LoopStrengthReduce.cpp revision a4479ad25f7f184fc4600beb1d39fd1e71849c4d
1//===- LoopStrengthReduce.cpp - Strength Reduce GEPs in Loops -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Nate Begeman and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs a strength reduction on array references inside loops that
11// have as one or more of their components the loop induction variable.  This is
12// accomplished by creating a new Value to hold the initial value of the array
13// access for the first iteration, and then creating a new GEP instruction in
14// the loop to increment the value by the appropriate amount.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "loop-reduce"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/Constants.h"
21#include "llvm/Instructions.h"
22#include "llvm/Type.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Analysis/Dominators.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Analysis/ScalarEvolutionExpander.h"
27#include "llvm/Support/CFG.h"
28#include "llvm/Support/GetElementPtrTypeIterator.h"
29#include "llvm/Transforms/Utils/Local.h"
30#include "llvm/Target/TargetData.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Support/Debug.h"
33#include <algorithm>
34#include <set>
35using namespace llvm;
36
37namespace {
38  Statistic<> NumReduced ("loop-reduce", "Number of GEPs strength reduced");
39
40  class GEPCache {
41  public:
42    GEPCache() : CachedPHINode(0), Map() {}
43
44    GEPCache *get(Value *v) {
45      std::map<Value *, GEPCache>::iterator I = Map.find(v);
46      if (I == Map.end())
47        I = Map.insert(std::pair<Value *, GEPCache>(v, GEPCache())).first;
48      return &I->second;
49    }
50
51    PHINode *CachedPHINode;
52    std::map<Value *, GEPCache> Map;
53  };
54
55  /// IVStrideUse - Keep track of one use of a strided induction variable, where
56  /// the stride is stored externally.  The Offset member keeps track of the
57  /// offset from the IV, User is the actual user of the operand, and 'Operand'
58  /// is the operand # of the User that is the use.
59  struct IVStrideUse {
60    SCEVHandle Offset;
61    Instruction *User;
62    Value *OperandValToReplace;
63
64    IVStrideUse(const SCEVHandle &Offs, Instruction *U, Value *O)
65      : Offset(Offs), User(U), OperandValToReplace(O) {}
66  };
67
68  /// IVUsersOfOneStride - This structure keeps track of all instructions that
69  /// have an operand that is based on the trip count multiplied by some stride.
70  /// The stride for all of these users is common and kept external to this
71  /// structure.
72  struct IVUsersOfOneStride {
73    /// Users - Keep track of all of the users of this stride as well as the
74    /// initial value and the operand that uses the IV.
75    std::vector<IVStrideUse> Users;
76
77    void addUser(const SCEVHandle &Offset,Instruction *User, Value *Operand) {
78      Users.push_back(IVStrideUse(Offset, User, Operand));
79    }
80  };
81
82
83  class LoopStrengthReduce : public FunctionPass {
84    LoopInfo *LI;
85    DominatorSet *DS;
86    ScalarEvolution *SE;
87    const TargetData *TD;
88    const Type *UIntPtrTy;
89    bool Changed;
90
91    /// MaxTargetAMSize - This is the maximum power-of-two scale value that the
92    /// target can handle for free with its addressing modes.
93    unsigned MaxTargetAMSize;
94
95    /// IVUsesByStride - Keep track of all uses of induction variables that we
96    /// are interested in.  The key of the map is the stride of the access.
97    std::map<Value*, IVUsersOfOneStride> IVUsesByStride;
98
99    /// CastedBasePointers - As we need to lower getelementptr instructions, we
100    /// cast the pointer input to uintptr_t.  This keeps track of the casted
101    /// values for the pointers we have processed so far.
102    std::map<Value*, Value*> CastedBasePointers;
103
104    /// DeadInsts - Keep track of instructions we may have made dead, so that
105    /// we can remove them after we are done working.
106    std::set<Instruction*> DeadInsts;
107  public:
108    LoopStrengthReduce(unsigned MTAMS = 1)
109      : MaxTargetAMSize(MTAMS) {
110    }
111
112    virtual bool runOnFunction(Function &) {
113      LI = &getAnalysis<LoopInfo>();
114      DS = &getAnalysis<DominatorSet>();
115      SE = &getAnalysis<ScalarEvolution>();
116      TD = &getAnalysis<TargetData>();
117      UIntPtrTy = TD->getIntPtrType();
118      Changed = false;
119
120      for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
121        runOnLoop(*I);
122      return Changed;
123    }
124
125    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
126      AU.setPreservesCFG();
127      AU.addRequiredID(LoopSimplifyID);
128      AU.addRequired<LoopInfo>();
129      AU.addRequired<DominatorSet>();
130      AU.addRequired<TargetData>();
131      AU.addRequired<ScalarEvolution>();
132    }
133  private:
134    void runOnLoop(Loop *L);
135    bool AddUsersIfInteresting(Instruction *I, Loop *L);
136    void AnalyzeGetElementPtrUsers(GetElementPtrInst *GEP, Instruction *I,
137                                   Loop *L);
138
139    void StrengthReduceStridedIVUsers(Value *Stride, IVUsersOfOneStride &Uses,
140                                      Loop *L, bool isOnlyStride);
141
142    void strengthReduceGEP(GetElementPtrInst *GEPI, Loop *L,
143                           GEPCache* GEPCache,
144                           Instruction *InsertBefore,
145                           std::set<Instruction*> &DeadInsts);
146    void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
147  };
148  RegisterOpt<LoopStrengthReduce> X("loop-reduce",
149                                    "Strength Reduce GEP Uses of Ind. Vars");
150}
151
152FunctionPass *llvm::createLoopStrengthReducePass(unsigned MaxTargetAMSize) {
153  return new LoopStrengthReduce(MaxTargetAMSize);
154}
155
156/// DeleteTriviallyDeadInstructions - If any of the instructions is the
157/// specified set are trivially dead, delete them and see if this makes any of
158/// their operands subsequently dead.
159void LoopStrengthReduce::
160DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
161  while (!Insts.empty()) {
162    Instruction *I = *Insts.begin();
163    Insts.erase(Insts.begin());
164    if (isInstructionTriviallyDead(I)) {
165      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
166        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
167          Insts.insert(U);
168      SE->deleteInstructionFromRecords(I);
169      I->eraseFromParent();
170      Changed = true;
171    }
172  }
173}
174
175
176/// CanReduceSCEV - Return true if we can strength reduce this scalar evolution
177/// in the specified loop.
178static bool CanReduceSCEV(const SCEVHandle &SH, Loop *L) {
179  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SH);
180  if (!AddRec || AddRec->getLoop() != L) return false;
181
182  // FIXME: Generalize to non-affine IV's.
183  if (!AddRec->isAffine()) return false;
184
185  // FIXME: generalize to IV's with more complex strides (must emit stride
186  // expression outside of loop!)
187  if (isa<SCEVConstant>(AddRec->getOperand(1)))
188    return true;
189
190  // We handle steps by unsigned values, because we know we won't have to insert
191  // a cast for them.
192  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(AddRec->getOperand(1)))
193    if (SU->getValue()->getType()->isUnsigned())
194      return true;
195
196  // Otherwise, no, we can't handle it yet.
197  return false;
198}
199
200
201/// GetAdjustedIndex - Adjust the specified GEP sequential type index to match
202/// the size of the pointer type, and scale it by the type size.
203static SCEVHandle GetAdjustedIndex(const SCEVHandle &Idx, uint64_t TySize,
204                                   const Type *UIntPtrTy) {
205  SCEVHandle Result = Idx;
206  if (Result->getType()->getUnsignedVersion() != UIntPtrTy) {
207    if (UIntPtrTy->getPrimitiveSize() < Result->getType()->getPrimitiveSize())
208      Result = SCEVTruncateExpr::get(Result, UIntPtrTy);
209    else
210      Result = SCEVZeroExtendExpr::get(Result, UIntPtrTy);
211  }
212
213  // This index is scaled by the type size being indexed.
214  if (TySize != 1)
215    Result = SCEVMulExpr::get(Result,
216                              SCEVConstant::get(ConstantUInt::get(UIntPtrTy,
217                                                                  TySize)));
218  return Result;
219}
220
221/// AnalyzeGetElementPtrUsers - Analyze all of the users of the specified
222/// getelementptr instruction, adding them to the IVUsesByStride table.  Note
223/// that we only want to analyze a getelementptr instruction once, and it can
224/// have multiple operands that are uses of the indvar (e.g. A[i][i]).  Because
225/// of this, we only process a GEP instruction if its first recurrent operand is
226/// "op", otherwise we will either have already processed it or we will sometime
227/// later.
228void LoopStrengthReduce::AnalyzeGetElementPtrUsers(GetElementPtrInst *GEP,
229                                                   Instruction *Op, Loop *L) {
230  // Analyze all of the subscripts of this getelementptr instruction, looking
231  // for uses that are determined by the trip count of L.  First, skip all
232  // operands the are not dependent on the IV.
233
234  // Build up the base expression.  Insert an LLVM cast of the pointer to
235  // uintptr_t first.
236  Value *BasePtr;
237  if (Constant *CB = dyn_cast<Constant>(GEP->getOperand(0)))
238    BasePtr = ConstantExpr::getCast(CB, UIntPtrTy);
239  else {
240    Value *&BP = CastedBasePointers[GEP->getOperand(0)];
241    if (BP == 0) {
242      BasicBlock::iterator InsertPt;
243      if (isa<Argument>(GEP->getOperand(0))) {
244        InsertPt = GEP->getParent()->getParent()->begin()->begin();
245      } else {
246        InsertPt = cast<Instruction>(GEP->getOperand(0));
247        if (InvokeInst *II = dyn_cast<InvokeInst>(GEP->getOperand(0)))
248          InsertPt = II->getNormalDest()->begin();
249        else
250          ++InsertPt;
251      }
252
253      // Do not insert casts into the middle of PHI node blocks.
254      while (isa<PHINode>(InsertPt)) ++InsertPt;
255
256      BP = new CastInst(GEP->getOperand(0), UIntPtrTy,
257                        GEP->getOperand(0)->getName(), InsertPt);
258    }
259    BasePtr = BP;
260  }
261
262  SCEVHandle Base = SCEVUnknown::get(BasePtr);
263
264  gep_type_iterator GTI = gep_type_begin(GEP);
265  unsigned i = 1;
266  for (; GEP->getOperand(i) != Op; ++i, ++GTI) {
267    // If this is a use of a recurrence that we can analyze, and it comes before
268    // Op does in the GEP operand list, we will handle this when we process this
269    // operand.
270    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
271      const StructLayout *SL = TD->getStructLayout(STy);
272      unsigned Idx = cast<ConstantUInt>(GEP->getOperand(i))->getValue();
273      uint64_t Offset = SL->MemberOffsets[Idx];
274      Base = SCEVAddExpr::get(Base, SCEVUnknown::getIntegerSCEV(Offset,
275                                                                UIntPtrTy));
276    } else {
277      SCEVHandle Idx = SE->getSCEV(GEP->getOperand(i));
278
279      // If this operand is reducible, and it's not the one we are looking at
280      // currently, do not process the GEP at this time.
281      if (CanReduceSCEV(Idx, L))
282        return;
283      Base = SCEVAddExpr::get(Base, GetAdjustedIndex(Idx,
284                             TD->getTypeSize(GTI.getIndexedType()), UIntPtrTy));
285    }
286  }
287
288  // Get the index, convert it to intptr_t.
289  SCEVHandle GEPIndexExpr =
290    GetAdjustedIndex(SE->getSCEV(Op), TD->getTypeSize(GTI.getIndexedType()),
291                     UIntPtrTy);
292
293  // Process all remaining subscripts in the GEP instruction.
294  for (++i, ++GTI; i != GEP->getNumOperands(); ++i, ++GTI)
295    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
296      const StructLayout *SL = TD->getStructLayout(STy);
297      unsigned Idx = cast<ConstantUInt>(GEP->getOperand(i))->getValue();
298      uint64_t Offset = SL->MemberOffsets[Idx];
299      Base = SCEVAddExpr::get(Base, SCEVUnknown::getIntegerSCEV(Offset,
300                                                                UIntPtrTy));
301    } else {
302      SCEVHandle Idx = SE->getSCEV(GEP->getOperand(i));
303      if (CanReduceSCEV(Idx, L)) {   // Another IV subscript
304        GEPIndexExpr = SCEVAddExpr::get(GEPIndexExpr,
305                    GetAdjustedIndex(Idx, TD->getTypeSize(GTI.getIndexedType()),
306                                   UIntPtrTy));
307        assert(CanReduceSCEV(GEPIndexExpr, L) &&
308               "Cannot reduce the sum of two reducible SCEV's??");
309      } else {
310        Base = SCEVAddExpr::get(Base, GetAdjustedIndex(Idx,
311                             TD->getTypeSize(GTI.getIndexedType()), UIntPtrTy));
312      }
313    }
314
315  assert(CanReduceSCEV(GEPIndexExpr, L) && "Non reducible idx??");
316
317  // FIXME: If the base is not loop invariant, we currently cannot emit this.
318  if (!Base->isLoopInvariant(L)) {
319    DEBUG(std::cerr << "IGNORING GEP due to non-invaiant base: "
320                    << *Base << "\n");
321    return;
322  }
323
324  Base = SCEVAddExpr::get(Base, cast<SCEVAddRecExpr>(GEPIndexExpr)->getStart());
325  SCEVHandle Stride = cast<SCEVAddRecExpr>(GEPIndexExpr)->getOperand(1);
326
327  DEBUG(std::cerr << "GEP BASE  : " << *Base << "\n");
328  DEBUG(std::cerr << "GEP STRIDE: " << *Stride << "\n");
329
330  Value *Step = 0;   // Step of ISE.
331  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride))
332    /// Always get the step value as an unsigned value.
333    Step = ConstantExpr::getCast(SC->getValue(),
334                               SC->getValue()->getType()->getUnsignedVersion());
335  else
336    Step = cast<SCEVUnknown>(Stride)->getValue();
337  assert(Step->getType()->isUnsigned() && "Bad step value!");
338
339
340  // Now that we know the base and stride contributed by the GEP instruction,
341  // process all users.
342  for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
343       UI != E; ++UI) {
344    Instruction *User = cast<Instruction>(*UI);
345
346    // Do not infinitely recurse on PHI nodes.
347    if (isa<PHINode>(User) && User->getParent() == L->getHeader())
348      continue;
349
350    // If this is an instruction defined in a nested loop, or outside this loop,
351    // don't mess with it.
352    if (LI->getLoopFor(User->getParent()) != L)
353      continue;
354
355    DEBUG(std::cerr << "FOUND USER: " << *User
356          << "   OF STRIDE: " << *Step << " BASE = " << *Base << "\n");
357
358    // Okay, we found a user that we cannot reduce.  Analyze the instruction
359    // and decide what to do with it.
360    IVUsesByStride[Step].addUser(Base, User, GEP);
361  }
362}
363
364/// AddUsersIfInteresting - Inspect the specified instruction.  If it is a
365/// reducible SCEV, recursively add its users to the IVUsesByStride set and
366/// return true.  Otherwise, return false.
367bool LoopStrengthReduce::AddUsersIfInteresting(Instruction *I, Loop *L) {
368  if (I->getType() == Type::VoidTy) return false;
369  SCEVHandle ISE = SE->getSCEV(I);
370  if (!CanReduceSCEV(ISE, L)) return false;
371
372  SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(ISE);
373  SCEVHandle Start = AR->getStart();
374
375  // Get the step value, canonicalizing to an unsigned integer type so that
376  // lookups in the map will match.
377  Value *Step = 0;   // Step of ISE.
378  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(AR->getOperand(1)))
379    /// Always get the step value as an unsigned value.
380    Step = ConstantExpr::getCast(SC->getValue(),
381                               SC->getValue()->getType()->getUnsignedVersion());
382  else
383    Step = cast<SCEVUnknown>(AR->getOperand(1))->getValue();
384  assert(Step->getType()->isUnsigned() && "Bad step value!");
385
386  std::set<GetElementPtrInst*> AnalyzedGEPs;
387
388  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;++UI){
389    Instruction *User = cast<Instruction>(*UI);
390
391    // Do not infinitely recurse on PHI nodes.
392    if (isa<PHINode>(User) && User->getParent() == L->getHeader())
393      continue;
394
395    // If this is an instruction defined in a nested loop, or outside this loop,
396    // don't recurse into it.
397    if (LI->getLoopFor(User->getParent()) != L) {
398      DEBUG(std::cerr << "FOUND USER in nested loop: " << *User
399            << "   OF SCEV: " << *ISE << "\n");
400
401      // Okay, we found a user that we cannot reduce.  Analyze the instruction
402      // and decide what to do with it.
403      IVUsesByStride[Step].addUser(Start, User, I);
404      continue;
405    }
406
407    // Next, see if this user is analyzable itself!
408    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
409      // If this is a getelementptr instruction, figure out what linear
410      // expression of induction variable is actually being used.
411      if (AnalyzedGEPs.insert(GEP).second)   // Not already analyzed?
412        AnalyzeGetElementPtrUsers(GEP, I, L);
413    } else if (!AddUsersIfInteresting(User, L)) {
414      DEBUG(std::cerr << "FOUND USER: " << *User
415            << "   OF SCEV: " << *ISE << "\n");
416
417      // Okay, we found a user that we cannot reduce.  Analyze the instruction
418      // and decide what to do with it.
419      IVUsesByStride[Step].addUser(Start, User, I);
420    }
421  }
422  return true;
423}
424
425namespace {
426  /// BasedUser - For a particular base value, keep information about how we've
427  /// partitioned the expression so far.
428  struct BasedUser {
429    /// Inst - The instruction using the induction variable.
430    Instruction *Inst;
431
432    /// OperandValToReplace - The operand value of Inst to replace with the
433    /// EmittedBase.
434    Value *OperandValToReplace;
435
436    /// Imm - The immediate value that should be added to the base immediately
437    /// before Inst, because it will be folded into the imm field of the
438    /// instruction.
439    SCEVHandle Imm;
440
441    /// EmittedBase - The actual value* to use for the base value of this
442    /// operation.  This is null if we should just use zero so far.
443    Value *EmittedBase;
444
445    BasedUser(Instruction *I, Value *Op, const SCEVHandle &IMM)
446      : Inst(I), OperandValToReplace(Op), Imm(IMM), EmittedBase(0) {}
447
448
449    // No need to compare these.
450    bool operator<(const BasedUser &BU) const { return 0; }
451
452    void dump() const;
453  };
454}
455
456void BasedUser::dump() const {
457  std::cerr << " Imm=" << *Imm;
458  if (EmittedBase)
459    std::cerr << "  EB=" << *EmittedBase;
460
461  std::cerr << "   Inst: " << *Inst;
462}
463
464/// isTargetConstant - Return true if the following can be referenced by the
465/// immediate field of a target instruction.
466static bool isTargetConstant(const SCEVHandle &V) {
467
468  // FIXME: Look at the target to decide if &GV is a legal constant immediate.
469  if (isa<SCEVConstant>(V)) return true;
470
471  return false;     // ENABLE this for x86
472
473  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
474    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(SU->getValue()))
475      if (CE->getOpcode() == Instruction::Cast)
476        if (isa<GlobalValue>(CE->getOperand(0)))
477          // FIXME: should check to see that the dest is uintptr_t!
478          return true;
479  return false;
480}
481
482/// GetImmediateValues - Look at Val, and pull out any additions of constants
483/// that can fit into the immediate field of instructions in the target.
484static SCEVHandle GetImmediateValues(SCEVHandle Val, bool isAddress) {
485  if (!isAddress)
486    return SCEVUnknown::getIntegerSCEV(0, Val->getType());
487  if (isTargetConstant(Val))
488    return Val;
489
490  if (SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
491    unsigned i = 0;
492    for (; i != SAE->getNumOperands(); ++i)
493      if (isTargetConstant(SAE->getOperand(i))) {
494        SCEVHandle ImmVal = SAE->getOperand(i);
495
496        // If there are any other immediates that we can handle here, pull them
497        // out too.
498        for (++i; i != SAE->getNumOperands(); ++i)
499          if (isTargetConstant(SAE->getOperand(i)))
500            ImmVal = SCEVAddExpr::get(ImmVal, SAE->getOperand(i));
501        return ImmVal;
502      }
503  } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
504    // Try to pull immediates out of the start value of nested addrec's.
505    return GetImmediateValues(SARE->getStart(), isAddress);
506  }
507
508  return SCEVUnknown::getIntegerSCEV(0, Val->getType());
509}
510
511/// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
512/// stride of IV.  All of the users may have different starting values, and this
513/// may not be the only stride (we know it is if isOnlyStride is true).
514void LoopStrengthReduce::StrengthReduceStridedIVUsers(Value *Stride,
515                                                      IVUsersOfOneStride &Uses,
516                                                      Loop *L,
517                                                      bool isOnlyStride) {
518  // Transform our list of users and offsets to a bit more complex table.  In
519  // this new vector, the first entry for each element is the base of the
520  // strided access, and the second is the BasedUser object for the use.  We
521  // progressively move information from the first to the second entry, until we
522  // eventually emit the object.
523  std::vector<std::pair<SCEVHandle, BasedUser> > UsersToProcess;
524  UsersToProcess.reserve(Uses.Users.size());
525
526  SCEVHandle ZeroBase = SCEVUnknown::getIntegerSCEV(0,
527                                              Uses.Users[0].Offset->getType());
528
529  for (unsigned i = 0, e = Uses.Users.size(); i != e; ++i)
530    UsersToProcess.push_back(std::make_pair(Uses.Users[i].Offset,
531                                            BasedUser(Uses.Users[i].User,
532                                             Uses.Users[i].OperandValToReplace,
533                                                      ZeroBase)));
534
535  // First pass, figure out what we can represent in the immediate fields of
536  // instructions.  If we can represent anything there, move it to the imm
537  // fields of the BasedUsers.
538  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
539    bool isAddress = isa<LoadInst>(UsersToProcess[i].second.Inst) ||
540                     isa<StoreInst>(UsersToProcess[i].second.Inst);
541    UsersToProcess[i].second.Imm = GetImmediateValues(UsersToProcess[i].first,
542                                                      isAddress);
543    UsersToProcess[i].first = SCEV::getMinusSCEV(UsersToProcess[i].first,
544                                                 UsersToProcess[i].second.Imm);
545
546    DEBUG(std::cerr << "BASE: " << *UsersToProcess[i].first);
547    DEBUG(UsersToProcess[i].second.dump());
548  }
549
550  SCEVExpander Rewriter(*SE, *LI);
551  BasicBlock  *Preheader = L->getLoopPreheader();
552  Instruction *PreInsertPt = Preheader->getTerminator();
553  Instruction *PhiInsertBefore = L->getHeader()->begin();
554
555  assert(isa<PHINode>(PhiInsertBefore) &&
556         "How could this loop have IV's without any phis?");
557  PHINode *SomeLoopPHI = cast<PHINode>(PhiInsertBefore);
558  assert(SomeLoopPHI->getNumIncomingValues() == 2 &&
559         "This loop isn't canonicalized right");
560  BasicBlock *LatchBlock =
561   SomeLoopPHI->getIncomingBlock(SomeLoopPHI->getIncomingBlock(0) == Preheader);
562
563  DEBUG(std::cerr << "INSERTING IVs of STRIDE " << *Stride << ":\n");
564
565  // FIXME: This loop needs increasing levels of intelligence.
566  // STAGE 0: just emit everything as its own base.
567  // STAGE 1: factor out common vars from bases, and try and push resulting
568  //          constants into Imm field.  <-- We are here
569  // STAGE 2: factor out large constants to try and make more constants
570  //          acceptable for target loads and stores.
571
572  // Sort by the base value, so that all IVs with identical bases are next to
573  // each other.
574  std::sort(UsersToProcess.begin(), UsersToProcess.end());
575  while (!UsersToProcess.empty()) {
576    SCEVHandle Base = UsersToProcess.front().first;
577
578    DEBUG(std::cerr << "  INSERTING PHI with BASE = " << *Base << ":\n");
579
580    // Create a new Phi for this base, and stick it in the loop header.
581    const Type *ReplacedTy = Base->getType();
582    PHINode *NewPHI = new PHINode(ReplacedTy, "iv.", PhiInsertBefore);
583
584    // Emit the initial base value into the loop preheader, and add it to the
585    // Phi node.
586    Value *BaseV = Rewriter.expandCodeFor(Base, PreInsertPt, ReplacedTy);
587    NewPHI->addIncoming(BaseV, Preheader);
588
589    // Emit the increment of the base value before the terminator of the loop
590    // latch block, and add it to the Phi node.
591    SCEVHandle Inc = SCEVAddExpr::get(SCEVUnknown::get(NewPHI),
592                                      SCEVUnknown::get(Stride));
593
594    Value *IncV = Rewriter.expandCodeFor(Inc, LatchBlock->getTerminator(),
595                                         ReplacedTy);
596    IncV->setName(NewPHI->getName()+".inc");
597    NewPHI->addIncoming(IncV, LatchBlock);
598
599    // Emit the code to add the immediate offset to the Phi value, just before
600    // the instructions that we identified as using this stride and base.
601    while (!UsersToProcess.empty() && UsersToProcess.front().first == Base) {
602      BasedUser &User = UsersToProcess.front().second;
603
604      // Clear the SCEVExpander's expression map so that we are guaranteed
605      // to have the code emitted where we expect it.
606      Rewriter.clear();
607      SCEVHandle NewValSCEV = SCEVAddExpr::get(SCEVUnknown::get(NewPHI),
608                                               User.Imm);
609      Value *Replaced = User.OperandValToReplace;
610      Value *newVal = Rewriter.expandCodeFor(NewValSCEV, User.Inst,
611                                             Replaced->getType());
612
613      // Replace the use of the operand Value with the new Phi we just created.
614      User.Inst->replaceUsesOfWith(Replaced, newVal);
615      DEBUG(std::cerr << "    CHANGED: IMM =" << *User.Imm << "  Inst = "
616            << *User.Inst);
617
618      // Mark old value we replaced as possibly dead, so that it is elminated
619      // if we just replaced the last use of that value.
620      DeadInsts.insert(cast<Instruction>(Replaced));
621
622      UsersToProcess.erase(UsersToProcess.begin());
623      ++NumReduced;
624    }
625    // TODO: Next, find out which base index is the most common, pull it out.
626  }
627
628  // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
629  // different starting values, into different PHIs.
630
631  // BEFORE writing this, it's probably useful to handle GEP's.
632
633  // NOTE: pull all constants together, for REG+IMM addressing, include &GV in
634  // 'IMM' if the target supports it.
635}
636
637
638void LoopStrengthReduce::runOnLoop(Loop *L) {
639  // First step, transform all loops nesting inside of this loop.
640  for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
641    runOnLoop(*I);
642
643  // Next, find all uses of induction variables in this loop, and catagorize
644  // them by stride.  Start by finding all of the PHI nodes in the header for
645  // this loop.  If they are induction variables, inspect their uses.
646  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
647    AddUsersIfInteresting(I, L);
648
649  // If we have nothing to do, return.
650  //if (IVUsesByStride.empty()) return;
651
652  // FIXME: We can widen subreg IV's here for RISC targets.  e.g. instead of
653  // doing computation in byte values, promote to 32-bit values if safe.
654
655  // FIXME: Attempt to reuse values across multiple IV's.  In particular, we
656  // could have something like "for(i) { foo(i*8); bar(i*16) }", which should be
657  // codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.  Need
658  // to be careful that IV's are all the same type.  Only works for intptr_t
659  // indvars.
660
661  // If we only have one stride, we can more aggressively eliminate some things.
662  bool HasOneStride = IVUsesByStride.size() == 1;
663
664  for (std::map<Value*, IVUsersOfOneStride>::iterator SI
665        = IVUsesByStride.begin(), E = IVUsesByStride.end(); SI != E; ++SI)
666    StrengthReduceStridedIVUsers(SI->first, SI->second, L, HasOneStride);
667
668  // Clean up after ourselves
669  if (!DeadInsts.empty()) {
670    DeleteTriviallyDeadInstructions(DeadInsts);
671
672    BasicBlock::iterator I = L->getHeader()->begin();
673    PHINode *PN;
674    while ((PN = dyn_cast<PHINode>(I))) {
675      ++I;  // Preincrement iterator to avoid invalidating it when deleting PN.
676
677      // At this point, we know that we have killed one or more GEP instructions.
678      // It is worth checking to see if the cann indvar is also dead, so that we
679      // can remove it as well.  The requirements for the cann indvar to be
680      // considered dead are:
681      // 1. the cann indvar has one use
682      // 2. the use is an add instruction
683      // 3. the add has one use
684      // 4. the add is used by the cann indvar
685      // If all four cases above are true, then we can remove both the add and
686      // the cann indvar.
687      // FIXME: this needs to eliminate an induction variable even if it's being
688      // compared against some value to decide loop termination.
689      if (PN->hasOneUse()) {
690        BinaryOperator *BO = dyn_cast<BinaryOperator>(*(PN->use_begin()));
691        if (BO && BO->hasOneUse()) {
692          if (PN == *(BO->use_begin())) {
693            DeadInsts.insert(BO);
694            // Break the cycle, then delete the PHI.
695            PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
696            SE->deleteInstructionFromRecords(PN);
697            PN->eraseFromParent();
698          }
699        }
700      }
701    }
702    DeleteTriviallyDeadInstructions(DeadInsts);
703  }
704
705  IVUsesByStride.clear();
706  CastedBasePointers.clear();
707  return;
708}
709