InstCombineAddSub.cpp revision 4ee576fac3a84553c9342faea87ff0e13e8eb48d
1//===- InstCombineAddSub.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for add, fadd, sub, and fsub.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/InstructionSimplify.h"
16#include "llvm/IR/DataLayout.h"
17#include "llvm/Support/GetElementPtrTypeIterator.h"
18#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22namespace {
23
24  /// Class representing coefficient of floating-point addend.
25  /// This class needs to be highly efficient, which is especially true for
26  /// the constructor. As of I write this comment, the cost of the default
27  /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
28  /// perform write-merging).
29  ///
30  class FAddendCoef {
31  public:
32    // The constructor has to initialize a APFloat, which is uncessary for
33    // most addends which have coefficient either 1 or -1. So, the constructor
34    // is expensive. In order to avoid the cost of the constructor, we should
35    // reuse some instances whenever possible. The pre-created instances
36    // FAddCombine::Add[0-5] embodies this idea.
37    //
38    FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
39    ~FAddendCoef();
40
41    void set(short C) {
42      assert(!insaneIntVal(C) && "Insane coefficient");
43      IsFp = false; IntVal = C;
44    }
45
46    void set(const APFloat& C);
47
48    void negate();
49
50    bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
51    Value *getValue(Type *) const;
52
53    // If possible, don't define operator+/operator- etc because these
54    // operators inevitably call FAddendCoef's constructor which is not cheap.
55    void operator=(const FAddendCoef &A);
56    void operator+=(const FAddendCoef &A);
57    void operator-=(const FAddendCoef &A);
58    void operator*=(const FAddendCoef &S);
59
60    bool isOne() const { return isInt() && IntVal == 1; }
61    bool isTwo() const { return isInt() && IntVal == 2; }
62    bool isMinusOne() const { return isInt() && IntVal == -1; }
63    bool isMinusTwo() const { return isInt() && IntVal == -2; }
64
65  private:
66    bool insaneIntVal(int V) { return V > 4 || V < -4; }
67    APFloat *getFpValPtr(void)
68      { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
69    const APFloat *getFpValPtr(void) const
70      { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
71
72    const APFloat &getFpVal(void) const {
73      assert(IsFp && BufHasFpVal && "Incorret state");
74      return *getFpValPtr();
75    }
76
77    APFloat &getFpVal(void)
78      { assert(IsFp && BufHasFpVal && "Incorret state"); return *getFpValPtr(); }
79
80    bool isInt() const { return !IsFp; }
81
82  private:
83
84    bool IsFp;
85
86    // True iff FpValBuf contains an instance of APFloat.
87    bool BufHasFpVal;
88
89    // The integer coefficient of an individual addend is either 1 or -1,
90    // and we try to simplify at most 4 addends from neighboring at most
91    // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
92    // is overkill of this end.
93    short IntVal;
94
95    AlignedCharArrayUnion<APFloat> FpValBuf;
96  };
97
98  /// FAddend is used to represent floating-point addend. An addend is
99  /// represented as <C, V>, where the V is a symbolic value, and C is a
100  /// constant coefficient. A constant addend is represented as <C, 0>.
101  ///
102  class FAddend {
103  public:
104    FAddend() { Val = 0; }
105
106    Value *getSymVal (void) const { return Val; }
107    const FAddendCoef &getCoef(void) const { return Coeff; }
108
109    bool isConstant() const { return Val == 0; }
110    bool isZero() const { return Coeff.isZero(); }
111
112    void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; }
113    void set(const APFloat& Coefficient, Value *V)
114      { Coeff.set(Coefficient); Val = V; }
115    void set(const ConstantFP* Coefficient, Value *V)
116      { Coeff.set(Coefficient->getValueAPF()); Val = V; }
117
118    void negate() { Coeff.negate(); }
119
120    /// Drill down the U-D chain one step to find the definition of V, and
121    /// try to break the definition into one or two addends.
122    static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
123
124    /// Similar to FAddend::drillDownOneStep() except that the value being
125    /// splitted is the addend itself.
126    unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
127
128    void operator+=(const FAddend &T) {
129      assert((Val == T.Val) && "Symbolic-values disagree");
130      Coeff += T.Coeff;
131    }
132
133  private:
134    void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
135
136    // This addend has the value of "Coeff * Val".
137    Value *Val;
138    FAddendCoef Coeff;
139  };
140
141  /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
142  /// with its neighboring at most two instructions.
143  ///
144  class FAddCombine {
145  public:
146    FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(0) {}
147    Value *simplify(Instruction *FAdd);
148
149  private:
150    typedef SmallVector<const FAddend*, 4> AddendVect;
151
152    Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
153
154    /// Convert given addend to a Value
155    Value *createAddendVal(const FAddend &A, bool& NeedNeg);
156
157    /// Return the number of instructions needed to emit the N-ary addition.
158    unsigned calcInstrNumber(const AddendVect& Vect);
159    Value *createFSub(Value *Opnd0, Value *Opnd1);
160    Value *createFAdd(Value *Opnd0, Value *Opnd1);
161    Value *createFMul(Value *Opnd0, Value *Opnd1);
162    Value *createFNeg(Value *V);
163    Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
164    void createInstPostProc(Instruction *NewInst);
165
166    InstCombiner::BuilderTy *Builder;
167    Instruction *Instr;
168
169  private:
170     // Debugging stuff are clustered here.
171    #ifndef NDEBUG
172      unsigned CreateInstrNum;
173      void initCreateInstNum() { CreateInstrNum = 0; }
174      void incCreateInstNum() { CreateInstrNum++; }
175    #else
176      void initCreateInstNum() {}
177      void incCreateInstNum() {}
178    #endif
179  };
180}
181
182//===----------------------------------------------------------------------===//
183//
184// Implementation of
185//    {FAddendCoef, FAddend, FAddition, FAddCombine}.
186//
187//===----------------------------------------------------------------------===//
188FAddendCoef::~FAddendCoef() {
189  if (BufHasFpVal)
190    getFpValPtr()->~APFloat();
191}
192
193void FAddendCoef::set(const APFloat& C) {
194  APFloat *P = getFpValPtr();
195
196  if (isInt()) {
197    // As the buffer is meanless byte stream, we cannot call
198    // APFloat::operator=().
199    new(P) APFloat(C);
200  } else
201    *P = C;
202
203  IsFp = BufHasFpVal = true;
204}
205
206void FAddendCoef::operator=(const FAddendCoef& That) {
207  if (That.isInt())
208    set(That.IntVal);
209  else
210    set(That.getFpVal());
211}
212
213void FAddendCoef::operator+=(const FAddendCoef &That) {
214  enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
215  if (isInt() == That.isInt()) {
216    if (isInt())
217      IntVal += That.IntVal;
218    else
219      getFpVal().add(That.getFpVal(), RndMode);
220    return;
221  }
222
223  if (isInt()) {
224    const APFloat &T = That.getFpVal();
225    set(T);
226    getFpVal().add(APFloat(T.getSemantics(), IntVal), RndMode);
227    return;
228  }
229
230  APFloat &T = getFpVal();
231  T.add(APFloat(T.getSemantics(), That.IntVal), RndMode);
232}
233
234void FAddendCoef::operator-=(const FAddendCoef &That) {
235  enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
236  if (isInt() == That.isInt()) {
237    if (isInt())
238      IntVal -= That.IntVal;
239    else
240      getFpVal().subtract(That.getFpVal(), RndMode);
241    return;
242  }
243
244  if (isInt()) {
245    const APFloat &T = That.getFpVal();
246    set(T);
247    getFpVal().subtract(APFloat(T.getSemantics(), IntVal), RndMode);
248    return;
249  }
250
251  APFloat &T = getFpVal();
252  T.subtract(APFloat(T.getSemantics(), IntVal), RndMode);
253}
254
255void FAddendCoef::operator*=(const FAddendCoef &That) {
256  if (That.isOne())
257    return;
258
259  if (That.isMinusOne()) {
260    negate();
261    return;
262  }
263
264  if (isInt() && That.isInt()) {
265    int Res = IntVal * (int)That.IntVal;
266    assert(!insaneIntVal(Res) && "Insane int value");
267    IntVal = Res;
268    return;
269  }
270
271  const fltSemantics &Semantic =
272    isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
273
274  if (isInt())
275    set(APFloat(Semantic, IntVal));
276  APFloat &F0 = getFpVal();
277
278  if (That.isInt())
279    F0.multiply(APFloat(Semantic, That.IntVal), APFloat::rmNearestTiesToEven);
280  else
281    F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
282
283  return;
284}
285
286void FAddendCoef::negate() {
287  if (isInt())
288    IntVal = 0 - IntVal;
289  else
290    getFpVal().changeSign();
291}
292
293Value *FAddendCoef::getValue(Type *Ty) const {
294  return isInt() ?
295    ConstantFP::get(Ty, float(IntVal)) :
296    ConstantFP::get(Ty->getContext(), getFpVal());
297}
298
299// The definition of <Val>     Addends
300// =========================================
301//  A + B                     <1, A>, <1,B>
302//  A - B                     <1, A>, <1,B>
303//  0 - B                     <-1, B>
304//  C * A,                    <C, A>
305//  A + C                     <1, A> <C, NULL>
306//  0 +/- 0                   <0, NULL> (corner case)
307//
308// Legend: A and B are not constant, C is constant
309//
310unsigned FAddend::drillValueDownOneStep
311  (Value *Val, FAddend &Addend0, FAddend &Addend1) {
312  Instruction *I = 0;
313  if (Val == 0 || !(I = dyn_cast<Instruction>(Val)))
314    return 0;
315
316  unsigned Opcode = I->getOpcode();
317
318  if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
319    ConstantFP *C0, *C1;
320    Value *Opnd0 = I->getOperand(0);
321    Value *Opnd1 = I->getOperand(1);
322    if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
323      Opnd0 = 0;
324
325    if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
326      Opnd1 = 0;
327
328    if (Opnd0) {
329      if (!C0)
330        Addend0.set(1, Opnd0);
331      else
332        Addend0.set(C0, 0);
333    }
334
335    if (Opnd1) {
336      FAddend &Addend = Opnd0 ? Addend1 : Addend0;
337      if (!C1)
338        Addend.set(1, Opnd1);
339      else
340        Addend.set(C1, 0);
341      if (Opcode == Instruction::FSub)
342        Addend.negate();
343    }
344
345    if (Opnd0 || Opnd1)
346      return Opnd0 && Opnd1 ? 2 : 1;
347
348    // Both operands are zero. Weird!
349    Addend0.set(APFloat(C0->getValueAPF().getSemantics()), 0);
350    return 1;
351  }
352
353  if (I->getOpcode() == Instruction::FMul) {
354    Value *V0 = I->getOperand(0);
355    Value *V1 = I->getOperand(1);
356    if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
357      Addend0.set(C, V1);
358      return 1;
359    }
360
361    if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
362      Addend0.set(C, V0);
363      return 1;
364    }
365  }
366
367  return 0;
368}
369
370// Try to break *this* addend into two addends. e.g. Suppose this addend is
371// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
372// i.e. <2.3, X> and <2.3, Y>.
373//
374unsigned FAddend::drillAddendDownOneStep
375  (FAddend &Addend0, FAddend &Addend1) const {
376  if (isConstant())
377    return 0;
378
379  unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
380  if (!BreakNum || Coeff.isOne())
381    return BreakNum;
382
383  Addend0.Scale(Coeff);
384
385  if (BreakNum == 2)
386    Addend1.Scale(Coeff);
387
388  return BreakNum;
389}
390
391Value *FAddCombine::simplify(Instruction *I) {
392  assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
393
394  // Currently we are not able to handle vector type.
395  if (I->getType()->isVectorTy())
396    return 0;
397
398  assert((I->getOpcode() == Instruction::FAdd ||
399          I->getOpcode() == Instruction::FSub) && "Expect add/sub");
400
401  // Save the instruction before calling other member-functions.
402  Instr = I;
403
404  FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
405
406  unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
407
408  // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
409  unsigned Opnd0_ExpNum = 0;
410  unsigned Opnd1_ExpNum = 0;
411
412  if (!Opnd0.isConstant())
413    Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
414
415  // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
416  if (OpndNum == 2 && !Opnd1.isConstant())
417    Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
418
419  // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
420  if (Opnd0_ExpNum && Opnd1_ExpNum) {
421    AddendVect AllOpnds;
422    AllOpnds.push_back(&Opnd0_0);
423    AllOpnds.push_back(&Opnd1_0);
424    if (Opnd0_ExpNum == 2)
425      AllOpnds.push_back(&Opnd0_1);
426    if (Opnd1_ExpNum == 2)
427      AllOpnds.push_back(&Opnd1_1);
428
429    // Compute instruction quota. We should save at least one instruction.
430    unsigned InstQuota = 0;
431
432    Value *V0 = I->getOperand(0);
433    Value *V1 = I->getOperand(1);
434    InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
435                 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
436
437    if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
438      return R;
439  }
440
441  if (OpndNum != 2) {
442    // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
443    // splitted into two addends, say "V = X - Y", the instruction would have
444    // been optimized into "I = Y - X" in the previous steps.
445    //
446    const FAddendCoef &CE = Opnd0.getCoef();
447    return CE.isOne() ? Opnd0.getSymVal() : 0;
448  }
449
450  // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
451  if (Opnd1_ExpNum) {
452    AddendVect AllOpnds;
453    AllOpnds.push_back(&Opnd0);
454    AllOpnds.push_back(&Opnd1_0);
455    if (Opnd1_ExpNum == 2)
456      AllOpnds.push_back(&Opnd1_1);
457
458    if (Value *R = simplifyFAdd(AllOpnds, 1))
459      return R;
460  }
461
462  // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
463  if (Opnd0_ExpNum) {
464    AddendVect AllOpnds;
465    AllOpnds.push_back(&Opnd1);
466    AllOpnds.push_back(&Opnd0_0);
467    if (Opnd0_ExpNum == 2)
468      AllOpnds.push_back(&Opnd0_1);
469
470    if (Value *R = simplifyFAdd(AllOpnds, 1))
471      return R;
472  }
473
474  return 0;
475}
476
477Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
478
479  unsigned AddendNum = Addends.size();
480  assert(AddendNum <= 4 && "Too many addends");
481
482  // For saving intermediate results;
483  unsigned NextTmpIdx = 0;
484  FAddend TmpResult[3];
485
486  // Points to the constant addend of the resulting simplified expression.
487  // If the resulting expr has constant-addend, this constant-addend is
488  // desirable to reside at the top of the resulting expression tree. Placing
489  // constant close to supper-expr(s) will potentially reveal some optimization
490  // opportunities in super-expr(s).
491  //
492  const FAddend *ConstAdd = 0;
493
494  // Simplified addends are placed <SimpVect>.
495  AddendVect SimpVect;
496
497  // The outer loop works on one symbolic-value at a time. Suppose the input
498  // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
499  // The symbolic-values will be processed in this order: x, y, z.
500  //
501  for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
502
503    const FAddend *ThisAddend = Addends[SymIdx];
504    if (!ThisAddend) {
505      // This addend was processed before.
506      continue;
507    }
508
509    Value *Val = ThisAddend->getSymVal();
510    unsigned StartIdx = SimpVect.size();
511    SimpVect.push_back(ThisAddend);
512
513    // The inner loop collects addends sharing same symbolic-value, and these
514    // addends will be later on folded into a single addend. Following above
515    // example, if the symbolic value "y" is being processed, the inner loop
516    // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
517    // be later on folded into "<b1+b2, y>".
518    //
519    for (unsigned SameSymIdx = SymIdx + 1;
520         SameSymIdx < AddendNum; SameSymIdx++) {
521      const FAddend *T = Addends[SameSymIdx];
522      if (T && T->getSymVal() == Val) {
523        // Set null such that next iteration of the outer loop will not process
524        // this addend again.
525        Addends[SameSymIdx] = 0;
526        SimpVect.push_back(T);
527      }
528    }
529
530    // If multiple addends share same symbolic value, fold them together.
531    if (StartIdx + 1 != SimpVect.size()) {
532      FAddend &R = TmpResult[NextTmpIdx ++];
533      R = *SimpVect[StartIdx];
534      for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
535        R += *SimpVect[Idx];
536
537      // Pop all addends being folded and push the resulting folded addend.
538      SimpVect.resize(StartIdx);
539      if (Val != 0) {
540        if (!R.isZero()) {
541          SimpVect.push_back(&R);
542        }
543      } else {
544        // Don't push constant addend at this time. It will be the last element
545        // of <SimpVect>.
546        ConstAdd = &R;
547      }
548    }
549  }
550
551  assert((NextTmpIdx <= sizeof(TmpResult)/sizeof(TmpResult[0]) + 1) &&
552         "out-of-bound access");
553
554  if (ConstAdd)
555    SimpVect.push_back(ConstAdd);
556
557  Value *Result;
558  if (!SimpVect.empty())
559    Result = createNaryFAdd(SimpVect, InstrQuota);
560  else {
561    // The addition is folded to 0.0.
562    Result = ConstantFP::get(Instr->getType(), 0.0);
563  }
564
565  return Result;
566}
567
568Value *FAddCombine::createNaryFAdd
569  (const AddendVect &Opnds, unsigned InstrQuota) {
570  assert(!Opnds.empty() && "Expect at least one addend");
571
572  // Step 1: Check if the # of instructions needed exceeds the quota.
573  //
574  unsigned InstrNeeded = calcInstrNumber(Opnds);
575  if (InstrNeeded > InstrQuota)
576    return 0;
577
578  initCreateInstNum();
579
580  // step 2: Emit the N-ary addition.
581  // Note that at most three instructions are involved in Fadd-InstCombine: the
582  // addition in question, and at most two neighboring instructions.
583  // The resulting optimized addition should have at least one less instruction
584  // than the original addition expression tree. This implies that the resulting
585  // N-ary addition has at most two instructions, and we don't need to worry
586  // about tree-height when constructing the N-ary addition.
587
588  Value *LastVal = 0;
589  bool LastValNeedNeg = false;
590
591  // Iterate the addends, creating fadd/fsub using adjacent two addends.
592  for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
593       I != E; I++) {
594    bool NeedNeg;
595    Value *V = createAddendVal(**I, NeedNeg);
596    if (!LastVal) {
597      LastVal = V;
598      LastValNeedNeg = NeedNeg;
599      continue;
600    }
601
602    if (LastValNeedNeg == NeedNeg) {
603      LastVal = createFAdd(LastVal, V);
604      continue;
605    }
606
607    if (LastValNeedNeg)
608      LastVal = createFSub(V, LastVal);
609    else
610      LastVal = createFSub(LastVal, V);
611
612    LastValNeedNeg = false;
613  }
614
615  if (LastValNeedNeg) {
616    LastVal = createFNeg(LastVal);
617  }
618
619  #ifndef NDEBUG
620    assert(CreateInstrNum == InstrNeeded &&
621           "Inconsistent in instruction numbers");
622  #endif
623
624  return LastVal;
625}
626
627Value *FAddCombine::createFSub
628  (Value *Opnd0, Value *Opnd1) {
629  Value *V = Builder->CreateFSub(Opnd0, Opnd1);
630  createInstPostProc(cast<Instruction>(V));
631  return V;
632}
633
634Value *FAddCombine::createFNeg(Value *V) {
635  Value *Zero = cast<Value>(ConstantFP::get(V->getType(), 0.0));
636  return createFSub(Zero, V);
637}
638
639Value *FAddCombine::createFAdd
640  (Value *Opnd0, Value *Opnd1) {
641  Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
642  createInstPostProc(cast<Instruction>(V));
643  return V;
644}
645
646Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
647  Value *V = Builder->CreateFMul(Opnd0, Opnd1);
648  createInstPostProc(cast<Instruction>(V));
649  return V;
650}
651
652void FAddCombine::createInstPostProc(Instruction *NewInstr) {
653  NewInstr->setDebugLoc(Instr->getDebugLoc());
654
655  // Keep track of the number of instruction created.
656  incCreateInstNum();
657
658  // Propagate fast-math flags
659  NewInstr->setFastMathFlags(Instr->getFastMathFlags());
660}
661
662// Return the number of instruction needed to emit the N-ary addition.
663// NOTE: Keep this function in sync with createAddendVal().
664unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
665  unsigned OpndNum = Opnds.size();
666  unsigned InstrNeeded = OpndNum - 1;
667
668  // The number of addends in the form of "(-1)*x".
669  unsigned NegOpndNum = 0;
670
671  // Adjust the number of instructions needed to emit the N-ary add.
672  for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
673       I != E; I++) {
674    const FAddend *Opnd = *I;
675    if (Opnd->isConstant())
676      continue;
677
678    const FAddendCoef &CE = Opnd->getCoef();
679    if (CE.isMinusOne() || CE.isMinusTwo())
680      NegOpndNum++;
681
682    // Let the addend be "c * x". If "c == +/-1", the value of the addend
683    // is immediately available; otherwise, it needs exactly one instruction
684    // to evaluate the value.
685    if (!CE.isMinusOne() && !CE.isOne())
686      InstrNeeded++;
687  }
688  if (NegOpndNum == OpndNum)
689    InstrNeeded++;
690  return InstrNeeded;
691}
692
693// Input Addend        Value           NeedNeg(output)
694// ================================================================
695// Constant C          C               false
696// <+/-1, V>           V               coefficient is -1
697// <2/-2, V>          "fadd V, V"      coefficient is -2
698// <C, V>             "fmul V, C"      false
699//
700// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
701Value *FAddCombine::createAddendVal
702  (const FAddend &Opnd, bool &NeedNeg) {
703  const FAddendCoef &Coeff = Opnd.getCoef();
704
705  if (Opnd.isConstant()) {
706    NeedNeg = false;
707    return Coeff.getValue(Instr->getType());
708  }
709
710  Value *OpndVal = Opnd.getSymVal();
711
712  if (Coeff.isMinusOne() || Coeff.isOne()) {
713    NeedNeg = Coeff.isMinusOne();
714    return OpndVal;
715  }
716
717  if (Coeff.isTwo() || Coeff.isMinusTwo()) {
718    NeedNeg = Coeff.isMinusTwo();
719    return createFAdd(OpndVal, OpndVal);
720  }
721
722  NeedNeg = false;
723  return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
724}
725
726/// AddOne - Add one to a ConstantInt.
727static Constant *AddOne(Constant *C) {
728  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
729}
730
731/// SubOne - Subtract one from a ConstantInt.
732static Constant *SubOne(ConstantInt *C) {
733  return ConstantInt::get(C->getContext(), C->getValue()-1);
734}
735
736
737// dyn_castFoldableMul - If this value is a multiply that can be folded into
738// other computations (because it has a constant operand), return the
739// non-constant operand of the multiply, and set CST to point to the multiplier.
740// Otherwise, return null.
741//
742static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
743  if (!V->hasOneUse() || !V->getType()->isIntegerTy())
744    return 0;
745
746  Instruction *I = dyn_cast<Instruction>(V);
747  if (I == 0) return 0;
748
749  if (I->getOpcode() == Instruction::Mul)
750    if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
751      return I->getOperand(0);
752  if (I->getOpcode() == Instruction::Shl)
753    if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
754      // The multiplier is really 1 << CST.
755      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
756      uint32_t CSTVal = CST->getLimitedValue(BitWidth);
757      CST = ConstantInt::get(V->getType()->getContext(),
758                             APInt(BitWidth, 1).shl(CSTVal));
759      return I->getOperand(0);
760    }
761  return 0;
762}
763
764
765/// WillNotOverflowSignedAdd - Return true if we can prove that:
766///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
767/// This basically requires proving that the add in the original type would not
768/// overflow to change the sign bit or have a carry out.
769bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
770  // There are different heuristics we can use for this.  Here are some simple
771  // ones.
772
773  // Add has the property that adding any two 2's complement numbers can only
774  // have one carry bit which can change a sign.  As such, if LHS and RHS each
775  // have at least two sign bits, we know that the addition of the two values
776  // will sign extend fine.
777  if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
778    return true;
779
780
781  // If one of the operands only has one non-zero bit, and if the other operand
782  // has a known-zero bit in a more significant place than it (not including the
783  // sign bit) the ripple may go up to and fill the zero, but won't change the
784  // sign.  For example, (X & ~4) + 1.
785
786  // TODO: Implement.
787
788  return false;
789}
790
791Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
792  bool Changed = SimplifyAssociativeOrCommutative(I);
793  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
794
795  if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
796                                 I.hasNoUnsignedWrap(), TD))
797    return ReplaceInstUsesWith(I, V);
798
799  // (A*B)+(A*C) -> A*(B+C) etc
800  if (Value *V = SimplifyUsingDistributiveLaws(I))
801    return ReplaceInstUsesWith(I, V);
802
803  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
804    // X + (signbit) --> X ^ signbit
805    const APInt &Val = CI->getValue();
806    if (Val.isSignBit())
807      return BinaryOperator::CreateXor(LHS, RHS);
808
809    // See if SimplifyDemandedBits can simplify this.  This handles stuff like
810    // (X & 254)+1 -> (X&254)|1
811    if (SimplifyDemandedInstructionBits(I))
812      return &I;
813
814    // zext(bool) + C -> bool ? C + 1 : C
815    if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
816      if (ZI->getSrcTy()->isIntegerTy(1))
817        return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
818
819    Value *XorLHS = 0; ConstantInt *XorRHS = 0;
820    if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
821      uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
822      const APInt &RHSVal = CI->getValue();
823      unsigned ExtendAmt = 0;
824      // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
825      // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
826      if (XorRHS->getValue() == -RHSVal) {
827        if (RHSVal.isPowerOf2())
828          ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
829        else if (XorRHS->getValue().isPowerOf2())
830          ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
831      }
832
833      if (ExtendAmt) {
834        APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
835        if (!MaskedValueIsZero(XorLHS, Mask))
836          ExtendAmt = 0;
837      }
838
839      if (ExtendAmt) {
840        Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
841        Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
842        return BinaryOperator::CreateAShr(NewShl, ShAmt);
843      }
844
845      // If this is a xor that was canonicalized from a sub, turn it back into
846      // a sub and fuse this add with it.
847      if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
848        IntegerType *IT = cast<IntegerType>(I.getType());
849        APInt LHSKnownOne(IT->getBitWidth(), 0);
850        APInt LHSKnownZero(IT->getBitWidth(), 0);
851        ComputeMaskedBits(XorLHS, LHSKnownZero, LHSKnownOne);
852        if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
853          return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
854                                           XorLHS);
855      }
856    }
857  }
858
859  if (isa<Constant>(RHS) && isa<PHINode>(LHS))
860    if (Instruction *NV = FoldOpIntoPhi(I))
861      return NV;
862
863  if (I.getType()->isIntegerTy(1))
864    return BinaryOperator::CreateXor(LHS, RHS);
865
866  // X + X --> X << 1
867  if (LHS == RHS) {
868    BinaryOperator *New =
869      BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
870    New->setHasNoSignedWrap(I.hasNoSignedWrap());
871    New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
872    return New;
873  }
874
875  // -A + B  -->  B - A
876  // -A + -B  -->  -(A + B)
877  if (Value *LHSV = dyn_castNegVal(LHS)) {
878    if (!isa<Constant>(RHS))
879      if (Value *RHSV = dyn_castNegVal(RHS)) {
880        Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
881        return BinaryOperator::CreateNeg(NewAdd);
882      }
883
884    return BinaryOperator::CreateSub(RHS, LHSV);
885  }
886
887  // A + -B  -->  A - B
888  if (!isa<Constant>(RHS))
889    if (Value *V = dyn_castNegVal(RHS))
890      return BinaryOperator::CreateSub(LHS, V);
891
892
893  ConstantInt *C2;
894  if (Value *X = dyn_castFoldableMul(LHS, C2)) {
895    if (X == RHS)   // X*C + X --> X * (C+1)
896      return BinaryOperator::CreateMul(RHS, AddOne(C2));
897
898    // X*C1 + X*C2 --> X * (C1+C2)
899    ConstantInt *C1;
900    if (X == dyn_castFoldableMul(RHS, C1))
901      return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
902  }
903
904  // X + X*C --> X * (C+1)
905  if (dyn_castFoldableMul(RHS, C2) == LHS)
906    return BinaryOperator::CreateMul(LHS, AddOne(C2));
907
908  // A+B --> A|B iff A and B have no bits set in common.
909  if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
910    APInt LHSKnownOne(IT->getBitWidth(), 0);
911    APInt LHSKnownZero(IT->getBitWidth(), 0);
912    ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
913    if (LHSKnownZero != 0) {
914      APInt RHSKnownOne(IT->getBitWidth(), 0);
915      APInt RHSKnownZero(IT->getBitWidth(), 0);
916      ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
917
918      // No bits in common -> bitwise or.
919      if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
920        return BinaryOperator::CreateOr(LHS, RHS);
921    }
922  }
923
924  // W*X + Y*Z --> W * (X+Z)  iff W == Y
925  {
926    Value *W, *X, *Y, *Z;
927    if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
928        match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
929      if (W != Y) {
930        if (W == Z) {
931          std::swap(Y, Z);
932        } else if (Y == X) {
933          std::swap(W, X);
934        } else if (X == Z) {
935          std::swap(Y, Z);
936          std::swap(W, X);
937        }
938      }
939
940      if (W == Y) {
941        Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
942        return BinaryOperator::CreateMul(W, NewAdd);
943      }
944    }
945  }
946
947  if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
948    Value *X = 0;
949    if (match(LHS, m_Not(m_Value(X))))    // ~X + C --> (C-1) - X
950      return BinaryOperator::CreateSub(SubOne(CRHS), X);
951
952    // (X & FF00) + xx00  -> (X+xx00) & FF00
953    if (LHS->hasOneUse() &&
954        match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
955        CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
956      // See if all bits from the first bit set in the Add RHS up are included
957      // in the mask.  First, get the rightmost bit.
958      const APInt &AddRHSV = CRHS->getValue();
959
960      // Form a mask of all bits from the lowest bit added through the top.
961      APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
962
963      // See if the and mask includes all of these bits.
964      APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
965
966      if (AddRHSHighBits == AddRHSHighBitsAnd) {
967        // Okay, the xform is safe.  Insert the new add pronto.
968        Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
969        return BinaryOperator::CreateAnd(NewAdd, C2);
970      }
971    }
972
973    // Try to fold constant add into select arguments.
974    if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
975      if (Instruction *R = FoldOpIntoSelect(I, SI))
976        return R;
977  }
978
979  // add (select X 0 (sub n A)) A  -->  select X A n
980  {
981    SelectInst *SI = dyn_cast<SelectInst>(LHS);
982    Value *A = RHS;
983    if (!SI) {
984      SI = dyn_cast<SelectInst>(RHS);
985      A = LHS;
986    }
987    if (SI && SI->hasOneUse()) {
988      Value *TV = SI->getTrueValue();
989      Value *FV = SI->getFalseValue();
990      Value *N;
991
992      // Can we fold the add into the argument of the select?
993      // We check both true and false select arguments for a matching subtract.
994      if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
995        // Fold the add into the true select value.
996        return SelectInst::Create(SI->getCondition(), N, A);
997
998      if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
999        // Fold the add into the false select value.
1000        return SelectInst::Create(SI->getCondition(), A, N);
1001    }
1002  }
1003
1004  // Check for (add (sext x), y), see if we can merge this into an
1005  // integer add followed by a sext.
1006  if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
1007    // (add (sext x), cst) --> (sext (add x, cst'))
1008    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1009      Constant *CI =
1010        ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1011      if (LHSConv->hasOneUse() &&
1012          ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
1013          WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
1014        // Insert the new, smaller add.
1015        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1016                                              CI, "addconv");
1017        return new SExtInst(NewAdd, I.getType());
1018      }
1019    }
1020
1021    // (add (sext x), (sext y)) --> (sext (add int x, y))
1022    if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
1023      // Only do this if x/y have the same type, if at last one of them has a
1024      // single use (so we don't increase the number of sexts), and if the
1025      // integer add will not overflow.
1026      if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
1027          (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1028          WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1029                                   RHSConv->getOperand(0))) {
1030        // Insert the new integer add.
1031        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1032                                             RHSConv->getOperand(0), "addconv");
1033        return new SExtInst(NewAdd, I.getType());
1034      }
1035    }
1036  }
1037
1038  // Check for (x & y) + (x ^ y)
1039  {
1040    Value *A = 0, *B = 0;
1041    if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
1042        (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
1043         match(LHS, m_And(m_Specific(B), m_Specific(A)))))
1044      return BinaryOperator::CreateOr(A, B);
1045
1046    if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
1047        (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
1048         match(RHS, m_And(m_Specific(B), m_Specific(A)))))
1049      return BinaryOperator::CreateOr(A, B);
1050  }
1051
1052  return Changed ? &I : 0;
1053}
1054
1055Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1056  bool Changed = SimplifyAssociativeOrCommutative(I);
1057  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1058
1059  if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), TD))
1060    return ReplaceInstUsesWith(I, V);
1061
1062  if (isa<Constant>(RHS) && isa<PHINode>(LHS))
1063    if (Instruction *NV = FoldOpIntoPhi(I))
1064      return NV;
1065
1066  // -A + B  -->  B - A
1067  // -A + -B  -->  -(A + B)
1068  if (Value *LHSV = dyn_castFNegVal(LHS))
1069    return BinaryOperator::CreateFSub(RHS, LHSV);
1070
1071  // A + -B  -->  A - B
1072  if (!isa<Constant>(RHS))
1073    if (Value *V = dyn_castFNegVal(RHS))
1074      return BinaryOperator::CreateFSub(LHS, V);
1075
1076  // Check for (fadd double (sitofp x), y), see if we can merge this into an
1077  // integer add followed by a promotion.
1078  if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1079    // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1080    // ... if the constant fits in the integer value.  This is useful for things
1081    // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1082    // requires a constant pool load, and generally allows the add to be better
1083    // instcombined.
1084    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
1085      Constant *CI =
1086      ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
1087      if (LHSConv->hasOneUse() &&
1088          ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1089          WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
1090        // Insert the new integer add.
1091        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1092                                              CI, "addconv");
1093        return new SIToFPInst(NewAdd, I.getType());
1094      }
1095    }
1096
1097    // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1098    if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1099      // Only do this if x/y have the same type, if at last one of them has a
1100      // single use (so we don't increase the number of int->fp conversions),
1101      // and if the integer add will not overflow.
1102      if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
1103          (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1104          WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1105                                   RHSConv->getOperand(0))) {
1106        // Insert the new integer add.
1107        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1108                                              RHSConv->getOperand(0),"addconv");
1109        return new SIToFPInst(NewAdd, I.getType());
1110      }
1111    }
1112  }
1113
1114  if (I.hasUnsafeAlgebra()) {
1115    if (Value *V = FAddCombine(Builder).simplify(&I))
1116      return ReplaceInstUsesWith(I, V);
1117  }
1118
1119  return Changed ? &I : 0;
1120}
1121
1122
1123/// Optimize pointer differences into the same array into a size.  Consider:
1124///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1125/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1126///
1127Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1128                                               Type *Ty) {
1129  assert(TD && "Must have target data info for this");
1130
1131  // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1132  // this.
1133  bool Swapped = false;
1134  GEPOperator *GEP1 = 0, *GEP2 = 0;
1135
1136  // For now we require one side to be the base pointer "A" or a constant
1137  // GEP derived from it.
1138  if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1139    // (gep X, ...) - X
1140    if (LHSGEP->getOperand(0) == RHS) {
1141      GEP1 = LHSGEP;
1142      Swapped = false;
1143    } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1144      // (gep X, ...) - (gep X, ...)
1145      if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1146            RHSGEP->getOperand(0)->stripPointerCasts()) {
1147        GEP2 = RHSGEP;
1148        GEP1 = LHSGEP;
1149        Swapped = false;
1150      }
1151    }
1152  }
1153
1154  if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1155    // X - (gep X, ...)
1156    if (RHSGEP->getOperand(0) == LHS) {
1157      GEP1 = RHSGEP;
1158      Swapped = true;
1159    } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1160      // (gep X, ...) - (gep X, ...)
1161      if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1162            LHSGEP->getOperand(0)->stripPointerCasts()) {
1163        GEP2 = LHSGEP;
1164        GEP1 = RHSGEP;
1165        Swapped = true;
1166      }
1167    }
1168  }
1169
1170  // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
1171  // multiple users.
1172  if (GEP1 == 0 ||
1173      (GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
1174    return 0;
1175
1176  // Emit the offset of the GEP and an intptr_t.
1177  Value *Result = EmitGEPOffset(GEP1);
1178
1179  // If we had a constant expression GEP on the other side offsetting the
1180  // pointer, subtract it from the offset we have.
1181  if (GEP2) {
1182    Value *Offset = EmitGEPOffset(GEP2);
1183    Result = Builder->CreateSub(Result, Offset);
1184  }
1185
1186  // If we have p - gep(p, ...)  then we have to negate the result.
1187  if (Swapped)
1188    Result = Builder->CreateNeg(Result, "diff.neg");
1189
1190  return Builder->CreateIntCast(Result, Ty, true);
1191}
1192
1193
1194Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1195  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1196
1197  if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
1198                                 I.hasNoUnsignedWrap(), TD))
1199    return ReplaceInstUsesWith(I, V);
1200
1201  // (A*B)-(A*C) -> A*(B-C) etc
1202  if (Value *V = SimplifyUsingDistributiveLaws(I))
1203    return ReplaceInstUsesWith(I, V);
1204
1205  // If this is a 'B = x-(-A)', change to B = x+A.  This preserves NSW/NUW.
1206  if (Value *V = dyn_castNegVal(Op1)) {
1207    BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1208    Res->setHasNoSignedWrap(I.hasNoSignedWrap());
1209    Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1210    return Res;
1211  }
1212
1213  if (I.getType()->isIntegerTy(1))
1214    return BinaryOperator::CreateXor(Op0, Op1);
1215
1216  // Replace (-1 - A) with (~A).
1217  if (match(Op0, m_AllOnes()))
1218    return BinaryOperator::CreateNot(Op1);
1219
1220  if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
1221    // C - ~X == X + (1+C)
1222    Value *X = 0;
1223    if (match(Op1, m_Not(m_Value(X))))
1224      return BinaryOperator::CreateAdd(X, AddOne(C));
1225
1226    // -(X >>u 31) -> (X >>s 31)
1227    // -(X >>s 31) -> (X >>u 31)
1228    if (C->isZero()) {
1229      Value *X; ConstantInt *CI;
1230      if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
1231          // Verify we are shifting out everything but the sign bit.
1232          CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
1233        return BinaryOperator::CreateAShr(X, CI);
1234
1235      if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
1236          // Verify we are shifting out everything but the sign bit.
1237          CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
1238        return BinaryOperator::CreateLShr(X, CI);
1239    }
1240
1241    // Try to fold constant sub into select arguments.
1242    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1243      if (Instruction *R = FoldOpIntoSelect(I, SI))
1244        return R;
1245
1246    // C-(X+C2) --> (C-C2)-X
1247    ConstantInt *C2;
1248    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2))))
1249      return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1250
1251    if (SimplifyDemandedInstructionBits(I))
1252      return &I;
1253  }
1254
1255
1256  { Value *Y;
1257    // X-(X+Y) == -Y    X-(Y+X) == -Y
1258    if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
1259        match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
1260      return BinaryOperator::CreateNeg(Y);
1261
1262    // (X-Y)-X == -Y
1263    if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1264      return BinaryOperator::CreateNeg(Y);
1265  }
1266
1267  if (Op1->hasOneUse()) {
1268    Value *X = 0, *Y = 0, *Z = 0;
1269    Constant *C = 0;
1270    ConstantInt *CI = 0;
1271
1272    // (X - (Y - Z))  -->  (X + (Z - Y)).
1273    if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1274      return BinaryOperator::CreateAdd(Op0,
1275                                      Builder->CreateSub(Z, Y, Op1->getName()));
1276
1277    // (X - (X & Y))   -->   (X & ~Y)
1278    //
1279    if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
1280        match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
1281      return BinaryOperator::CreateAnd(Op0,
1282                                  Builder->CreateNot(Y, Y->getName() + ".not"));
1283
1284    // 0 - (X sdiv C)  -> (X sdiv -C)
1285    if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
1286        match(Op0, m_Zero()))
1287      return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1288
1289    // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
1290    if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1291      if (Value *XNeg = dyn_castNegVal(X))
1292        return BinaryOperator::CreateShl(XNeg, Y);
1293
1294    // X - X*C --> X * (1-C)
1295    if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) {
1296      Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI);
1297      return BinaryOperator::CreateMul(Op0, CP1);
1298    }
1299
1300    // X - X<<C --> X * (1-(1<<C))
1301    if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) {
1302      Constant *One = ConstantInt::get(I.getType(), 1);
1303      C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
1304      return BinaryOperator::CreateMul(Op0, C);
1305    }
1306
1307    // X - A*-B -> X + A*B
1308    // X - -A*B -> X + A*B
1309    Value *A, *B;
1310    if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
1311        match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
1312      return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
1313
1314    // X - A*CI -> X + A*-CI
1315    // X - CI*A -> X + A*-CI
1316    if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) ||
1317        match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) {
1318      Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
1319      return BinaryOperator::CreateAdd(Op0, NewMul);
1320    }
1321  }
1322
1323  ConstantInt *C1;
1324  if (Value *X = dyn_castFoldableMul(Op0, C1)) {
1325    if (X == Op1)  // X*C - X --> X * (C-1)
1326      return BinaryOperator::CreateMul(Op1, SubOne(C1));
1327
1328    ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
1329    if (X == dyn_castFoldableMul(Op1, C2))
1330      return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
1331  }
1332
1333  // Optimize pointer differences into the same array into a size.  Consider:
1334  //  &A[10] - &A[0]: we should compile this to "10".
1335  if (TD) {
1336    Value *LHSOp, *RHSOp;
1337    if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1338        match(Op1, m_PtrToInt(m_Value(RHSOp))))
1339      if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1340        return ReplaceInstUsesWith(I, Res);
1341
1342    // trunc(p)-trunc(q) -> trunc(p-q)
1343    if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1344        match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1345      if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1346        return ReplaceInstUsesWith(I, Res);
1347  }
1348
1349  return 0;
1350}
1351
1352Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1353  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1354
1355  if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), TD))
1356    return ReplaceInstUsesWith(I, V);
1357
1358  // If this is a 'B = x-(-A)', change to B = x+A...
1359  if (Value *V = dyn_castFNegVal(Op1))
1360    return BinaryOperator::CreateFAdd(Op0, V);
1361
1362  if (I.hasUnsafeAlgebra()) {
1363    if (Value *V = FAddCombine(Builder).simplify(&I))
1364      return ReplaceInstUsesWith(I, V);
1365  }
1366
1367  return 0;
1368}
1369