506//
507// We consider arguments of non-internal functions to be intrinsically alive as
508// well as arguments to functions which have their "address taken".
509//
510void DAE::SurveyFunction(const Function &F) {
511  unsigned RetCount = NumRetVals(&F);
512  // Assume all return values are dead
513  typedef SmallVector<Liveness, 5> RetVals;
514  RetVals RetValLiveness(RetCount, MaybeLive);
515
516  typedef SmallVector<UseVector, 5> RetUses;
517  // These vectors map each return value to the uses that make it MaybeLive, so
518  // we can add those to the Uses map if the return value really turns out to be
519  // MaybeLive. Initialized to a list of RetCount empty lists.
520  RetUses MaybeLiveRetUses(RetCount);
521
522  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
523    if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
524      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
525          != F.getFunctionType()->getReturnType()) {
526        // We don't support old style multiple return values.
527        MarkLive(F);
528        return;
529      }
530
531  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
532    MarkLive(F);
533    return;
534  }
535
536  DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
537  // Keep track of the number of live retvals, so we can skip checks once all
538  // of them turn out to be live.
539  unsigned NumLiveRetVals = 0;
540  Type *STy = dyn_cast<StructType>(F.getReturnType());
541  // Loop all uses of the function.
542  for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
543       I != E; ++I) {
544    // If the function is PASSED IN as an argument, its address has been
545    // taken.
546    ImmutableCallSite CS(*I);
547    if (!CS || !CS.isCallee(I)) {
548      MarkLive(F);
549      return;
550    }
551
552    // If this use is anything other than a call site, the function is alive.
553    const Instruction *TheCall = CS.getInstruction();
554    if (!TheCall) {   // Not a direct call site?
555      MarkLive(F);
556      return;
557    }
558
559    // If we end up here, we are looking at a direct call to our function.
560
561    // Now, check how our return value(s) is/are used in this caller. Don't
562    // bother checking return values if all of them are live already.
563    if (NumLiveRetVals != RetCount) {
564      if (STy) {
565        // Check all uses of the return value.
566        for (Value::const_use_iterator I = TheCall->use_begin(),
567             E = TheCall->use_end(); I != E; ++I) {
568          const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
569          if (Ext && Ext->hasIndices()) {
570            // This use uses a part of our return value, survey the uses of
571            // that part and store the results for this index only.
572            unsigned Idx = *Ext->idx_begin();
573            if (RetValLiveness[Idx] != Live) {
574              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
575              if (RetValLiveness[Idx] == Live)
576                NumLiveRetVals++;
577            }
578          } else {
579            // Used by something else than extractvalue. Mark all return
580            // values as live.
581            for (unsigned i = 0; i != RetCount; ++i )
582              RetValLiveness[i] = Live;
583            NumLiveRetVals = RetCount;
584            break;
585          }
586        }
587      } else {
588        // Single return value
589        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
590        if (RetValLiveness[0] == Live)
591          NumLiveRetVals = RetCount;
592      }
593    }
594  }
595
596  // Now we've inspected all callers, record the liveness of our return values.
597  for (unsigned i = 0; i != RetCount; ++i)
598    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
599
600  DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
601
602  // Now, check all of our arguments.
603  unsigned i = 0;
604  UseVector MaybeLiveArgUses;
605  for (Function::const_arg_iterator AI = F.arg_begin(),
606       E = F.arg_end(); AI != E; ++AI, ++i) {
607    // See what the effect of this use is (recording any uses that cause
608    // MaybeLive in MaybeLiveArgUses).
609    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
610    // Mark the result.
611    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
612    // Clear the vector again for the next iteration.
613    MaybeLiveArgUses.clear();
614  }
615}
616
617/// MarkValue - This function marks the liveness of RA depending on L. If L is
618/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
619/// such that RA will be marked live if any use in MaybeLiveUses gets marked
620/// live later on.
621void DAE::MarkValue(const RetOrArg &RA, Liveness L,
622                    const UseVector &MaybeLiveUses) {
623  switch (L) {
624    case Live: MarkLive(RA); break;
625    case MaybeLive:
626    {
627      // Note any uses of this value, so this return value can be
628      // marked live whenever one of the uses becomes live.
629      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
630           UE = MaybeLiveUses.end(); UI != UE; ++UI)
631        Uses.insert(std::make_pair(*UI, RA));
632      break;
633    }
634  }
635}
636
637/// MarkLive - Mark the given Function as alive, meaning that it cannot be
638/// changed in any way. Additionally,
639/// mark any values that are used as this function's parameters or by its return
640/// values (according to Uses) live as well.
641void DAE::MarkLive(const Function &F) {
642  DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
643  // Mark the function as live.
644  LiveFunctions.insert(&F);
645  // Mark all arguments as live.
646  for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
647    PropagateLiveness(CreateArg(&F, i));
648  // Mark all return values as live.
649  for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
650    PropagateLiveness(CreateRet(&F, i));
651}
652
653/// MarkLive - Mark the given return value or argument as live. Additionally,
654/// mark any values that are used by this value (according to Uses) live as
655/// well.
656void DAE::MarkLive(const RetOrArg &RA) {
657  if (LiveFunctions.count(RA.F))
658    return; // Function was already marked Live.
659
660  if (!LiveValues.insert(RA).second)
661    return; // We were already marked Live.
662
663  DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
664  PropagateLiveness(RA);
665}
666
667/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
668/// to any other values it uses (according to Uses).
669void DAE::PropagateLiveness(const RetOrArg &RA) {
670  // We don't use upper_bound (or equal_range) here, because our recursive call
671  // to ourselves is likely to cause the upper_bound (which is the first value
672  // not belonging to RA) to become erased and the iterator invalidated.
673  UseMap::iterator Begin = Uses.lower_bound(RA);
674  UseMap::iterator E = Uses.end();
675  UseMap::iterator I;
676  for (I = Begin; I != E && I->first == RA; ++I)
677    MarkLive(I->second);
678
679  // Erase RA from the Uses map (from the lower bound to wherever we ended up
680  // after the loop).
681  Uses.erase(Begin, I);
682}
683
684// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
685// that are not in LiveValues. Transform the function and all of the callees of
686// the function to not have these arguments and return values.
687//
688bool DAE::RemoveDeadStuffFromFunction(Function *F) {
689  // Don't modify fully live functions
690  if (LiveFunctions.count(F))
691    return false;
692
693  // Start by computing a new prototype for the function, which is the same as
694  // the old function, but has fewer arguments and a different return type.
695  FunctionType *FTy = F->getFunctionType();
696  std::vector<Type*> Params;
697
698  // Set up to build a new list of parameter attributes.
699  SmallVector<AttributeSet, 8> AttributesVec;
700  const AttributeSet &PAL = F->getAttributes();
701
702  // Find out the new return value.
703  Type *RetTy = FTy->getReturnType();
704  Type *NRetTy = NULL;
705  unsigned RetCount = NumRetVals(F);
706
707  // -1 means unused, other numbers are the new index
708  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
709  std::vector<Type*> RetTypes;
710  if (RetTy->isVoidTy()) {
711    NRetTy = RetTy;
712  } else {
713    StructType *STy = dyn_cast<StructType>(RetTy);
714    if (STy)
715      // Look at each of the original return values individually.
716      for (unsigned i = 0; i != RetCount; ++i) {
717        RetOrArg Ret = CreateRet(F, i);
718        if (LiveValues.erase(Ret)) {
719          RetTypes.push_back(STy->getElementType(i));
720          NewRetIdxs[i] = RetTypes.size() - 1;
721        } else {
722          ++NumRetValsEliminated;
723          DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
724                << F->getName() << "\n");
725        }
726      }
727    else
728      // We used to return a single value.
729      if (LiveValues.erase(CreateRet(F, 0))) {
730        RetTypes.push_back(RetTy);
731        NewRetIdxs[0] = 0;
732      } else {
733        DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
734              << "\n");
735        ++NumRetValsEliminated;
736      }
737    if (RetTypes.size() > 1)
738      // More than one return type? Return a struct with them. Also, if we used
739      // to return a struct and didn't change the number of return values,
740      // return a struct again. This prevents changing {something} into
741      // something and {} into void.
742      // Make the new struct packed if we used to return a packed struct
743      // already.
744      NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
745    else if (RetTypes.size() == 1)
746      // One return type? Just a simple value then, but only if we didn't use to
747      // return a struct with that simple value before.
748      NRetTy = RetTypes.front();
749    else if (RetTypes.size() == 0)
750      // No return types? Make it void, but only if we didn't use to return {}.
751      NRetTy = Type::getVoidTy(F->getContext());
752  }
753
754  assert(NRetTy && "No new return type found?");
755
756  // The existing function return attributes.
757  AttributeSet RAttrs = PAL.getRetAttributes();
758
759  // Remove any incompatible attributes, but only if we removed all return
760  // values. Otherwise, ensure that we don't have any conflicting attributes
761  // here. Currently, this should not be possible, but special handling might be
762  // required when new return value attributes are added.
763  if (NRetTy->isVoidTy())
764    RAttrs =
765      AttributeSet::get(NRetTy->getContext(), AttributeSet::ReturnIndex,
766                        AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
767         removeAttributes(AttributeFuncs::
768                          typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
769                          AttributeSet::ReturnIndex));
770  else
771    assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
772             hasAttributes(AttributeFuncs::
773                           typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
774                           AttributeSet::ReturnIndex) &&
775           "Return attributes no longer compatible?");
776
777  if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
778    AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
779
780  // Remember which arguments are still alive.
781  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
782  // Construct the new parameter list from non-dead arguments. Also construct
783  // a new set of parameter attributes to correspond. Skip the first parameter
784  // attribute, since that belongs to the return value.
785  unsigned i = 0;
786  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
787       I != E; ++I, ++i) {
788    RetOrArg Arg = CreateArg(F, i);
789    if (LiveValues.erase(Arg)) {
790      Params.push_back(I->getType());
791      ArgAlive[i] = true;
792
793      // Get the original parameter attributes (skipping the first one, that is
794      // for the return value.
795      if (PAL.hasAttributes(i + 1)) {
796        AttrBuilder B(PAL, i + 1);
797        AttributesVec.
798          push_back(AttributeSet::get(F->getContext(), Params.size(), B));
799      }
800    } else {
801      ++NumArgumentsEliminated;
802      DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
803            << ") from " << F->getName() << "\n");
804    }
805  }
806
807  if (PAL.hasAttributes(AttributeSet::FunctionIndex))
808    AttributesVec.push_back(AttributeSet::get(F->getContext(),
809                                              PAL.getFnAttributes()));
810
811  // Reconstruct the AttributesList based on the vector we constructed.
812  AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
813
814  // Create the new function type based on the recomputed parameters.
815  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
816
817  // No change?
818  if (NFTy == FTy)
819    return false;
820
821  // Create the new function body and insert it into the module...
822  Function *NF = Function::Create(NFTy, F->getLinkage());
823  NF->copyAttributesFrom(F);
824  NF->setAttributes(NewPAL);
825  // Insert the new function before the old function, so we won't be processing
826  // it again.
827  F->getParent()->getFunctionList().insert(F, NF);
828  NF->takeName(F);
829
830  // Loop over all of the callers of the function, transforming the call sites
831  // to pass in a smaller number of arguments into the new function.
832  //
833  std::vector<Value*> Args;
834  while (!F->use_empty()) {
835    CallSite CS(F->use_back());
836    Instruction *Call = CS.getInstruction();
837
838    AttributesVec.clear();
839    const AttributeSet &CallPAL = CS.getAttributes();
840
841    // The call return attributes.
842    AttributeSet RAttrs = CallPAL.getRetAttributes();
843
844    // Adjust in case the function was changed to return void.
845    RAttrs =
846      AttributeSet::get(NF->getContext(), AttributeSet::ReturnIndex,
847                        AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
848        removeAttributes(AttributeFuncs::
849                         typeIncompatible(NF->getReturnType(),
850                                          AttributeSet::ReturnIndex),
851                         AttributeSet::ReturnIndex));
852    if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
853      AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
854
855    // Declare these outside of the loops, so we can reuse them for the second
856    // loop, which loops the varargs.
857    CallSite::arg_iterator I = CS.arg_begin();
858    unsigned i = 0;
859    // Loop over those operands, corresponding to the normal arguments to the
860    // original function, and add those that are still alive.
861    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
862      if (ArgAlive[i]) {
863        Args.push_back(*I);
864        // Get original parameter attributes, but skip return attributes.
865        if (CallPAL.hasAttributes(i + 1)) {
866          AttrBuilder B(CallPAL, i + 1);
867          AttributesVec.
868            push_back(AttributeSet::get(F->getContext(), Args.size(), B));
869        }
870      }
871
872    // Push any varargs arguments on the list. Don't forget their attributes.
873    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
874      Args.push_back(*I);
875      if (CallPAL.hasAttributes(i + 1)) {
876        AttrBuilder B(CallPAL, i + 1);
877        AttributesVec.
878          push_back(AttributeSet::get(F->getContext(), Args.size(), B));
879      }
880    }
881
882    if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
883      AttributesVec.push_back(AttributeSet::get(Call->getContext(),
884                                                CallPAL.getFnAttributes()));
885
886    // Reconstruct the AttributesList based on the vector we constructed.
887    AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
888
889    Instruction *New;
890    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
891      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
892                               Args, "", Call);
893      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
894      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
895    } else {
896      New = CallInst::Create(NF, Args, "", Call);
897      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
898      cast<CallInst>(New)->setAttributes(NewCallPAL);
899      if (cast<CallInst>(Call)->isTailCall())
900        cast<CallInst>(New)->setTailCall();
901    }
902    New->setDebugLoc(Call->getDebugLoc());
903
904    Args.clear();
905
906    if (!Call->use_empty()) {
907      if (New->getType() == Call->getType()) {
908        // Return type not changed? Just replace users then.
909        Call->replaceAllUsesWith(New);
910        New->takeName(Call);
911      } else if (New->getType()->isVoidTy()) {
912        // Our return value has uses, but they will get removed later on.
913        // Replace by null for now.
914        if (!Call->getType()->isX86_MMXTy())
915          Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
916      } else {
917        assert(RetTy->isStructTy() &&
918               "Return type changed, but not into a void. The old return type"
919               " must have been a struct!");
920        Instruction *InsertPt = Call;
921        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
922          BasicBlock::iterator IP = II->getNormalDest()->begin();
923          while (isa<PHINode>(IP)) ++IP;
924          InsertPt = IP;
925        }
926
927        // We used to return a struct. Instead of doing smart stuff with all the
928        // uses of this struct, we will just rebuild it using
929        // extract/insertvalue chaining and let instcombine clean that up.
930        //
931        // Start out building up our return value from undef
932        Value *RetVal = UndefValue::get(RetTy);
933        for (unsigned i = 0; i != RetCount; ++i)
934          if (NewRetIdxs[i] != -1) {
935            Value *V;
936            if (RetTypes.size() > 1)
937              // We are still returning a struct, so extract the value from our
938              // return value
939              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
940                                           InsertPt);
941            else
942              // We are now returning a single element, so just insert that
943              V = New;
944            // Insert the value at the old position
945            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
946          }
947        // Now, replace all uses of the old call instruction with the return
948        // struct we built
949        Call->replaceAllUsesWith(RetVal);
950        New->takeName(Call);
951      }
952    }
953
954    // Finally, remove the old call from the program, reducing the use-count of
955    // F.
956    Call->eraseFromParent();
957  }
958
959  // Since we have now created the new function, splice the body of the old
960  // function right into the new function, leaving the old rotting hulk of the
961  // function empty.
962  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
963
964  // Loop over the argument list, transferring uses of the old arguments over to
965  // the new arguments, also transferring over the names as well.
966  i = 0;
967  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
968       I2 = NF->arg_begin(); I != E; ++I, ++i)
969    if (ArgAlive[i]) {
970      // If this is a live argument, move the name and users over to the new
971      // version.
972      I->replaceAllUsesWith(I2);
973      I2->takeName(I);
974      ++I2;
975    } else {
976      // If this argument is dead, replace any uses of it with null constants
977      // (these are guaranteed to become unused later on).
978      if (!I->getType()->isX86_MMXTy())
979        I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
980    }
981
982  // If we change the return value of the function we must rewrite any return
983  // instructions.  Check this now.
984  if (F->getReturnType() != NF->getReturnType())
985    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
986      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
987        Value *RetVal;
988
989        if (NFTy->getReturnType()->isVoidTy()) {
990          RetVal = 0;
991        } else {
992          assert (RetTy->isStructTy());
993          // The original return value was a struct, insert
994          // extractvalue/insertvalue chains to extract only the values we need
995          // to return and insert them into our new result.
996          // This does generate messy code, but we'll let it to instcombine to
997          // clean that up.
998          Value *OldRet = RI->getOperand(0);
999          // Start out building up our return value from undef
1000          RetVal = UndefValue::get(NRetTy);
1001          for (unsigned i = 0; i != RetCount; ++i)
1002            if (NewRetIdxs[i] != -1) {
1003              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
1004                                                              "oldret", RI);
1005              if (RetTypes.size() > 1) {
1006                // We're still returning a struct, so reinsert the value into
1007                // our new return value at the new index
1008
1009                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
1010                                                 "newret", RI);
1011              } else {
1012                // We are now only returning a simple value, so just return the
1013                // extracted value.
1014                RetVal = EV;
1015              }
1016            }
1017        }
1018        // Replace the return instruction with one returning the new return
1019        // value (possibly 0 if we became void).
1020        ReturnInst::Create(F->getContext(), RetVal, RI);
1021        BB->getInstList().erase(RI);
1022      }
1023
1024  // Patch the pointer to LLVM function in debug info descriptor.
1025  FunctionDIMap::iterator DI = FunctionDIs.find(F);
1026  if (DI != FunctionDIs.end())
1027    DI->second.replaceFunction(NF);
1028
1029  // Now that the old function is dead, delete it.
1030  F->eraseFromParent();
1031
1032  return true;
1033}
1034
1035bool DAE::runOnModule(Module &M) {
1036  bool Changed = false;
1037
1038  // Collect debug info descriptors for functions.
1039  CollectFunctionDIs(M);
1040
1041  // First pass: Do a simple check to see if any functions can have their "..."
1042  // removed.  We can do this if they never call va_start.  This loop cannot be
1043  // fused with the next loop, because deleting a function invalidates
1044  // information computed while surveying other functions.
1045  DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
1046  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1047    Function &F = *I++;
1048    if (F.getFunctionType()->isVarArg())
1049      Changed |= DeleteDeadVarargs(F);
1050  }
1051
1052  // Second phase:loop through the module, determining which arguments are live.
1053  // We assume all arguments are dead unless proven otherwise (allowing us to
1054  // determine that dead arguments passed into recursive functions are dead).
1055  //
1056  DEBUG(dbgs() << "DAE - Determining liveness\n");
1057  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
1058    SurveyFunction(*I);
1059
1060  // Now, remove all dead arguments and return values from each function in
1061  // turn.
1062  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1063    // Increment now, because the function will probably get removed (ie.
1064    // replaced by a new one).
1065    Function *F = I++;
1066    Changed |= RemoveDeadStuffFromFunction(F);
1067  }
1068
1069  // Finally, look for any unused parameters in functions with non-local
1070  // linkage and replace the passed in parameters with undef.
1071  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1072    Function& F = *I;
1073
1074    Changed |= RemoveDeadArgumentsFromCallers(F);
1075  }
1076
1077  return Changed;
1078}
1079