LoopStrengthReduce.cpp revision 9fc5cdf77c812aaa80419036de27576d45894d0d
1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25//   ...
26//   %i.next = add %i, 1
27//   %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41//       instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44//       smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47//       multiple base registers, or as the increment expression in an addrec),
48//       we may not actually need both reg and (-1 * reg) in registers; the
49//       negation can be implemented by using a sub instead of an add. The
50//       lack of support for taking this into consideration when making
51//       register pressure decisions is partly worked around by the "Special"
52//       use kind.
53//
54//===----------------------------------------------------------------------===//
55
56#define DEBUG_TYPE "loop-reduce"
57#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
60#include "llvm/IntrinsicInst.h"
61#include "llvm/DerivedTypes.h"
62#include "llvm/Analysis/IVUsers.h"
63#include "llvm/Analysis/Dominators.h"
64#include "llvm/Analysis/LoopPass.h"
65#include "llvm/Analysis/ScalarEvolutionExpander.h"
66#include "llvm/Assembly/Writer.h"
67#include "llvm/Transforms/Utils/BasicBlockUtils.h"
68#include "llvm/Transforms/Utils/Local.h"
69#include "llvm/ADT/SmallBitVector.h"
70#include "llvm/ADT/SetVector.h"
71#include "llvm/ADT/DenseSet.h"
72#include "llvm/Support/Debug.h"
73#include "llvm/Support/ValueHandle.h"
74#include "llvm/Support/raw_ostream.h"
75#include "llvm/Target/TargetLowering.h"
76#include <algorithm>
77using namespace llvm;
78
79namespace {
80
81/// RegSortData - This class holds data which is used to order reuse candidates.
82class RegSortData {
83public:
84  /// UsedByIndices - This represents the set of LSRUse indices which reference
85  /// a particular register.
86  SmallBitVector UsedByIndices;
87
88  RegSortData() {}
89
90  void print(raw_ostream &OS) const;
91  void dump() const;
92};
93
94}
95
96void RegSortData::print(raw_ostream &OS) const {
97  OS << "[NumUses=" << UsedByIndices.count() << ']';
98}
99
100void RegSortData::dump() const {
101  print(errs()); errs() << '\n';
102}
103
104namespace {
105
106/// RegUseTracker - Map register candidates to information about how they are
107/// used.
108class RegUseTracker {
109  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
110
111  RegUsesTy RegUsesMap;
112  SmallVector<const SCEV *, 16> RegSequence;
113
114public:
115  void CountRegister(const SCEV *Reg, size_t LUIdx);
116  void DropRegister(const SCEV *Reg, size_t LUIdx);
117  void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
118
119  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
120
121  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
122
123  void clear();
124
125  typedef SmallVectorImpl<const SCEV *>::iterator iterator;
126  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
127  iterator begin() { return RegSequence.begin(); }
128  iterator end()   { return RegSequence.end(); }
129  const_iterator begin() const { return RegSequence.begin(); }
130  const_iterator end() const   { return RegSequence.end(); }
131};
132
133}
134
135void
136RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
137  std::pair<RegUsesTy::iterator, bool> Pair =
138    RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
139  RegSortData &RSD = Pair.first->second;
140  if (Pair.second)
141    RegSequence.push_back(Reg);
142  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
143  RSD.UsedByIndices.set(LUIdx);
144}
145
146void
147RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
148  RegUsesTy::iterator It = RegUsesMap.find(Reg);
149  assert(It != RegUsesMap.end());
150  RegSortData &RSD = It->second;
151  assert(RSD.UsedByIndices.size() > LUIdx);
152  RSD.UsedByIndices.reset(LUIdx);
153}
154
155void
156RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
157  assert(LUIdx <= LastLUIdx);
158
159  // Update RegUses. The data structure is not optimized for this purpose;
160  // we must iterate through it and update each of the bit vectors.
161  for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
162       I != E; ++I) {
163    SmallBitVector &UsedByIndices = I->second.UsedByIndices;
164    if (LUIdx < UsedByIndices.size())
165      UsedByIndices[LUIdx] =
166        LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
167    UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
168  }
169}
170
171bool
172RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
173  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
174  if (I == RegUsesMap.end())
175    return false;
176  const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
177  int i = UsedByIndices.find_first();
178  if (i == -1) return false;
179  if ((size_t)i != LUIdx) return true;
180  return UsedByIndices.find_next(i) != -1;
181}
182
183const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
184  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
185  assert(I != RegUsesMap.end() && "Unknown register!");
186  return I->second.UsedByIndices;
187}
188
189void RegUseTracker::clear() {
190  RegUsesMap.clear();
191  RegSequence.clear();
192}
193
194namespace {
195
196/// Formula - This class holds information that describes a formula for
197/// computing satisfying a use. It may include broken-out immediates and scaled
198/// registers.
199struct Formula {
200  /// AM - This is used to represent complex addressing, as well as other kinds
201  /// of interesting uses.
202  TargetLowering::AddrMode AM;
203
204  /// BaseRegs - The list of "base" registers for this use. When this is
205  /// non-empty, AM.HasBaseReg should be set to true.
206  SmallVector<const SCEV *, 2> BaseRegs;
207
208  /// ScaledReg - The 'scaled' register for this use. This should be non-null
209  /// when AM.Scale is not zero.
210  const SCEV *ScaledReg;
211
212  Formula() : ScaledReg(0) {}
213
214  void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
215
216  unsigned getNumRegs() const;
217  const Type *getType() const;
218
219  void DeleteBaseReg(const SCEV *&S);
220
221  bool referencesReg(const SCEV *S) const;
222  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
223                                  const RegUseTracker &RegUses) const;
224
225  void print(raw_ostream &OS) const;
226  void dump() const;
227};
228
229}
230
231/// DoInitialMatch - Recursion helper for InitialMatch.
232static void DoInitialMatch(const SCEV *S, Loop *L,
233                           SmallVectorImpl<const SCEV *> &Good,
234                           SmallVectorImpl<const SCEV *> &Bad,
235                           ScalarEvolution &SE) {
236  // Collect expressions which properly dominate the loop header.
237  if (SE.properlyDominates(S, L->getHeader())) {
238    Good.push_back(S);
239    return;
240  }
241
242  // Look at add operands.
243  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
244    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
245         I != E; ++I)
246      DoInitialMatch(*I, L, Good, Bad, SE);
247    return;
248  }
249
250  // Look at addrec operands.
251  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
252    if (!AR->getStart()->isZero()) {
253      DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
254      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
255                                      AR->getStepRecurrence(SE),
256                                      AR->getLoop()),
257                     L, Good, Bad, SE);
258      return;
259    }
260
261  // Handle a multiplication by -1 (negation) if it didn't fold.
262  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
263    if (Mul->getOperand(0)->isAllOnesValue()) {
264      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
265      const SCEV *NewMul = SE.getMulExpr(Ops);
266
267      SmallVector<const SCEV *, 4> MyGood;
268      SmallVector<const SCEV *, 4> MyBad;
269      DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
270      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
271        SE.getEffectiveSCEVType(NewMul->getType())));
272      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
273           E = MyGood.end(); I != E; ++I)
274        Good.push_back(SE.getMulExpr(NegOne, *I));
275      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
276           E = MyBad.end(); I != E; ++I)
277        Bad.push_back(SE.getMulExpr(NegOne, *I));
278      return;
279    }
280
281  // Ok, we can't do anything interesting. Just stuff the whole thing into a
282  // register and hope for the best.
283  Bad.push_back(S);
284}
285
286/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
287/// attempting to keep all loop-invariant and loop-computable values in a
288/// single base register.
289void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
290  SmallVector<const SCEV *, 4> Good;
291  SmallVector<const SCEV *, 4> Bad;
292  DoInitialMatch(S, L, Good, Bad, SE);
293  if (!Good.empty()) {
294    const SCEV *Sum = SE.getAddExpr(Good);
295    if (!Sum->isZero())
296      BaseRegs.push_back(Sum);
297    AM.HasBaseReg = true;
298  }
299  if (!Bad.empty()) {
300    const SCEV *Sum = SE.getAddExpr(Bad);
301    if (!Sum->isZero())
302      BaseRegs.push_back(Sum);
303    AM.HasBaseReg = true;
304  }
305}
306
307/// getNumRegs - Return the total number of register operands used by this
308/// formula. This does not include register uses implied by non-constant
309/// addrec strides.
310unsigned Formula::getNumRegs() const {
311  return !!ScaledReg + BaseRegs.size();
312}
313
314/// getType - Return the type of this formula, if it has one, or null
315/// otherwise. This type is meaningless except for the bit size.
316const Type *Formula::getType() const {
317  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
318         ScaledReg ? ScaledReg->getType() :
319         AM.BaseGV ? AM.BaseGV->getType() :
320         0;
321}
322
323/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
324void Formula::DeleteBaseReg(const SCEV *&S) {
325  if (&S != &BaseRegs.back())
326    std::swap(S, BaseRegs.back());
327  BaseRegs.pop_back();
328}
329
330/// referencesReg - Test if this formula references the given register.
331bool Formula::referencesReg(const SCEV *S) const {
332  return S == ScaledReg ||
333         std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
334}
335
336/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
337/// which are used by uses other than the use with the given index.
338bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
339                                         const RegUseTracker &RegUses) const {
340  if (ScaledReg)
341    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
342      return true;
343  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
344       E = BaseRegs.end(); I != E; ++I)
345    if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
346      return true;
347  return false;
348}
349
350void Formula::print(raw_ostream &OS) const {
351  bool First = true;
352  if (AM.BaseGV) {
353    if (!First) OS << " + "; else First = false;
354    WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
355  }
356  if (AM.BaseOffs != 0) {
357    if (!First) OS << " + "; else First = false;
358    OS << AM.BaseOffs;
359  }
360  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
361       E = BaseRegs.end(); I != E; ++I) {
362    if (!First) OS << " + "; else First = false;
363    OS << "reg(" << **I << ')';
364  }
365  if (AM.HasBaseReg && BaseRegs.empty()) {
366    if (!First) OS << " + "; else First = false;
367    OS << "**error: HasBaseReg**";
368  } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
369    if (!First) OS << " + "; else First = false;
370    OS << "**error: !HasBaseReg**";
371  }
372  if (AM.Scale != 0) {
373    if (!First) OS << " + "; else First = false;
374    OS << AM.Scale << "*reg(";
375    if (ScaledReg)
376      OS << *ScaledReg;
377    else
378      OS << "<unknown>";
379    OS << ')';
380  }
381}
382
383void Formula::dump() const {
384  print(errs()); errs() << '\n';
385}
386
387/// isAddRecSExtable - Return true if the given addrec can be sign-extended
388/// without changing its value.
389static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
390  const Type *WideTy =
391    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
392  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
393}
394
395/// isAddSExtable - Return true if the given add can be sign-extended
396/// without changing its value.
397static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
398  const Type *WideTy =
399    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
400  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
401}
402
403/// isMulSExtable - Return true if the given mul can be sign-extended
404/// without changing its value.
405static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
406  const Type *WideTy =
407    IntegerType::get(SE.getContext(),
408                     SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
409  return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
410}
411
412/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
413/// and if the remainder is known to be zero,  or null otherwise. If
414/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
415/// to Y, ignoring that the multiplication may overflow, which is useful when
416/// the result will be used in a context where the most significant bits are
417/// ignored.
418static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
419                                ScalarEvolution &SE,
420                                bool IgnoreSignificantBits = false) {
421  // Handle the trivial case, which works for any SCEV type.
422  if (LHS == RHS)
423    return SE.getConstant(LHS->getType(), 1);
424
425  // Handle a few RHS special cases.
426  const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
427  if (RC) {
428    const APInt &RA = RC->getValue()->getValue();
429    // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
430    // some folding.
431    if (RA.isAllOnesValue())
432      return SE.getMulExpr(LHS, RC);
433    // Handle x /s 1 as x.
434    if (RA == 1)
435      return LHS;
436  }
437
438  // Check for a division of a constant by a constant.
439  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
440    if (!RC)
441      return 0;
442    const APInt &LA = C->getValue()->getValue();
443    const APInt &RA = RC->getValue()->getValue();
444    if (LA.srem(RA) != 0)
445      return 0;
446    return SE.getConstant(LA.sdiv(RA));
447  }
448
449  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
450  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
451    if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
452      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
453                                      IgnoreSignificantBits);
454      if (!Step) return 0;
455      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
456                                       IgnoreSignificantBits);
457      if (!Start) return 0;
458      return SE.getAddRecExpr(Start, Step, AR->getLoop());
459    }
460    return 0;
461  }
462
463  // Distribute the sdiv over add operands, if the add doesn't overflow.
464  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
465    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
466      SmallVector<const SCEV *, 8> Ops;
467      for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
468           I != E; ++I) {
469        const SCEV *Op = getExactSDiv(*I, RHS, SE,
470                                      IgnoreSignificantBits);
471        if (!Op) return 0;
472        Ops.push_back(Op);
473      }
474      return SE.getAddExpr(Ops);
475    }
476    return 0;
477  }
478
479  // Check for a multiply operand that we can pull RHS out of.
480  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
481    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
482      SmallVector<const SCEV *, 4> Ops;
483      bool Found = false;
484      for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
485           I != E; ++I) {
486        const SCEV *S = *I;
487        if (!Found)
488          if (const SCEV *Q = getExactSDiv(S, RHS, SE,
489                                           IgnoreSignificantBits)) {
490            S = Q;
491            Found = true;
492          }
493        Ops.push_back(S);
494      }
495      return Found ? SE.getMulExpr(Ops) : 0;
496    }
497    return 0;
498  }
499
500  // Otherwise we don't know.
501  return 0;
502}
503
504/// ExtractImmediate - If S involves the addition of a constant integer value,
505/// return that integer value, and mutate S to point to a new SCEV with that
506/// value excluded.
507static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
508  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
509    if (C->getValue()->getValue().getMinSignedBits() <= 64) {
510      S = SE.getConstant(C->getType(), 0);
511      return C->getValue()->getSExtValue();
512    }
513  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
514    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
515    int64_t Result = ExtractImmediate(NewOps.front(), SE);
516    if (Result != 0)
517      S = SE.getAddExpr(NewOps);
518    return Result;
519  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
520    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
521    int64_t Result = ExtractImmediate(NewOps.front(), SE);
522    if (Result != 0)
523      S = SE.getAddRecExpr(NewOps, AR->getLoop());
524    return Result;
525  }
526  return 0;
527}
528
529/// ExtractSymbol - If S involves the addition of a GlobalValue address,
530/// return that symbol, and mutate S to point to a new SCEV with that
531/// value excluded.
532static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
533  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
534    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
535      S = SE.getConstant(GV->getType(), 0);
536      return GV;
537    }
538  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
539    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
540    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
541    if (Result)
542      S = SE.getAddExpr(NewOps);
543    return Result;
544  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
545    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
546    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
547    if (Result)
548      S = SE.getAddRecExpr(NewOps, AR->getLoop());
549    return Result;
550  }
551  return 0;
552}
553
554/// isAddressUse - Returns true if the specified instruction is using the
555/// specified value as an address.
556static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
557  bool isAddress = isa<LoadInst>(Inst);
558  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
559    if (SI->getOperand(1) == OperandVal)
560      isAddress = true;
561  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
562    // Addressing modes can also be folded into prefetches and a variety
563    // of intrinsics.
564    switch (II->getIntrinsicID()) {
565      default: break;
566      case Intrinsic::prefetch:
567      case Intrinsic::x86_sse2_loadu_dq:
568      case Intrinsic::x86_sse2_loadu_pd:
569      case Intrinsic::x86_sse_loadu_ps:
570      case Intrinsic::x86_sse_storeu_ps:
571      case Intrinsic::x86_sse2_storeu_pd:
572      case Intrinsic::x86_sse2_storeu_dq:
573      case Intrinsic::x86_sse2_storel_dq:
574        if (II->getArgOperand(0) == OperandVal)
575          isAddress = true;
576        break;
577    }
578  }
579  return isAddress;
580}
581
582/// getAccessType - Return the type of the memory being accessed.
583static const Type *getAccessType(const Instruction *Inst) {
584  const Type *AccessTy = Inst->getType();
585  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
586    AccessTy = SI->getOperand(0)->getType();
587  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
588    // Addressing modes can also be folded into prefetches and a variety
589    // of intrinsics.
590    switch (II->getIntrinsicID()) {
591    default: break;
592    case Intrinsic::x86_sse_storeu_ps:
593    case Intrinsic::x86_sse2_storeu_pd:
594    case Intrinsic::x86_sse2_storeu_dq:
595    case Intrinsic::x86_sse2_storel_dq:
596      AccessTy = II->getArgOperand(0)->getType();
597      break;
598    }
599  }
600
601  // All pointers have the same requirements, so canonicalize them to an
602  // arbitrary pointer type to minimize variation.
603  if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
604    AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
605                                PTy->getAddressSpace());
606
607  return AccessTy;
608}
609
610/// DeleteTriviallyDeadInstructions - If any of the instructions is the
611/// specified set are trivially dead, delete them and see if this makes any of
612/// their operands subsequently dead.
613static bool
614DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
615  bool Changed = false;
616
617  while (!DeadInsts.empty()) {
618    Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val());
619
620    if (I == 0 || !isInstructionTriviallyDead(I))
621      continue;
622
623    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
624      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
625        *OI = 0;
626        if (U->use_empty())
627          DeadInsts.push_back(U);
628      }
629
630    I->eraseFromParent();
631    Changed = true;
632  }
633
634  return Changed;
635}
636
637namespace {
638
639/// Cost - This class is used to measure and compare candidate formulae.
640class Cost {
641  /// TODO: Some of these could be merged. Also, a lexical ordering
642  /// isn't always optimal.
643  unsigned NumRegs;
644  unsigned AddRecCost;
645  unsigned NumIVMuls;
646  unsigned NumBaseAdds;
647  unsigned ImmCost;
648  unsigned SetupCost;
649
650public:
651  Cost()
652    : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
653      SetupCost(0) {}
654
655  bool operator<(const Cost &Other) const;
656
657  void Loose();
658
659  void RateFormula(const Formula &F,
660                   SmallPtrSet<const SCEV *, 16> &Regs,
661                   const DenseSet<const SCEV *> &VisitedRegs,
662                   const Loop *L,
663                   const SmallVectorImpl<int64_t> &Offsets,
664                   ScalarEvolution &SE, DominatorTree &DT);
665
666  void print(raw_ostream &OS) const;
667  void dump() const;
668
669private:
670  void RateRegister(const SCEV *Reg,
671                    SmallPtrSet<const SCEV *, 16> &Regs,
672                    const Loop *L,
673                    ScalarEvolution &SE, DominatorTree &DT);
674  void RatePrimaryRegister(const SCEV *Reg,
675                           SmallPtrSet<const SCEV *, 16> &Regs,
676                           const Loop *L,
677                           ScalarEvolution &SE, DominatorTree &DT);
678};
679
680}
681
682/// RateRegister - Tally up interesting quantities from the given register.
683void Cost::RateRegister(const SCEV *Reg,
684                        SmallPtrSet<const SCEV *, 16> &Regs,
685                        const Loop *L,
686                        ScalarEvolution &SE, DominatorTree &DT) {
687  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
688    if (AR->getLoop() == L)
689      AddRecCost += 1; /// TODO: This should be a function of the stride.
690
691    // If this is an addrec for a loop that's already been visited by LSR,
692    // don't second-guess its addrec phi nodes. LSR isn't currently smart
693    // enough to reason about more than one loop at a time. Consider these
694    // registers free and leave them alone.
695    else if (L->contains(AR->getLoop()) ||
696             (!AR->getLoop()->contains(L) &&
697              DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
698      for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
699           PHINode *PN = dyn_cast<PHINode>(I); ++I)
700        if (SE.isSCEVable(PN->getType()) &&
701            (SE.getEffectiveSCEVType(PN->getType()) ==
702             SE.getEffectiveSCEVType(AR->getType())) &&
703            SE.getSCEV(PN) == AR)
704          return;
705
706      // If this isn't one of the addrecs that the loop already has, it
707      // would require a costly new phi and add. TODO: This isn't
708      // precisely modeled right now.
709      ++NumBaseAdds;
710      if (!Regs.count(AR->getStart()))
711        RateRegister(AR->getStart(), Regs, L, SE, DT);
712    }
713
714    // Add the step value register, if it needs one.
715    // TODO: The non-affine case isn't precisely modeled here.
716    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
717      if (!Regs.count(AR->getStart()))
718        RateRegister(AR->getOperand(1), Regs, L, SE, DT);
719  }
720  ++NumRegs;
721
722  // Rough heuristic; favor registers which don't require extra setup
723  // instructions in the preheader.
724  if (!isa<SCEVUnknown>(Reg) &&
725      !isa<SCEVConstant>(Reg) &&
726      !(isa<SCEVAddRecExpr>(Reg) &&
727        (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
728         isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
729    ++SetupCost;
730
731    NumIVMuls += isa<SCEVMulExpr>(Reg) &&
732                 SE.hasComputableLoopEvolution(Reg, L);
733}
734
735/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
736/// before, rate it.
737void Cost::RatePrimaryRegister(const SCEV *Reg,
738                               SmallPtrSet<const SCEV *, 16> &Regs,
739                               const Loop *L,
740                               ScalarEvolution &SE, DominatorTree &DT) {
741  if (Regs.insert(Reg))
742    RateRegister(Reg, Regs, L, SE, DT);
743}
744
745void Cost::RateFormula(const Formula &F,
746                       SmallPtrSet<const SCEV *, 16> &Regs,
747                       const DenseSet<const SCEV *> &VisitedRegs,
748                       const Loop *L,
749                       const SmallVectorImpl<int64_t> &Offsets,
750                       ScalarEvolution &SE, DominatorTree &DT) {
751  // Tally up the registers.
752  if (const SCEV *ScaledReg = F.ScaledReg) {
753    if (VisitedRegs.count(ScaledReg)) {
754      Loose();
755      return;
756    }
757    RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
758  }
759  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
760       E = F.BaseRegs.end(); I != E; ++I) {
761    const SCEV *BaseReg = *I;
762    if (VisitedRegs.count(BaseReg)) {
763      Loose();
764      return;
765    }
766    RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
767  }
768
769  if (F.BaseRegs.size() > 1)
770    NumBaseAdds += F.BaseRegs.size() - 1;
771
772  // Tally up the non-zero immediates.
773  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
774       E = Offsets.end(); I != E; ++I) {
775    int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
776    if (F.AM.BaseGV)
777      ImmCost += 64; // Handle symbolic values conservatively.
778                     // TODO: This should probably be the pointer size.
779    else if (Offset != 0)
780      ImmCost += APInt(64, Offset, true).getMinSignedBits();
781  }
782}
783
784/// Loose - Set this cost to a loosing value.
785void Cost::Loose() {
786  NumRegs = ~0u;
787  AddRecCost = ~0u;
788  NumIVMuls = ~0u;
789  NumBaseAdds = ~0u;
790  ImmCost = ~0u;
791  SetupCost = ~0u;
792}
793
794/// operator< - Choose the lower cost.
795bool Cost::operator<(const Cost &Other) const {
796  if (NumRegs != Other.NumRegs)
797    return NumRegs < Other.NumRegs;
798  if (AddRecCost != Other.AddRecCost)
799    return AddRecCost < Other.AddRecCost;
800  if (NumIVMuls != Other.NumIVMuls)
801    return NumIVMuls < Other.NumIVMuls;
802  if (NumBaseAdds != Other.NumBaseAdds)
803    return NumBaseAdds < Other.NumBaseAdds;
804  if (ImmCost != Other.ImmCost)
805    return ImmCost < Other.ImmCost;
806  if (SetupCost != Other.SetupCost)
807    return SetupCost < Other.SetupCost;
808  return false;
809}
810
811void Cost::print(raw_ostream &OS) const {
812  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
813  if (AddRecCost != 0)
814    OS << ", with addrec cost " << AddRecCost;
815  if (NumIVMuls != 0)
816    OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
817  if (NumBaseAdds != 0)
818    OS << ", plus " << NumBaseAdds << " base add"
819       << (NumBaseAdds == 1 ? "" : "s");
820  if (ImmCost != 0)
821    OS << ", plus " << ImmCost << " imm cost";
822  if (SetupCost != 0)
823    OS << ", plus " << SetupCost << " setup cost";
824}
825
826void Cost::dump() const {
827  print(errs()); errs() << '\n';
828}
829
830namespace {
831
832/// LSRFixup - An operand value in an instruction which is to be replaced
833/// with some equivalent, possibly strength-reduced, replacement.
834struct LSRFixup {
835  /// UserInst - The instruction which will be updated.
836  Instruction *UserInst;
837
838  /// OperandValToReplace - The operand of the instruction which will
839  /// be replaced. The operand may be used more than once; every instance
840  /// will be replaced.
841  Value *OperandValToReplace;
842
843  /// PostIncLoops - If this user is to use the post-incremented value of an
844  /// induction variable, this variable is non-null and holds the loop
845  /// associated with the induction variable.
846  PostIncLoopSet PostIncLoops;
847
848  /// LUIdx - The index of the LSRUse describing the expression which
849  /// this fixup needs, minus an offset (below).
850  size_t LUIdx;
851
852  /// Offset - A constant offset to be added to the LSRUse expression.
853  /// This allows multiple fixups to share the same LSRUse with different
854  /// offsets, for example in an unrolled loop.
855  int64_t Offset;
856
857  bool isUseFullyOutsideLoop(const Loop *L) const;
858
859  LSRFixup();
860
861  void print(raw_ostream &OS) const;
862  void dump() const;
863};
864
865}
866
867LSRFixup::LSRFixup()
868  : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
869
870/// isUseFullyOutsideLoop - Test whether this fixup always uses its
871/// value outside of the given loop.
872bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
873  // PHI nodes use their value in their incoming blocks.
874  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
875    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
876      if (PN->getIncomingValue(i) == OperandValToReplace &&
877          L->contains(PN->getIncomingBlock(i)))
878        return false;
879    return true;
880  }
881
882  return !L->contains(UserInst);
883}
884
885void LSRFixup::print(raw_ostream &OS) const {
886  OS << "UserInst=";
887  // Store is common and interesting enough to be worth special-casing.
888  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
889    OS << "store ";
890    WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
891  } else if (UserInst->getType()->isVoidTy())
892    OS << UserInst->getOpcodeName();
893  else
894    WriteAsOperand(OS, UserInst, /*PrintType=*/false);
895
896  OS << ", OperandValToReplace=";
897  WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
898
899  for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
900       E = PostIncLoops.end(); I != E; ++I) {
901    OS << ", PostIncLoop=";
902    WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
903  }
904
905  if (LUIdx != ~size_t(0))
906    OS << ", LUIdx=" << LUIdx;
907
908  if (Offset != 0)
909    OS << ", Offset=" << Offset;
910}
911
912void LSRFixup::dump() const {
913  print(errs()); errs() << '\n';
914}
915
916namespace {
917
918/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
919/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
920struct UniquifierDenseMapInfo {
921  static SmallVector<const SCEV *, 2> getEmptyKey() {
922    SmallVector<const SCEV *, 2> V;
923    V.push_back(reinterpret_cast<const SCEV *>(-1));
924    return V;
925  }
926
927  static SmallVector<const SCEV *, 2> getTombstoneKey() {
928    SmallVector<const SCEV *, 2> V;
929    V.push_back(reinterpret_cast<const SCEV *>(-2));
930    return V;
931  }
932
933  static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
934    unsigned Result = 0;
935    for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
936         E = V.end(); I != E; ++I)
937      Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
938    return Result;
939  }
940
941  static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
942                      const SmallVector<const SCEV *, 2> &RHS) {
943    return LHS == RHS;
944  }
945};
946
947/// LSRUse - This class holds the state that LSR keeps for each use in
948/// IVUsers, as well as uses invented by LSR itself. It includes information
949/// about what kinds of things can be folded into the user, information about
950/// the user itself, and information about how the use may be satisfied.
951/// TODO: Represent multiple users of the same expression in common?
952class LSRUse {
953  DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
954
955public:
956  /// KindType - An enum for a kind of use, indicating what types of
957  /// scaled and immediate operands it might support.
958  enum KindType {
959    Basic,   ///< A normal use, with no folding.
960    Special, ///< A special case of basic, allowing -1 scales.
961    Address, ///< An address use; folding according to TargetLowering
962    ICmpZero ///< An equality icmp with both operands folded into one.
963    // TODO: Add a generic icmp too?
964  };
965
966  KindType Kind;
967  const Type *AccessTy;
968
969  SmallVector<int64_t, 8> Offsets;
970  int64_t MinOffset;
971  int64_t MaxOffset;
972
973  /// AllFixupsOutsideLoop - This records whether all of the fixups using this
974  /// LSRUse are outside of the loop, in which case some special-case heuristics
975  /// may be used.
976  bool AllFixupsOutsideLoop;
977
978  /// WidestFixupType - This records the widest use type for any fixup using
979  /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
980  /// max fixup widths to be equivalent, because the narrower one may be relying
981  /// on the implicit truncation to truncate away bogus bits.
982  const Type *WidestFixupType;
983
984  /// Formulae - A list of ways to build a value that can satisfy this user.
985  /// After the list is populated, one of these is selected heuristically and
986  /// used to formulate a replacement for OperandValToReplace in UserInst.
987  SmallVector<Formula, 12> Formulae;
988
989  /// Regs - The set of register candidates used by all formulae in this LSRUse.
990  SmallPtrSet<const SCEV *, 4> Regs;
991
992  LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
993                                      MinOffset(INT64_MAX),
994                                      MaxOffset(INT64_MIN),
995                                      AllFixupsOutsideLoop(true),
996                                      WidestFixupType(0) {}
997
998  bool HasFormulaWithSameRegs(const Formula &F) const;
999  bool InsertFormula(const Formula &F);
1000  void DeleteFormula(Formula &F);
1001  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1002
1003  void print(raw_ostream &OS) const;
1004  void dump() const;
1005};
1006
1007}
1008
1009/// HasFormula - Test whether this use as a formula which has the same
1010/// registers as the given formula.
1011bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1012  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1013  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1014  // Unstable sort by host order ok, because this is only used for uniquifying.
1015  std::sort(Key.begin(), Key.end());
1016  return Uniquifier.count(Key);
1017}
1018
1019/// InsertFormula - If the given formula has not yet been inserted, add it to
1020/// the list, and return true. Return false otherwise.
1021bool LSRUse::InsertFormula(const Formula &F) {
1022  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1023  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1024  // Unstable sort by host order ok, because this is only used for uniquifying.
1025  std::sort(Key.begin(), Key.end());
1026
1027  if (!Uniquifier.insert(Key).second)
1028    return false;
1029
1030  // Using a register to hold the value of 0 is not profitable.
1031  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1032         "Zero allocated in a scaled register!");
1033#ifndef NDEBUG
1034  for (SmallVectorImpl<const SCEV *>::const_iterator I =
1035       F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1036    assert(!(*I)->isZero() && "Zero allocated in a base register!");
1037#endif
1038
1039  // Add the formula to the list.
1040  Formulae.push_back(F);
1041
1042  // Record registers now being used by this use.
1043  if (F.ScaledReg) Regs.insert(F.ScaledReg);
1044  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1045
1046  return true;
1047}
1048
1049/// DeleteFormula - Remove the given formula from this use's list.
1050void LSRUse::DeleteFormula(Formula &F) {
1051  if (&F != &Formulae.back())
1052    std::swap(F, Formulae.back());
1053  Formulae.pop_back();
1054  assert(!Formulae.empty() && "LSRUse has no formulae left!");
1055}
1056
1057/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1058void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1059  // Now that we've filtered out some formulae, recompute the Regs set.
1060  SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1061  Regs.clear();
1062  for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1063       E = Formulae.end(); I != E; ++I) {
1064    const Formula &F = *I;
1065    if (F.ScaledReg) Regs.insert(F.ScaledReg);
1066    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1067  }
1068
1069  // Update the RegTracker.
1070  for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1071       E = OldRegs.end(); I != E; ++I)
1072    if (!Regs.count(*I))
1073      RegUses.DropRegister(*I, LUIdx);
1074}
1075
1076void LSRUse::print(raw_ostream &OS) const {
1077  OS << "LSR Use: Kind=";
1078  switch (Kind) {
1079  case Basic:    OS << "Basic"; break;
1080  case Special:  OS << "Special"; break;
1081  case ICmpZero: OS << "ICmpZero"; break;
1082  case Address:
1083    OS << "Address of ";
1084    if (AccessTy->isPointerTy())
1085      OS << "pointer"; // the full pointer type could be really verbose
1086    else
1087      OS << *AccessTy;
1088  }
1089
1090  OS << ", Offsets={";
1091  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1092       E = Offsets.end(); I != E; ++I) {
1093    OS << *I;
1094    if (llvm::next(I) != E)
1095      OS << ',';
1096  }
1097  OS << '}';
1098
1099  if (AllFixupsOutsideLoop)
1100    OS << ", all-fixups-outside-loop";
1101
1102  if (WidestFixupType)
1103    OS << ", widest fixup type: " << *WidestFixupType;
1104}
1105
1106void LSRUse::dump() const {
1107  print(errs()); errs() << '\n';
1108}
1109
1110/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1111/// be completely folded into the user instruction at isel time. This includes
1112/// address-mode folding and special icmp tricks.
1113static bool isLegalUse(const TargetLowering::AddrMode &AM,
1114                       LSRUse::KindType Kind, const Type *AccessTy,
1115                       const TargetLowering *TLI) {
1116  switch (Kind) {
1117  case LSRUse::Address:
1118    // If we have low-level target information, ask the target if it can
1119    // completely fold this address.
1120    if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1121
1122    // Otherwise, just guess that reg+reg addressing is legal.
1123    return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1124
1125  case LSRUse::ICmpZero:
1126    // There's not even a target hook for querying whether it would be legal to
1127    // fold a GV into an ICmp.
1128    if (AM.BaseGV)
1129      return false;
1130
1131    // ICmp only has two operands; don't allow more than two non-trivial parts.
1132    if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1133      return false;
1134
1135    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1136    // putting the scaled register in the other operand of the icmp.
1137    if (AM.Scale != 0 && AM.Scale != -1)
1138      return false;
1139
1140    // If we have low-level target information, ask the target if it can fold an
1141    // integer immediate on an icmp.
1142    if (AM.BaseOffs != 0) {
1143      if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1144      return false;
1145    }
1146
1147    return true;
1148
1149  case LSRUse::Basic:
1150    // Only handle single-register values.
1151    return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1152
1153  case LSRUse::Special:
1154    // Only handle -1 scales, or no scale.
1155    return AM.Scale == 0 || AM.Scale == -1;
1156  }
1157
1158  return false;
1159}
1160
1161static bool isLegalUse(TargetLowering::AddrMode AM,
1162                       int64_t MinOffset, int64_t MaxOffset,
1163                       LSRUse::KindType Kind, const Type *AccessTy,
1164                       const TargetLowering *TLI) {
1165  // Check for overflow.
1166  if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1167      (MinOffset > 0))
1168    return false;
1169  AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1170  if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1171    AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1172    // Check for overflow.
1173    if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1174        (MaxOffset > 0))
1175      return false;
1176    AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1177    return isLegalUse(AM, Kind, AccessTy, TLI);
1178  }
1179  return false;
1180}
1181
1182static bool isAlwaysFoldable(int64_t BaseOffs,
1183                             GlobalValue *BaseGV,
1184                             bool HasBaseReg,
1185                             LSRUse::KindType Kind, const Type *AccessTy,
1186                             const TargetLowering *TLI) {
1187  // Fast-path: zero is always foldable.
1188  if (BaseOffs == 0 && !BaseGV) return true;
1189
1190  // Conservatively, create an address with an immediate and a
1191  // base and a scale.
1192  TargetLowering::AddrMode AM;
1193  AM.BaseOffs = BaseOffs;
1194  AM.BaseGV = BaseGV;
1195  AM.HasBaseReg = HasBaseReg;
1196  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1197
1198  // Canonicalize a scale of 1 to a base register if the formula doesn't
1199  // already have a base register.
1200  if (!AM.HasBaseReg && AM.Scale == 1) {
1201    AM.Scale = 0;
1202    AM.HasBaseReg = true;
1203  }
1204
1205  return isLegalUse(AM, Kind, AccessTy, TLI);
1206}
1207
1208static bool isAlwaysFoldable(const SCEV *S,
1209                             int64_t MinOffset, int64_t MaxOffset,
1210                             bool HasBaseReg,
1211                             LSRUse::KindType Kind, const Type *AccessTy,
1212                             const TargetLowering *TLI,
1213                             ScalarEvolution &SE) {
1214  // Fast-path: zero is always foldable.
1215  if (S->isZero()) return true;
1216
1217  // Conservatively, create an address with an immediate and a
1218  // base and a scale.
1219  int64_t BaseOffs = ExtractImmediate(S, SE);
1220  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1221
1222  // If there's anything else involved, it's not foldable.
1223  if (!S->isZero()) return false;
1224
1225  // Fast-path: zero is always foldable.
1226  if (BaseOffs == 0 && !BaseGV) return true;
1227
1228  // Conservatively, create an address with an immediate and a
1229  // base and a scale.
1230  TargetLowering::AddrMode AM;
1231  AM.BaseOffs = BaseOffs;
1232  AM.BaseGV = BaseGV;
1233  AM.HasBaseReg = HasBaseReg;
1234  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1235
1236  return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
1237}
1238
1239namespace {
1240
1241/// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1242/// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1243struct UseMapDenseMapInfo {
1244  static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1245    return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1246  }
1247
1248  static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1249    return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1250  }
1251
1252  static unsigned
1253  getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1254    unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1255    Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1256    return Result;
1257  }
1258
1259  static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1260                      const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1261    return LHS == RHS;
1262  }
1263};
1264
1265/// LSRInstance - This class holds state for the main loop strength reduction
1266/// logic.
1267class LSRInstance {
1268  IVUsers &IU;
1269  ScalarEvolution &SE;
1270  DominatorTree &DT;
1271  LoopInfo &LI;
1272  const TargetLowering *const TLI;
1273  Loop *const L;
1274  bool Changed;
1275
1276  /// IVIncInsertPos - This is the insert position that the current loop's
1277  /// induction variable increment should be placed. In simple loops, this is
1278  /// the latch block's terminator. But in more complicated cases, this is a
1279  /// position which will dominate all the in-loop post-increment users.
1280  Instruction *IVIncInsertPos;
1281
1282  /// Factors - Interesting factors between use strides.
1283  SmallSetVector<int64_t, 8> Factors;
1284
1285  /// Types - Interesting use types, to facilitate truncation reuse.
1286  SmallSetVector<const Type *, 4> Types;
1287
1288  /// Fixups - The list of operands which are to be replaced.
1289  SmallVector<LSRFixup, 16> Fixups;
1290
1291  /// Uses - The list of interesting uses.
1292  SmallVector<LSRUse, 16> Uses;
1293
1294  /// RegUses - Track which uses use which register candidates.
1295  RegUseTracker RegUses;
1296
1297  void OptimizeShadowIV();
1298  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1299  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1300  void OptimizeLoopTermCond();
1301
1302  void CollectInterestingTypesAndFactors();
1303  void CollectFixupsAndInitialFormulae();
1304
1305  LSRFixup &getNewFixup() {
1306    Fixups.push_back(LSRFixup());
1307    return Fixups.back();
1308  }
1309
1310  // Support for sharing of LSRUses between LSRFixups.
1311  typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
1312                   size_t,
1313                   UseMapDenseMapInfo> UseMapTy;
1314  UseMapTy UseMap;
1315
1316  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1317                          LSRUse::KindType Kind, const Type *AccessTy);
1318
1319  std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1320                                    LSRUse::KindType Kind,
1321                                    const Type *AccessTy);
1322
1323  void DeleteUse(LSRUse &LU, size_t LUIdx);
1324
1325  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1326
1327public:
1328  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1329  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1330  void CountRegisters(const Formula &F, size_t LUIdx);
1331  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1332
1333  void CollectLoopInvariantFixupsAndFormulae();
1334
1335  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1336                              unsigned Depth = 0);
1337  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1338  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1339  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1340  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1341  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1342  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1343  void GenerateCrossUseConstantOffsets();
1344  void GenerateAllReuseFormulae();
1345
1346  void FilterOutUndesirableDedicatedRegisters();
1347
1348  size_t EstimateSearchSpaceComplexity() const;
1349  void NarrowSearchSpaceByDetectingSupersets();
1350  void NarrowSearchSpaceByCollapsingUnrolledCode();
1351  void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1352  void NarrowSearchSpaceByPickingWinnerRegs();
1353  void NarrowSearchSpaceUsingHeuristics();
1354
1355  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1356                    Cost &SolutionCost,
1357                    SmallVectorImpl<const Formula *> &Workspace,
1358                    const Cost &CurCost,
1359                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
1360                    DenseSet<const SCEV *> &VisitedRegs) const;
1361  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1362
1363  BasicBlock::iterator
1364    HoistInsertPosition(BasicBlock::iterator IP,
1365                        const SmallVectorImpl<Instruction *> &Inputs) const;
1366  BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1367                                                     const LSRFixup &LF,
1368                                                     const LSRUse &LU) const;
1369
1370  Value *Expand(const LSRFixup &LF,
1371                const Formula &F,
1372                BasicBlock::iterator IP,
1373                SCEVExpander &Rewriter,
1374                SmallVectorImpl<WeakVH> &DeadInsts) const;
1375  void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1376                     const Formula &F,
1377                     SCEVExpander &Rewriter,
1378                     SmallVectorImpl<WeakVH> &DeadInsts,
1379                     Pass *P) const;
1380  void Rewrite(const LSRFixup &LF,
1381               const Formula &F,
1382               SCEVExpander &Rewriter,
1383               SmallVectorImpl<WeakVH> &DeadInsts,
1384               Pass *P) const;
1385  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1386                         Pass *P);
1387
1388  LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1389
1390  bool getChanged() const { return Changed; }
1391
1392  void print_factors_and_types(raw_ostream &OS) const;
1393  void print_fixups(raw_ostream &OS) const;
1394  void print_uses(raw_ostream &OS) const;
1395  void print(raw_ostream &OS) const;
1396  void dump() const;
1397};
1398
1399}
1400
1401/// OptimizeShadowIV - If IV is used in a int-to-float cast
1402/// inside the loop then try to eliminate the cast operation.
1403void LSRInstance::OptimizeShadowIV() {
1404  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1405  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1406    return;
1407
1408  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1409       UI != E; /* empty */) {
1410    IVUsers::const_iterator CandidateUI = UI;
1411    ++UI;
1412    Instruction *ShadowUse = CandidateUI->getUser();
1413    const Type *DestTy = NULL;
1414
1415    /* If shadow use is a int->float cast then insert a second IV
1416       to eliminate this cast.
1417
1418         for (unsigned i = 0; i < n; ++i)
1419           foo((double)i);
1420
1421       is transformed into
1422
1423         double d = 0.0;
1424         for (unsigned i = 0; i < n; ++i, ++d)
1425           foo(d);
1426    */
1427    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1428      DestTy = UCast->getDestTy();
1429    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1430      DestTy = SCast->getDestTy();
1431    if (!DestTy) continue;
1432
1433    if (TLI) {
1434      // If target does not support DestTy natively then do not apply
1435      // this transformation.
1436      EVT DVT = TLI->getValueType(DestTy);
1437      if (!TLI->isTypeLegal(DVT)) continue;
1438    }
1439
1440    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1441    if (!PH) continue;
1442    if (PH->getNumIncomingValues() != 2) continue;
1443
1444    const Type *SrcTy = PH->getType();
1445    int Mantissa = DestTy->getFPMantissaWidth();
1446    if (Mantissa == -1) continue;
1447    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1448      continue;
1449
1450    unsigned Entry, Latch;
1451    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1452      Entry = 0;
1453      Latch = 1;
1454    } else {
1455      Entry = 1;
1456      Latch = 0;
1457    }
1458
1459    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1460    if (!Init) continue;
1461    Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
1462
1463    BinaryOperator *Incr =
1464      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1465    if (!Incr) continue;
1466    if (Incr->getOpcode() != Instruction::Add
1467        && Incr->getOpcode() != Instruction::Sub)
1468      continue;
1469
1470    /* Initialize new IV, double d = 0.0 in above example. */
1471    ConstantInt *C = NULL;
1472    if (Incr->getOperand(0) == PH)
1473      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1474    else if (Incr->getOperand(1) == PH)
1475      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1476    else
1477      continue;
1478
1479    if (!C) continue;
1480
1481    // Ignore negative constants, as the code below doesn't handle them
1482    // correctly. TODO: Remove this restriction.
1483    if (!C->getValue().isStrictlyPositive()) continue;
1484
1485    /* Add new PHINode. */
1486    PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
1487
1488    /* create new increment. '++d' in above example. */
1489    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1490    BinaryOperator *NewIncr =
1491      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1492                               Instruction::FAdd : Instruction::FSub,
1493                             NewPH, CFP, "IV.S.next.", Incr);
1494
1495    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1496    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1497
1498    /* Remove cast operation */
1499    ShadowUse->replaceAllUsesWith(NewPH);
1500    ShadowUse->eraseFromParent();
1501    Changed = true;
1502    break;
1503  }
1504}
1505
1506/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1507/// set the IV user and stride information and return true, otherwise return
1508/// false.
1509bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1510  for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1511    if (UI->getUser() == Cond) {
1512      // NOTE: we could handle setcc instructions with multiple uses here, but
1513      // InstCombine does it as well for simple uses, it's not clear that it
1514      // occurs enough in real life to handle.
1515      CondUse = UI;
1516      return true;
1517    }
1518  return false;
1519}
1520
1521/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1522/// a max computation.
1523///
1524/// This is a narrow solution to a specific, but acute, problem. For loops
1525/// like this:
1526///
1527///   i = 0;
1528///   do {
1529///     p[i] = 0.0;
1530///   } while (++i < n);
1531///
1532/// the trip count isn't just 'n', because 'n' might not be positive. And
1533/// unfortunately this can come up even for loops where the user didn't use
1534/// a C do-while loop. For example, seemingly well-behaved top-test loops
1535/// will commonly be lowered like this:
1536//
1537///   if (n > 0) {
1538///     i = 0;
1539///     do {
1540///       p[i] = 0.0;
1541///     } while (++i < n);
1542///   }
1543///
1544/// and then it's possible for subsequent optimization to obscure the if
1545/// test in such a way that indvars can't find it.
1546///
1547/// When indvars can't find the if test in loops like this, it creates a
1548/// max expression, which allows it to give the loop a canonical
1549/// induction variable:
1550///
1551///   i = 0;
1552///   max = n < 1 ? 1 : n;
1553///   do {
1554///     p[i] = 0.0;
1555///   } while (++i != max);
1556///
1557/// Canonical induction variables are necessary because the loop passes
1558/// are designed around them. The most obvious example of this is the
1559/// LoopInfo analysis, which doesn't remember trip count values. It
1560/// expects to be able to rediscover the trip count each time it is
1561/// needed, and it does this using a simple analysis that only succeeds if
1562/// the loop has a canonical induction variable.
1563///
1564/// However, when it comes time to generate code, the maximum operation
1565/// can be quite costly, especially if it's inside of an outer loop.
1566///
1567/// This function solves this problem by detecting this type of loop and
1568/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1569/// the instructions for the maximum computation.
1570///
1571ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1572  // Check that the loop matches the pattern we're looking for.
1573  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1574      Cond->getPredicate() != CmpInst::ICMP_NE)
1575    return Cond;
1576
1577  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1578  if (!Sel || !Sel->hasOneUse()) return Cond;
1579
1580  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1581  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1582    return Cond;
1583  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1584
1585  // Add one to the backedge-taken count to get the trip count.
1586  const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1587  if (IterationCount != SE.getSCEV(Sel)) return Cond;
1588
1589  // Check for a max calculation that matches the pattern. There's no check
1590  // for ICMP_ULE here because the comparison would be with zero, which
1591  // isn't interesting.
1592  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1593  const SCEVNAryExpr *Max = 0;
1594  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1595    Pred = ICmpInst::ICMP_SLE;
1596    Max = S;
1597  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1598    Pred = ICmpInst::ICMP_SLT;
1599    Max = S;
1600  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1601    Pred = ICmpInst::ICMP_ULT;
1602    Max = U;
1603  } else {
1604    // No match; bail.
1605    return Cond;
1606  }
1607
1608  // To handle a max with more than two operands, this optimization would
1609  // require additional checking and setup.
1610  if (Max->getNumOperands() != 2)
1611    return Cond;
1612
1613  const SCEV *MaxLHS = Max->getOperand(0);
1614  const SCEV *MaxRHS = Max->getOperand(1);
1615
1616  // ScalarEvolution canonicalizes constants to the left. For < and >, look
1617  // for a comparison with 1. For <= and >=, a comparison with zero.
1618  if (!MaxLHS ||
1619      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1620    return Cond;
1621
1622  // Check the relevant induction variable for conformance to
1623  // the pattern.
1624  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1625  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1626  if (!AR || !AR->isAffine() ||
1627      AR->getStart() != One ||
1628      AR->getStepRecurrence(SE) != One)
1629    return Cond;
1630
1631  assert(AR->getLoop() == L &&
1632         "Loop condition operand is an addrec in a different loop!");
1633
1634  // Check the right operand of the select, and remember it, as it will
1635  // be used in the new comparison instruction.
1636  Value *NewRHS = 0;
1637  if (ICmpInst::isTrueWhenEqual(Pred)) {
1638    // Look for n+1, and grab n.
1639    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1640      if (isa<ConstantInt>(BO->getOperand(1)) &&
1641          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1642          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1643        NewRHS = BO->getOperand(0);
1644    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1645      if (isa<ConstantInt>(BO->getOperand(1)) &&
1646          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1647          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1648        NewRHS = BO->getOperand(0);
1649    if (!NewRHS)
1650      return Cond;
1651  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
1652    NewRHS = Sel->getOperand(1);
1653  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
1654    NewRHS = Sel->getOperand(2);
1655  else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
1656    NewRHS = SU->getValue();
1657  else
1658    // Max doesn't match expected pattern.
1659    return Cond;
1660
1661  // Determine the new comparison opcode. It may be signed or unsigned,
1662  // and the original comparison may be either equality or inequality.
1663  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1664    Pred = CmpInst::getInversePredicate(Pred);
1665
1666  // Ok, everything looks ok to change the condition into an SLT or SGE and
1667  // delete the max calculation.
1668  ICmpInst *NewCond =
1669    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1670
1671  // Delete the max calculation instructions.
1672  Cond->replaceAllUsesWith(NewCond);
1673  CondUse->setUser(NewCond);
1674  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1675  Cond->eraseFromParent();
1676  Sel->eraseFromParent();
1677  if (Cmp->use_empty())
1678    Cmp->eraseFromParent();
1679  return NewCond;
1680}
1681
1682/// OptimizeLoopTermCond - Change loop terminating condition to use the
1683/// postinc iv when possible.
1684void
1685LSRInstance::OptimizeLoopTermCond() {
1686  SmallPtrSet<Instruction *, 4> PostIncs;
1687
1688  BasicBlock *LatchBlock = L->getLoopLatch();
1689  SmallVector<BasicBlock*, 8> ExitingBlocks;
1690  L->getExitingBlocks(ExitingBlocks);
1691
1692  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1693    BasicBlock *ExitingBlock = ExitingBlocks[i];
1694
1695    // Get the terminating condition for the loop if possible.  If we
1696    // can, we want to change it to use a post-incremented version of its
1697    // induction variable, to allow coalescing the live ranges for the IV into
1698    // one register value.
1699
1700    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1701    if (!TermBr)
1702      continue;
1703    // FIXME: Overly conservative, termination condition could be an 'or' etc..
1704    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1705      continue;
1706
1707    // Search IVUsesByStride to find Cond's IVUse if there is one.
1708    IVStrideUse *CondUse = 0;
1709    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1710    if (!FindIVUserForCond(Cond, CondUse))
1711      continue;
1712
1713    // If the trip count is computed in terms of a max (due to ScalarEvolution
1714    // being unable to find a sufficient guard, for example), change the loop
1715    // comparison to use SLT or ULT instead of NE.
1716    // One consequence of doing this now is that it disrupts the count-down
1717    // optimization. That's not always a bad thing though, because in such
1718    // cases it may still be worthwhile to avoid a max.
1719    Cond = OptimizeMax(Cond, CondUse);
1720
1721    // If this exiting block dominates the latch block, it may also use
1722    // the post-inc value if it won't be shared with other uses.
1723    // Check for dominance.
1724    if (!DT.dominates(ExitingBlock, LatchBlock))
1725      continue;
1726
1727    // Conservatively avoid trying to use the post-inc value in non-latch
1728    // exits if there may be pre-inc users in intervening blocks.
1729    if (LatchBlock != ExitingBlock)
1730      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1731        // Test if the use is reachable from the exiting block. This dominator
1732        // query is a conservative approximation of reachability.
1733        if (&*UI != CondUse &&
1734            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1735          // Conservatively assume there may be reuse if the quotient of their
1736          // strides could be a legal scale.
1737          const SCEV *A = IU.getStride(*CondUse, L);
1738          const SCEV *B = IU.getStride(*UI, L);
1739          if (!A || !B) continue;
1740          if (SE.getTypeSizeInBits(A->getType()) !=
1741              SE.getTypeSizeInBits(B->getType())) {
1742            if (SE.getTypeSizeInBits(A->getType()) >
1743                SE.getTypeSizeInBits(B->getType()))
1744              B = SE.getSignExtendExpr(B, A->getType());
1745            else
1746              A = SE.getSignExtendExpr(A, B->getType());
1747          }
1748          if (const SCEVConstant *D =
1749                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
1750            const ConstantInt *C = D->getValue();
1751            // Stride of one or negative one can have reuse with non-addresses.
1752            if (C->isOne() || C->isAllOnesValue())
1753              goto decline_post_inc;
1754            // Avoid weird situations.
1755            if (C->getValue().getMinSignedBits() >= 64 ||
1756                C->getValue().isMinSignedValue())
1757              goto decline_post_inc;
1758            // Without TLI, assume that any stride might be valid, and so any
1759            // use might be shared.
1760            if (!TLI)
1761              goto decline_post_inc;
1762            // Check for possible scaled-address reuse.
1763            const Type *AccessTy = getAccessType(UI->getUser());
1764            TargetLowering::AddrMode AM;
1765            AM.Scale = C->getSExtValue();
1766            if (TLI->isLegalAddressingMode(AM, AccessTy))
1767              goto decline_post_inc;
1768            AM.Scale = -AM.Scale;
1769            if (TLI->isLegalAddressingMode(AM, AccessTy))
1770              goto decline_post_inc;
1771          }
1772        }
1773
1774    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
1775                 << *Cond << '\n');
1776
1777    // It's possible for the setcc instruction to be anywhere in the loop, and
1778    // possible for it to have multiple users.  If it is not immediately before
1779    // the exiting block branch, move it.
1780    if (&*++BasicBlock::iterator(Cond) != TermBr) {
1781      if (Cond->hasOneUse()) {
1782        Cond->moveBefore(TermBr);
1783      } else {
1784        // Clone the terminating condition and insert into the loopend.
1785        ICmpInst *OldCond = Cond;
1786        Cond = cast<ICmpInst>(Cond->clone());
1787        Cond->setName(L->getHeader()->getName() + ".termcond");
1788        ExitingBlock->getInstList().insert(TermBr, Cond);
1789
1790        // Clone the IVUse, as the old use still exists!
1791        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
1792        TermBr->replaceUsesOfWith(OldCond, Cond);
1793      }
1794    }
1795
1796    // If we get to here, we know that we can transform the setcc instruction to
1797    // use the post-incremented version of the IV, allowing us to coalesce the
1798    // live ranges for the IV correctly.
1799    CondUse->transformToPostInc(L);
1800    Changed = true;
1801
1802    PostIncs.insert(Cond);
1803  decline_post_inc:;
1804  }
1805
1806  // Determine an insertion point for the loop induction variable increment. It
1807  // must dominate all the post-inc comparisons we just set up, and it must
1808  // dominate the loop latch edge.
1809  IVIncInsertPos = L->getLoopLatch()->getTerminator();
1810  for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1811       E = PostIncs.end(); I != E; ++I) {
1812    BasicBlock *BB =
1813      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1814                                    (*I)->getParent());
1815    if (BB == (*I)->getParent())
1816      IVIncInsertPos = *I;
1817    else if (BB != IVIncInsertPos->getParent())
1818      IVIncInsertPos = BB->getTerminator();
1819  }
1820}
1821
1822/// reconcileNewOffset - Determine if the given use can accomodate a fixup
1823/// at the given offset and other details. If so, update the use and
1824/// return true.
1825bool
1826LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1827                                LSRUse::KindType Kind, const Type *AccessTy) {
1828  int64_t NewMinOffset = LU.MinOffset;
1829  int64_t NewMaxOffset = LU.MaxOffset;
1830  const Type *NewAccessTy = AccessTy;
1831
1832  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1833  // something conservative, however this can pessimize in the case that one of
1834  // the uses will have all its uses outside the loop, for example.
1835  if (LU.Kind != Kind)
1836    return false;
1837  // Conservatively assume HasBaseReg is true for now.
1838  if (NewOffset < LU.MinOffset) {
1839    if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
1840                          Kind, AccessTy, TLI))
1841      return false;
1842    NewMinOffset = NewOffset;
1843  } else if (NewOffset > LU.MaxOffset) {
1844    if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
1845                          Kind, AccessTy, TLI))
1846      return false;
1847    NewMaxOffset = NewOffset;
1848  }
1849  // Check for a mismatched access type, and fall back conservatively as needed.
1850  // TODO: Be less conservative when the type is similar and can use the same
1851  // addressing modes.
1852  if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1853    NewAccessTy = Type::getVoidTy(AccessTy->getContext());
1854
1855  // Update the use.
1856  LU.MinOffset = NewMinOffset;
1857  LU.MaxOffset = NewMaxOffset;
1858  LU.AccessTy = NewAccessTy;
1859  if (NewOffset != LU.Offsets.back())
1860    LU.Offsets.push_back(NewOffset);
1861  return true;
1862}
1863
1864/// getUse - Return an LSRUse index and an offset value for a fixup which
1865/// needs the given expression, with the given kind and optional access type.
1866/// Either reuse an existing use or create a new one, as needed.
1867std::pair<size_t, int64_t>
1868LSRInstance::getUse(const SCEV *&Expr,
1869                    LSRUse::KindType Kind, const Type *AccessTy) {
1870  const SCEV *Copy = Expr;
1871  int64_t Offset = ExtractImmediate(Expr, SE);
1872
1873  // Basic uses can't accept any offset, for example.
1874  if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
1875    Expr = Copy;
1876    Offset = 0;
1877  }
1878
1879  std::pair<UseMapTy::iterator, bool> P =
1880    UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
1881  if (!P.second) {
1882    // A use already existed with this base.
1883    size_t LUIdx = P.first->second;
1884    LSRUse &LU = Uses[LUIdx];
1885    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
1886      // Reuse this use.
1887      return std::make_pair(LUIdx, Offset);
1888  }
1889
1890  // Create a new use.
1891  size_t LUIdx = Uses.size();
1892  P.first->second = LUIdx;
1893  Uses.push_back(LSRUse(Kind, AccessTy));
1894  LSRUse &LU = Uses[LUIdx];
1895
1896  // We don't need to track redundant offsets, but we don't need to go out
1897  // of our way here to avoid them.
1898  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1899    LU.Offsets.push_back(Offset);
1900
1901  LU.MinOffset = Offset;
1902  LU.MaxOffset = Offset;
1903  return std::make_pair(LUIdx, Offset);
1904}
1905
1906/// DeleteUse - Delete the given use from the Uses list.
1907void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
1908  if (&LU != &Uses.back())
1909    std::swap(LU, Uses.back());
1910  Uses.pop_back();
1911
1912  // Update RegUses.
1913  RegUses.SwapAndDropUse(LUIdx, Uses.size());
1914}
1915
1916/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
1917/// a formula that has the same registers as the given formula.
1918LSRUse *
1919LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
1920                                       const LSRUse &OrigLU) {
1921  // Search all uses for the formula. This could be more clever.
1922  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
1923    LSRUse &LU = Uses[LUIdx];
1924    // Check whether this use is close enough to OrigLU, to see whether it's
1925    // worthwhile looking through its formulae.
1926    // Ignore ICmpZero uses because they may contain formulae generated by
1927    // GenerateICmpZeroScales, in which case adding fixup offsets may
1928    // be invalid.
1929    if (&LU != &OrigLU &&
1930        LU.Kind != LSRUse::ICmpZero &&
1931        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
1932        LU.WidestFixupType == OrigLU.WidestFixupType &&
1933        LU.HasFormulaWithSameRegs(OrigF)) {
1934      // Scan through this use's formulae.
1935      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
1936           E = LU.Formulae.end(); I != E; ++I) {
1937        const Formula &F = *I;
1938        // Check to see if this formula has the same registers and symbols
1939        // as OrigF.
1940        if (F.BaseRegs == OrigF.BaseRegs &&
1941            F.ScaledReg == OrigF.ScaledReg &&
1942            F.AM.BaseGV == OrigF.AM.BaseGV &&
1943            F.AM.Scale == OrigF.AM.Scale) {
1944          if (F.AM.BaseOffs == 0)
1945            return &LU;
1946          // This is the formula where all the registers and symbols matched;
1947          // there aren't going to be any others. Since we declined it, we
1948          // can skip the rest of the formulae and procede to the next LSRUse.
1949          break;
1950        }
1951      }
1952    }
1953  }
1954
1955  // Nothing looked good.
1956  return 0;
1957}
1958
1959void LSRInstance::CollectInterestingTypesAndFactors() {
1960  SmallSetVector<const SCEV *, 4> Strides;
1961
1962  // Collect interesting types and strides.
1963  SmallVector<const SCEV *, 4> Worklist;
1964  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1965    const SCEV *Expr = IU.getExpr(*UI);
1966
1967    // Collect interesting types.
1968    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
1969
1970    // Add strides for mentioned loops.
1971    Worklist.push_back(Expr);
1972    do {
1973      const SCEV *S = Worklist.pop_back_val();
1974      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1975        Strides.insert(AR->getStepRecurrence(SE));
1976        Worklist.push_back(AR->getStart());
1977      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1978        Worklist.append(Add->op_begin(), Add->op_end());
1979      }
1980    } while (!Worklist.empty());
1981  }
1982
1983  // Compute interesting factors from the set of interesting strides.
1984  for (SmallSetVector<const SCEV *, 4>::const_iterator
1985       I = Strides.begin(), E = Strides.end(); I != E; ++I)
1986    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
1987         llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
1988      const SCEV *OldStride = *I;
1989      const SCEV *NewStride = *NewStrideIter;
1990
1991      if (SE.getTypeSizeInBits(OldStride->getType()) !=
1992          SE.getTypeSizeInBits(NewStride->getType())) {
1993        if (SE.getTypeSizeInBits(OldStride->getType()) >
1994            SE.getTypeSizeInBits(NewStride->getType()))
1995          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
1996        else
1997          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
1998      }
1999      if (const SCEVConstant *Factor =
2000            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2001                                                        SE, true))) {
2002        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2003          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2004      } else if (const SCEVConstant *Factor =
2005                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2006                                                               NewStride,
2007                                                               SE, true))) {
2008        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2009          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2010      }
2011    }
2012
2013  // If all uses use the same type, don't bother looking for truncation-based
2014  // reuse.
2015  if (Types.size() == 1)
2016    Types.clear();
2017
2018  DEBUG(print_factors_and_types(dbgs()));
2019}
2020
2021void LSRInstance::CollectFixupsAndInitialFormulae() {
2022  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2023    // Record the uses.
2024    LSRFixup &LF = getNewFixup();
2025    LF.UserInst = UI->getUser();
2026    LF.OperandValToReplace = UI->getOperandValToReplace();
2027    LF.PostIncLoops = UI->getPostIncLoops();
2028
2029    LSRUse::KindType Kind = LSRUse::Basic;
2030    const Type *AccessTy = 0;
2031    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2032      Kind = LSRUse::Address;
2033      AccessTy = getAccessType(LF.UserInst);
2034    }
2035
2036    const SCEV *S = IU.getExpr(*UI);
2037
2038    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2039    // (N - i == 0), and this allows (N - i) to be the expression that we work
2040    // with rather than just N or i, so we can consider the register
2041    // requirements for both N and i at the same time. Limiting this code to
2042    // equality icmps is not a problem because all interesting loops use
2043    // equality icmps, thanks to IndVarSimplify.
2044    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2045      if (CI->isEquality()) {
2046        // Swap the operands if needed to put the OperandValToReplace on the
2047        // left, for consistency.
2048        Value *NV = CI->getOperand(1);
2049        if (NV == LF.OperandValToReplace) {
2050          CI->setOperand(1, CI->getOperand(0));
2051          CI->setOperand(0, NV);
2052          NV = CI->getOperand(1);
2053          Changed = true;
2054        }
2055
2056        // x == y  -->  x - y == 0
2057        const SCEV *N = SE.getSCEV(NV);
2058        if (SE.isLoopInvariant(N, L)) {
2059          Kind = LSRUse::ICmpZero;
2060          S = SE.getMinusSCEV(N, S);
2061        }
2062
2063        // -1 and the negations of all interesting strides (except the negation
2064        // of -1) are now also interesting.
2065        for (size_t i = 0, e = Factors.size(); i != e; ++i)
2066          if (Factors[i] != -1)
2067            Factors.insert(-(uint64_t)Factors[i]);
2068        Factors.insert(-1);
2069      }
2070
2071    // Set up the initial formula for this use.
2072    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2073    LF.LUIdx = P.first;
2074    LF.Offset = P.second;
2075    LSRUse &LU = Uses[LF.LUIdx];
2076    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2077    if (!LU.WidestFixupType ||
2078        SE.getTypeSizeInBits(LU.WidestFixupType) <
2079        SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2080      LU.WidestFixupType = LF.OperandValToReplace->getType();
2081
2082    // If this is the first use of this LSRUse, give it a formula.
2083    if (LU.Formulae.empty()) {
2084      InsertInitialFormula(S, LU, LF.LUIdx);
2085      CountRegisters(LU.Formulae.back(), LF.LUIdx);
2086    }
2087  }
2088
2089  DEBUG(print_fixups(dbgs()));
2090}
2091
2092/// InsertInitialFormula - Insert a formula for the given expression into
2093/// the given use, separating out loop-variant portions from loop-invariant
2094/// and loop-computable portions.
2095void
2096LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
2097  Formula F;
2098  F.InitialMatch(S, L, SE);
2099  bool Inserted = InsertFormula(LU, LUIdx, F);
2100  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2101}
2102
2103/// InsertSupplementalFormula - Insert a simple single-register formula for
2104/// the given expression into the given use.
2105void
2106LSRInstance::InsertSupplementalFormula(const SCEV *S,
2107                                       LSRUse &LU, size_t LUIdx) {
2108  Formula F;
2109  F.BaseRegs.push_back(S);
2110  F.AM.HasBaseReg = true;
2111  bool Inserted = InsertFormula(LU, LUIdx, F);
2112  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2113}
2114
2115/// CountRegisters - Note which registers are used by the given formula,
2116/// updating RegUses.
2117void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2118  if (F.ScaledReg)
2119    RegUses.CountRegister(F.ScaledReg, LUIdx);
2120  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2121       E = F.BaseRegs.end(); I != E; ++I)
2122    RegUses.CountRegister(*I, LUIdx);
2123}
2124
2125/// InsertFormula - If the given formula has not yet been inserted, add it to
2126/// the list, and return true. Return false otherwise.
2127bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
2128  if (!LU.InsertFormula(F))
2129    return false;
2130
2131  CountRegisters(F, LUIdx);
2132  return true;
2133}
2134
2135/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2136/// loop-invariant values which we're tracking. These other uses will pin these
2137/// values in registers, making them less profitable for elimination.
2138/// TODO: This currently misses non-constant addrec step registers.
2139/// TODO: Should this give more weight to users inside the loop?
2140void
2141LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2142  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2143  SmallPtrSet<const SCEV *, 8> Inserted;
2144
2145  while (!Worklist.empty()) {
2146    const SCEV *S = Worklist.pop_back_val();
2147
2148    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
2149      Worklist.append(N->op_begin(), N->op_end());
2150    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2151      Worklist.push_back(C->getOperand());
2152    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2153      Worklist.push_back(D->getLHS());
2154      Worklist.push_back(D->getRHS());
2155    } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2156      if (!Inserted.insert(U)) continue;
2157      const Value *V = U->getValue();
2158      if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2159        // Look for instructions defined outside the loop.
2160        if (L->contains(Inst)) continue;
2161      } else if (isa<UndefValue>(V))
2162        // Undef doesn't have a live range, so it doesn't matter.
2163        continue;
2164      for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
2165           UI != UE; ++UI) {
2166        const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2167        // Ignore non-instructions.
2168        if (!UserInst)
2169          continue;
2170        // Ignore instructions in other functions (as can happen with
2171        // Constants).
2172        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
2173          continue;
2174        // Ignore instructions not dominated by the loop.
2175        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2176          UserInst->getParent() :
2177          cast<PHINode>(UserInst)->getIncomingBlock(
2178            PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2179        if (!DT.dominates(L->getHeader(), UseBB))
2180          continue;
2181        // Ignore uses which are part of other SCEV expressions, to avoid
2182        // analyzing them multiple times.
2183        if (SE.isSCEVable(UserInst->getType())) {
2184          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2185          // If the user is a no-op, look through to its uses.
2186          if (!isa<SCEVUnknown>(UserS))
2187            continue;
2188          if (UserS == U) {
2189            Worklist.push_back(
2190              SE.getUnknown(const_cast<Instruction *>(UserInst)));
2191            continue;
2192          }
2193        }
2194        // Ignore icmp instructions which are already being analyzed.
2195        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2196          unsigned OtherIdx = !UI.getOperandNo();
2197          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2198          if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
2199            continue;
2200        }
2201
2202        LSRFixup &LF = getNewFixup();
2203        LF.UserInst = const_cast<Instruction *>(UserInst);
2204        LF.OperandValToReplace = UI.getUse();
2205        std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2206        LF.LUIdx = P.first;
2207        LF.Offset = P.second;
2208        LSRUse &LU = Uses[LF.LUIdx];
2209        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2210        if (!LU.WidestFixupType ||
2211            SE.getTypeSizeInBits(LU.WidestFixupType) <
2212            SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2213          LU.WidestFixupType = LF.OperandValToReplace->getType();
2214        InsertSupplementalFormula(U, LU, LF.LUIdx);
2215        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2216        break;
2217      }
2218    }
2219  }
2220}
2221
2222/// CollectSubexprs - Split S into subexpressions which can be pulled out into
2223/// separate registers. If C is non-null, multiply each subexpression by C.
2224static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2225                            SmallVectorImpl<const SCEV *> &Ops,
2226                            const Loop *L,
2227                            ScalarEvolution &SE) {
2228  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2229    // Break out add operands.
2230    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2231         I != E; ++I)
2232      CollectSubexprs(*I, C, Ops, L, SE);
2233    return;
2234  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2235    // Split a non-zero base out of an addrec.
2236    if (!AR->getStart()->isZero()) {
2237      CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
2238                                       AR->getStepRecurrence(SE),
2239                                       AR->getLoop()),
2240                      C, Ops, L, SE);
2241      CollectSubexprs(AR->getStart(), C, Ops, L, SE);
2242      return;
2243    }
2244  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2245    // Break (C * (a + b + c)) into C*a + C*b + C*c.
2246    if (Mul->getNumOperands() == 2)
2247      if (const SCEVConstant *Op0 =
2248            dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2249        CollectSubexprs(Mul->getOperand(1),
2250                        C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
2251                        Ops, L, SE);
2252        return;
2253      }
2254  }
2255
2256  // Otherwise use the value itself, optionally with a scale applied.
2257  Ops.push_back(C ? SE.getMulExpr(C, S) : S);
2258}
2259
2260/// GenerateReassociations - Split out subexpressions from adds and the bases of
2261/// addrecs.
2262void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
2263                                         Formula Base,
2264                                         unsigned Depth) {
2265  // Arbitrarily cap recursion to protect compile time.
2266  if (Depth >= 3) return;
2267
2268  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2269    const SCEV *BaseReg = Base.BaseRegs[i];
2270
2271    SmallVector<const SCEV *, 8> AddOps;
2272    CollectSubexprs(BaseReg, 0, AddOps, L, SE);
2273
2274    if (AddOps.size() == 1) continue;
2275
2276    for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2277         JE = AddOps.end(); J != JE; ++J) {
2278
2279      // Loop-variant "unknown" values are uninteresting; we won't be able to
2280      // do anything meaningful with them.
2281      if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
2282        continue;
2283
2284      // Don't pull a constant into a register if the constant could be folded
2285      // into an immediate field.
2286      if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2287                           Base.getNumRegs() > 1,
2288                           LU.Kind, LU.AccessTy, TLI, SE))
2289        continue;
2290
2291      // Collect all operands except *J.
2292      SmallVector<const SCEV *, 8> InnerAddOps
2293        (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
2294      InnerAddOps.append
2295        (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
2296
2297      // Don't leave just a constant behind in a register if the constant could
2298      // be folded into an immediate field.
2299      if (InnerAddOps.size() == 1 &&
2300          isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2301                           Base.getNumRegs() > 1,
2302                           LU.Kind, LU.AccessTy, TLI, SE))
2303        continue;
2304
2305      const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
2306      if (InnerSum->isZero())
2307        continue;
2308      Formula F = Base;
2309      F.BaseRegs[i] = InnerSum;
2310      F.BaseRegs.push_back(*J);
2311      if (InsertFormula(LU, LUIdx, F))
2312        // If that formula hadn't been seen before, recurse to find more like
2313        // it.
2314        GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2315    }
2316  }
2317}
2318
2319/// GenerateCombinations - Generate a formula consisting of all of the
2320/// loop-dominating registers added into a single register.
2321void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
2322                                       Formula Base) {
2323  // This method is only interesting on a plurality of registers.
2324  if (Base.BaseRegs.size() <= 1) return;
2325
2326  Formula F = Base;
2327  F.BaseRegs.clear();
2328  SmallVector<const SCEV *, 4> Ops;
2329  for (SmallVectorImpl<const SCEV *>::const_iterator
2330       I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2331    const SCEV *BaseReg = *I;
2332    if (SE.properlyDominates(BaseReg, L->getHeader()) &&
2333        !SE.hasComputableLoopEvolution(BaseReg, L))
2334      Ops.push_back(BaseReg);
2335    else
2336      F.BaseRegs.push_back(BaseReg);
2337  }
2338  if (Ops.size() > 1) {
2339    const SCEV *Sum = SE.getAddExpr(Ops);
2340    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2341    // opportunity to fold something. For now, just ignore such cases
2342    // rather than proceed with zero in a register.
2343    if (!Sum->isZero()) {
2344      F.BaseRegs.push_back(Sum);
2345      (void)InsertFormula(LU, LUIdx, F);
2346    }
2347  }
2348}
2349
2350/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2351void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2352                                          Formula Base) {
2353  // We can't add a symbolic offset if the address already contains one.
2354  if (Base.AM.BaseGV) return;
2355
2356  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2357    const SCEV *G = Base.BaseRegs[i];
2358    GlobalValue *GV = ExtractSymbol(G, SE);
2359    if (G->isZero() || !GV)
2360      continue;
2361    Formula F = Base;
2362    F.AM.BaseGV = GV;
2363    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2364                    LU.Kind, LU.AccessTy, TLI))
2365      continue;
2366    F.BaseRegs[i] = G;
2367    (void)InsertFormula(LU, LUIdx, F);
2368  }
2369}
2370
2371/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2372void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2373                                          Formula Base) {
2374  // TODO: For now, just add the min and max offset, because it usually isn't
2375  // worthwhile looking at everything inbetween.
2376  SmallVector<int64_t, 2> Worklist;
2377  Worklist.push_back(LU.MinOffset);
2378  if (LU.MaxOffset != LU.MinOffset)
2379    Worklist.push_back(LU.MaxOffset);
2380
2381  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2382    const SCEV *G = Base.BaseRegs[i];
2383
2384    for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2385         E = Worklist.end(); I != E; ++I) {
2386      Formula F = Base;
2387      F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2388      if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2389                     LU.Kind, LU.AccessTy, TLI)) {
2390        // Add the offset to the base register.
2391        const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
2392        // If it cancelled out, drop the base register, otherwise update it.
2393        if (NewG->isZero()) {
2394          std::swap(F.BaseRegs[i], F.BaseRegs.back());
2395          F.BaseRegs.pop_back();
2396        } else
2397          F.BaseRegs[i] = NewG;
2398
2399        (void)InsertFormula(LU, LUIdx, F);
2400      }
2401    }
2402
2403    int64_t Imm = ExtractImmediate(G, SE);
2404    if (G->isZero() || Imm == 0)
2405      continue;
2406    Formula F = Base;
2407    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2408    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2409                    LU.Kind, LU.AccessTy, TLI))
2410      continue;
2411    F.BaseRegs[i] = G;
2412    (void)InsertFormula(LU, LUIdx, F);
2413  }
2414}
2415
2416/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2417/// the comparison. For example, x == y -> x*c == y*c.
2418void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2419                                         Formula Base) {
2420  if (LU.Kind != LSRUse::ICmpZero) return;
2421
2422  // Determine the integer type for the base formula.
2423  const Type *IntTy = Base.getType();
2424  if (!IntTy) return;
2425  if (SE.getTypeSizeInBits(IntTy) > 64) return;
2426
2427  // Don't do this if there is more than one offset.
2428  if (LU.MinOffset != LU.MaxOffset) return;
2429
2430  assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2431
2432  // Check each interesting stride.
2433  for (SmallSetVector<int64_t, 8>::const_iterator
2434       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2435    int64_t Factor = *I;
2436
2437    // Check that the multiplication doesn't overflow.
2438    if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
2439      continue;
2440    int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
2441    if (NewBaseOffs / Factor != Base.AM.BaseOffs)
2442      continue;
2443
2444    // Check that multiplying with the use offset doesn't overflow.
2445    int64_t Offset = LU.MinOffset;
2446    if (Offset == INT64_MIN && Factor == -1)
2447      continue;
2448    Offset = (uint64_t)Offset * Factor;
2449    if (Offset / Factor != LU.MinOffset)
2450      continue;
2451
2452    Formula F = Base;
2453    F.AM.BaseOffs = NewBaseOffs;
2454
2455    // Check that this scale is legal.
2456    if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2457      continue;
2458
2459    // Compensate for the use having MinOffset built into it.
2460    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2461
2462    const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2463
2464    // Check that multiplying with each base register doesn't overflow.
2465    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2466      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
2467      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
2468        goto next;
2469    }
2470
2471    // Check that multiplying with the scaled register doesn't overflow.
2472    if (F.ScaledReg) {
2473      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
2474      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
2475        continue;
2476    }
2477
2478    // If we make it here and it's legal, add it.
2479    (void)InsertFormula(LU, LUIdx, F);
2480  next:;
2481  }
2482}
2483
2484/// GenerateScales - Generate stride factor reuse formulae by making use of
2485/// scaled-offset address modes, for example.
2486void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
2487  // Determine the integer type for the base formula.
2488  const Type *IntTy = Base.getType();
2489  if (!IntTy) return;
2490
2491  // If this Formula already has a scaled register, we can't add another one.
2492  if (Base.AM.Scale != 0) return;
2493
2494  // Check each interesting stride.
2495  for (SmallSetVector<int64_t, 8>::const_iterator
2496       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2497    int64_t Factor = *I;
2498
2499    Base.AM.Scale = Factor;
2500    Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2501    // Check whether this scale is going to be legal.
2502    if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2503                    LU.Kind, LU.AccessTy, TLI)) {
2504      // As a special-case, handle special out-of-loop Basic users specially.
2505      // TODO: Reconsider this special case.
2506      if (LU.Kind == LSRUse::Basic &&
2507          isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2508                     LSRUse::Special, LU.AccessTy, TLI) &&
2509          LU.AllFixupsOutsideLoop)
2510        LU.Kind = LSRUse::Special;
2511      else
2512        continue;
2513    }
2514    // For an ICmpZero, negating a solitary base register won't lead to
2515    // new solutions.
2516    if (LU.Kind == LSRUse::ICmpZero &&
2517        !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2518      continue;
2519    // For each addrec base reg, apply the scale, if possible.
2520    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2521      if (const SCEVAddRecExpr *AR =
2522            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
2523        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2524        if (FactorS->isZero())
2525          continue;
2526        // Divide out the factor, ignoring high bits, since we'll be
2527        // scaling the value back up in the end.
2528        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
2529          // TODO: This could be optimized to avoid all the copying.
2530          Formula F = Base;
2531          F.ScaledReg = Quotient;
2532          F.DeleteBaseReg(F.BaseRegs[i]);
2533          (void)InsertFormula(LU, LUIdx, F);
2534        }
2535      }
2536  }
2537}
2538
2539/// GenerateTruncates - Generate reuse formulae from different IV types.
2540void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
2541  // This requires TargetLowering to tell us which truncates are free.
2542  if (!TLI) return;
2543
2544  // Don't bother truncating symbolic values.
2545  if (Base.AM.BaseGV) return;
2546
2547  // Determine the integer type for the base formula.
2548  const Type *DstTy = Base.getType();
2549  if (!DstTy) return;
2550  DstTy = SE.getEffectiveSCEVType(DstTy);
2551
2552  for (SmallSetVector<const Type *, 4>::const_iterator
2553       I = Types.begin(), E = Types.end(); I != E; ++I) {
2554    const Type *SrcTy = *I;
2555    if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2556      Formula F = Base;
2557
2558      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2559      for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2560           JE = F.BaseRegs.end(); J != JE; ++J)
2561        *J = SE.getAnyExtendExpr(*J, SrcTy);
2562
2563      // TODO: This assumes we've done basic processing on all uses and
2564      // have an idea what the register usage is.
2565      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2566        continue;
2567
2568      (void)InsertFormula(LU, LUIdx, F);
2569    }
2570  }
2571}
2572
2573namespace {
2574
2575/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
2576/// defer modifications so that the search phase doesn't have to worry about
2577/// the data structures moving underneath it.
2578struct WorkItem {
2579  size_t LUIdx;
2580  int64_t Imm;
2581  const SCEV *OrigReg;
2582
2583  WorkItem(size_t LI, int64_t I, const SCEV *R)
2584    : LUIdx(LI), Imm(I), OrigReg(R) {}
2585
2586  void print(raw_ostream &OS) const;
2587  void dump() const;
2588};
2589
2590}
2591
2592void WorkItem::print(raw_ostream &OS) const {
2593  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2594     << " , add offset " << Imm;
2595}
2596
2597void WorkItem::dump() const {
2598  print(errs()); errs() << '\n';
2599}
2600
2601/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2602/// distance apart and try to form reuse opportunities between them.
2603void LSRInstance::GenerateCrossUseConstantOffsets() {
2604  // Group the registers by their value without any added constant offset.
2605  typedef std::map<int64_t, const SCEV *> ImmMapTy;
2606  typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2607  RegMapTy Map;
2608  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2609  SmallVector<const SCEV *, 8> Sequence;
2610  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2611       I != E; ++I) {
2612    const SCEV *Reg = *I;
2613    int64_t Imm = ExtractImmediate(Reg, SE);
2614    std::pair<RegMapTy::iterator, bool> Pair =
2615      Map.insert(std::make_pair(Reg, ImmMapTy()));
2616    if (Pair.second)
2617      Sequence.push_back(Reg);
2618    Pair.first->second.insert(std::make_pair(Imm, *I));
2619    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2620  }
2621
2622  // Now examine each set of registers with the same base value. Build up
2623  // a list of work to do and do the work in a separate step so that we're
2624  // not adding formulae and register counts while we're searching.
2625  SmallVector<WorkItem, 32> WorkItems;
2626  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2627  for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2628       E = Sequence.end(); I != E; ++I) {
2629    const SCEV *Reg = *I;
2630    const ImmMapTy &Imms = Map.find(Reg)->second;
2631
2632    // It's not worthwhile looking for reuse if there's only one offset.
2633    if (Imms.size() == 1)
2634      continue;
2635
2636    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2637          for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2638               J != JE; ++J)
2639            dbgs() << ' ' << J->first;
2640          dbgs() << '\n');
2641
2642    // Examine each offset.
2643    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2644         J != JE; ++J) {
2645      const SCEV *OrigReg = J->second;
2646
2647      int64_t JImm = J->first;
2648      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2649
2650      if (!isa<SCEVConstant>(OrigReg) &&
2651          UsedByIndicesMap[Reg].count() == 1) {
2652        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2653        continue;
2654      }
2655
2656      // Conservatively examine offsets between this orig reg a few selected
2657      // other orig regs.
2658      ImmMapTy::const_iterator OtherImms[] = {
2659        Imms.begin(), prior(Imms.end()),
2660        Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2661      };
2662      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2663        ImmMapTy::const_iterator M = OtherImms[i];
2664        if (M == J || M == JE) continue;
2665
2666        // Compute the difference between the two.
2667        int64_t Imm = (uint64_t)JImm - M->first;
2668        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2669             LUIdx = UsedByIndices.find_next(LUIdx))
2670          // Make a memo of this use, offset, and register tuple.
2671          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2672            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
2673      }
2674    }
2675  }
2676
2677  Map.clear();
2678  Sequence.clear();
2679  UsedByIndicesMap.clear();
2680  UniqueItems.clear();
2681
2682  // Now iterate through the worklist and add new formulae.
2683  for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2684       E = WorkItems.end(); I != E; ++I) {
2685    const WorkItem &WI = *I;
2686    size_t LUIdx = WI.LUIdx;
2687    LSRUse &LU = Uses[LUIdx];
2688    int64_t Imm = WI.Imm;
2689    const SCEV *OrigReg = WI.OrigReg;
2690
2691    const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2692    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2693    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2694
2695    // TODO: Use a more targeted data structure.
2696    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
2697      const Formula &F = LU.Formulae[L];
2698      // Use the immediate in the scaled register.
2699      if (F.ScaledReg == OrigReg) {
2700        int64_t Offs = (uint64_t)F.AM.BaseOffs +
2701                       Imm * (uint64_t)F.AM.Scale;
2702        // Don't create 50 + reg(-50).
2703        if (F.referencesReg(SE.getSCEV(
2704                   ConstantInt::get(IntTy, -(uint64_t)Offs))))
2705          continue;
2706        Formula NewF = F;
2707        NewF.AM.BaseOffs = Offs;
2708        if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2709                        LU.Kind, LU.AccessTy, TLI))
2710          continue;
2711        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2712
2713        // If the new scale is a constant in a register, and adding the constant
2714        // value to the immediate would produce a value closer to zero than the
2715        // immediate itself, then the formula isn't worthwhile.
2716        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2717          if (C->getValue()->getValue().isNegative() !=
2718                (NewF.AM.BaseOffs < 0) &&
2719              (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
2720                .ule(abs64(NewF.AM.BaseOffs)))
2721            continue;
2722
2723        // OK, looks good.
2724        (void)InsertFormula(LU, LUIdx, NewF);
2725      } else {
2726        // Use the immediate in a base register.
2727        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2728          const SCEV *BaseReg = F.BaseRegs[N];
2729          if (BaseReg != OrigReg)
2730            continue;
2731          Formula NewF = F;
2732          NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2733          if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2734                          LU.Kind, LU.AccessTy, TLI))
2735            continue;
2736          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2737
2738          // If the new formula has a constant in a register, and adding the
2739          // constant value to the immediate would produce a value closer to
2740          // zero than the immediate itself, then the formula isn't worthwhile.
2741          for (SmallVectorImpl<const SCEV *>::const_iterator
2742               J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2743               J != JE; ++J)
2744            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
2745              if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
2746                   abs64(NewF.AM.BaseOffs)) &&
2747                  (C->getValue()->getValue() +
2748                   NewF.AM.BaseOffs).countTrailingZeros() >=
2749                   CountTrailingZeros_64(NewF.AM.BaseOffs))
2750                goto skip_formula;
2751
2752          // Ok, looks good.
2753          (void)InsertFormula(LU, LUIdx, NewF);
2754          break;
2755        skip_formula:;
2756        }
2757      }
2758    }
2759  }
2760}
2761
2762/// GenerateAllReuseFormulae - Generate formulae for each use.
2763void
2764LSRInstance::GenerateAllReuseFormulae() {
2765  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
2766  // queries are more precise.
2767  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2768    LSRUse &LU = Uses[LUIdx];
2769    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2770      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2771    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2772      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2773  }
2774  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2775    LSRUse &LU = Uses[LUIdx];
2776    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2777      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2778    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2779      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2780    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2781      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2782    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2783      GenerateScales(LU, LUIdx, LU.Formulae[i]);
2784  }
2785  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2786    LSRUse &LU = Uses[LUIdx];
2787    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2788      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2789  }
2790
2791  GenerateCrossUseConstantOffsets();
2792
2793  DEBUG(dbgs() << "\n"
2794                  "After generating reuse formulae:\n";
2795        print_uses(dbgs()));
2796}
2797
2798/// If there are multiple formulae with the same set of registers used
2799/// by other uses, pick the best one and delete the others.
2800void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2801  DenseSet<const SCEV *> VisitedRegs;
2802  SmallPtrSet<const SCEV *, 16> Regs;
2803#ifndef NDEBUG
2804  bool ChangedFormulae = false;
2805#endif
2806
2807  // Collect the best formula for each unique set of shared registers. This
2808  // is reset for each use.
2809  typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2810    BestFormulaeTy;
2811  BestFormulaeTy BestFormulae;
2812
2813  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2814    LSRUse &LU = Uses[LUIdx];
2815    DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
2816
2817    bool Any = false;
2818    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2819         FIdx != NumForms; ++FIdx) {
2820      Formula &F = LU.Formulae[FIdx];
2821
2822      SmallVector<const SCEV *, 2> Key;
2823      for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2824           JE = F.BaseRegs.end(); J != JE; ++J) {
2825        const SCEV *Reg = *J;
2826        if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2827          Key.push_back(Reg);
2828      }
2829      if (F.ScaledReg &&
2830          RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2831        Key.push_back(F.ScaledReg);
2832      // Unstable sort by host order ok, because this is only used for
2833      // uniquifying.
2834      std::sort(Key.begin(), Key.end());
2835
2836      std::pair<BestFormulaeTy::const_iterator, bool> P =
2837        BestFormulae.insert(std::make_pair(Key, FIdx));
2838      if (!P.second) {
2839        Formula &Best = LU.Formulae[P.first->second];
2840
2841        Cost CostF;
2842        CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
2843        Regs.clear();
2844        Cost CostBest;
2845        CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
2846        Regs.clear();
2847        if (CostF < CostBest)
2848          std::swap(F, Best);
2849        DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
2850              dbgs() << "\n"
2851                        "    in favor of formula "; Best.print(dbgs());
2852              dbgs() << '\n');
2853#ifndef NDEBUG
2854        ChangedFormulae = true;
2855#endif
2856        LU.DeleteFormula(F);
2857        --FIdx;
2858        --NumForms;
2859        Any = true;
2860        continue;
2861      }
2862    }
2863
2864    // Now that we've filtered out some formulae, recompute the Regs set.
2865    if (Any)
2866      LU.RecomputeRegs(LUIdx, RegUses);
2867
2868    // Reset this to prepare for the next use.
2869    BestFormulae.clear();
2870  }
2871
2872  DEBUG(if (ChangedFormulae) {
2873          dbgs() << "\n"
2874                    "After filtering out undesirable candidates:\n";
2875          print_uses(dbgs());
2876        });
2877}
2878
2879// This is a rough guess that seems to work fairly well.
2880static const size_t ComplexityLimit = UINT16_MAX;
2881
2882/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
2883/// solutions the solver might have to consider. It almost never considers
2884/// this many solutions because it prune the search space, but the pruning
2885/// isn't always sufficient.
2886size_t LSRInstance::EstimateSearchSpaceComplexity() const {
2887  size_t Power = 1;
2888  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2889       E = Uses.end(); I != E; ++I) {
2890    size_t FSize = I->Formulae.size();
2891    if (FSize >= ComplexityLimit) {
2892      Power = ComplexityLimit;
2893      break;
2894    }
2895    Power *= FSize;
2896    if (Power >= ComplexityLimit)
2897      break;
2898  }
2899  return Power;
2900}
2901
2902/// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
2903/// of the registers of another formula, it won't help reduce register
2904/// pressure (though it may not necessarily hurt register pressure); remove
2905/// it to simplify the system.
2906void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
2907  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2908    DEBUG(dbgs() << "The search space is too complex.\n");
2909
2910    DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
2911                    "which use a superset of registers used by other "
2912                    "formulae.\n");
2913
2914    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2915      LSRUse &LU = Uses[LUIdx];
2916      bool Any = false;
2917      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2918        Formula &F = LU.Formulae[i];
2919        // Look for a formula with a constant or GV in a register. If the use
2920        // also has a formula with that same value in an immediate field,
2921        // delete the one that uses a register.
2922        for (SmallVectorImpl<const SCEV *>::const_iterator
2923             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
2924          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
2925            Formula NewF = F;
2926            NewF.AM.BaseOffs += C->getValue()->getSExtValue();
2927            NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2928                                (I - F.BaseRegs.begin()));
2929            if (LU.HasFormulaWithSameRegs(NewF)) {
2930              DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
2931              LU.DeleteFormula(F);
2932              --i;
2933              --e;
2934              Any = true;
2935              break;
2936            }
2937          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
2938            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
2939              if (!F.AM.BaseGV) {
2940                Formula NewF = F;
2941                NewF.AM.BaseGV = GV;
2942                NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2943                                    (I - F.BaseRegs.begin()));
2944                if (LU.HasFormulaWithSameRegs(NewF)) {
2945                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
2946                        dbgs() << '\n');
2947                  LU.DeleteFormula(F);
2948                  --i;
2949                  --e;
2950                  Any = true;
2951                  break;
2952                }
2953              }
2954          }
2955        }
2956      }
2957      if (Any)
2958        LU.RecomputeRegs(LUIdx, RegUses);
2959    }
2960
2961    DEBUG(dbgs() << "After pre-selection:\n";
2962          print_uses(dbgs()));
2963  }
2964}
2965
2966/// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
2967/// for expressions like A, A+1, A+2, etc., allocate a single register for
2968/// them.
2969void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
2970  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2971    DEBUG(dbgs() << "The search space is too complex.\n");
2972
2973    DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
2974                    "separated by a constant offset will use the same "
2975                    "registers.\n");
2976
2977    // This is especially useful for unrolled loops.
2978
2979    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2980      LSRUse &LU = Uses[LUIdx];
2981      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2982           E = LU.Formulae.end(); I != E; ++I) {
2983        const Formula &F = *I;
2984        if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
2985          if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
2986            if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
2987                                   /*HasBaseReg=*/false,
2988                                   LU.Kind, LU.AccessTy)) {
2989              DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs());
2990                    dbgs() << '\n');
2991
2992              LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
2993
2994              // Update the relocs to reference the new use.
2995              for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
2996                   E = Fixups.end(); I != E; ++I) {
2997                LSRFixup &Fixup = *I;
2998                if (Fixup.LUIdx == LUIdx) {
2999                  Fixup.LUIdx = LUThatHas - &Uses.front();
3000                  Fixup.Offset += F.AM.BaseOffs;
3001                  // Add the new offset to LUThatHas' offset list.
3002                  if (LUThatHas->Offsets.back() != Fixup.Offset) {
3003                    LUThatHas->Offsets.push_back(Fixup.Offset);
3004                    if (Fixup.Offset > LUThatHas->MaxOffset)
3005                      LUThatHas->MaxOffset = Fixup.Offset;
3006                    if (Fixup.Offset < LUThatHas->MinOffset)
3007                      LUThatHas->MinOffset = Fixup.Offset;
3008                  }
3009                  DEBUG(dbgs() << "New fixup has offset "
3010                               << Fixup.Offset << '\n');
3011                }
3012                if (Fixup.LUIdx == NumUses-1)
3013                  Fixup.LUIdx = LUIdx;
3014              }
3015
3016              // Delete formulae from the new use which are no longer legal.
3017              bool Any = false;
3018              for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
3019                Formula &F = LUThatHas->Formulae[i];
3020                if (!isLegalUse(F.AM,
3021                                LUThatHas->MinOffset, LUThatHas->MaxOffset,
3022                                LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
3023                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
3024                        dbgs() << '\n');
3025                  LUThatHas->DeleteFormula(F);
3026                  --i;
3027                  --e;
3028                  Any = true;
3029                }
3030              }
3031              if (Any)
3032                LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
3033
3034              // Delete the old use.
3035              DeleteUse(LU, LUIdx);
3036              --LUIdx;
3037              --NumUses;
3038              break;
3039            }
3040          }
3041        }
3042      }
3043    }
3044
3045    DEBUG(dbgs() << "After pre-selection:\n";
3046          print_uses(dbgs()));
3047  }
3048}
3049
3050/// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
3051/// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
3052/// we've done more filtering, as it may be able to find more formulae to
3053/// eliminate.
3054void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
3055  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3056    DEBUG(dbgs() << "The search space is too complex.\n");
3057
3058    DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
3059                    "undesirable dedicated registers.\n");
3060
3061    FilterOutUndesirableDedicatedRegisters();
3062
3063    DEBUG(dbgs() << "After pre-selection:\n";
3064          print_uses(dbgs()));
3065  }
3066}
3067
3068/// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
3069/// to be profitable, and then in any use which has any reference to that
3070/// register, delete all formulae which do not reference that register.
3071void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
3072  // With all other options exhausted, loop until the system is simple
3073  // enough to handle.
3074  SmallPtrSet<const SCEV *, 4> Taken;
3075  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3076    // Ok, we have too many of formulae on our hands to conveniently handle.
3077    // Use a rough heuristic to thin out the list.
3078    DEBUG(dbgs() << "The search space is too complex.\n");
3079
3080    // Pick the register which is used by the most LSRUses, which is likely
3081    // to be a good reuse register candidate.
3082    const SCEV *Best = 0;
3083    unsigned BestNum = 0;
3084    for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3085         I != E; ++I) {
3086      const SCEV *Reg = *I;
3087      if (Taken.count(Reg))
3088        continue;
3089      if (!Best)
3090        Best = Reg;
3091      else {
3092        unsigned Count = RegUses.getUsedByIndices(Reg).count();
3093        if (Count > BestNum) {
3094          Best = Reg;
3095          BestNum = Count;
3096        }
3097      }
3098    }
3099
3100    DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
3101                 << " will yield profitable reuse.\n");
3102    Taken.insert(Best);
3103
3104    // In any use with formulae which references this register, delete formulae
3105    // which don't reference it.
3106    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3107      LSRUse &LU = Uses[LUIdx];
3108      if (!LU.Regs.count(Best)) continue;
3109
3110      bool Any = false;
3111      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3112        Formula &F = LU.Formulae[i];
3113        if (!F.referencesReg(Best)) {
3114          DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
3115          LU.DeleteFormula(F);
3116          --e;
3117          --i;
3118          Any = true;
3119          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
3120          continue;
3121        }
3122      }
3123
3124      if (Any)
3125        LU.RecomputeRegs(LUIdx, RegUses);
3126    }
3127
3128    DEBUG(dbgs() << "After pre-selection:\n";
3129          print_uses(dbgs()));
3130  }
3131}
3132
3133/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
3134/// formulae to choose from, use some rough heuristics to prune down the number
3135/// of formulae. This keeps the main solver from taking an extraordinary amount
3136/// of time in some worst-case scenarios.
3137void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
3138  NarrowSearchSpaceByDetectingSupersets();
3139  NarrowSearchSpaceByCollapsingUnrolledCode();
3140  NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
3141  NarrowSearchSpaceByPickingWinnerRegs();
3142}
3143
3144/// SolveRecurse - This is the recursive solver.
3145void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
3146                               Cost &SolutionCost,
3147                               SmallVectorImpl<const Formula *> &Workspace,
3148                               const Cost &CurCost,
3149                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
3150                               DenseSet<const SCEV *> &VisitedRegs) const {
3151  // Some ideas:
3152  //  - prune more:
3153  //    - use more aggressive filtering
3154  //    - sort the formula so that the most profitable solutions are found first
3155  //    - sort the uses too
3156  //  - search faster:
3157  //    - don't compute a cost, and then compare. compare while computing a cost
3158  //      and bail early.
3159  //    - track register sets with SmallBitVector
3160
3161  const LSRUse &LU = Uses[Workspace.size()];
3162
3163  // If this use references any register that's already a part of the
3164  // in-progress solution, consider it a requirement that a formula must
3165  // reference that register in order to be considered. This prunes out
3166  // unprofitable searching.
3167  SmallSetVector<const SCEV *, 4> ReqRegs;
3168  for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3169       E = CurRegs.end(); I != E; ++I)
3170    if (LU.Regs.count(*I))
3171      ReqRegs.insert(*I);
3172
3173  bool AnySatisfiedReqRegs = false;
3174  SmallPtrSet<const SCEV *, 16> NewRegs;
3175  Cost NewCost;
3176retry:
3177  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3178       E = LU.Formulae.end(); I != E; ++I) {
3179    const Formula &F = *I;
3180
3181    // Ignore formulae which do not use any of the required registers.
3182    for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3183         JE = ReqRegs.end(); J != JE; ++J) {
3184      const SCEV *Reg = *J;
3185      if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3186          std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3187          F.BaseRegs.end())
3188        goto skip;
3189    }
3190    AnySatisfiedReqRegs = true;
3191
3192    // Evaluate the cost of the current formula. If it's already worse than
3193    // the current best, prune the search at that point.
3194    NewCost = CurCost;
3195    NewRegs = CurRegs;
3196    NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
3197    if (NewCost < SolutionCost) {
3198      Workspace.push_back(&F);
3199      if (Workspace.size() != Uses.size()) {
3200        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
3201                     NewRegs, VisitedRegs);
3202        if (F.getNumRegs() == 1 && Workspace.size() == 1)
3203          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
3204      } else {
3205        DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
3206              dbgs() << ". Regs:";
3207              for (SmallPtrSet<const SCEV *, 16>::const_iterator
3208                   I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
3209                dbgs() << ' ' << **I;
3210              dbgs() << '\n');
3211
3212        SolutionCost = NewCost;
3213        Solution = Workspace;
3214      }
3215      Workspace.pop_back();
3216    }
3217  skip:;
3218  }
3219
3220  // If none of the formulae had all of the required registers, relax the
3221  // constraint so that we don't exclude all formulae.
3222  if (!AnySatisfiedReqRegs) {
3223    assert(!ReqRegs.empty() && "Solver failed even without required registers");
3224    ReqRegs.clear();
3225    goto retry;
3226  }
3227}
3228
3229/// Solve - Choose one formula from each use. Return the results in the given
3230/// Solution vector.
3231void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
3232  SmallVector<const Formula *, 8> Workspace;
3233  Cost SolutionCost;
3234  SolutionCost.Loose();
3235  Cost CurCost;
3236  SmallPtrSet<const SCEV *, 16> CurRegs;
3237  DenseSet<const SCEV *> VisitedRegs;
3238  Workspace.reserve(Uses.size());
3239
3240  // SolveRecurse does all the work.
3241  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
3242               CurRegs, VisitedRegs);
3243
3244  // Ok, we've now made all our decisions.
3245  DEBUG(dbgs() << "\n"
3246                  "The chosen solution requires "; SolutionCost.print(dbgs());
3247        dbgs() << ":\n";
3248        for (size_t i = 0, e = Uses.size(); i != e; ++i) {
3249          dbgs() << "  ";
3250          Uses[i].print(dbgs());
3251          dbgs() << "\n"
3252                    "    ";
3253          Solution[i]->print(dbgs());
3254          dbgs() << '\n';
3255        });
3256
3257  assert(Solution.size() == Uses.size() && "Malformed solution!");
3258}
3259
3260/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
3261/// the dominator tree far as we can go while still being dominated by the
3262/// input positions. This helps canonicalize the insert position, which
3263/// encourages sharing.
3264BasicBlock::iterator
3265LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
3266                                 const SmallVectorImpl<Instruction *> &Inputs)
3267                                                                         const {
3268  for (;;) {
3269    const Loop *IPLoop = LI.getLoopFor(IP->getParent());
3270    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
3271
3272    BasicBlock *IDom;
3273    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
3274      if (!Rung) return IP;
3275      Rung = Rung->getIDom();
3276      if (!Rung) return IP;
3277      IDom = Rung->getBlock();
3278
3279      // Don't climb into a loop though.
3280      const Loop *IDomLoop = LI.getLoopFor(IDom);
3281      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
3282      if (IDomDepth <= IPLoopDepth &&
3283          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
3284        break;
3285    }
3286
3287    bool AllDominate = true;
3288    Instruction *BetterPos = 0;
3289    Instruction *Tentative = IDom->getTerminator();
3290    for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
3291         E = Inputs.end(); I != E; ++I) {
3292      Instruction *Inst = *I;
3293      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
3294        AllDominate = false;
3295        break;
3296      }
3297      // Attempt to find an insert position in the middle of the block,
3298      // instead of at the end, so that it can be used for other expansions.
3299      if (IDom == Inst->getParent() &&
3300          (!BetterPos || DT.dominates(BetterPos, Inst)))
3301        BetterPos = llvm::next(BasicBlock::iterator(Inst));
3302    }
3303    if (!AllDominate)
3304      break;
3305    if (BetterPos)
3306      IP = BetterPos;
3307    else
3308      IP = Tentative;
3309  }
3310
3311  return IP;
3312}
3313
3314/// AdjustInsertPositionForExpand - Determine an input position which will be
3315/// dominated by the operands and which will dominate the result.
3316BasicBlock::iterator
3317LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
3318                                           const LSRFixup &LF,
3319                                           const LSRUse &LU) const {
3320  // Collect some instructions which must be dominated by the
3321  // expanding replacement. These must be dominated by any operands that
3322  // will be required in the expansion.
3323  SmallVector<Instruction *, 4> Inputs;
3324  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
3325    Inputs.push_back(I);
3326  if (LU.Kind == LSRUse::ICmpZero)
3327    if (Instruction *I =
3328          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
3329      Inputs.push_back(I);
3330  if (LF.PostIncLoops.count(L)) {
3331    if (LF.isUseFullyOutsideLoop(L))
3332      Inputs.push_back(L->getLoopLatch()->getTerminator());
3333    else
3334      Inputs.push_back(IVIncInsertPos);
3335  }
3336  // The expansion must also be dominated by the increment positions of any
3337  // loops it for which it is using post-inc mode.
3338  for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
3339       E = LF.PostIncLoops.end(); I != E; ++I) {
3340    const Loop *PIL = *I;
3341    if (PIL == L) continue;
3342
3343    // Be dominated by the loop exit.
3344    SmallVector<BasicBlock *, 4> ExitingBlocks;
3345    PIL->getExitingBlocks(ExitingBlocks);
3346    if (!ExitingBlocks.empty()) {
3347      BasicBlock *BB = ExitingBlocks[0];
3348      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
3349        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
3350      Inputs.push_back(BB->getTerminator());
3351    }
3352  }
3353
3354  // Then, climb up the immediate dominator tree as far as we can go while
3355  // still being dominated by the input positions.
3356  IP = HoistInsertPosition(IP, Inputs);
3357
3358  // Don't insert instructions before PHI nodes.
3359  while (isa<PHINode>(IP)) ++IP;
3360
3361  // Ignore debug intrinsics.
3362  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
3363
3364  return IP;
3365}
3366
3367/// Expand - Emit instructions for the leading candidate expression for this
3368/// LSRUse (this is called "expanding").
3369Value *LSRInstance::Expand(const LSRFixup &LF,
3370                           const Formula &F,
3371                           BasicBlock::iterator IP,
3372                           SCEVExpander &Rewriter,
3373                           SmallVectorImpl<WeakVH> &DeadInsts) const {
3374  const LSRUse &LU = Uses[LF.LUIdx];
3375
3376  // Determine an input position which will be dominated by the operands and
3377  // which will dominate the result.
3378  IP = AdjustInsertPositionForExpand(IP, LF, LU);
3379
3380  // Inform the Rewriter if we have a post-increment use, so that it can
3381  // perform an advantageous expansion.
3382  Rewriter.setPostInc(LF.PostIncLoops);
3383
3384  // This is the type that the user actually needs.
3385  const Type *OpTy = LF.OperandValToReplace->getType();
3386  // This will be the type that we'll initially expand to.
3387  const Type *Ty = F.getType();
3388  if (!Ty)
3389    // No type known; just expand directly to the ultimate type.
3390    Ty = OpTy;
3391  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
3392    // Expand directly to the ultimate type if it's the right size.
3393    Ty = OpTy;
3394  // This is the type to do integer arithmetic in.
3395  const Type *IntTy = SE.getEffectiveSCEVType(Ty);
3396
3397  // Build up a list of operands to add together to form the full base.
3398  SmallVector<const SCEV *, 8> Ops;
3399
3400  // Expand the BaseRegs portion.
3401  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3402       E = F.BaseRegs.end(); I != E; ++I) {
3403    const SCEV *Reg = *I;
3404    assert(!Reg->isZero() && "Zero allocated in a base register!");
3405
3406    // If we're expanding for a post-inc user, make the post-inc adjustment.
3407    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3408    Reg = TransformForPostIncUse(Denormalize, Reg,
3409                                 LF.UserInst, LF.OperandValToReplace,
3410                                 Loops, SE, DT);
3411
3412    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
3413  }
3414
3415  // Flush the operand list to suppress SCEVExpander hoisting.
3416  if (!Ops.empty()) {
3417    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3418    Ops.clear();
3419    Ops.push_back(SE.getUnknown(FullV));
3420  }
3421
3422  // Expand the ScaledReg portion.
3423  Value *ICmpScaledV = 0;
3424  if (F.AM.Scale != 0) {
3425    const SCEV *ScaledS = F.ScaledReg;
3426
3427    // If we're expanding for a post-inc user, make the post-inc adjustment.
3428    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3429    ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
3430                                     LF.UserInst, LF.OperandValToReplace,
3431                                     Loops, SE, DT);
3432
3433    if (LU.Kind == LSRUse::ICmpZero) {
3434      // An interesting way of "folding" with an icmp is to use a negated
3435      // scale, which we'll implement by inserting it into the other operand
3436      // of the icmp.
3437      assert(F.AM.Scale == -1 &&
3438             "The only scale supported by ICmpZero uses is -1!");
3439      ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
3440    } else {
3441      // Otherwise just expand the scaled register and an explicit scale,
3442      // which is expected to be matched as part of the address.
3443      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
3444      ScaledS = SE.getMulExpr(ScaledS,
3445                              SE.getConstant(ScaledS->getType(), F.AM.Scale));
3446      Ops.push_back(ScaledS);
3447
3448      // Flush the operand list to suppress SCEVExpander hoisting.
3449      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3450      Ops.clear();
3451      Ops.push_back(SE.getUnknown(FullV));
3452    }
3453  }
3454
3455  // Expand the GV portion.
3456  if (F.AM.BaseGV) {
3457    Ops.push_back(SE.getUnknown(F.AM.BaseGV));
3458
3459    // Flush the operand list to suppress SCEVExpander hoisting.
3460    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3461    Ops.clear();
3462    Ops.push_back(SE.getUnknown(FullV));
3463  }
3464
3465  // Expand the immediate portion.
3466  int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
3467  if (Offset != 0) {
3468    if (LU.Kind == LSRUse::ICmpZero) {
3469      // The other interesting way of "folding" with an ICmpZero is to use a
3470      // negated immediate.
3471      if (!ICmpScaledV)
3472        ICmpScaledV = ConstantInt::get(IntTy, -Offset);
3473      else {
3474        Ops.push_back(SE.getUnknown(ICmpScaledV));
3475        ICmpScaledV = ConstantInt::get(IntTy, Offset);
3476      }
3477    } else {
3478      // Just add the immediate values. These again are expected to be matched
3479      // as part of the address.
3480      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
3481    }
3482  }
3483
3484  // Emit instructions summing all the operands.
3485  const SCEV *FullS = Ops.empty() ?
3486                      SE.getConstant(IntTy, 0) :
3487                      SE.getAddExpr(Ops);
3488  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
3489
3490  // We're done expanding now, so reset the rewriter.
3491  Rewriter.clearPostInc();
3492
3493  // An ICmpZero Formula represents an ICmp which we're handling as a
3494  // comparison against zero. Now that we've expanded an expression for that
3495  // form, update the ICmp's other operand.
3496  if (LU.Kind == LSRUse::ICmpZero) {
3497    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
3498    DeadInsts.push_back(CI->getOperand(1));
3499    assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
3500                           "a scale at the same time!");
3501    if (F.AM.Scale == -1) {
3502      if (ICmpScaledV->getType() != OpTy) {
3503        Instruction *Cast =
3504          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
3505                                                   OpTy, false),
3506                           ICmpScaledV, OpTy, "tmp", CI);
3507        ICmpScaledV = Cast;
3508      }
3509      CI->setOperand(1, ICmpScaledV);
3510    } else {
3511      assert(F.AM.Scale == 0 &&
3512             "ICmp does not support folding a global value and "
3513             "a scale at the same time!");
3514      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
3515                                           -(uint64_t)Offset);
3516      if (C->getType() != OpTy)
3517        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3518                                                          OpTy, false),
3519                                  C, OpTy);
3520
3521      CI->setOperand(1, C);
3522    }
3523  }
3524
3525  return FullV;
3526}
3527
3528/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3529/// of their operands effectively happens in their predecessor blocks, so the
3530/// expression may need to be expanded in multiple places.
3531void LSRInstance::RewriteForPHI(PHINode *PN,
3532                                const LSRFixup &LF,
3533                                const Formula &F,
3534                                SCEVExpander &Rewriter,
3535                                SmallVectorImpl<WeakVH> &DeadInsts,
3536                                Pass *P) const {
3537  DenseMap<BasicBlock *, Value *> Inserted;
3538  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3539    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3540      BasicBlock *BB = PN->getIncomingBlock(i);
3541
3542      // If this is a critical edge, split the edge so that we do not insert
3543      // the code on all predecessor/successor paths.  We do this unless this
3544      // is the canonical backedge for this loop, which complicates post-inc
3545      // users.
3546      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3547          !isa<IndirectBrInst>(BB->getTerminator()) &&
3548          (PN->getParent() != L->getHeader() || !L->contains(BB))) {
3549        // Split the critical edge.
3550        BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
3551
3552        // If PN is outside of the loop and BB is in the loop, we want to
3553        // move the block to be immediately before the PHI block, not
3554        // immediately after BB.
3555        if (L->contains(BB) && !L->contains(PN))
3556          NewBB->moveBefore(PN->getParent());
3557
3558        // Splitting the edge can reduce the number of PHI entries we have.
3559        e = PN->getNumIncomingValues();
3560        BB = NewBB;
3561        i = PN->getBasicBlockIndex(BB);
3562      }
3563
3564      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3565        Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3566      if (!Pair.second)
3567        PN->setIncomingValue(i, Pair.first->second);
3568      else {
3569        Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
3570
3571        // If this is reuse-by-noop-cast, insert the noop cast.
3572        const Type *OpTy = LF.OperandValToReplace->getType();
3573        if (FullV->getType() != OpTy)
3574          FullV =
3575            CastInst::Create(CastInst::getCastOpcode(FullV, false,
3576                                                     OpTy, false),
3577                             FullV, LF.OperandValToReplace->getType(),
3578                             "tmp", BB->getTerminator());
3579
3580        PN->setIncomingValue(i, FullV);
3581        Pair.first->second = FullV;
3582      }
3583    }
3584}
3585
3586/// Rewrite - Emit instructions for the leading candidate expression for this
3587/// LSRUse (this is called "expanding"), and update the UserInst to reference
3588/// the newly expanded value.
3589void LSRInstance::Rewrite(const LSRFixup &LF,
3590                          const Formula &F,
3591                          SCEVExpander &Rewriter,
3592                          SmallVectorImpl<WeakVH> &DeadInsts,
3593                          Pass *P) const {
3594  // First, find an insertion point that dominates UserInst. For PHI nodes,
3595  // find the nearest block which dominates all the relevant uses.
3596  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
3597    RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
3598  } else {
3599    Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
3600
3601    // If this is reuse-by-noop-cast, insert the noop cast.
3602    const Type *OpTy = LF.OperandValToReplace->getType();
3603    if (FullV->getType() != OpTy) {
3604      Instruction *Cast =
3605        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3606                         FullV, OpTy, "tmp", LF.UserInst);
3607      FullV = Cast;
3608    }
3609
3610    // Update the user. ICmpZero is handled specially here (for now) because
3611    // Expand may have updated one of the operands of the icmp already, and
3612    // its new value may happen to be equal to LF.OperandValToReplace, in
3613    // which case doing replaceUsesOfWith leads to replacing both operands
3614    // with the same value. TODO: Reorganize this.
3615    if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3616      LF.UserInst->setOperand(0, FullV);
3617    else
3618      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3619  }
3620
3621  DeadInsts.push_back(LF.OperandValToReplace);
3622}
3623
3624/// ImplementSolution - Rewrite all the fixup locations with new values,
3625/// following the chosen solution.
3626void
3627LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3628                               Pass *P) {
3629  // Keep track of instructions we may have made dead, so that
3630  // we can remove them after we are done working.
3631  SmallVector<WeakVH, 16> DeadInsts;
3632
3633  SCEVExpander Rewriter(SE);
3634  Rewriter.disableCanonicalMode();
3635  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3636
3637  // Expand the new value definitions and update the users.
3638  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3639       E = Fixups.end(); I != E; ++I) {
3640    const LSRFixup &Fixup = *I;
3641
3642    Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
3643
3644    Changed = true;
3645  }
3646
3647  // Clean up after ourselves. This must be done before deleting any
3648  // instructions.
3649  Rewriter.clear();
3650
3651  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3652}
3653
3654LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3655  : IU(P->getAnalysis<IVUsers>()),
3656    SE(P->getAnalysis<ScalarEvolution>()),
3657    DT(P->getAnalysis<DominatorTree>()),
3658    LI(P->getAnalysis<LoopInfo>()),
3659    TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
3660
3661  // If LoopSimplify form is not available, stay out of trouble.
3662  if (!L->isLoopSimplifyForm()) return;
3663
3664  // If there's no interesting work to be done, bail early.
3665  if (IU.empty()) return;
3666
3667  DEBUG(dbgs() << "\nLSR on loop ";
3668        WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3669        dbgs() << ":\n");
3670
3671  // First, perform some low-level loop optimizations.
3672  OptimizeShadowIV();
3673  OptimizeLoopTermCond();
3674
3675  // Start collecting data and preparing for the solver.
3676  CollectInterestingTypesAndFactors();
3677  CollectFixupsAndInitialFormulae();
3678  CollectLoopInvariantFixupsAndFormulae();
3679
3680  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3681        print_uses(dbgs()));
3682
3683  // Now use the reuse data to generate a bunch of interesting ways
3684  // to formulate the values needed for the uses.
3685  GenerateAllReuseFormulae();
3686
3687  FilterOutUndesirableDedicatedRegisters();
3688  NarrowSearchSpaceUsingHeuristics();
3689
3690  SmallVector<const Formula *, 8> Solution;
3691  Solve(Solution);
3692
3693  // Release memory that is no longer needed.
3694  Factors.clear();
3695  Types.clear();
3696  RegUses.clear();
3697
3698#ifndef NDEBUG
3699  // Formulae should be legal.
3700  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3701       E = Uses.end(); I != E; ++I) {
3702     const LSRUse &LU = *I;
3703     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3704          JE = LU.Formulae.end(); J != JE; ++J)
3705        assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3706                          LU.Kind, LU.AccessTy, TLI) &&
3707               "Illegal formula generated!");
3708  };
3709#endif
3710
3711  // Now that we've decided what we want, make it so.
3712  ImplementSolution(Solution, P);
3713}
3714
3715void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3716  if (Factors.empty() && Types.empty()) return;
3717
3718  OS << "LSR has identified the following interesting factors and types: ";
3719  bool First = true;
3720
3721  for (SmallSetVector<int64_t, 8>::const_iterator
3722       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3723    if (!First) OS << ", ";
3724    First = false;
3725    OS << '*' << *I;
3726  }
3727
3728  for (SmallSetVector<const Type *, 4>::const_iterator
3729       I = Types.begin(), E = Types.end(); I != E; ++I) {
3730    if (!First) OS << ", ";
3731    First = false;
3732    OS << '(' << **I << ')';
3733  }
3734  OS << '\n';
3735}
3736
3737void LSRInstance::print_fixups(raw_ostream &OS) const {
3738  OS << "LSR is examining the following fixup sites:\n";
3739  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3740       E = Fixups.end(); I != E; ++I) {
3741    dbgs() << "  ";
3742    I->print(OS);
3743    OS << '\n';
3744  }
3745}
3746
3747void LSRInstance::print_uses(raw_ostream &OS) const {
3748  OS << "LSR is examining the following uses:\n";
3749  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3750       E = Uses.end(); I != E; ++I) {
3751    const LSRUse &LU = *I;
3752    dbgs() << "  ";
3753    LU.print(OS);
3754    OS << '\n';
3755    for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3756         JE = LU.Formulae.end(); J != JE; ++J) {
3757      OS << "    ";
3758      J->print(OS);
3759      OS << '\n';
3760    }
3761  }
3762}
3763
3764void LSRInstance::print(raw_ostream &OS) const {
3765  print_factors_and_types(OS);
3766  print_fixups(OS);
3767  print_uses(OS);
3768}
3769
3770void LSRInstance::dump() const {
3771  print(errs()); errs() << '\n';
3772}
3773
3774namespace {
3775
3776class LoopStrengthReduce : public LoopPass {
3777  /// TLI - Keep a pointer of a TargetLowering to consult for determining
3778  /// transformation profitability.
3779  const TargetLowering *const TLI;
3780
3781public:
3782  static char ID; // Pass ID, replacement for typeid
3783  explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3784
3785private:
3786  bool runOnLoop(Loop *L, LPPassManager &LPM);
3787  void getAnalysisUsage(AnalysisUsage &AU) const;
3788};
3789
3790}
3791
3792char LoopStrengthReduce::ID = 0;
3793INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
3794                "Loop Strength Reduction", false, false)
3795INITIALIZE_PASS_DEPENDENCY(DominatorTree)
3796INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
3797INITIALIZE_PASS_DEPENDENCY(IVUsers)
3798INITIALIZE_PASS_DEPENDENCY(LoopInfo)
3799INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
3800INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
3801                "Loop Strength Reduction", false, false)
3802
3803
3804Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3805  return new LoopStrengthReduce(TLI);
3806}
3807
3808LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3809  : LoopPass(ID), TLI(tli) {
3810    initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
3811  }
3812
3813void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3814  // We split critical edges, so we change the CFG.  However, we do update
3815  // many analyses if they are around.
3816  AU.addPreservedID(LoopSimplifyID);
3817  AU.addPreserved("domfrontier");
3818
3819  AU.addRequired<LoopInfo>();
3820  AU.addPreserved<LoopInfo>();
3821  AU.addRequiredID(LoopSimplifyID);
3822  AU.addRequired<DominatorTree>();
3823  AU.addPreserved<DominatorTree>();
3824  AU.addRequired<ScalarEvolution>();
3825  AU.addPreserved<ScalarEvolution>();
3826  AU.addRequired<IVUsers>();
3827  AU.addPreserved<IVUsers>();
3828}
3829
3830bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3831  bool Changed = false;
3832
3833  // Run the main LSR transformation.
3834  Changed |= LSRInstance(TLI, L, this).getChanged();
3835
3836  // At this point, it is worth checking to see if any recurrence PHIs are also
3837  // dead, so that we can remove them as well.
3838  Changed |= DeleteDeadPHIs(L->getHeader());
3839
3840  return Changed;
3841}
3842