LoopStrengthReduce.cpp revision 402d43529c18d662d1964d70dbf55bc135a8b473
1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25//   ...
26//   %i.next = add %i, 1
27//   %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41//       instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44//       smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47//       multiple base registers, or as the increment expression in an addrec),
48//       we may not actually need both reg and (-1 * reg) in registers; the
49//       negation can be implemented by using a sub instead of an add. The
50//       lack of support for taking this into consideration when making
51//       register pressure decisions is partly worked around by the "Special"
52//       use kind.
53//
54//===----------------------------------------------------------------------===//
55
56#define DEBUG_TYPE "loop-reduce"
57#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
60#include "llvm/IntrinsicInst.h"
61#include "llvm/DerivedTypes.h"
62#include "llvm/Analysis/IVUsers.h"
63#include "llvm/Analysis/Dominators.h"
64#include "llvm/Analysis/LoopPass.h"
65#include "llvm/Analysis/ScalarEvolutionExpander.h"
66#include "llvm/Transforms/Utils/BasicBlockUtils.h"
67#include "llvm/Transforms/Utils/Local.h"
68#include "llvm/ADT/SmallBitVector.h"
69#include "llvm/ADT/SetVector.h"
70#include "llvm/ADT/DenseSet.h"
71#include "llvm/Support/Debug.h"
72#include "llvm/Support/ValueHandle.h"
73#include "llvm/Support/raw_ostream.h"
74#include "llvm/Target/TargetLowering.h"
75#include <algorithm>
76using namespace llvm;
77
78namespace {
79
80/// RegSortData - This class holds data which is used to order reuse candidates.
81class RegSortData {
82public:
83  /// UsedByIndices - This represents the set of LSRUse indices which reference
84  /// a particular register.
85  SmallBitVector UsedByIndices;
86
87  RegSortData() {}
88
89  void print(raw_ostream &OS) const;
90  void dump() const;
91};
92
93}
94
95void RegSortData::print(raw_ostream &OS) const {
96  OS << "[NumUses=" << UsedByIndices.count() << ']';
97}
98
99void RegSortData::dump() const {
100  print(errs()); errs() << '\n';
101}
102
103namespace {
104
105/// RegUseTracker - Map register candidates to information about how they are
106/// used.
107class RegUseTracker {
108  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
109
110  RegUsesTy RegUsesMap;
111  SmallVector<const SCEV *, 16> RegSequence;
112
113public:
114  void CountRegister(const SCEV *Reg, size_t LUIdx);
115  void DropRegister(const SCEV *Reg, size_t LUIdx);
116  void DropUse(size_t LUIdx);
117
118  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
119
120  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
121
122  void clear();
123
124  typedef SmallVectorImpl<const SCEV *>::iterator iterator;
125  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
126  iterator begin() { return RegSequence.begin(); }
127  iterator end()   { return RegSequence.end(); }
128  const_iterator begin() const { return RegSequence.begin(); }
129  const_iterator end() const   { return RegSequence.end(); }
130};
131
132}
133
134void
135RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
136  std::pair<RegUsesTy::iterator, bool> Pair =
137    RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
138  RegSortData &RSD = Pair.first->second;
139  if (Pair.second)
140    RegSequence.push_back(Reg);
141  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
142  RSD.UsedByIndices.set(LUIdx);
143}
144
145void
146RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
147  RegUsesTy::iterator It = RegUsesMap.find(Reg);
148  assert(It != RegUsesMap.end());
149  RegSortData &RSD = It->second;
150  assert(RSD.UsedByIndices.size() > LUIdx);
151  RSD.UsedByIndices.reset(LUIdx);
152}
153
154void
155RegUseTracker::DropUse(size_t LUIdx) {
156  // Remove the use index from every register's use list.
157  for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
158       I != E; ++I)
159    I->second.UsedByIndices.reset(LUIdx);
160}
161
162bool
163RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
164  if (!RegUsesMap.count(Reg)) return false;
165  const SmallBitVector &UsedByIndices =
166    RegUsesMap.find(Reg)->second.UsedByIndices;
167  int i = UsedByIndices.find_first();
168  if (i == -1) return false;
169  if ((size_t)i != LUIdx) return true;
170  return UsedByIndices.find_next(i) != -1;
171}
172
173const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
174  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
175  assert(I != RegUsesMap.end() && "Unknown register!");
176  return I->second.UsedByIndices;
177}
178
179void RegUseTracker::clear() {
180  RegUsesMap.clear();
181  RegSequence.clear();
182}
183
184namespace {
185
186/// Formula - This class holds information that describes a formula for
187/// computing satisfying a use. It may include broken-out immediates and scaled
188/// registers.
189struct Formula {
190  /// AM - This is used to represent complex addressing, as well as other kinds
191  /// of interesting uses.
192  TargetLowering::AddrMode AM;
193
194  /// BaseRegs - The list of "base" registers for this use. When this is
195  /// non-empty, AM.HasBaseReg should be set to true.
196  SmallVector<const SCEV *, 2> BaseRegs;
197
198  /// ScaledReg - The 'scaled' register for this use. This should be non-null
199  /// when AM.Scale is not zero.
200  const SCEV *ScaledReg;
201
202  Formula() : ScaledReg(0) {}
203
204  void InitialMatch(const SCEV *S, Loop *L,
205                    ScalarEvolution &SE, DominatorTree &DT);
206
207  unsigned getNumRegs() const;
208  const Type *getType() const;
209
210  void DeleteBaseReg(const SCEV *&S);
211
212  bool referencesReg(const SCEV *S) const;
213  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
214                                  const RegUseTracker &RegUses) const;
215
216  void print(raw_ostream &OS) const;
217  void dump() const;
218};
219
220}
221
222/// DoInitialMatch - Recursion helper for InitialMatch.
223static void DoInitialMatch(const SCEV *S, Loop *L,
224                           SmallVectorImpl<const SCEV *> &Good,
225                           SmallVectorImpl<const SCEV *> &Bad,
226                           ScalarEvolution &SE, DominatorTree &DT) {
227  // Collect expressions which properly dominate the loop header.
228  if (S->properlyDominates(L->getHeader(), &DT)) {
229    Good.push_back(S);
230    return;
231  }
232
233  // Look at add operands.
234  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
235    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
236         I != E; ++I)
237      DoInitialMatch(*I, L, Good, Bad, SE, DT);
238    return;
239  }
240
241  // Look at addrec operands.
242  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
243    if (!AR->getStart()->isZero()) {
244      DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
245      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
246                                      AR->getStepRecurrence(SE),
247                                      AR->getLoop()),
248                     L, Good, Bad, SE, DT);
249      return;
250    }
251
252  // Handle a multiplication by -1 (negation) if it didn't fold.
253  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
254    if (Mul->getOperand(0)->isAllOnesValue()) {
255      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
256      const SCEV *NewMul = SE.getMulExpr(Ops);
257
258      SmallVector<const SCEV *, 4> MyGood;
259      SmallVector<const SCEV *, 4> MyBad;
260      DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
261      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
262        SE.getEffectiveSCEVType(NewMul->getType())));
263      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
264           E = MyGood.end(); I != E; ++I)
265        Good.push_back(SE.getMulExpr(NegOne, *I));
266      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
267           E = MyBad.end(); I != E; ++I)
268        Bad.push_back(SE.getMulExpr(NegOne, *I));
269      return;
270    }
271
272  // Ok, we can't do anything interesting. Just stuff the whole thing into a
273  // register and hope for the best.
274  Bad.push_back(S);
275}
276
277/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
278/// attempting to keep all loop-invariant and loop-computable values in a
279/// single base register.
280void Formula::InitialMatch(const SCEV *S, Loop *L,
281                           ScalarEvolution &SE, DominatorTree &DT) {
282  SmallVector<const SCEV *, 4> Good;
283  SmallVector<const SCEV *, 4> Bad;
284  DoInitialMatch(S, L, Good, Bad, SE, DT);
285  if (!Good.empty()) {
286    const SCEV *Sum = SE.getAddExpr(Good);
287    if (!Sum->isZero())
288      BaseRegs.push_back(Sum);
289    AM.HasBaseReg = true;
290  }
291  if (!Bad.empty()) {
292    const SCEV *Sum = SE.getAddExpr(Bad);
293    if (!Sum->isZero())
294      BaseRegs.push_back(Sum);
295    AM.HasBaseReg = true;
296  }
297}
298
299/// getNumRegs - Return the total number of register operands used by this
300/// formula. This does not include register uses implied by non-constant
301/// addrec strides.
302unsigned Formula::getNumRegs() const {
303  return !!ScaledReg + BaseRegs.size();
304}
305
306/// getType - Return the type of this formula, if it has one, or null
307/// otherwise. This type is meaningless except for the bit size.
308const Type *Formula::getType() const {
309  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
310         ScaledReg ? ScaledReg->getType() :
311         AM.BaseGV ? AM.BaseGV->getType() :
312         0;
313}
314
315/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
316void Formula::DeleteBaseReg(const SCEV *&S) {
317  if (&S != &BaseRegs.back())
318    std::swap(S, BaseRegs.back());
319  BaseRegs.pop_back();
320}
321
322/// referencesReg - Test if this formula references the given register.
323bool Formula::referencesReg(const SCEV *S) const {
324  return S == ScaledReg ||
325         std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
326}
327
328/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
329/// which are used by uses other than the use with the given index.
330bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
331                                         const RegUseTracker &RegUses) const {
332  if (ScaledReg)
333    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
334      return true;
335  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
336       E = BaseRegs.end(); I != E; ++I)
337    if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
338      return true;
339  return false;
340}
341
342void Formula::print(raw_ostream &OS) const {
343  bool First = true;
344  if (AM.BaseGV) {
345    if (!First) OS << " + "; else First = false;
346    WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
347  }
348  if (AM.BaseOffs != 0) {
349    if (!First) OS << " + "; else First = false;
350    OS << AM.BaseOffs;
351  }
352  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
353       E = BaseRegs.end(); I != E; ++I) {
354    if (!First) OS << " + "; else First = false;
355    OS << "reg(" << **I << ')';
356  }
357  if (AM.HasBaseReg && BaseRegs.empty()) {
358    if (!First) OS << " + "; else First = false;
359    OS << "**error: HasBaseReg**";
360  } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
361    if (!First) OS << " + "; else First = false;
362    OS << "**error: !HasBaseReg**";
363  }
364  if (AM.Scale != 0) {
365    if (!First) OS << " + "; else First = false;
366    OS << AM.Scale << "*reg(";
367    if (ScaledReg)
368      OS << *ScaledReg;
369    else
370      OS << "<unknown>";
371    OS << ')';
372  }
373}
374
375void Formula::dump() const {
376  print(errs()); errs() << '\n';
377}
378
379/// isAddRecSExtable - Return true if the given addrec can be sign-extended
380/// without changing its value.
381static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
382  const Type *WideTy =
383    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
384  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
385}
386
387/// isAddSExtable - Return true if the given add can be sign-extended
388/// without changing its value.
389static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
390  const Type *WideTy =
391    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
392  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
393}
394
395/// isMulSExtable - Return true if the given add can be sign-extended
396/// without changing its value.
397static bool isMulSExtable(const SCEVMulExpr *A, ScalarEvolution &SE) {
398  const Type *WideTy =
399    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
400  return isa<SCEVMulExpr>(SE.getSignExtendExpr(A, WideTy));
401}
402
403/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
404/// and if the remainder is known to be zero,  or null otherwise. If
405/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
406/// to Y, ignoring that the multiplication may overflow, which is useful when
407/// the result will be used in a context where the most significant bits are
408/// ignored.
409static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
410                                ScalarEvolution &SE,
411                                bool IgnoreSignificantBits = false) {
412  // Handle the trivial case, which works for any SCEV type.
413  if (LHS == RHS)
414    return SE.getConstant(LHS->getType(), 1);
415
416  // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do some
417  // folding.
418  if (RHS->isAllOnesValue())
419    return SE.getMulExpr(LHS, RHS);
420
421  // Check for a division of a constant by a constant.
422  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
423    const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
424    if (!RC)
425      return 0;
426    if (C->getValue()->getValue().srem(RC->getValue()->getValue()) != 0)
427      return 0;
428    return SE.getConstant(C->getValue()->getValue()
429               .sdiv(RC->getValue()->getValue()));
430  }
431
432  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
433  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
434    if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
435      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
436                                       IgnoreSignificantBits);
437      if (!Start) return 0;
438      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
439                                      IgnoreSignificantBits);
440      if (!Step) return 0;
441      return SE.getAddRecExpr(Start, Step, AR->getLoop());
442    }
443  }
444
445  // Distribute the sdiv over add operands, if the add doesn't overflow.
446  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
447    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
448      SmallVector<const SCEV *, 8> Ops;
449      for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
450           I != E; ++I) {
451        const SCEV *Op = getExactSDiv(*I, RHS, SE,
452                                      IgnoreSignificantBits);
453        if (!Op) return 0;
454        Ops.push_back(Op);
455      }
456      return SE.getAddExpr(Ops);
457    }
458  }
459
460  // Check for a multiply operand that we can pull RHS out of.
461  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS))
462    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
463      SmallVector<const SCEV *, 4> Ops;
464      bool Found = false;
465      for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
466           I != E; ++I) {
467        const SCEV *S = *I;
468        if (!Found)
469          if (const SCEV *Q = getExactSDiv(S, RHS, SE,
470                                           IgnoreSignificantBits)) {
471            S = Q;
472            Found = true;
473          }
474        Ops.push_back(S);
475      }
476      return Found ? SE.getMulExpr(Ops) : 0;
477    }
478
479  // Otherwise we don't know.
480  return 0;
481}
482
483/// ExtractImmediate - If S involves the addition of a constant integer value,
484/// return that integer value, and mutate S to point to a new SCEV with that
485/// value excluded.
486static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
487  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
488    if (C->getValue()->getValue().getMinSignedBits() <= 64) {
489      S = SE.getConstant(C->getType(), 0);
490      return C->getValue()->getSExtValue();
491    }
492  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
493    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
494    int64_t Result = ExtractImmediate(NewOps.front(), SE);
495    S = SE.getAddExpr(NewOps);
496    return Result;
497  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
498    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
499    int64_t Result = ExtractImmediate(NewOps.front(), SE);
500    S = SE.getAddRecExpr(NewOps, AR->getLoop());
501    return Result;
502  }
503  return 0;
504}
505
506/// ExtractSymbol - If S involves the addition of a GlobalValue address,
507/// return that symbol, and mutate S to point to a new SCEV with that
508/// value excluded.
509static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
510  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
511    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
512      S = SE.getConstant(GV->getType(), 0);
513      return GV;
514    }
515  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
516    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
517    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
518    S = SE.getAddExpr(NewOps);
519    return Result;
520  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
521    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
522    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
523    S = SE.getAddRecExpr(NewOps, AR->getLoop());
524    return Result;
525  }
526  return 0;
527}
528
529/// isAddressUse - Returns true if the specified instruction is using the
530/// specified value as an address.
531static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
532  bool isAddress = isa<LoadInst>(Inst);
533  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
534    if (SI->getOperand(1) == OperandVal)
535      isAddress = true;
536  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
537    // Addressing modes can also be folded into prefetches and a variety
538    // of intrinsics.
539    switch (II->getIntrinsicID()) {
540      default: break;
541      case Intrinsic::prefetch:
542      case Intrinsic::x86_sse2_loadu_dq:
543      case Intrinsic::x86_sse2_loadu_pd:
544      case Intrinsic::x86_sse_loadu_ps:
545      case Intrinsic::x86_sse_storeu_ps:
546      case Intrinsic::x86_sse2_storeu_pd:
547      case Intrinsic::x86_sse2_storeu_dq:
548      case Intrinsic::x86_sse2_storel_dq:
549        if (II->getOperand(1) == OperandVal)
550          isAddress = true;
551        break;
552    }
553  }
554  return isAddress;
555}
556
557/// getAccessType - Return the type of the memory being accessed.
558static const Type *getAccessType(const Instruction *Inst) {
559  const Type *AccessTy = Inst->getType();
560  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
561    AccessTy = SI->getOperand(0)->getType();
562  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
563    // Addressing modes can also be folded into prefetches and a variety
564    // of intrinsics.
565    switch (II->getIntrinsicID()) {
566    default: break;
567    case Intrinsic::x86_sse_storeu_ps:
568    case Intrinsic::x86_sse2_storeu_pd:
569    case Intrinsic::x86_sse2_storeu_dq:
570    case Intrinsic::x86_sse2_storel_dq:
571      AccessTy = II->getOperand(1)->getType();
572      break;
573    }
574  }
575
576  // All pointers have the same requirements, so canonicalize them to an
577  // arbitrary pointer type to minimize variation.
578  if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
579    AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
580                                PTy->getAddressSpace());
581
582  return AccessTy;
583}
584
585/// DeleteTriviallyDeadInstructions - If any of the instructions is the
586/// specified set are trivially dead, delete them and see if this makes any of
587/// their operands subsequently dead.
588static bool
589DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
590  bool Changed = false;
591
592  while (!DeadInsts.empty()) {
593    Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
594
595    if (I == 0 || !isInstructionTriviallyDead(I))
596      continue;
597
598    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
599      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
600        *OI = 0;
601        if (U->use_empty())
602          DeadInsts.push_back(U);
603      }
604
605    I->eraseFromParent();
606    Changed = true;
607  }
608
609  return Changed;
610}
611
612namespace {
613
614/// Cost - This class is used to measure and compare candidate formulae.
615class Cost {
616  /// TODO: Some of these could be merged. Also, a lexical ordering
617  /// isn't always optimal.
618  unsigned NumRegs;
619  unsigned AddRecCost;
620  unsigned NumIVMuls;
621  unsigned NumBaseAdds;
622  unsigned ImmCost;
623  unsigned SetupCost;
624
625public:
626  Cost()
627    : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
628      SetupCost(0) {}
629
630  unsigned getNumRegs() const { return NumRegs; }
631
632  bool operator<(const Cost &Other) const;
633
634  void Loose();
635
636  void RateFormula(const Formula &F,
637                   SmallPtrSet<const SCEV *, 16> &Regs,
638                   const DenseSet<const SCEV *> &VisitedRegs,
639                   const Loop *L,
640                   const SmallVectorImpl<int64_t> &Offsets,
641                   ScalarEvolution &SE, DominatorTree &DT);
642
643  void print(raw_ostream &OS) const;
644  void dump() const;
645
646private:
647  void RateRegister(const SCEV *Reg,
648                    SmallPtrSet<const SCEV *, 16> &Regs,
649                    const Loop *L,
650                    ScalarEvolution &SE, DominatorTree &DT);
651  void RatePrimaryRegister(const SCEV *Reg,
652                           SmallPtrSet<const SCEV *, 16> &Regs,
653                           const Loop *L,
654                           ScalarEvolution &SE, DominatorTree &DT);
655};
656
657}
658
659/// RateRegister - Tally up interesting quantities from the given register.
660void Cost::RateRegister(const SCEV *Reg,
661                        SmallPtrSet<const SCEV *, 16> &Regs,
662                        const Loop *L,
663                        ScalarEvolution &SE, DominatorTree &DT) {
664  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
665    if (AR->getLoop() == L)
666      AddRecCost += 1; /// TODO: This should be a function of the stride.
667
668    // If this is an addrec for a loop that's already been visited by LSR,
669    // don't second-guess its addrec phi nodes. LSR isn't currently smart
670    // enough to reason about more than one loop at a time. Consider these
671    // registers free and leave them alone.
672    else if (L->contains(AR->getLoop()) ||
673             (!AR->getLoop()->contains(L) &&
674              DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
675      for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
676           PHINode *PN = dyn_cast<PHINode>(I); ++I)
677        if (SE.isSCEVable(PN->getType()) &&
678            (SE.getEffectiveSCEVType(PN->getType()) ==
679             SE.getEffectiveSCEVType(AR->getType())) &&
680            SE.getSCEV(PN) == AR)
681          return;
682
683      // If this isn't one of the addrecs that the loop already has, it
684      // would require a costly new phi and add. TODO: This isn't
685      // precisely modeled right now.
686      ++NumBaseAdds;
687      if (!Regs.count(AR->getStart()))
688        RateRegister(AR->getStart(), Regs, L, SE, DT);
689    }
690
691    // Add the step value register, if it needs one.
692    // TODO: The non-affine case isn't precisely modeled here.
693    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
694      if (!Regs.count(AR->getStart()))
695        RateRegister(AR->getOperand(1), Regs, L, SE, DT);
696  }
697  ++NumRegs;
698
699  // Rough heuristic; favor registers which don't require extra setup
700  // instructions in the preheader.
701  if (!isa<SCEVUnknown>(Reg) &&
702      !isa<SCEVConstant>(Reg) &&
703      !(isa<SCEVAddRecExpr>(Reg) &&
704        (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
705         isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
706    ++SetupCost;
707}
708
709/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
710/// before, rate it.
711void Cost::RatePrimaryRegister(const SCEV *Reg,
712                               SmallPtrSet<const SCEV *, 16> &Regs,
713                               const Loop *L,
714                               ScalarEvolution &SE, DominatorTree &DT) {
715  if (Regs.insert(Reg))
716    RateRegister(Reg, Regs, L, SE, DT);
717}
718
719void Cost::RateFormula(const Formula &F,
720                       SmallPtrSet<const SCEV *, 16> &Regs,
721                       const DenseSet<const SCEV *> &VisitedRegs,
722                       const Loop *L,
723                       const SmallVectorImpl<int64_t> &Offsets,
724                       ScalarEvolution &SE, DominatorTree &DT) {
725  // Tally up the registers.
726  if (const SCEV *ScaledReg = F.ScaledReg) {
727    if (VisitedRegs.count(ScaledReg)) {
728      Loose();
729      return;
730    }
731    RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
732  }
733  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
734       E = F.BaseRegs.end(); I != E; ++I) {
735    const SCEV *BaseReg = *I;
736    if (VisitedRegs.count(BaseReg)) {
737      Loose();
738      return;
739    }
740    RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
741
742    NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
743                 BaseReg->hasComputableLoopEvolution(L);
744  }
745
746  if (F.BaseRegs.size() > 1)
747    NumBaseAdds += F.BaseRegs.size() - 1;
748
749  // Tally up the non-zero immediates.
750  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
751       E = Offsets.end(); I != E; ++I) {
752    int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
753    if (F.AM.BaseGV)
754      ImmCost += 64; // Handle symbolic values conservatively.
755                     // TODO: This should probably be the pointer size.
756    else if (Offset != 0)
757      ImmCost += APInt(64, Offset, true).getMinSignedBits();
758  }
759}
760
761/// Loose - Set this cost to a loosing value.
762void Cost::Loose() {
763  NumRegs = ~0u;
764  AddRecCost = ~0u;
765  NumIVMuls = ~0u;
766  NumBaseAdds = ~0u;
767  ImmCost = ~0u;
768  SetupCost = ~0u;
769}
770
771/// operator< - Choose the lower cost.
772bool Cost::operator<(const Cost &Other) const {
773  if (NumRegs != Other.NumRegs)
774    return NumRegs < Other.NumRegs;
775  if (AddRecCost != Other.AddRecCost)
776    return AddRecCost < Other.AddRecCost;
777  if (NumIVMuls != Other.NumIVMuls)
778    return NumIVMuls < Other.NumIVMuls;
779  if (NumBaseAdds != Other.NumBaseAdds)
780    return NumBaseAdds < Other.NumBaseAdds;
781  if (ImmCost != Other.ImmCost)
782    return ImmCost < Other.ImmCost;
783  if (SetupCost != Other.SetupCost)
784    return SetupCost < Other.SetupCost;
785  return false;
786}
787
788void Cost::print(raw_ostream &OS) const {
789  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
790  if (AddRecCost != 0)
791    OS << ", with addrec cost " << AddRecCost;
792  if (NumIVMuls != 0)
793    OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
794  if (NumBaseAdds != 0)
795    OS << ", plus " << NumBaseAdds << " base add"
796       << (NumBaseAdds == 1 ? "" : "s");
797  if (ImmCost != 0)
798    OS << ", plus " << ImmCost << " imm cost";
799  if (SetupCost != 0)
800    OS << ", plus " << SetupCost << " setup cost";
801}
802
803void Cost::dump() const {
804  print(errs()); errs() << '\n';
805}
806
807namespace {
808
809/// LSRFixup - An operand value in an instruction which is to be replaced
810/// with some equivalent, possibly strength-reduced, replacement.
811struct LSRFixup {
812  /// UserInst - The instruction which will be updated.
813  Instruction *UserInst;
814
815  /// OperandValToReplace - The operand of the instruction which will
816  /// be replaced. The operand may be used more than once; every instance
817  /// will be replaced.
818  Value *OperandValToReplace;
819
820  /// PostIncLoops - If this user is to use the post-incremented value of an
821  /// induction variable, this variable is non-null and holds the loop
822  /// associated with the induction variable.
823  PostIncLoopSet PostIncLoops;
824
825  /// LUIdx - The index of the LSRUse describing the expression which
826  /// this fixup needs, minus an offset (below).
827  size_t LUIdx;
828
829  /// Offset - A constant offset to be added to the LSRUse expression.
830  /// This allows multiple fixups to share the same LSRUse with different
831  /// offsets, for example in an unrolled loop.
832  int64_t Offset;
833
834  bool isUseFullyOutsideLoop(const Loop *L) const;
835
836  LSRFixup();
837
838  void print(raw_ostream &OS) const;
839  void dump() const;
840};
841
842}
843
844LSRFixup::LSRFixup()
845  : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
846
847/// isUseFullyOutsideLoop - Test whether this fixup always uses its
848/// value outside of the given loop.
849bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
850  // PHI nodes use their value in their incoming blocks.
851  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
852    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
853      if (PN->getIncomingValue(i) == OperandValToReplace &&
854          L->contains(PN->getIncomingBlock(i)))
855        return false;
856    return true;
857  }
858
859  return !L->contains(UserInst);
860}
861
862void LSRFixup::print(raw_ostream &OS) const {
863  OS << "UserInst=";
864  // Store is common and interesting enough to be worth special-casing.
865  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
866    OS << "store ";
867    WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
868  } else if (UserInst->getType()->isVoidTy())
869    OS << UserInst->getOpcodeName();
870  else
871    WriteAsOperand(OS, UserInst, /*PrintType=*/false);
872
873  OS << ", OperandValToReplace=";
874  WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
875
876  for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
877       E = PostIncLoops.end(); I != E; ++I) {
878    OS << ", PostIncLoop=";
879    WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
880  }
881
882  if (LUIdx != ~size_t(0))
883    OS << ", LUIdx=" << LUIdx;
884
885  if (Offset != 0)
886    OS << ", Offset=" << Offset;
887}
888
889void LSRFixup::dump() const {
890  print(errs()); errs() << '\n';
891}
892
893namespace {
894
895/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
896/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
897struct UniquifierDenseMapInfo {
898  static SmallVector<const SCEV *, 2> getEmptyKey() {
899    SmallVector<const SCEV *, 2> V;
900    V.push_back(reinterpret_cast<const SCEV *>(-1));
901    return V;
902  }
903
904  static SmallVector<const SCEV *, 2> getTombstoneKey() {
905    SmallVector<const SCEV *, 2> V;
906    V.push_back(reinterpret_cast<const SCEV *>(-2));
907    return V;
908  }
909
910  static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
911    unsigned Result = 0;
912    for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
913         E = V.end(); I != E; ++I)
914      Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
915    return Result;
916  }
917
918  static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
919                      const SmallVector<const SCEV *, 2> &RHS) {
920    return LHS == RHS;
921  }
922};
923
924/// LSRUse - This class holds the state that LSR keeps for each use in
925/// IVUsers, as well as uses invented by LSR itself. It includes information
926/// about what kinds of things can be folded into the user, information about
927/// the user itself, and information about how the use may be satisfied.
928/// TODO: Represent multiple users of the same expression in common?
929class LSRUse {
930  DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
931
932public:
933  /// KindType - An enum for a kind of use, indicating what types of
934  /// scaled and immediate operands it might support.
935  enum KindType {
936    Basic,   ///< A normal use, with no folding.
937    Special, ///< A special case of basic, allowing -1 scales.
938    Address, ///< An address use; folding according to TargetLowering
939    ICmpZero ///< An equality icmp with both operands folded into one.
940    // TODO: Add a generic icmp too?
941  };
942
943  KindType Kind;
944  const Type *AccessTy;
945
946  SmallVector<int64_t, 8> Offsets;
947  int64_t MinOffset;
948  int64_t MaxOffset;
949
950  /// AllFixupsOutsideLoop - This records whether all of the fixups using this
951  /// LSRUse are outside of the loop, in which case some special-case heuristics
952  /// may be used.
953  bool AllFixupsOutsideLoop;
954
955  /// Formulae - A list of ways to build a value that can satisfy this user.
956  /// After the list is populated, one of these is selected heuristically and
957  /// used to formulate a replacement for OperandValToReplace in UserInst.
958  SmallVector<Formula, 12> Formulae;
959
960  /// Regs - The set of register candidates used by all formulae in this LSRUse.
961  SmallPtrSet<const SCEV *, 4> Regs;
962
963  LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
964                                      MinOffset(INT64_MAX),
965                                      MaxOffset(INT64_MIN),
966                                      AllFixupsOutsideLoop(true) {}
967
968  bool HasFormulaWithSameRegs(const Formula &F) const;
969  bool InsertFormula(const Formula &F);
970  void DeleteFormula(Formula &F);
971  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
972
973  void check() const;
974
975  void print(raw_ostream &OS) const;
976  void dump() const;
977};
978
979/// HasFormula - Test whether this use as a formula which has the same
980/// registers as the given formula.
981bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
982  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
983  if (F.ScaledReg) Key.push_back(F.ScaledReg);
984  // Unstable sort by host order ok, because this is only used for uniquifying.
985  std::sort(Key.begin(), Key.end());
986  return Uniquifier.count(Key);
987}
988
989/// InsertFormula - If the given formula has not yet been inserted, add it to
990/// the list, and return true. Return false otherwise.
991bool LSRUse::InsertFormula(const Formula &F) {
992  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
993  if (F.ScaledReg) Key.push_back(F.ScaledReg);
994  // Unstable sort by host order ok, because this is only used for uniquifying.
995  std::sort(Key.begin(), Key.end());
996
997  if (!Uniquifier.insert(Key).second)
998    return false;
999
1000  // Using a register to hold the value of 0 is not profitable.
1001  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1002         "Zero allocated in a scaled register!");
1003#ifndef NDEBUG
1004  for (SmallVectorImpl<const SCEV *>::const_iterator I =
1005       F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1006    assert(!(*I)->isZero() && "Zero allocated in a base register!");
1007#endif
1008
1009  // Add the formula to the list.
1010  Formulae.push_back(F);
1011
1012  // Record registers now being used by this use.
1013  if (F.ScaledReg) Regs.insert(F.ScaledReg);
1014  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1015
1016  return true;
1017}
1018
1019/// DeleteFormula - Remove the given formula from this use's list.
1020void LSRUse::DeleteFormula(Formula &F) {
1021  if (&F != &Formulae.back())
1022    std::swap(F, Formulae.back());
1023  Formulae.pop_back();
1024  assert(!Formulae.empty() && "LSRUse has no formulae left!");
1025}
1026
1027/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1028void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1029  // Now that we've filtered out some formulae, recompute the Regs set.
1030  SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1031  Regs.clear();
1032  for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1033       E = Formulae.end(); I != E; ++I) {
1034    const Formula &F = *I;
1035    if (F.ScaledReg) Regs.insert(F.ScaledReg);
1036    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1037  }
1038
1039  // Update the RegTracker.
1040  for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1041       E = OldRegs.end(); I != E; ++I)
1042    if (!Regs.count(*I))
1043      RegUses.DropRegister(*I, LUIdx);
1044}
1045
1046void LSRUse::print(raw_ostream &OS) const {
1047  OS << "LSR Use: Kind=";
1048  switch (Kind) {
1049  case Basic:    OS << "Basic"; break;
1050  case Special:  OS << "Special"; break;
1051  case ICmpZero: OS << "ICmpZero"; break;
1052  case Address:
1053    OS << "Address of ";
1054    if (AccessTy->isPointerTy())
1055      OS << "pointer"; // the full pointer type could be really verbose
1056    else
1057      OS << *AccessTy;
1058  }
1059
1060  OS << ", Offsets={";
1061  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1062       E = Offsets.end(); I != E; ++I) {
1063    OS << *I;
1064    if (next(I) != E)
1065      OS << ',';
1066  }
1067  OS << '}';
1068
1069  if (AllFixupsOutsideLoop)
1070    OS << ", all-fixups-outside-loop";
1071}
1072
1073void LSRUse::dump() const {
1074  print(errs()); errs() << '\n';
1075}
1076
1077/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1078/// be completely folded into the user instruction at isel time. This includes
1079/// address-mode folding and special icmp tricks.
1080static bool isLegalUse(const TargetLowering::AddrMode &AM,
1081                       LSRUse::KindType Kind, const Type *AccessTy,
1082                       const TargetLowering *TLI) {
1083  switch (Kind) {
1084  case LSRUse::Address:
1085    // If we have low-level target information, ask the target if it can
1086    // completely fold this address.
1087    if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1088
1089    // Otherwise, just guess that reg+reg addressing is legal.
1090    return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1091
1092  case LSRUse::ICmpZero:
1093    // There's not even a target hook for querying whether it would be legal to
1094    // fold a GV into an ICmp.
1095    if (AM.BaseGV)
1096      return false;
1097
1098    // ICmp only has two operands; don't allow more than two non-trivial parts.
1099    if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1100      return false;
1101
1102    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1103    // putting the scaled register in the other operand of the icmp.
1104    if (AM.Scale != 0 && AM.Scale != -1)
1105      return false;
1106
1107    // If we have low-level target information, ask the target if it can fold an
1108    // integer immediate on an icmp.
1109    if (AM.BaseOffs != 0) {
1110      if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1111      return false;
1112    }
1113
1114    return true;
1115
1116  case LSRUse::Basic:
1117    // Only handle single-register values.
1118    return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1119
1120  case LSRUse::Special:
1121    // Only handle -1 scales, or no scale.
1122    return AM.Scale == 0 || AM.Scale == -1;
1123  }
1124
1125  return false;
1126}
1127
1128static bool isLegalUse(TargetLowering::AddrMode AM,
1129                       int64_t MinOffset, int64_t MaxOffset,
1130                       LSRUse::KindType Kind, const Type *AccessTy,
1131                       const TargetLowering *TLI) {
1132  // Check for overflow.
1133  if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1134      (MinOffset > 0))
1135    return false;
1136  AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1137  if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1138    AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1139    // Check for overflow.
1140    if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1141        (MaxOffset > 0))
1142      return false;
1143    AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1144    return isLegalUse(AM, Kind, AccessTy, TLI);
1145  }
1146  return false;
1147}
1148
1149static bool isAlwaysFoldable(int64_t BaseOffs,
1150                             GlobalValue *BaseGV,
1151                             bool HasBaseReg,
1152                             LSRUse::KindType Kind, const Type *AccessTy,
1153                             const TargetLowering *TLI) {
1154  // Fast-path: zero is always foldable.
1155  if (BaseOffs == 0 && !BaseGV) return true;
1156
1157  // Conservatively, create an address with an immediate and a
1158  // base and a scale.
1159  TargetLowering::AddrMode AM;
1160  AM.BaseOffs = BaseOffs;
1161  AM.BaseGV = BaseGV;
1162  AM.HasBaseReg = HasBaseReg;
1163  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1164
1165  // Canonicalize a scale of 1 to a base register if the formula doesn't
1166  // already have a base register.
1167  if (!AM.HasBaseReg && AM.Scale == 1) {
1168    AM.Scale = 0;
1169    AM.HasBaseReg = true;
1170  }
1171
1172  return isLegalUse(AM, Kind, AccessTy, TLI);
1173}
1174
1175static bool isAlwaysFoldable(const SCEV *S,
1176                             int64_t MinOffset, int64_t MaxOffset,
1177                             bool HasBaseReg,
1178                             LSRUse::KindType Kind, const Type *AccessTy,
1179                             const TargetLowering *TLI,
1180                             ScalarEvolution &SE) {
1181  // Fast-path: zero is always foldable.
1182  if (S->isZero()) return true;
1183
1184  // Conservatively, create an address with an immediate and a
1185  // base and a scale.
1186  int64_t BaseOffs = ExtractImmediate(S, SE);
1187  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1188
1189  // If there's anything else involved, it's not foldable.
1190  if (!S->isZero()) return false;
1191
1192  // Fast-path: zero is always foldable.
1193  if (BaseOffs == 0 && !BaseGV) return true;
1194
1195  // Conservatively, create an address with an immediate and a
1196  // base and a scale.
1197  TargetLowering::AddrMode AM;
1198  AM.BaseOffs = BaseOffs;
1199  AM.BaseGV = BaseGV;
1200  AM.HasBaseReg = HasBaseReg;
1201  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1202
1203  return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
1204}
1205
1206/// FormulaSorter - This class implements an ordering for formulae which sorts
1207/// the by their standalone cost.
1208class FormulaSorter {
1209  /// These two sets are kept empty, so that we compute standalone costs.
1210  DenseSet<const SCEV *> VisitedRegs;
1211  SmallPtrSet<const SCEV *, 16> Regs;
1212  Loop *L;
1213  LSRUse *LU;
1214  ScalarEvolution &SE;
1215  DominatorTree &DT;
1216
1217public:
1218  FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt)
1219    : L(l), LU(&lu), SE(se), DT(dt) {}
1220
1221  bool operator()(const Formula &A, const Formula &B) {
1222    Cost CostA;
1223    CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1224    Regs.clear();
1225    Cost CostB;
1226    CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1227    Regs.clear();
1228    return CostA < CostB;
1229  }
1230};
1231
1232/// LSRInstance - This class holds state for the main loop strength reduction
1233/// logic.
1234class LSRInstance {
1235  IVUsers &IU;
1236  ScalarEvolution &SE;
1237  DominatorTree &DT;
1238  LoopInfo &LI;
1239  const TargetLowering *const TLI;
1240  Loop *const L;
1241  bool Changed;
1242
1243  /// IVIncInsertPos - This is the insert position that the current loop's
1244  /// induction variable increment should be placed. In simple loops, this is
1245  /// the latch block's terminator. But in more complicated cases, this is a
1246  /// position which will dominate all the in-loop post-increment users.
1247  Instruction *IVIncInsertPos;
1248
1249  /// Factors - Interesting factors between use strides.
1250  SmallSetVector<int64_t, 8> Factors;
1251
1252  /// Types - Interesting use types, to facilitate truncation reuse.
1253  SmallSetVector<const Type *, 4> Types;
1254
1255  /// Fixups - The list of operands which are to be replaced.
1256  SmallVector<LSRFixup, 16> Fixups;
1257
1258  /// Uses - The list of interesting uses.
1259  SmallVector<LSRUse, 16> Uses;
1260
1261  /// RegUses - Track which uses use which register candidates.
1262  RegUseTracker RegUses;
1263
1264  void OptimizeShadowIV();
1265  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1266  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1267  void OptimizeLoopTermCond();
1268
1269  void CollectInterestingTypesAndFactors();
1270  void CollectFixupsAndInitialFormulae();
1271
1272  LSRFixup &getNewFixup() {
1273    Fixups.push_back(LSRFixup());
1274    return Fixups.back();
1275  }
1276
1277  // Support for sharing of LSRUses between LSRFixups.
1278  typedef DenseMap<const SCEV *, size_t> UseMapTy;
1279  UseMapTy UseMap;
1280
1281  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1282                          LSRUse::KindType Kind, const Type *AccessTy);
1283
1284  std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1285                                    LSRUse::KindType Kind,
1286                                    const Type *AccessTy);
1287
1288  void DeleteUse(LSRUse &LU);
1289
1290  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1291
1292public:
1293  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1294  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1295  void CountRegisters(const Formula &F, size_t LUIdx);
1296  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1297
1298  void CollectLoopInvariantFixupsAndFormulae();
1299
1300  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1301                              unsigned Depth = 0);
1302  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1303  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1304  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1305  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1306  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1307  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1308  void GenerateCrossUseConstantOffsets();
1309  void GenerateAllReuseFormulae();
1310
1311  void FilterOutUndesirableDedicatedRegisters();
1312
1313  size_t EstimateSearchSpaceComplexity() const;
1314  void NarrowSearchSpaceUsingHeuristics();
1315
1316  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1317                    Cost &SolutionCost,
1318                    SmallVectorImpl<const Formula *> &Workspace,
1319                    const Cost &CurCost,
1320                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
1321                    DenseSet<const SCEV *> &VisitedRegs) const;
1322  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1323
1324  BasicBlock::iterator
1325    HoistInsertPosition(BasicBlock::iterator IP,
1326                        const SmallVectorImpl<Instruction *> &Inputs) const;
1327  BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1328                                                     const LSRFixup &LF,
1329                                                     const LSRUse &LU) const;
1330
1331  Value *Expand(const LSRFixup &LF,
1332                const Formula &F,
1333                BasicBlock::iterator IP,
1334                SCEVExpander &Rewriter,
1335                SmallVectorImpl<WeakVH> &DeadInsts) const;
1336  void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1337                     const Formula &F,
1338                     SCEVExpander &Rewriter,
1339                     SmallVectorImpl<WeakVH> &DeadInsts,
1340                     Pass *P) const;
1341  void Rewrite(const LSRFixup &LF,
1342               const Formula &F,
1343               SCEVExpander &Rewriter,
1344               SmallVectorImpl<WeakVH> &DeadInsts,
1345               Pass *P) const;
1346  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1347                         Pass *P);
1348
1349  LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1350
1351  bool getChanged() const { return Changed; }
1352
1353  void print_factors_and_types(raw_ostream &OS) const;
1354  void print_fixups(raw_ostream &OS) const;
1355  void print_uses(raw_ostream &OS) const;
1356  void print(raw_ostream &OS) const;
1357  void dump() const;
1358};
1359
1360}
1361
1362/// OptimizeShadowIV - If IV is used in a int-to-float cast
1363/// inside the loop then try to eliminate the cast operation.
1364void LSRInstance::OptimizeShadowIV() {
1365  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1366  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1367    return;
1368
1369  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1370       UI != E; /* empty */) {
1371    IVUsers::const_iterator CandidateUI = UI;
1372    ++UI;
1373    Instruction *ShadowUse = CandidateUI->getUser();
1374    const Type *DestTy = NULL;
1375
1376    /* If shadow use is a int->float cast then insert a second IV
1377       to eliminate this cast.
1378
1379         for (unsigned i = 0; i < n; ++i)
1380           foo((double)i);
1381
1382       is transformed into
1383
1384         double d = 0.0;
1385         for (unsigned i = 0; i < n; ++i, ++d)
1386           foo(d);
1387    */
1388    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1389      DestTy = UCast->getDestTy();
1390    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1391      DestTy = SCast->getDestTy();
1392    if (!DestTy) continue;
1393
1394    if (TLI) {
1395      // If target does not support DestTy natively then do not apply
1396      // this transformation.
1397      EVT DVT = TLI->getValueType(DestTy);
1398      if (!TLI->isTypeLegal(DVT)) continue;
1399    }
1400
1401    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1402    if (!PH) continue;
1403    if (PH->getNumIncomingValues() != 2) continue;
1404
1405    const Type *SrcTy = PH->getType();
1406    int Mantissa = DestTy->getFPMantissaWidth();
1407    if (Mantissa == -1) continue;
1408    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1409      continue;
1410
1411    unsigned Entry, Latch;
1412    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1413      Entry = 0;
1414      Latch = 1;
1415    } else {
1416      Entry = 1;
1417      Latch = 0;
1418    }
1419
1420    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1421    if (!Init) continue;
1422    Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
1423
1424    BinaryOperator *Incr =
1425      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1426    if (!Incr) continue;
1427    if (Incr->getOpcode() != Instruction::Add
1428        && Incr->getOpcode() != Instruction::Sub)
1429      continue;
1430
1431    /* Initialize new IV, double d = 0.0 in above example. */
1432    ConstantInt *C = NULL;
1433    if (Incr->getOperand(0) == PH)
1434      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1435    else if (Incr->getOperand(1) == PH)
1436      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1437    else
1438      continue;
1439
1440    if (!C) continue;
1441
1442    // Ignore negative constants, as the code below doesn't handle them
1443    // correctly. TODO: Remove this restriction.
1444    if (!C->getValue().isStrictlyPositive()) continue;
1445
1446    /* Add new PHINode. */
1447    PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
1448
1449    /* create new increment. '++d' in above example. */
1450    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1451    BinaryOperator *NewIncr =
1452      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1453                               Instruction::FAdd : Instruction::FSub,
1454                             NewPH, CFP, "IV.S.next.", Incr);
1455
1456    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1457    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1458
1459    /* Remove cast operation */
1460    ShadowUse->replaceAllUsesWith(NewPH);
1461    ShadowUse->eraseFromParent();
1462    Changed = true;
1463    break;
1464  }
1465}
1466
1467/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1468/// set the IV user and stride information and return true, otherwise return
1469/// false.
1470bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1471  for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1472    if (UI->getUser() == Cond) {
1473      // NOTE: we could handle setcc instructions with multiple uses here, but
1474      // InstCombine does it as well for simple uses, it's not clear that it
1475      // occurs enough in real life to handle.
1476      CondUse = UI;
1477      return true;
1478    }
1479  return false;
1480}
1481
1482/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1483/// a max computation.
1484///
1485/// This is a narrow solution to a specific, but acute, problem. For loops
1486/// like this:
1487///
1488///   i = 0;
1489///   do {
1490///     p[i] = 0.0;
1491///   } while (++i < n);
1492///
1493/// the trip count isn't just 'n', because 'n' might not be positive. And
1494/// unfortunately this can come up even for loops where the user didn't use
1495/// a C do-while loop. For example, seemingly well-behaved top-test loops
1496/// will commonly be lowered like this:
1497//
1498///   if (n > 0) {
1499///     i = 0;
1500///     do {
1501///       p[i] = 0.0;
1502///     } while (++i < n);
1503///   }
1504///
1505/// and then it's possible for subsequent optimization to obscure the if
1506/// test in such a way that indvars can't find it.
1507///
1508/// When indvars can't find the if test in loops like this, it creates a
1509/// max expression, which allows it to give the loop a canonical
1510/// induction variable:
1511///
1512///   i = 0;
1513///   max = n < 1 ? 1 : n;
1514///   do {
1515///     p[i] = 0.0;
1516///   } while (++i != max);
1517///
1518/// Canonical induction variables are necessary because the loop passes
1519/// are designed around them. The most obvious example of this is the
1520/// LoopInfo analysis, which doesn't remember trip count values. It
1521/// expects to be able to rediscover the trip count each time it is
1522/// needed, and it does this using a simple analysis that only succeeds if
1523/// the loop has a canonical induction variable.
1524///
1525/// However, when it comes time to generate code, the maximum operation
1526/// can be quite costly, especially if it's inside of an outer loop.
1527///
1528/// This function solves this problem by detecting this type of loop and
1529/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1530/// the instructions for the maximum computation.
1531///
1532ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1533  // Check that the loop matches the pattern we're looking for.
1534  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1535      Cond->getPredicate() != CmpInst::ICMP_NE)
1536    return Cond;
1537
1538  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1539  if (!Sel || !Sel->hasOneUse()) return Cond;
1540
1541  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1542  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1543    return Cond;
1544  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1545
1546  // Add one to the backedge-taken count to get the trip count.
1547  const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One);
1548  if (IterationCount != SE.getSCEV(Sel)) return Cond;
1549
1550  // Check for a max calculation that matches the pattern. There's no check
1551  // for ICMP_ULE here because the comparison would be with zero, which
1552  // isn't interesting.
1553  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1554  const SCEVNAryExpr *Max = 0;
1555  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1556    Pred = ICmpInst::ICMP_SLE;
1557    Max = S;
1558  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1559    Pred = ICmpInst::ICMP_SLT;
1560    Max = S;
1561  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1562    Pred = ICmpInst::ICMP_ULT;
1563    Max = U;
1564  } else {
1565    // No match; bail.
1566    return Cond;
1567  }
1568
1569  // To handle a max with more than two operands, this optimization would
1570  // require additional checking and setup.
1571  if (Max->getNumOperands() != 2)
1572    return Cond;
1573
1574  const SCEV *MaxLHS = Max->getOperand(0);
1575  const SCEV *MaxRHS = Max->getOperand(1);
1576
1577  // ScalarEvolution canonicalizes constants to the left. For < and >, look
1578  // for a comparison with 1. For <= and >=, a comparison with zero.
1579  if (!MaxLHS ||
1580      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1581    return Cond;
1582
1583  // Check the relevant induction variable for conformance to
1584  // the pattern.
1585  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1586  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1587  if (!AR || !AR->isAffine() ||
1588      AR->getStart() != One ||
1589      AR->getStepRecurrence(SE) != One)
1590    return Cond;
1591
1592  assert(AR->getLoop() == L &&
1593         "Loop condition operand is an addrec in a different loop!");
1594
1595  // Check the right operand of the select, and remember it, as it will
1596  // be used in the new comparison instruction.
1597  Value *NewRHS = 0;
1598  if (ICmpInst::isTrueWhenEqual(Pred)) {
1599    // Look for n+1, and grab n.
1600    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1601      if (isa<ConstantInt>(BO->getOperand(1)) &&
1602          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1603          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1604        NewRHS = BO->getOperand(0);
1605    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1606      if (isa<ConstantInt>(BO->getOperand(1)) &&
1607          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1608          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1609        NewRHS = BO->getOperand(0);
1610    if (!NewRHS)
1611      return Cond;
1612  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
1613    NewRHS = Sel->getOperand(1);
1614  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
1615    NewRHS = Sel->getOperand(2);
1616  else
1617    llvm_unreachable("Max doesn't match expected pattern!");
1618
1619  // Determine the new comparison opcode. It may be signed or unsigned,
1620  // and the original comparison may be either equality or inequality.
1621  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1622    Pred = CmpInst::getInversePredicate(Pred);
1623
1624  // Ok, everything looks ok to change the condition into an SLT or SGE and
1625  // delete the max calculation.
1626  ICmpInst *NewCond =
1627    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1628
1629  // Delete the max calculation instructions.
1630  Cond->replaceAllUsesWith(NewCond);
1631  CondUse->setUser(NewCond);
1632  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1633  Cond->eraseFromParent();
1634  Sel->eraseFromParent();
1635  if (Cmp->use_empty())
1636    Cmp->eraseFromParent();
1637  return NewCond;
1638}
1639
1640/// OptimizeLoopTermCond - Change loop terminating condition to use the
1641/// postinc iv when possible.
1642void
1643LSRInstance::OptimizeLoopTermCond() {
1644  SmallPtrSet<Instruction *, 4> PostIncs;
1645
1646  BasicBlock *LatchBlock = L->getLoopLatch();
1647  SmallVector<BasicBlock*, 8> ExitingBlocks;
1648  L->getExitingBlocks(ExitingBlocks);
1649
1650  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1651    BasicBlock *ExitingBlock = ExitingBlocks[i];
1652
1653    // Get the terminating condition for the loop if possible.  If we
1654    // can, we want to change it to use a post-incremented version of its
1655    // induction variable, to allow coalescing the live ranges for the IV into
1656    // one register value.
1657
1658    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1659    if (!TermBr)
1660      continue;
1661    // FIXME: Overly conservative, termination condition could be an 'or' etc..
1662    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1663      continue;
1664
1665    // Search IVUsesByStride to find Cond's IVUse if there is one.
1666    IVStrideUse *CondUse = 0;
1667    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1668    if (!FindIVUserForCond(Cond, CondUse))
1669      continue;
1670
1671    // If the trip count is computed in terms of a max (due to ScalarEvolution
1672    // being unable to find a sufficient guard, for example), change the loop
1673    // comparison to use SLT or ULT instead of NE.
1674    // One consequence of doing this now is that it disrupts the count-down
1675    // optimization. That's not always a bad thing though, because in such
1676    // cases it may still be worthwhile to avoid a max.
1677    Cond = OptimizeMax(Cond, CondUse);
1678
1679    // If this exiting block dominates the latch block, it may also use
1680    // the post-inc value if it won't be shared with other uses.
1681    // Check for dominance.
1682    if (!DT.dominates(ExitingBlock, LatchBlock))
1683      continue;
1684
1685    // Conservatively avoid trying to use the post-inc value in non-latch
1686    // exits if there may be pre-inc users in intervening blocks.
1687    if (LatchBlock != ExitingBlock)
1688      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1689        // Test if the use is reachable from the exiting block. This dominator
1690        // query is a conservative approximation of reachability.
1691        if (&*UI != CondUse &&
1692            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1693          // Conservatively assume there may be reuse if the quotient of their
1694          // strides could be a legal scale.
1695          const SCEV *A = IU.getStride(*CondUse, L);
1696          const SCEV *B = IU.getStride(*UI, L);
1697          if (!A || !B) continue;
1698          if (SE.getTypeSizeInBits(A->getType()) !=
1699              SE.getTypeSizeInBits(B->getType())) {
1700            if (SE.getTypeSizeInBits(A->getType()) >
1701                SE.getTypeSizeInBits(B->getType()))
1702              B = SE.getSignExtendExpr(B, A->getType());
1703            else
1704              A = SE.getSignExtendExpr(A, B->getType());
1705          }
1706          if (const SCEVConstant *D =
1707                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
1708            // Stride of one or negative one can have reuse with non-addresses.
1709            if (D->getValue()->isOne() ||
1710                D->getValue()->isAllOnesValue())
1711              goto decline_post_inc;
1712            // Avoid weird situations.
1713            if (D->getValue()->getValue().getMinSignedBits() >= 64 ||
1714                D->getValue()->getValue().isMinSignedValue())
1715              goto decline_post_inc;
1716            // Without TLI, assume that any stride might be valid, and so any
1717            // use might be shared.
1718            if (!TLI)
1719              goto decline_post_inc;
1720            // Check for possible scaled-address reuse.
1721            const Type *AccessTy = getAccessType(UI->getUser());
1722            TargetLowering::AddrMode AM;
1723            AM.Scale = D->getValue()->getSExtValue();
1724            if (TLI->isLegalAddressingMode(AM, AccessTy))
1725              goto decline_post_inc;
1726            AM.Scale = -AM.Scale;
1727            if (TLI->isLegalAddressingMode(AM, AccessTy))
1728              goto decline_post_inc;
1729          }
1730        }
1731
1732    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
1733                 << *Cond << '\n');
1734
1735    // It's possible for the setcc instruction to be anywhere in the loop, and
1736    // possible for it to have multiple users.  If it is not immediately before
1737    // the exiting block branch, move it.
1738    if (&*++BasicBlock::iterator(Cond) != TermBr) {
1739      if (Cond->hasOneUse()) {
1740        Cond->moveBefore(TermBr);
1741      } else {
1742        // Clone the terminating condition and insert into the loopend.
1743        ICmpInst *OldCond = Cond;
1744        Cond = cast<ICmpInst>(Cond->clone());
1745        Cond->setName(L->getHeader()->getName() + ".termcond");
1746        ExitingBlock->getInstList().insert(TermBr, Cond);
1747
1748        // Clone the IVUse, as the old use still exists!
1749        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
1750        TermBr->replaceUsesOfWith(OldCond, Cond);
1751      }
1752    }
1753
1754    // If we get to here, we know that we can transform the setcc instruction to
1755    // use the post-incremented version of the IV, allowing us to coalesce the
1756    // live ranges for the IV correctly.
1757    CondUse->transformToPostInc(L);
1758    Changed = true;
1759
1760    PostIncs.insert(Cond);
1761  decline_post_inc:;
1762  }
1763
1764  // Determine an insertion point for the loop induction variable increment. It
1765  // must dominate all the post-inc comparisons we just set up, and it must
1766  // dominate the loop latch edge.
1767  IVIncInsertPos = L->getLoopLatch()->getTerminator();
1768  for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1769       E = PostIncs.end(); I != E; ++I) {
1770    BasicBlock *BB =
1771      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1772                                    (*I)->getParent());
1773    if (BB == (*I)->getParent())
1774      IVIncInsertPos = *I;
1775    else if (BB != IVIncInsertPos->getParent())
1776      IVIncInsertPos = BB->getTerminator();
1777  }
1778}
1779
1780bool
1781LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1782                                LSRUse::KindType Kind, const Type *AccessTy) {
1783  int64_t NewMinOffset = LU.MinOffset;
1784  int64_t NewMaxOffset = LU.MaxOffset;
1785  const Type *NewAccessTy = AccessTy;
1786
1787  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1788  // something conservative, however this can pessimize in the case that one of
1789  // the uses will have all its uses outside the loop, for example.
1790  if (LU.Kind != Kind)
1791    return false;
1792  // Conservatively assume HasBaseReg is true for now.
1793  if (NewOffset < LU.MinOffset) {
1794    if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
1795                          Kind, AccessTy, TLI))
1796      return false;
1797    NewMinOffset = NewOffset;
1798  } else if (NewOffset > LU.MaxOffset) {
1799    if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
1800                          Kind, AccessTy, TLI))
1801      return false;
1802    NewMaxOffset = NewOffset;
1803  }
1804  // Check for a mismatched access type, and fall back conservatively as needed.
1805  if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1806    NewAccessTy = Type::getVoidTy(AccessTy->getContext());
1807
1808  // Update the use.
1809  LU.MinOffset = NewMinOffset;
1810  LU.MaxOffset = NewMaxOffset;
1811  LU.AccessTy = NewAccessTy;
1812  if (NewOffset != LU.Offsets.back())
1813    LU.Offsets.push_back(NewOffset);
1814  return true;
1815}
1816
1817/// getUse - Return an LSRUse index and an offset value for a fixup which
1818/// needs the given expression, with the given kind and optional access type.
1819/// Either reuse an existing use or create a new one, as needed.
1820std::pair<size_t, int64_t>
1821LSRInstance::getUse(const SCEV *&Expr,
1822                    LSRUse::KindType Kind, const Type *AccessTy) {
1823  const SCEV *Copy = Expr;
1824  int64_t Offset = ExtractImmediate(Expr, SE);
1825
1826  // Basic uses can't accept any offset, for example.
1827  if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
1828    Expr = Copy;
1829    Offset = 0;
1830  }
1831
1832  std::pair<UseMapTy::iterator, bool> P =
1833    UseMap.insert(std::make_pair(Expr, 0));
1834  if (!P.second) {
1835    // A use already existed with this base.
1836    size_t LUIdx = P.first->second;
1837    LSRUse &LU = Uses[LUIdx];
1838    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
1839      // Reuse this use.
1840      return std::make_pair(LUIdx, Offset);
1841  }
1842
1843  // Create a new use.
1844  size_t LUIdx = Uses.size();
1845  P.first->second = LUIdx;
1846  Uses.push_back(LSRUse(Kind, AccessTy));
1847  LSRUse &LU = Uses[LUIdx];
1848
1849  // We don't need to track redundant offsets, but we don't need to go out
1850  // of our way here to avoid them.
1851  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1852    LU.Offsets.push_back(Offset);
1853
1854  LU.MinOffset = Offset;
1855  LU.MaxOffset = Offset;
1856  return std::make_pair(LUIdx, Offset);
1857}
1858
1859/// DeleteUse - Delete the given use from the Uses list.
1860void LSRInstance::DeleteUse(LSRUse &LU) {
1861  if (&LU != &Uses.back())
1862    std::swap(LU, Uses.back());
1863  Uses.pop_back();
1864}
1865
1866/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
1867/// a formula that has the same registers as the given formula.
1868LSRUse *
1869LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
1870                                       const LSRUse &OrigLU) {
1871  // Search all uses for the formula. This could be more clever. Ignore
1872  // ICmpZero uses because they may contain formulae generated by
1873  // GenerateICmpZeroScales, in which case adding fixup offsets may
1874  // be invalid.
1875  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
1876    LSRUse &LU = Uses[LUIdx];
1877    if (&LU != &OrigLU &&
1878        LU.Kind != LSRUse::ICmpZero &&
1879        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
1880        LU.HasFormulaWithSameRegs(OrigF)) {
1881      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
1882           E = LU.Formulae.end(); I != E; ++I) {
1883        const Formula &F = *I;
1884        if (F.BaseRegs == OrigF.BaseRegs &&
1885            F.ScaledReg == OrigF.ScaledReg &&
1886            F.AM.BaseGV == OrigF.AM.BaseGV &&
1887            F.AM.Scale == OrigF.AM.Scale &&
1888            LU.Kind) {
1889          if (F.AM.BaseOffs == 0)
1890            return &LU;
1891          break;
1892        }
1893      }
1894    }
1895  }
1896
1897  return 0;
1898}
1899
1900void LSRInstance::CollectInterestingTypesAndFactors() {
1901  SmallSetVector<const SCEV *, 4> Strides;
1902
1903  // Collect interesting types and strides.
1904  SmallVector<const SCEV *, 4> Worklist;
1905  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1906    const SCEV *Expr = IU.getExpr(*UI);
1907
1908    // Collect interesting types.
1909    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
1910
1911    // Add strides for mentioned loops.
1912    Worklist.push_back(Expr);
1913    do {
1914      const SCEV *S = Worklist.pop_back_val();
1915      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1916        Strides.insert(AR->getStepRecurrence(SE));
1917        Worklist.push_back(AR->getStart());
1918      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1919        Worklist.insert(Worklist.end(), Add->op_begin(), Add->op_end());
1920      }
1921    } while (!Worklist.empty());
1922  }
1923
1924  // Compute interesting factors from the set of interesting strides.
1925  for (SmallSetVector<const SCEV *, 4>::const_iterator
1926       I = Strides.begin(), E = Strides.end(); I != E; ++I)
1927    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
1928         next(I); NewStrideIter != E; ++NewStrideIter) {
1929      const SCEV *OldStride = *I;
1930      const SCEV *NewStride = *NewStrideIter;
1931
1932      if (SE.getTypeSizeInBits(OldStride->getType()) !=
1933          SE.getTypeSizeInBits(NewStride->getType())) {
1934        if (SE.getTypeSizeInBits(OldStride->getType()) >
1935            SE.getTypeSizeInBits(NewStride->getType()))
1936          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
1937        else
1938          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
1939      }
1940      if (const SCEVConstant *Factor =
1941            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
1942                                                        SE, true))) {
1943        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1944          Factors.insert(Factor->getValue()->getValue().getSExtValue());
1945      } else if (const SCEVConstant *Factor =
1946                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
1947                                                               NewStride,
1948                                                               SE, true))) {
1949        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1950          Factors.insert(Factor->getValue()->getValue().getSExtValue());
1951      }
1952    }
1953
1954  // If all uses use the same type, don't bother looking for truncation-based
1955  // reuse.
1956  if (Types.size() == 1)
1957    Types.clear();
1958
1959  DEBUG(print_factors_and_types(dbgs()));
1960}
1961
1962void LSRInstance::CollectFixupsAndInitialFormulae() {
1963  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1964    // Record the uses.
1965    LSRFixup &LF = getNewFixup();
1966    LF.UserInst = UI->getUser();
1967    LF.OperandValToReplace = UI->getOperandValToReplace();
1968    LF.PostIncLoops = UI->getPostIncLoops();
1969
1970    LSRUse::KindType Kind = LSRUse::Basic;
1971    const Type *AccessTy = 0;
1972    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
1973      Kind = LSRUse::Address;
1974      AccessTy = getAccessType(LF.UserInst);
1975    }
1976
1977    const SCEV *S = IU.getExpr(*UI);
1978
1979    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
1980    // (N - i == 0), and this allows (N - i) to be the expression that we work
1981    // with rather than just N or i, so we can consider the register
1982    // requirements for both N and i at the same time. Limiting this code to
1983    // equality icmps is not a problem because all interesting loops use
1984    // equality icmps, thanks to IndVarSimplify.
1985    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
1986      if (CI->isEquality()) {
1987        // Swap the operands if needed to put the OperandValToReplace on the
1988        // left, for consistency.
1989        Value *NV = CI->getOperand(1);
1990        if (NV == LF.OperandValToReplace) {
1991          CI->setOperand(1, CI->getOperand(0));
1992          CI->setOperand(0, NV);
1993          NV = CI->getOperand(1);
1994          Changed = true;
1995        }
1996
1997        // x == y  -->  x - y == 0
1998        const SCEV *N = SE.getSCEV(NV);
1999        if (N->isLoopInvariant(L)) {
2000          Kind = LSRUse::ICmpZero;
2001          S = SE.getMinusSCEV(N, S);
2002        }
2003
2004        // -1 and the negations of all interesting strides (except the negation
2005        // of -1) are now also interesting.
2006        for (size_t i = 0, e = Factors.size(); i != e; ++i)
2007          if (Factors[i] != -1)
2008            Factors.insert(-(uint64_t)Factors[i]);
2009        Factors.insert(-1);
2010      }
2011
2012    // Set up the initial formula for this use.
2013    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2014    LF.LUIdx = P.first;
2015    LF.Offset = P.second;
2016    LSRUse &LU = Uses[LF.LUIdx];
2017    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2018
2019    // If this is the first use of this LSRUse, give it a formula.
2020    if (LU.Formulae.empty()) {
2021      InsertInitialFormula(S, LU, LF.LUIdx);
2022      CountRegisters(LU.Formulae.back(), LF.LUIdx);
2023    }
2024  }
2025
2026  DEBUG(print_fixups(dbgs()));
2027}
2028
2029void
2030LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
2031  Formula F;
2032  F.InitialMatch(S, L, SE, DT);
2033  bool Inserted = InsertFormula(LU, LUIdx, F);
2034  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2035}
2036
2037void
2038LSRInstance::InsertSupplementalFormula(const SCEV *S,
2039                                       LSRUse &LU, size_t LUIdx) {
2040  Formula F;
2041  F.BaseRegs.push_back(S);
2042  F.AM.HasBaseReg = true;
2043  bool Inserted = InsertFormula(LU, LUIdx, F);
2044  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2045}
2046
2047/// CountRegisters - Note which registers are used by the given formula,
2048/// updating RegUses.
2049void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2050  if (F.ScaledReg)
2051    RegUses.CountRegister(F.ScaledReg, LUIdx);
2052  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2053       E = F.BaseRegs.end(); I != E; ++I)
2054    RegUses.CountRegister(*I, LUIdx);
2055}
2056
2057/// InsertFormula - If the given formula has not yet been inserted, add it to
2058/// the list, and return true. Return false otherwise.
2059bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
2060  if (!LU.InsertFormula(F))
2061    return false;
2062
2063  CountRegisters(F, LUIdx);
2064  return true;
2065}
2066
2067/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2068/// loop-invariant values which we're tracking. These other uses will pin these
2069/// values in registers, making them less profitable for elimination.
2070/// TODO: This currently misses non-constant addrec step registers.
2071/// TODO: Should this give more weight to users inside the loop?
2072void
2073LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2074  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2075  SmallPtrSet<const SCEV *, 8> Inserted;
2076
2077  while (!Worklist.empty()) {
2078    const SCEV *S = Worklist.pop_back_val();
2079
2080    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
2081      Worklist.insert(Worklist.end(), N->op_begin(), N->op_end());
2082    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2083      Worklist.push_back(C->getOperand());
2084    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2085      Worklist.push_back(D->getLHS());
2086      Worklist.push_back(D->getRHS());
2087    } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2088      if (!Inserted.insert(U)) continue;
2089      const Value *V = U->getValue();
2090      if (const Instruction *Inst = dyn_cast<Instruction>(V))
2091        if (L->contains(Inst)) continue;
2092      for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
2093           UI != UE; ++UI) {
2094        const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2095        // Ignore non-instructions.
2096        if (!UserInst)
2097          continue;
2098        // Ignore instructions in other functions (as can happen with
2099        // Constants).
2100        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
2101          continue;
2102        // Ignore instructions not dominated by the loop.
2103        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2104          UserInst->getParent() :
2105          cast<PHINode>(UserInst)->getIncomingBlock(
2106            PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2107        if (!DT.dominates(L->getHeader(), UseBB))
2108          continue;
2109        // Ignore uses which are part of other SCEV expressions, to avoid
2110        // analyzing them multiple times.
2111        if (SE.isSCEVable(UserInst->getType())) {
2112          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2113          // If the user is a no-op, look through to its uses.
2114          if (!isa<SCEVUnknown>(UserS))
2115            continue;
2116          if (UserS == U) {
2117            Worklist.push_back(
2118              SE.getUnknown(const_cast<Instruction *>(UserInst)));
2119            continue;
2120          }
2121        }
2122        // Ignore icmp instructions which are already being analyzed.
2123        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2124          unsigned OtherIdx = !UI.getOperandNo();
2125          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2126          if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
2127            continue;
2128        }
2129
2130        LSRFixup &LF = getNewFixup();
2131        LF.UserInst = const_cast<Instruction *>(UserInst);
2132        LF.OperandValToReplace = UI.getUse();
2133        std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2134        LF.LUIdx = P.first;
2135        LF.Offset = P.second;
2136        LSRUse &LU = Uses[LF.LUIdx];
2137        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2138        InsertSupplementalFormula(U, LU, LF.LUIdx);
2139        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2140        break;
2141      }
2142    }
2143  }
2144}
2145
2146/// CollectSubexprs - Split S into subexpressions which can be pulled out into
2147/// separate registers. If C is non-null, multiply each subexpression by C.
2148static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2149                            SmallVectorImpl<const SCEV *> &Ops,
2150                            ScalarEvolution &SE) {
2151  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2152    // Break out add operands.
2153    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2154         I != E; ++I)
2155      CollectSubexprs(*I, C, Ops, SE);
2156    return;
2157  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2158    // Split a non-zero base out of an addrec.
2159    if (!AR->getStart()->isZero()) {
2160      CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
2161                                       AR->getStepRecurrence(SE),
2162                                       AR->getLoop()), C, Ops, SE);
2163      CollectSubexprs(AR->getStart(), C, Ops, SE);
2164      return;
2165    }
2166  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2167    // Break (C * (a + b + c)) into C*a + C*b + C*c.
2168    if (Mul->getNumOperands() == 2)
2169      if (const SCEVConstant *Op0 =
2170            dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2171        CollectSubexprs(Mul->getOperand(1),
2172                        C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
2173                        Ops, SE);
2174        return;
2175      }
2176  }
2177
2178  // Otherwise use the value itself.
2179  Ops.push_back(C ? SE.getMulExpr(C, S) : S);
2180}
2181
2182/// GenerateReassociations - Split out subexpressions from adds and the bases of
2183/// addrecs.
2184void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
2185                                         Formula Base,
2186                                         unsigned Depth) {
2187  // Arbitrarily cap recursion to protect compile time.
2188  if (Depth >= 3) return;
2189
2190  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2191    const SCEV *BaseReg = Base.BaseRegs[i];
2192
2193    SmallVector<const SCEV *, 8> AddOps;
2194    CollectSubexprs(BaseReg, 0, AddOps, SE);
2195    if (AddOps.size() == 1) continue;
2196
2197    for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2198         JE = AddOps.end(); J != JE; ++J) {
2199      // Don't pull a constant into a register if the constant could be folded
2200      // into an immediate field.
2201      if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2202                           Base.getNumRegs() > 1,
2203                           LU.Kind, LU.AccessTy, TLI, SE))
2204        continue;
2205
2206      // Collect all operands except *J.
2207      SmallVector<const SCEV *, 8> InnerAddOps;
2208      for (SmallVectorImpl<const SCEV *>::const_iterator K = AddOps.begin(),
2209           KE = AddOps.end(); K != KE; ++K)
2210        if (K != J)
2211          InnerAddOps.push_back(*K);
2212
2213      // Don't leave just a constant behind in a register if the constant could
2214      // be folded into an immediate field.
2215      if (InnerAddOps.size() == 1 &&
2216          isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2217                           Base.getNumRegs() > 1,
2218                           LU.Kind, LU.AccessTy, TLI, SE))
2219        continue;
2220
2221      const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
2222      if (InnerSum->isZero())
2223        continue;
2224      Formula F = Base;
2225      F.BaseRegs[i] = InnerSum;
2226      F.BaseRegs.push_back(*J);
2227      if (InsertFormula(LU, LUIdx, F))
2228        // If that formula hadn't been seen before, recurse to find more like
2229        // it.
2230        GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2231    }
2232  }
2233}
2234
2235/// GenerateCombinations - Generate a formula consisting of all of the
2236/// loop-dominating registers added into a single register.
2237void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
2238                                       Formula Base) {
2239  // This method is only interesting on a plurality of registers.
2240  if (Base.BaseRegs.size() <= 1) return;
2241
2242  Formula F = Base;
2243  F.BaseRegs.clear();
2244  SmallVector<const SCEV *, 4> Ops;
2245  for (SmallVectorImpl<const SCEV *>::const_iterator
2246       I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2247    const SCEV *BaseReg = *I;
2248    if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
2249        !BaseReg->hasComputableLoopEvolution(L))
2250      Ops.push_back(BaseReg);
2251    else
2252      F.BaseRegs.push_back(BaseReg);
2253  }
2254  if (Ops.size() > 1) {
2255    const SCEV *Sum = SE.getAddExpr(Ops);
2256    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2257    // opportunity to fold something. For now, just ignore such cases
2258    // rather than proceed with zero in a register.
2259    if (!Sum->isZero()) {
2260      F.BaseRegs.push_back(Sum);
2261      (void)InsertFormula(LU, LUIdx, F);
2262    }
2263  }
2264}
2265
2266/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2267void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2268                                          Formula Base) {
2269  // We can't add a symbolic offset if the address already contains one.
2270  if (Base.AM.BaseGV) return;
2271
2272  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2273    const SCEV *G = Base.BaseRegs[i];
2274    GlobalValue *GV = ExtractSymbol(G, SE);
2275    if (G->isZero() || !GV)
2276      continue;
2277    Formula F = Base;
2278    F.AM.BaseGV = GV;
2279    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2280                    LU.Kind, LU.AccessTy, TLI))
2281      continue;
2282    F.BaseRegs[i] = G;
2283    (void)InsertFormula(LU, LUIdx, F);
2284  }
2285}
2286
2287/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2288void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2289                                          Formula Base) {
2290  // TODO: For now, just add the min and max offset, because it usually isn't
2291  // worthwhile looking at everything inbetween.
2292  SmallVector<int64_t, 4> Worklist;
2293  Worklist.push_back(LU.MinOffset);
2294  if (LU.MaxOffset != LU.MinOffset)
2295    Worklist.push_back(LU.MaxOffset);
2296
2297  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2298    const SCEV *G = Base.BaseRegs[i];
2299
2300    for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2301         E = Worklist.end(); I != E; ++I) {
2302      Formula F = Base;
2303      F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2304      if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2305                     LU.Kind, LU.AccessTy, TLI)) {
2306        F.BaseRegs[i] = SE.getAddExpr(G, SE.getConstant(G->getType(), *I));
2307
2308        (void)InsertFormula(LU, LUIdx, F);
2309      }
2310    }
2311
2312    int64_t Imm = ExtractImmediate(G, SE);
2313    if (G->isZero() || Imm == 0)
2314      continue;
2315    Formula F = Base;
2316    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2317    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2318                    LU.Kind, LU.AccessTy, TLI))
2319      continue;
2320    F.BaseRegs[i] = G;
2321    (void)InsertFormula(LU, LUIdx, F);
2322  }
2323}
2324
2325/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2326/// the comparison. For example, x == y -> x*c == y*c.
2327void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2328                                         Formula Base) {
2329  if (LU.Kind != LSRUse::ICmpZero) return;
2330
2331  // Determine the integer type for the base formula.
2332  const Type *IntTy = Base.getType();
2333  if (!IntTy) return;
2334  if (SE.getTypeSizeInBits(IntTy) > 64) return;
2335
2336  // Don't do this if there is more than one offset.
2337  if (LU.MinOffset != LU.MaxOffset) return;
2338
2339  assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2340
2341  // Check each interesting stride.
2342  for (SmallSetVector<int64_t, 8>::const_iterator
2343       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2344    int64_t Factor = *I;
2345    Formula F = Base;
2346
2347    // Check that the multiplication doesn't overflow.
2348    if (F.AM.BaseOffs == INT64_MIN && Factor == -1)
2349      continue;
2350    F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
2351    if (F.AM.BaseOffs / Factor != Base.AM.BaseOffs)
2352      continue;
2353
2354    // Check that multiplying with the use offset doesn't overflow.
2355    int64_t Offset = LU.MinOffset;
2356    if (Offset == INT64_MIN && Factor == -1)
2357      continue;
2358    Offset = (uint64_t)Offset * Factor;
2359    if (Offset / Factor != LU.MinOffset)
2360      continue;
2361
2362    // Check that this scale is legal.
2363    if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2364      continue;
2365
2366    // Compensate for the use having MinOffset built into it.
2367    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2368
2369    const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2370
2371    // Check that multiplying with each base register doesn't overflow.
2372    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2373      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
2374      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
2375        goto next;
2376    }
2377
2378    // Check that multiplying with the scaled register doesn't overflow.
2379    if (F.ScaledReg) {
2380      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
2381      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
2382        continue;
2383    }
2384
2385    // If we make it here and it's legal, add it.
2386    (void)InsertFormula(LU, LUIdx, F);
2387  next:;
2388  }
2389}
2390
2391/// GenerateScales - Generate stride factor reuse formulae by making use of
2392/// scaled-offset address modes, for example.
2393void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
2394  // Determine the integer type for the base formula.
2395  const Type *IntTy = Base.getType();
2396  if (!IntTy) return;
2397
2398  // If this Formula already has a scaled register, we can't add another one.
2399  if (Base.AM.Scale != 0) return;
2400
2401  // Check each interesting stride.
2402  for (SmallSetVector<int64_t, 8>::const_iterator
2403       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2404    int64_t Factor = *I;
2405
2406    Base.AM.Scale = Factor;
2407    Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2408    // Check whether this scale is going to be legal.
2409    if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2410                    LU.Kind, LU.AccessTy, TLI)) {
2411      // As a special-case, handle special out-of-loop Basic users specially.
2412      // TODO: Reconsider this special case.
2413      if (LU.Kind == LSRUse::Basic &&
2414          isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2415                     LSRUse::Special, LU.AccessTy, TLI) &&
2416          LU.AllFixupsOutsideLoop)
2417        LU.Kind = LSRUse::Special;
2418      else
2419        continue;
2420    }
2421    // For an ICmpZero, negating a solitary base register won't lead to
2422    // new solutions.
2423    if (LU.Kind == LSRUse::ICmpZero &&
2424        !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2425      continue;
2426    // For each addrec base reg, apply the scale, if possible.
2427    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2428      if (const SCEVAddRecExpr *AR =
2429            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
2430        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2431        if (FactorS->isZero())
2432          continue;
2433        // Divide out the factor, ignoring high bits, since we'll be
2434        // scaling the value back up in the end.
2435        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
2436          // TODO: This could be optimized to avoid all the copying.
2437          Formula F = Base;
2438          F.ScaledReg = Quotient;
2439          F.DeleteBaseReg(F.BaseRegs[i]);
2440          (void)InsertFormula(LU, LUIdx, F);
2441        }
2442      }
2443  }
2444}
2445
2446/// GenerateTruncates - Generate reuse formulae from different IV types.
2447void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
2448  // This requires TargetLowering to tell us which truncates are free.
2449  if (!TLI) return;
2450
2451  // Don't bother truncating symbolic values.
2452  if (Base.AM.BaseGV) return;
2453
2454  // Determine the integer type for the base formula.
2455  const Type *DstTy = Base.getType();
2456  if (!DstTy) return;
2457  DstTy = SE.getEffectiveSCEVType(DstTy);
2458
2459  for (SmallSetVector<const Type *, 4>::const_iterator
2460       I = Types.begin(), E = Types.end(); I != E; ++I) {
2461    const Type *SrcTy = *I;
2462    if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2463      Formula F = Base;
2464
2465      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2466      for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2467           JE = F.BaseRegs.end(); J != JE; ++J)
2468        *J = SE.getAnyExtendExpr(*J, SrcTy);
2469
2470      // TODO: This assumes we've done basic processing on all uses and
2471      // have an idea what the register usage is.
2472      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2473        continue;
2474
2475      (void)InsertFormula(LU, LUIdx, F);
2476    }
2477  }
2478}
2479
2480namespace {
2481
2482/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
2483/// defer modifications so that the search phase doesn't have to worry about
2484/// the data structures moving underneath it.
2485struct WorkItem {
2486  size_t LUIdx;
2487  int64_t Imm;
2488  const SCEV *OrigReg;
2489
2490  WorkItem(size_t LI, int64_t I, const SCEV *R)
2491    : LUIdx(LI), Imm(I), OrigReg(R) {}
2492
2493  void print(raw_ostream &OS) const;
2494  void dump() const;
2495};
2496
2497}
2498
2499void WorkItem::print(raw_ostream &OS) const {
2500  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2501     << " , add offset " << Imm;
2502}
2503
2504void WorkItem::dump() const {
2505  print(errs()); errs() << '\n';
2506}
2507
2508/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2509/// distance apart and try to form reuse opportunities between them.
2510void LSRInstance::GenerateCrossUseConstantOffsets() {
2511  // Group the registers by their value without any added constant offset.
2512  typedef std::map<int64_t, const SCEV *> ImmMapTy;
2513  typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2514  RegMapTy Map;
2515  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2516  SmallVector<const SCEV *, 8> Sequence;
2517  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2518       I != E; ++I) {
2519    const SCEV *Reg = *I;
2520    int64_t Imm = ExtractImmediate(Reg, SE);
2521    std::pair<RegMapTy::iterator, bool> Pair =
2522      Map.insert(std::make_pair(Reg, ImmMapTy()));
2523    if (Pair.second)
2524      Sequence.push_back(Reg);
2525    Pair.first->second.insert(std::make_pair(Imm, *I));
2526    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2527  }
2528
2529  // Now examine each set of registers with the same base value. Build up
2530  // a list of work to do and do the work in a separate step so that we're
2531  // not adding formulae and register counts while we're searching.
2532  SmallVector<WorkItem, 32> WorkItems;
2533  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2534  for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2535       E = Sequence.end(); I != E; ++I) {
2536    const SCEV *Reg = *I;
2537    const ImmMapTy &Imms = Map.find(Reg)->second;
2538
2539    // It's not worthwhile looking for reuse if there's only one offset.
2540    if (Imms.size() == 1)
2541      continue;
2542
2543    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2544          for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2545               J != JE; ++J)
2546            dbgs() << ' ' << J->first;
2547          dbgs() << '\n');
2548
2549    // Examine each offset.
2550    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2551         J != JE; ++J) {
2552      const SCEV *OrigReg = J->second;
2553
2554      int64_t JImm = J->first;
2555      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2556
2557      if (!isa<SCEVConstant>(OrigReg) &&
2558          UsedByIndicesMap[Reg].count() == 1) {
2559        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2560        continue;
2561      }
2562
2563      // Conservatively examine offsets between this orig reg a few selected
2564      // other orig regs.
2565      ImmMapTy::const_iterator OtherImms[] = {
2566        Imms.begin(), prior(Imms.end()),
2567        Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2568      };
2569      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2570        ImmMapTy::const_iterator M = OtherImms[i];
2571        if (M == J || M == JE) continue;
2572
2573        // Compute the difference between the two.
2574        int64_t Imm = (uint64_t)JImm - M->first;
2575        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2576             LUIdx = UsedByIndices.find_next(LUIdx))
2577          // Make a memo of this use, offset, and register tuple.
2578          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2579            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
2580      }
2581    }
2582  }
2583
2584  Map.clear();
2585  Sequence.clear();
2586  UsedByIndicesMap.clear();
2587  UniqueItems.clear();
2588
2589  // Now iterate through the worklist and add new formulae.
2590  for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2591       E = WorkItems.end(); I != E; ++I) {
2592    const WorkItem &WI = *I;
2593    size_t LUIdx = WI.LUIdx;
2594    LSRUse &LU = Uses[LUIdx];
2595    int64_t Imm = WI.Imm;
2596    const SCEV *OrigReg = WI.OrigReg;
2597
2598    const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2599    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2600    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2601
2602    // TODO: Use a more targeted data structure.
2603    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
2604      Formula F = LU.Formulae[L];
2605      // Use the immediate in the scaled register.
2606      if (F.ScaledReg == OrigReg) {
2607        int64_t Offs = (uint64_t)F.AM.BaseOffs +
2608                       Imm * (uint64_t)F.AM.Scale;
2609        // Don't create 50 + reg(-50).
2610        if (F.referencesReg(SE.getSCEV(
2611                   ConstantInt::get(IntTy, -(uint64_t)Offs))))
2612          continue;
2613        Formula NewF = F;
2614        NewF.AM.BaseOffs = Offs;
2615        if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2616                        LU.Kind, LU.AccessTy, TLI))
2617          continue;
2618        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2619
2620        // If the new scale is a constant in a register, and adding the constant
2621        // value to the immediate would produce a value closer to zero than the
2622        // immediate itself, then the formula isn't worthwhile.
2623        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2624          if (C->getValue()->getValue().isNegative() !=
2625                (NewF.AM.BaseOffs < 0) &&
2626              (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
2627                .ule(abs64(NewF.AM.BaseOffs)))
2628            continue;
2629
2630        // OK, looks good.
2631        (void)InsertFormula(LU, LUIdx, NewF);
2632      } else {
2633        // Use the immediate in a base register.
2634        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2635          const SCEV *BaseReg = F.BaseRegs[N];
2636          if (BaseReg != OrigReg)
2637            continue;
2638          Formula NewF = F;
2639          NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2640          if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2641                          LU.Kind, LU.AccessTy, TLI))
2642            continue;
2643          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2644
2645          // If the new formula has a constant in a register, and adding the
2646          // constant value to the immediate would produce a value closer to
2647          // zero than the immediate itself, then the formula isn't worthwhile.
2648          for (SmallVectorImpl<const SCEV *>::const_iterator
2649               J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2650               J != JE; ++J)
2651            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
2652              if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
2653                   abs64(NewF.AM.BaseOffs)) &&
2654                  (C->getValue()->getValue() +
2655                   NewF.AM.BaseOffs).countTrailingZeros() >=
2656                   CountTrailingZeros_64(NewF.AM.BaseOffs))
2657                goto skip_formula;
2658
2659          // Ok, looks good.
2660          (void)InsertFormula(LU, LUIdx, NewF);
2661          break;
2662        skip_formula:;
2663        }
2664      }
2665    }
2666  }
2667}
2668
2669/// GenerateAllReuseFormulae - Generate formulae for each use.
2670void
2671LSRInstance::GenerateAllReuseFormulae() {
2672  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
2673  // queries are more precise.
2674  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2675    LSRUse &LU = Uses[LUIdx];
2676    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2677      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2678    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2679      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2680  }
2681  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2682    LSRUse &LU = Uses[LUIdx];
2683    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2684      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2685    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2686      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2687    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2688      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2689    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2690      GenerateScales(LU, LUIdx, LU.Formulae[i]);
2691  }
2692  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2693    LSRUse &LU = Uses[LUIdx];
2694    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2695      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2696  }
2697
2698  GenerateCrossUseConstantOffsets();
2699}
2700
2701/// If their are multiple formulae with the same set of registers used
2702/// by other uses, pick the best one and delete the others.
2703void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2704#ifndef NDEBUG
2705  bool ChangedFormulae = false;
2706#endif
2707
2708  // Collect the best formula for each unique set of shared registers. This
2709  // is reset for each use.
2710  typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2711    BestFormulaeTy;
2712  BestFormulaeTy BestFormulae;
2713
2714  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2715    LSRUse &LU = Uses[LUIdx];
2716    FormulaSorter Sorter(L, LU, SE, DT);
2717    DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
2718
2719    bool Any = false;
2720    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2721         FIdx != NumForms; ++FIdx) {
2722      Formula &F = LU.Formulae[FIdx];
2723
2724      SmallVector<const SCEV *, 2> Key;
2725      for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2726           JE = F.BaseRegs.end(); J != JE; ++J) {
2727        const SCEV *Reg = *J;
2728        if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2729          Key.push_back(Reg);
2730      }
2731      if (F.ScaledReg &&
2732          RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2733        Key.push_back(F.ScaledReg);
2734      // Unstable sort by host order ok, because this is only used for
2735      // uniquifying.
2736      std::sort(Key.begin(), Key.end());
2737
2738      std::pair<BestFormulaeTy::const_iterator, bool> P =
2739        BestFormulae.insert(std::make_pair(Key, FIdx));
2740      if (!P.second) {
2741        Formula &Best = LU.Formulae[P.first->second];
2742        if (Sorter.operator()(F, Best))
2743          std::swap(F, Best);
2744        DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
2745              dbgs() << "\n"
2746                        "    in favor of formula "; Best.print(dbgs());
2747              dbgs() << '\n');
2748#ifndef NDEBUG
2749        ChangedFormulae = true;
2750#endif
2751        LU.DeleteFormula(F);
2752        --FIdx;
2753        --NumForms;
2754        Any = true;
2755        continue;
2756      }
2757    }
2758
2759    // Now that we've filtered out some formulae, recompute the Regs set.
2760    if (Any)
2761      LU.RecomputeRegs(LUIdx, RegUses);
2762
2763    // Reset this to prepare for the next use.
2764    BestFormulae.clear();
2765  }
2766
2767  DEBUG(if (ChangedFormulae) {
2768          dbgs() << "\n"
2769                    "After filtering out undesirable candidates:\n";
2770          print_uses(dbgs());
2771        });
2772}
2773
2774// This is a rough guess that seems to work fairly well.
2775static const size_t ComplexityLimit = UINT16_MAX;
2776
2777/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
2778/// solutions the solver might have to consider. It almost never considers
2779/// this many solutions because it prune the search space, but the pruning
2780/// isn't always sufficient.
2781size_t LSRInstance::EstimateSearchSpaceComplexity() const {
2782  uint32_t Power = 1;
2783  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2784       E = Uses.end(); I != E; ++I) {
2785    size_t FSize = I->Formulae.size();
2786    if (FSize >= ComplexityLimit) {
2787      Power = ComplexityLimit;
2788      break;
2789    }
2790    Power *= FSize;
2791    if (Power >= ComplexityLimit)
2792      break;
2793  }
2794  return Power;
2795}
2796
2797/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
2798/// formulae to choose from, use some rough heuristics to prune down the number
2799/// of formulae. This keeps the main solver from taking an extraordinary amount
2800/// of time in some worst-case scenarios.
2801void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
2802  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2803    DEBUG(dbgs() << "The search space is too complex.\n");
2804
2805    DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
2806                    "which use a superset of registers used by other "
2807                    "formulae.\n");
2808
2809    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2810      LSRUse &LU = Uses[LUIdx];
2811      bool Any = false;
2812      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2813        Formula &F = LU.Formulae[i];
2814        // Look for a formula with a constant or GV in a register. If the use
2815        // also has a formula with that same value in an immediate field,
2816        // delete the one that uses a register.
2817        for (SmallVectorImpl<const SCEV *>::const_iterator
2818             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
2819          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
2820            Formula NewF = F;
2821            NewF.AM.BaseOffs += C->getValue()->getSExtValue();
2822            NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2823                                (I - F.BaseRegs.begin()));
2824            if (LU.HasFormulaWithSameRegs(NewF)) {
2825              DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
2826              LU.DeleteFormula(F);
2827              --i;
2828              --e;
2829              Any = true;
2830              break;
2831            }
2832          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
2833            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
2834              if (!F.AM.BaseGV) {
2835                Formula NewF = F;
2836                NewF.AM.BaseGV = GV;
2837                NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2838                                    (I - F.BaseRegs.begin()));
2839                if (LU.HasFormulaWithSameRegs(NewF)) {
2840                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
2841                        dbgs() << '\n');
2842                  LU.DeleteFormula(F);
2843                  --i;
2844                  --e;
2845                  Any = true;
2846                  break;
2847                }
2848              }
2849          }
2850        }
2851      }
2852      if (Any)
2853        LU.RecomputeRegs(LUIdx, RegUses);
2854    }
2855
2856    DEBUG(dbgs() << "After pre-selection:\n";
2857          print_uses(dbgs()));
2858  }
2859
2860  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2861    DEBUG(dbgs() << "The search space is too complex.\n");
2862
2863    DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
2864                    "separated by a constant offset will use the same "
2865                    "registers.\n");
2866
2867    // This is especially useful for unrolled loops.
2868
2869    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2870      LSRUse &LU = Uses[LUIdx];
2871      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2872           E = LU.Formulae.end(); I != E; ++I) {
2873        const Formula &F = *I;
2874        if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
2875          if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
2876            if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
2877                                   /*HasBaseReg=*/false,
2878                                   LU.Kind, LU.AccessTy)) {
2879              DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs());
2880                    dbgs() << '\n');
2881
2882              LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
2883
2884              // Delete formulae from the new use which are no longer legal.
2885              bool Any = false;
2886              for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
2887                Formula &F = LUThatHas->Formulae[i];
2888                if (!isLegalUse(F.AM,
2889                                LUThatHas->MinOffset, LUThatHas->MaxOffset,
2890                                LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
2891                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
2892                        dbgs() << '\n');
2893                  LUThatHas->DeleteFormula(F);
2894                  --i;
2895                  --e;
2896                  Any = true;
2897                }
2898              }
2899              if (Any)
2900                LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
2901
2902              // Update the relocs to reference the new use.
2903              for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
2904                   E = Fixups.end(); I != E; ++I) {
2905                LSRFixup &Fixup = *I;
2906                if (Fixup.LUIdx == LUIdx) {
2907                  Fixup.LUIdx = LUThatHas - &Uses.front();
2908                  Fixup.Offset += F.AM.BaseOffs;
2909                  DEBUG(errs() << "New fixup has offset "
2910                               << Fixup.Offset << '\n');
2911                }
2912                if (Fixup.LUIdx == NumUses-1)
2913                  Fixup.LUIdx = LUIdx;
2914              }
2915
2916              // Delete the old use.
2917              DeleteUse(LU);
2918              --LUIdx;
2919              --NumUses;
2920              break;
2921            }
2922          }
2923        }
2924      }
2925    }
2926
2927    DEBUG(dbgs() << "After pre-selection:\n";
2928          print_uses(dbgs()));
2929  }
2930
2931  SmallPtrSet<const SCEV *, 4> Taken;
2932  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2933    // Ok, we have too many of formulae on our hands to conveniently handle.
2934    // Use a rough heuristic to thin out the list.
2935    DEBUG(dbgs() << "The search space is too complex.\n");
2936
2937    // Pick the register which is used by the most LSRUses, which is likely
2938    // to be a good reuse register candidate.
2939    const SCEV *Best = 0;
2940    unsigned BestNum = 0;
2941    for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2942         I != E; ++I) {
2943      const SCEV *Reg = *I;
2944      if (Taken.count(Reg))
2945        continue;
2946      if (!Best)
2947        Best = Reg;
2948      else {
2949        unsigned Count = RegUses.getUsedByIndices(Reg).count();
2950        if (Count > BestNum) {
2951          Best = Reg;
2952          BestNum = Count;
2953        }
2954      }
2955    }
2956
2957    DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
2958                 << " will yield profitable reuse.\n");
2959    Taken.insert(Best);
2960
2961    // In any use with formulae which references this register, delete formulae
2962    // which don't reference it.
2963    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2964      LSRUse &LU = Uses[LUIdx];
2965      if (!LU.Regs.count(Best)) continue;
2966
2967      bool Any = false;
2968      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2969        Formula &F = LU.Formulae[i];
2970        if (!F.referencesReg(Best)) {
2971          DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
2972          LU.DeleteFormula(F);
2973          --e;
2974          --i;
2975          Any = true;
2976          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
2977          continue;
2978        }
2979      }
2980
2981      if (Any)
2982        LU.RecomputeRegs(LUIdx, RegUses);
2983    }
2984
2985    DEBUG(dbgs() << "After pre-selection:\n";
2986          print_uses(dbgs()));
2987  }
2988}
2989
2990/// SolveRecurse - This is the recursive solver.
2991void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2992                               Cost &SolutionCost,
2993                               SmallVectorImpl<const Formula *> &Workspace,
2994                               const Cost &CurCost,
2995                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
2996                               DenseSet<const SCEV *> &VisitedRegs) const {
2997  // Some ideas:
2998  //  - prune more:
2999  //    - use more aggressive filtering
3000  //    - sort the formula so that the most profitable solutions are found first
3001  //    - sort the uses too
3002  //  - search faster:
3003  //    - don't compute a cost, and then compare. compare while computing a cost
3004  //      and bail early.
3005  //    - track register sets with SmallBitVector
3006
3007  const LSRUse &LU = Uses[Workspace.size()];
3008
3009  // If this use references any register that's already a part of the
3010  // in-progress solution, consider it a requirement that a formula must
3011  // reference that register in order to be considered. This prunes out
3012  // unprofitable searching.
3013  SmallSetVector<const SCEV *, 4> ReqRegs;
3014  for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3015       E = CurRegs.end(); I != E; ++I)
3016    if (LU.Regs.count(*I))
3017      ReqRegs.insert(*I);
3018
3019  bool AnySatisfiedReqRegs = false;
3020  SmallPtrSet<const SCEV *, 16> NewRegs;
3021  Cost NewCost;
3022retry:
3023  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3024       E = LU.Formulae.end(); I != E; ++I) {
3025    const Formula &F = *I;
3026
3027    // Ignore formulae which do not use any of the required registers.
3028    for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3029         JE = ReqRegs.end(); J != JE; ++J) {
3030      const SCEV *Reg = *J;
3031      if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3032          std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3033          F.BaseRegs.end())
3034        goto skip;
3035    }
3036    AnySatisfiedReqRegs = true;
3037
3038    // Evaluate the cost of the current formula. If it's already worse than
3039    // the current best, prune the search at that point.
3040    NewCost = CurCost;
3041    NewRegs = CurRegs;
3042    NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
3043    if (NewCost < SolutionCost) {
3044      Workspace.push_back(&F);
3045      if (Workspace.size() != Uses.size()) {
3046        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
3047                     NewRegs, VisitedRegs);
3048        if (F.getNumRegs() == 1 && Workspace.size() == 1)
3049          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
3050      } else {
3051        DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
3052              dbgs() << ". Regs:";
3053              for (SmallPtrSet<const SCEV *, 16>::const_iterator
3054                   I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
3055                dbgs() << ' ' << **I;
3056              dbgs() << '\n');
3057
3058        SolutionCost = NewCost;
3059        Solution = Workspace;
3060      }
3061      Workspace.pop_back();
3062    }
3063  skip:;
3064  }
3065
3066  // If none of the formulae had all of the required registers, relax the
3067  // constraint so that we don't exclude all formulae.
3068  if (!AnySatisfiedReqRegs) {
3069    assert(!ReqRegs.empty() && "Solver failed even without required registers");
3070    ReqRegs.clear();
3071    goto retry;
3072  }
3073}
3074
3075void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
3076  SmallVector<const Formula *, 8> Workspace;
3077  Cost SolutionCost;
3078  SolutionCost.Loose();
3079  Cost CurCost;
3080  SmallPtrSet<const SCEV *, 16> CurRegs;
3081  DenseSet<const SCEV *> VisitedRegs;
3082  Workspace.reserve(Uses.size());
3083
3084  // SolveRecurse does all the work.
3085  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
3086               CurRegs, VisitedRegs);
3087
3088  // Ok, we've now made all our decisions.
3089  DEBUG(dbgs() << "\n"
3090                  "The chosen solution requires "; SolutionCost.print(dbgs());
3091        dbgs() << ":\n";
3092        for (size_t i = 0, e = Uses.size(); i != e; ++i) {
3093          dbgs() << "  ";
3094          Uses[i].print(dbgs());
3095          dbgs() << "\n"
3096                    "    ";
3097          Solution[i]->print(dbgs());
3098          dbgs() << '\n';
3099        });
3100}
3101
3102/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
3103/// the dominator tree far as we can go while still being dominated by the
3104/// input positions. This helps canonicalize the insert position, which
3105/// encourages sharing.
3106BasicBlock::iterator
3107LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
3108                                 const SmallVectorImpl<Instruction *> &Inputs)
3109                                                                         const {
3110  for (;;) {
3111    const Loop *IPLoop = LI.getLoopFor(IP->getParent());
3112    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
3113
3114    BasicBlock *IDom;
3115    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
3116      assert(Rung && "Block has no DomTreeNode!");
3117      Rung = Rung->getIDom();
3118      if (!Rung) return IP;
3119      IDom = Rung->getBlock();
3120
3121      // Don't climb into a loop though.
3122      const Loop *IDomLoop = LI.getLoopFor(IDom);
3123      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
3124      if (IDomDepth <= IPLoopDepth &&
3125          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
3126        break;
3127    }
3128
3129    bool AllDominate = true;
3130    Instruction *BetterPos = 0;
3131    Instruction *Tentative = IDom->getTerminator();
3132    for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
3133         E = Inputs.end(); I != E; ++I) {
3134      Instruction *Inst = *I;
3135      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
3136        AllDominate = false;
3137        break;
3138      }
3139      // Attempt to find an insert position in the middle of the block,
3140      // instead of at the end, so that it can be used for other expansions.
3141      if (IDom == Inst->getParent() &&
3142          (!BetterPos || DT.dominates(BetterPos, Inst)))
3143        BetterPos = llvm::next(BasicBlock::iterator(Inst));
3144    }
3145    if (!AllDominate)
3146      break;
3147    if (BetterPos)
3148      IP = BetterPos;
3149    else
3150      IP = Tentative;
3151  }
3152
3153  return IP;
3154}
3155
3156/// AdjustInsertPositionForExpand - Determine an input position which will be
3157/// dominated by the operands and which will dominate the result.
3158BasicBlock::iterator
3159LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
3160                                           const LSRFixup &LF,
3161                                           const LSRUse &LU) const {
3162  // Collect some instructions which must be dominated by the
3163  // expanding replacement. These must be dominated by any operands that
3164  // will be required in the expansion.
3165  SmallVector<Instruction *, 4> Inputs;
3166  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
3167    Inputs.push_back(I);
3168  if (LU.Kind == LSRUse::ICmpZero)
3169    if (Instruction *I =
3170          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
3171      Inputs.push_back(I);
3172  if (LF.PostIncLoops.count(L)) {
3173    if (LF.isUseFullyOutsideLoop(L))
3174      Inputs.push_back(L->getLoopLatch()->getTerminator());
3175    else
3176      Inputs.push_back(IVIncInsertPos);
3177  }
3178  // The expansion must also be dominated by the increment positions of any
3179  // loops it for which it is using post-inc mode.
3180  for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
3181       E = LF.PostIncLoops.end(); I != E; ++I) {
3182    const Loop *PIL = *I;
3183    if (PIL == L) continue;
3184
3185    // Be dominated by the loop exit.
3186    SmallVector<BasicBlock *, 4> ExitingBlocks;
3187    PIL->getExitingBlocks(ExitingBlocks);
3188    if (!ExitingBlocks.empty()) {
3189      BasicBlock *BB = ExitingBlocks[0];
3190      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
3191        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
3192      Inputs.push_back(BB->getTerminator());
3193    }
3194  }
3195
3196  // Then, climb up the immediate dominator tree as far as we can go while
3197  // still being dominated by the input positions.
3198  IP = HoistInsertPosition(IP, Inputs);
3199
3200  // Don't insert instructions before PHI nodes.
3201  while (isa<PHINode>(IP)) ++IP;
3202
3203  // Ignore debug intrinsics.
3204  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
3205
3206  return IP;
3207}
3208
3209Value *LSRInstance::Expand(const LSRFixup &LF,
3210                           const Formula &F,
3211                           BasicBlock::iterator IP,
3212                           SCEVExpander &Rewriter,
3213                           SmallVectorImpl<WeakVH> &DeadInsts) const {
3214  const LSRUse &LU = Uses[LF.LUIdx];
3215
3216  // Determine an input position which will be dominated by the operands and
3217  // which will dominate the result.
3218  IP = AdjustInsertPositionForExpand(IP, LF, LU);
3219
3220  // Inform the Rewriter if we have a post-increment use, so that it can
3221  // perform an advantageous expansion.
3222  Rewriter.setPostInc(LF.PostIncLoops);
3223
3224  // This is the type that the user actually needs.
3225  const Type *OpTy = LF.OperandValToReplace->getType();
3226  // This will be the type that we'll initially expand to.
3227  const Type *Ty = F.getType();
3228  if (!Ty)
3229    // No type known; just expand directly to the ultimate type.
3230    Ty = OpTy;
3231  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
3232    // Expand directly to the ultimate type if it's the right size.
3233    Ty = OpTy;
3234  // This is the type to do integer arithmetic in.
3235  const Type *IntTy = SE.getEffectiveSCEVType(Ty);
3236
3237  // Build up a list of operands to add together to form the full base.
3238  SmallVector<const SCEV *, 8> Ops;
3239
3240  // Expand the BaseRegs portion.
3241  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3242       E = F.BaseRegs.end(); I != E; ++I) {
3243    const SCEV *Reg = *I;
3244    assert(!Reg->isZero() && "Zero allocated in a base register!");
3245
3246    // If we're expanding for a post-inc user, make the post-inc adjustment.
3247    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3248    Reg = TransformForPostIncUse(Denormalize, Reg,
3249                                 LF.UserInst, LF.OperandValToReplace,
3250                                 Loops, SE, DT);
3251
3252    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
3253  }
3254
3255  // Flush the operand list to suppress SCEVExpander hoisting.
3256  if (!Ops.empty()) {
3257    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3258    Ops.clear();
3259    Ops.push_back(SE.getUnknown(FullV));
3260  }
3261
3262  // Expand the ScaledReg portion.
3263  Value *ICmpScaledV = 0;
3264  if (F.AM.Scale != 0) {
3265    const SCEV *ScaledS = F.ScaledReg;
3266
3267    // If we're expanding for a post-inc user, make the post-inc adjustment.
3268    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3269    ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
3270                                     LF.UserInst, LF.OperandValToReplace,
3271                                     Loops, SE, DT);
3272
3273    if (LU.Kind == LSRUse::ICmpZero) {
3274      // An interesting way of "folding" with an icmp is to use a negated
3275      // scale, which we'll implement by inserting it into the other operand
3276      // of the icmp.
3277      assert(F.AM.Scale == -1 &&
3278             "The only scale supported by ICmpZero uses is -1!");
3279      ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
3280    } else {
3281      // Otherwise just expand the scaled register and an explicit scale,
3282      // which is expected to be matched as part of the address.
3283      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
3284      ScaledS = SE.getMulExpr(ScaledS,
3285                              SE.getConstant(ScaledS->getType(), F.AM.Scale));
3286      Ops.push_back(ScaledS);
3287
3288      // Flush the operand list to suppress SCEVExpander hoisting.
3289      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3290      Ops.clear();
3291      Ops.push_back(SE.getUnknown(FullV));
3292    }
3293  }
3294
3295  // Expand the GV portion.
3296  if (F.AM.BaseGV) {
3297    Ops.push_back(SE.getUnknown(F.AM.BaseGV));
3298
3299    // Flush the operand list to suppress SCEVExpander hoisting.
3300    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3301    Ops.clear();
3302    Ops.push_back(SE.getUnknown(FullV));
3303  }
3304
3305  // Expand the immediate portion.
3306  int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
3307  if (Offset != 0) {
3308    if (LU.Kind == LSRUse::ICmpZero) {
3309      // The other interesting way of "folding" with an ICmpZero is to use a
3310      // negated immediate.
3311      if (!ICmpScaledV)
3312        ICmpScaledV = ConstantInt::get(IntTy, -Offset);
3313      else {
3314        Ops.push_back(SE.getUnknown(ICmpScaledV));
3315        ICmpScaledV = ConstantInt::get(IntTy, Offset);
3316      }
3317    } else {
3318      // Just add the immediate values. These again are expected to be matched
3319      // as part of the address.
3320      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
3321    }
3322  }
3323
3324  // Emit instructions summing all the operands.
3325  const SCEV *FullS = Ops.empty() ?
3326                      SE.getConstant(IntTy, 0) :
3327                      SE.getAddExpr(Ops);
3328  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
3329
3330  // We're done expanding now, so reset the rewriter.
3331  Rewriter.clearPostInc();
3332
3333  // An ICmpZero Formula represents an ICmp which we're handling as a
3334  // comparison against zero. Now that we've expanded an expression for that
3335  // form, update the ICmp's other operand.
3336  if (LU.Kind == LSRUse::ICmpZero) {
3337    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
3338    DeadInsts.push_back(CI->getOperand(1));
3339    assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
3340                           "a scale at the same time!");
3341    if (F.AM.Scale == -1) {
3342      if (ICmpScaledV->getType() != OpTy) {
3343        Instruction *Cast =
3344          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
3345                                                   OpTy, false),
3346                           ICmpScaledV, OpTy, "tmp", CI);
3347        ICmpScaledV = Cast;
3348      }
3349      CI->setOperand(1, ICmpScaledV);
3350    } else {
3351      assert(F.AM.Scale == 0 &&
3352             "ICmp does not support folding a global value and "
3353             "a scale at the same time!");
3354      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
3355                                           -(uint64_t)Offset);
3356      if (C->getType() != OpTy)
3357        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3358                                                          OpTy, false),
3359                                  C, OpTy);
3360
3361      CI->setOperand(1, C);
3362    }
3363  }
3364
3365  return FullV;
3366}
3367
3368/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3369/// of their operands effectively happens in their predecessor blocks, so the
3370/// expression may need to be expanded in multiple places.
3371void LSRInstance::RewriteForPHI(PHINode *PN,
3372                                const LSRFixup &LF,
3373                                const Formula &F,
3374                                SCEVExpander &Rewriter,
3375                                SmallVectorImpl<WeakVH> &DeadInsts,
3376                                Pass *P) const {
3377  DenseMap<BasicBlock *, Value *> Inserted;
3378  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3379    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3380      BasicBlock *BB = PN->getIncomingBlock(i);
3381
3382      // If this is a critical edge, split the edge so that we do not insert
3383      // the code on all predecessor/successor paths.  We do this unless this
3384      // is the canonical backedge for this loop, which complicates post-inc
3385      // users.
3386      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3387          !isa<IndirectBrInst>(BB->getTerminator()) &&
3388          (PN->getParent() != L->getHeader() || !L->contains(BB))) {
3389        // Split the critical edge.
3390        BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
3391
3392        // If PN is outside of the loop and BB is in the loop, we want to
3393        // move the block to be immediately before the PHI block, not
3394        // immediately after BB.
3395        if (L->contains(BB) && !L->contains(PN))
3396          NewBB->moveBefore(PN->getParent());
3397
3398        // Splitting the edge can reduce the number of PHI entries we have.
3399        e = PN->getNumIncomingValues();
3400        BB = NewBB;
3401        i = PN->getBasicBlockIndex(BB);
3402      }
3403
3404      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3405        Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3406      if (!Pair.second)
3407        PN->setIncomingValue(i, Pair.first->second);
3408      else {
3409        Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
3410
3411        // If this is reuse-by-noop-cast, insert the noop cast.
3412        const Type *OpTy = LF.OperandValToReplace->getType();
3413        if (FullV->getType() != OpTy)
3414          FullV =
3415            CastInst::Create(CastInst::getCastOpcode(FullV, false,
3416                                                     OpTy, false),
3417                             FullV, LF.OperandValToReplace->getType(),
3418                             "tmp", BB->getTerminator());
3419
3420        PN->setIncomingValue(i, FullV);
3421        Pair.first->second = FullV;
3422      }
3423    }
3424}
3425
3426/// Rewrite - Emit instructions for the leading candidate expression for this
3427/// LSRUse (this is called "expanding"), and update the UserInst to reference
3428/// the newly expanded value.
3429void LSRInstance::Rewrite(const LSRFixup &LF,
3430                          const Formula &F,
3431                          SCEVExpander &Rewriter,
3432                          SmallVectorImpl<WeakVH> &DeadInsts,
3433                          Pass *P) const {
3434  // First, find an insertion point that dominates UserInst. For PHI nodes,
3435  // find the nearest block which dominates all the relevant uses.
3436  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
3437    RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
3438  } else {
3439    Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
3440
3441    // If this is reuse-by-noop-cast, insert the noop cast.
3442    const Type *OpTy = LF.OperandValToReplace->getType();
3443    if (FullV->getType() != OpTy) {
3444      Instruction *Cast =
3445        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3446                         FullV, OpTy, "tmp", LF.UserInst);
3447      FullV = Cast;
3448    }
3449
3450    // Update the user. ICmpZero is handled specially here (for now) because
3451    // Expand may have updated one of the operands of the icmp already, and
3452    // its new value may happen to be equal to LF.OperandValToReplace, in
3453    // which case doing replaceUsesOfWith leads to replacing both operands
3454    // with the same value. TODO: Reorganize this.
3455    if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3456      LF.UserInst->setOperand(0, FullV);
3457    else
3458      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3459  }
3460
3461  DeadInsts.push_back(LF.OperandValToReplace);
3462}
3463
3464void
3465LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3466                               Pass *P) {
3467  // Keep track of instructions we may have made dead, so that
3468  // we can remove them after we are done working.
3469  SmallVector<WeakVH, 16> DeadInsts;
3470
3471  SCEVExpander Rewriter(SE);
3472  Rewriter.disableCanonicalMode();
3473  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3474
3475  // Expand the new value definitions and update the users.
3476  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3477       E = Fixups.end(); I != E; ++I) {
3478    const LSRFixup &Fixup = *I;
3479
3480    Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
3481
3482    Changed = true;
3483  }
3484
3485  // Clean up after ourselves. This must be done before deleting any
3486  // instructions.
3487  Rewriter.clear();
3488
3489  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3490}
3491
3492LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3493  : IU(P->getAnalysis<IVUsers>()),
3494    SE(P->getAnalysis<ScalarEvolution>()),
3495    DT(P->getAnalysis<DominatorTree>()),
3496    LI(P->getAnalysis<LoopInfo>()),
3497    TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
3498
3499  // If LoopSimplify form is not available, stay out of trouble.
3500  if (!L->isLoopSimplifyForm()) return;
3501
3502  // If there's no interesting work to be done, bail early.
3503  if (IU.empty()) return;
3504
3505  DEBUG(dbgs() << "\nLSR on loop ";
3506        WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3507        dbgs() << ":\n");
3508
3509  // First, perform some low-level loop optimizations.
3510  OptimizeShadowIV();
3511  OptimizeLoopTermCond();
3512
3513  // Start collecting data and preparing for the solver.
3514  CollectInterestingTypesAndFactors();
3515  CollectFixupsAndInitialFormulae();
3516  CollectLoopInvariantFixupsAndFormulae();
3517
3518  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3519        print_uses(dbgs()));
3520
3521  // Now use the reuse data to generate a bunch of interesting ways
3522  // to formulate the values needed for the uses.
3523  GenerateAllReuseFormulae();
3524
3525  DEBUG(dbgs() << "\n"
3526                  "After generating reuse formulae:\n";
3527        print_uses(dbgs()));
3528
3529  FilterOutUndesirableDedicatedRegisters();
3530  NarrowSearchSpaceUsingHeuristics();
3531
3532  SmallVector<const Formula *, 8> Solution;
3533  Solve(Solution);
3534  assert(Solution.size() == Uses.size() && "Malformed solution!");
3535
3536  // Release memory that is no longer needed.
3537  Factors.clear();
3538  Types.clear();
3539  RegUses.clear();
3540
3541#ifndef NDEBUG
3542  // Formulae should be legal.
3543  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3544       E = Uses.end(); I != E; ++I) {
3545     const LSRUse &LU = *I;
3546     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3547          JE = LU.Formulae.end(); J != JE; ++J)
3548        assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3549                          LU.Kind, LU.AccessTy, TLI) &&
3550               "Illegal formula generated!");
3551  };
3552#endif
3553
3554  // Now that we've decided what we want, make it so.
3555  ImplementSolution(Solution, P);
3556}
3557
3558void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3559  if (Factors.empty() && Types.empty()) return;
3560
3561  OS << "LSR has identified the following interesting factors and types: ";
3562  bool First = true;
3563
3564  for (SmallSetVector<int64_t, 8>::const_iterator
3565       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3566    if (!First) OS << ", ";
3567    First = false;
3568    OS << '*' << *I;
3569  }
3570
3571  for (SmallSetVector<const Type *, 4>::const_iterator
3572       I = Types.begin(), E = Types.end(); I != E; ++I) {
3573    if (!First) OS << ", ";
3574    First = false;
3575    OS << '(' << **I << ')';
3576  }
3577  OS << '\n';
3578}
3579
3580void LSRInstance::print_fixups(raw_ostream &OS) const {
3581  OS << "LSR is examining the following fixup sites:\n";
3582  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3583       E = Fixups.end(); I != E; ++I) {
3584    const LSRFixup &LF = *I;
3585    dbgs() << "  ";
3586    LF.print(OS);
3587    OS << '\n';
3588  }
3589}
3590
3591void LSRInstance::print_uses(raw_ostream &OS) const {
3592  OS << "LSR is examining the following uses:\n";
3593  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3594       E = Uses.end(); I != E; ++I) {
3595    const LSRUse &LU = *I;
3596    dbgs() << "  ";
3597    LU.print(OS);
3598    OS << '\n';
3599    for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3600         JE = LU.Formulae.end(); J != JE; ++J) {
3601      OS << "    ";
3602      J->print(OS);
3603      OS << '\n';
3604    }
3605  }
3606}
3607
3608void LSRInstance::print(raw_ostream &OS) const {
3609  print_factors_and_types(OS);
3610  print_fixups(OS);
3611  print_uses(OS);
3612}
3613
3614void LSRInstance::dump() const {
3615  print(errs()); errs() << '\n';
3616}
3617
3618namespace {
3619
3620class LoopStrengthReduce : public LoopPass {
3621  /// TLI - Keep a pointer of a TargetLowering to consult for determining
3622  /// transformation profitability.
3623  const TargetLowering *const TLI;
3624
3625public:
3626  static char ID; // Pass ID, replacement for typeid
3627  explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3628
3629private:
3630  bool runOnLoop(Loop *L, LPPassManager &LPM);
3631  void getAnalysisUsage(AnalysisUsage &AU) const;
3632};
3633
3634}
3635
3636char LoopStrengthReduce::ID = 0;
3637static RegisterPass<LoopStrengthReduce>
3638X("loop-reduce", "Loop Strength Reduction");
3639
3640Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3641  return new LoopStrengthReduce(TLI);
3642}
3643
3644LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3645  : LoopPass(&ID), TLI(tli) {}
3646
3647void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3648  // We split critical edges, so we change the CFG.  However, we do update
3649  // many analyses if they are around.
3650  AU.addPreservedID(LoopSimplifyID);
3651  AU.addPreserved("domfrontier");
3652
3653  AU.addRequired<LoopInfo>();
3654  AU.addPreserved<LoopInfo>();
3655  AU.addRequiredID(LoopSimplifyID);
3656  AU.addRequired<DominatorTree>();
3657  AU.addPreserved<DominatorTree>();
3658  AU.addRequired<ScalarEvolution>();
3659  AU.addPreserved<ScalarEvolution>();
3660  AU.addRequired<IVUsers>();
3661  AU.addPreserved<IVUsers>();
3662}
3663
3664bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3665  bool Changed = false;
3666
3667  // Run the main LSR transformation.
3668  Changed |= LSRInstance(TLI, L, this).getChanged();
3669
3670  // At this point, it is worth checking to see if any recurrence PHIs are also
3671  // dead, so that we can remove them as well.
3672  Changed |= DeleteDeadPHIs(L->getHeader());
3673
3674  return Changed;
3675}
3676