LoopUnswitch.cpp revision 02dea8b39f3acad5de1df36273444d149145e7fc
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/DerivedTypes.h"
33#include "llvm/Function.h"
34#include "llvm/Instructions.h"
35#include "llvm/Analysis/ConstantFolding.h"
36#include "llvm/Analysis/LoopInfo.h"
37#include "llvm/Analysis/LoopPass.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Transforms/Utils/Cloning.h"
40#include "llvm/Transforms/Utils/Local.h"
41#include "llvm/Transforms/Utils/BasicBlockUtils.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/ADT/SmallPtrSet.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include <algorithm>
48#include <set>
49using namespace llvm;
50
51STATISTIC(NumBranches, "Number of branches unswitched");
52STATISTIC(NumSwitches, "Number of switches unswitched");
53STATISTIC(NumSelects , "Number of selects unswitched");
54STATISTIC(NumTrivial , "Number of unswitches that are trivial");
55STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
56
57static cl::opt<unsigned>
58Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
59          cl::init(10), cl::Hidden);
60
61namespace {
62  class VISIBILITY_HIDDEN LoopUnswitch : public LoopPass {
63    LoopInfo *LI;  // Loop information
64    LPPassManager *LPM;
65
66    // LoopProcessWorklist - Used to check if second loop needs processing
67    // after RewriteLoopBodyWithConditionConstant rewrites first loop.
68    std::vector<Loop*> LoopProcessWorklist;
69    SmallPtrSet<Value *,8> UnswitchedVals;
70
71    bool OptimizeForSize;
72    bool redoLoop;
73
74    DominanceFrontier *DF;
75    DominatorTree *DT;
76
77    /// LoopDF - Loop's dominance frontier. This set is a collection of
78    /// loop exiting blocks' DF member blocks. However this does set does not
79    /// includes basic blocks that are inside loop.
80    SmallPtrSet<BasicBlock *, 8> LoopDF;
81
82    /// OrigLoopExitMap - This is used to map loop exiting block with
83    /// corresponding loop exit block, before updating CFG.
84    DenseMap<BasicBlock *, BasicBlock *> OrigLoopExitMap;
85  public:
86    static char ID; // Pass ID, replacement for typeid
87    explicit LoopUnswitch(bool Os = false) :
88      LoopPass((intptr_t)&ID), OptimizeForSize(Os), redoLoop(false) {}
89
90    bool runOnLoop(Loop *L, LPPassManager &LPM);
91    bool processLoop(Loop *L);
92
93    /// This transformation requires natural loop information & requires that
94    /// loop preheaders be inserted into the CFG...
95    ///
96    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
97      AU.addRequiredID(LoopSimplifyID);
98      AU.addPreservedID(LoopSimplifyID);
99      AU.addRequired<LoopInfo>();
100      AU.addPreserved<LoopInfo>();
101      AU.addRequiredID(LCSSAID);
102      AU.addPreservedID(LCSSAID);
103      AU.addPreserved<DominatorTree>();
104      AU.addPreserved<DominanceFrontier>();
105    }
106
107  private:
108
109    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
110    /// remove it.
111    void RemoveLoopFromWorklist(Loop *L) {
112      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
113                                                 LoopProcessWorklist.end(), L);
114      if (I != LoopProcessWorklist.end())
115        LoopProcessWorklist.erase(I);
116    }
117
118    /// Split all of the edges from inside the loop to their exit blocks.
119    /// Update the appropriate Phi nodes as we do so.
120    void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks,
121                        SmallVector<BasicBlock *, 8> &MiddleBlocks);
122
123    /// If BB's dominance frontier  has a member that is not part of loop L then
124    /// remove it. Add NewDFMember in BB's dominance frontier.
125    void ReplaceLoopExternalDFMember(Loop *L, BasicBlock *BB,
126                                     BasicBlock *NewDFMember);
127
128    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L);
129    unsigned getLoopUnswitchCost(Loop *L, Value *LIC);
130    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
131                                  BasicBlock *ExitBlock);
132    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
133
134    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
135                                              Constant *Val, bool isEqual);
136
137    void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
138                                        BasicBlock *TrueDest,
139                                        BasicBlock *FalseDest,
140                                        Instruction *InsertPt);
141
142    void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
143    void RemoveBlockIfDead(BasicBlock *BB,
144                           std::vector<Instruction*> &Worklist, Loop *l);
145    void RemoveLoopFromHierarchy(Loop *L);
146  };
147}
148char LoopUnswitch::ID = 0;
149static RegisterPass<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
150
151LoopPass *llvm::createLoopUnswitchPass(bool Os) {
152  return new LoopUnswitch(Os);
153}
154
155/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
156/// invariant in the loop, or has an invariant piece, return the invariant.
157/// Otherwise, return null.
158static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
159  // Constants should be folded, not unswitched on!
160  if (isa<Constant>(Cond)) return false;
161
162  // TODO: Handle: br (VARIANT|INVARIANT).
163  // TODO: Hoist simple expressions out of loops.
164  if (L->isLoopInvariant(Cond)) return Cond;
165
166  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
167    if (BO->getOpcode() == Instruction::And ||
168        BO->getOpcode() == Instruction::Or) {
169      // If either the left or right side is invariant, we can unswitch on this,
170      // which will cause the branch to go away in one loop and the condition to
171      // simplify in the other one.
172      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
173        return LHS;
174      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
175        return RHS;
176    }
177
178  return 0;
179}
180
181bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
182  LI = &getAnalysis<LoopInfo>();
183  LPM = &LPM_Ref;
184  DF = getAnalysisToUpdate<DominanceFrontier>();
185  DT = getAnalysisToUpdate<DominatorTree>();
186
187  bool Changed = false;
188
189  do {
190    redoLoop = false;
191    Changed |= processLoop(L);
192  } while(redoLoop);
193
194  return Changed;
195}
196
197/// processLoop - Do actual work and unswitch loop if possible and profitable.
198bool LoopUnswitch::processLoop(Loop *L) {
199  assert(L->isLCSSAForm());
200  bool Changed = false;
201
202  // Loop over all of the basic blocks in the loop.  If we find an interior
203  // block that is branching on a loop-invariant condition, we can unswitch this
204  // loop.
205  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
206       I != E; ++I) {
207    TerminatorInst *TI = (*I)->getTerminator();
208    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
209      // If this isn't branching on an invariant condition, we can't unswitch
210      // it.
211      if (BI->isConditional()) {
212        // See if this, or some part of it, is loop invariant.  If so, we can
213        // unswitch on it if we desire.
214        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), L, Changed);
215        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(),
216                                             L)) {
217          ++NumBranches;
218          return true;
219        }
220      }
221    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
222      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
223      if (LoopCond && SI->getNumCases() > 1) {
224        // Find a value to unswitch on:
225        // FIXME: this should chose the most expensive case!
226        Constant *UnswitchVal = SI->getCaseValue(1);
227        // Do not process same value again and again.
228        if (!UnswitchedVals.insert(UnswitchVal))
229          continue;
230
231        if (UnswitchIfProfitable(LoopCond, UnswitchVal, L)) {
232          ++NumSwitches;
233          return true;
234        }
235      }
236    }
237
238    // Scan the instructions to check for unswitchable values.
239    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
240         BBI != E; ++BBI)
241      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
242        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
243        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(),
244                                             L)) {
245          ++NumSelects;
246          return true;
247        }
248      }
249  }
250
251  assert(L->isLCSSAForm());
252
253  return Changed;
254}
255
256/// isTrivialLoopExitBlock - Check to see if all paths from BB either:
257///   1. Exit the loop with no side effects.
258///   2. Branch to the latch block with no side-effects.
259///
260/// If these conditions are true, we return true and set ExitBB to the block we
261/// exit through.
262///
263static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
264                                         BasicBlock *&ExitBB,
265                                         std::set<BasicBlock*> &Visited) {
266  if (!Visited.insert(BB).second) {
267    // Already visited and Ok, end of recursion.
268    return true;
269  } else if (!L->contains(BB)) {
270    // Otherwise, this is a loop exit, this is fine so long as this is the
271    // first exit.
272    if (ExitBB != 0) return false;
273    ExitBB = BB;
274    return true;
275  }
276
277  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
278  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
279    // Check to see if the successor is a trivial loop exit.
280    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
281      return false;
282  }
283
284  // Okay, everything after this looks good, check to make sure that this block
285  // doesn't include any side effects.
286  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
287    if (I->mayWriteToMemory())
288      return false;
289
290  return true;
291}
292
293/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
294/// leads to an exit from the specified loop, and has no side-effects in the
295/// process.  If so, return the block that is exited to, otherwise return null.
296static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
297  std::set<BasicBlock*> Visited;
298  Visited.insert(L->getHeader());  // Branches to header are ok.
299  BasicBlock *ExitBB = 0;
300  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
301    return ExitBB;
302  return 0;
303}
304
305/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
306/// trivial: that is, that the condition controls whether or not the loop does
307/// anything at all.  If this is a trivial condition, unswitching produces no
308/// code duplications (equivalently, it produces a simpler loop and a new empty
309/// loop, which gets deleted).
310///
311/// If this is a trivial condition, return true, otherwise return false.  When
312/// returning true, this sets Cond and Val to the condition that controls the
313/// trivial condition: when Cond dynamically equals Val, the loop is known to
314/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
315/// Cond == Val.
316///
317static bool IsTrivialUnswitchCondition(Loop *L, Value *Cond, Constant **Val = 0,
318                                       BasicBlock **LoopExit = 0) {
319  BasicBlock *Header = L->getHeader();
320  TerminatorInst *HeaderTerm = Header->getTerminator();
321
322  BasicBlock *LoopExitBB = 0;
323  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
324    // If the header block doesn't end with a conditional branch on Cond, we
325    // can't handle it.
326    if (!BI->isConditional() || BI->getCondition() != Cond)
327      return false;
328
329    // Check to see if a successor of the branch is guaranteed to go to the
330    // latch block or exit through a one exit block without having any
331    // side-effects.  If so, determine the value of Cond that causes it to do
332    // this.
333    if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(0)))) {
334      if (Val) *Val = ConstantInt::getTrue();
335    } else if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(1)))) {
336      if (Val) *Val = ConstantInt::getFalse();
337    }
338  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
339    // If this isn't a switch on Cond, we can't handle it.
340    if (SI->getCondition() != Cond) return false;
341
342    // Check to see if a successor of the switch is guaranteed to go to the
343    // latch block or exit through a one exit block without having any
344    // side-effects.  If so, determine the value of Cond that causes it to do
345    // this.  Note that we can't trivially unswitch on the default case.
346    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
347      if ((LoopExitBB = isTrivialLoopExitBlock(L, SI->getSuccessor(i)))) {
348        // Okay, we found a trivial case, remember the value that is trivial.
349        if (Val) *Val = SI->getCaseValue(i);
350        break;
351      }
352  }
353
354  // If we didn't find a single unique LoopExit block, or if the loop exit block
355  // contains phi nodes, this isn't trivial.
356  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
357    return false;   // Can't handle this.
358
359  if (LoopExit) *LoopExit = LoopExitBB;
360
361  // We already know that nothing uses any scalar values defined inside of this
362  // loop.  As such, we just have to check to see if this loop will execute any
363  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
364  // part of the loop that the code *would* execute.  We already checked the
365  // tail, check the header now.
366  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
367    if (I->mayWriteToMemory())
368      return false;
369  return true;
370}
371
372/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
373/// we choose to unswitch the specified loop on the specified value.
374///
375unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) {
376  // If the condition is trivial, always unswitch.  There is no code growth for
377  // this case.
378  if (IsTrivialUnswitchCondition(L, LIC))
379    return 0;
380
381  // FIXME: This is really overly conservative.  However, more liberal
382  // estimations have thus far resulted in excessive unswitching, which is bad
383  // both in compile time and in code size.  This should be replaced once
384  // someone figures out how a good estimation.
385  return L->getBlocks().size();
386
387  unsigned Cost = 0;
388  // FIXME: this is brain dead.  It should take into consideration code
389  // shrinkage.
390  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
391       I != E; ++I) {
392    BasicBlock *BB = *I;
393    // Do not include empty blocks in the cost calculation.  This happen due to
394    // loop canonicalization and will be removed.
395    if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
396      continue;
397
398    // Count basic blocks.
399    ++Cost;
400  }
401
402  return Cost;
403}
404
405/// UnswitchIfProfitable - We have found that we can unswitch L when
406/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
407/// unswitch the loop, reprocess the pieces, then return true.
408bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L){
409  // Check to see if it would be profitable to unswitch this loop.
410  unsigned Cost = getLoopUnswitchCost(L, LoopCond);
411
412  // Do not do non-trivial unswitch while optimizing for size.
413  if (Cost && OptimizeForSize)
414    return false;
415
416  if (Cost > Threshold) {
417    // FIXME: this should estimate growth by the amount of code shared by the
418    // resultant unswitched loops.
419    //
420    DOUT << "NOT unswitching loop %"
421         << L->getHeader()->getName() << ", cost too high: "
422         << L->getBlocks().size() << "\n";
423    return false;
424  }
425
426  // If this is a trivial condition to unswitch (which results in no code
427  // duplication), do it now.
428  Constant *CondVal;
429  BasicBlock *ExitBlock;
430  if (IsTrivialUnswitchCondition(L, LoopCond, &CondVal, &ExitBlock)) {
431    UnswitchTrivialCondition(L, LoopCond, CondVal, ExitBlock);
432  } else {
433    UnswitchNontrivialCondition(LoopCond, Val, L);
434  }
435
436  return true;
437}
438
439// RemapInstruction - Convert the instruction operands from referencing the
440// current values into those specified by ValueMap.
441//
442static inline void RemapInstruction(Instruction *I,
443                                    DenseMap<const Value *, Value*> &ValueMap) {
444  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
445    Value *Op = I->getOperand(op);
446    DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
447    if (It != ValueMap.end()) Op = It->second;
448    I->setOperand(op, Op);
449  }
450}
451
452// CloneDomInfo - NewBB is cloned from Orig basic block. Now clone Dominator
453// Info.
454//
455// If Orig block's immediate dominator is mapped in VM then use corresponding
456// immediate dominator from the map. Otherwise Orig block's dominator is also
457// NewBB's dominator.
458//
459// OrigPreheader is loop pre-header before this pass started
460// updating CFG. NewPrehader is loops new pre-header. However, after CFG
461// manipulation, loop L may not exist. So rely on input parameter NewPreheader.
462static void CloneDomInfo(BasicBlock *NewBB, BasicBlock *Orig,
463                         BasicBlock *NewPreheader, BasicBlock *OrigPreheader,
464                         BasicBlock *OrigHeader,
465                         DominatorTree *DT, DominanceFrontier *DF,
466                         DenseMap<const Value*, Value*> &VM) {
467
468  // If NewBB alreay has found its place in domiantor tree then no need to do
469  // anything.
470  if (DT->getNode(NewBB))
471    return;
472
473  // If Orig does not have any immediate domiantor then its clone, NewBB, does
474  // not need any immediate dominator.
475  DomTreeNode *OrigNode = DT->getNode(Orig);
476  if (!OrigNode)
477    return;
478  DomTreeNode *OrigIDomNode = OrigNode->getIDom();
479  if (!OrigIDomNode)
480    return;
481
482  BasicBlock *OrigIDom = NULL;
483
484  // If Orig is original loop header then its immediate dominator is
485  // NewPreheader.
486  if (Orig == OrigHeader)
487    OrigIDom = NewPreheader;
488
489  // If Orig is new pre-header then its immediate dominator is
490  // original pre-header.
491  else if (Orig == NewPreheader)
492    OrigIDom = OrigPreheader;
493
494  // Other as DT to find Orig's immediate dominator.
495  else
496     OrigIDom = OrigIDomNode->getBlock();
497
498  // Initially use Orig's immediate dominator as NewBB's immediate dominator.
499  BasicBlock *NewIDom = OrigIDom;
500  DenseMap<const Value*, Value*>::iterator I = VM.find(OrigIDom);
501  if (I != VM.end()) {
502    NewIDom = cast<BasicBlock>(I->second);
503
504    // If NewIDom does not have corresponding dominatore tree node then
505    // get one.
506    if (!DT->getNode(NewIDom))
507      CloneDomInfo(NewIDom, OrigIDom, NewPreheader, OrigPreheader,
508                   OrigHeader, DT, DF, VM);
509  }
510
511  DT->addNewBlock(NewBB, NewIDom);
512
513  // Copy cloned dominance frontiner set
514  DominanceFrontier::DomSetType NewDFSet;
515  if (DF) {
516    DominanceFrontier::iterator DFI = DF->find(Orig);
517    if ( DFI != DF->end()) {
518      DominanceFrontier::DomSetType S = DFI->second;
519      for (DominanceFrontier::DomSetType::iterator I = S.begin(), E = S.end();
520           I != E; ++I) {
521        BasicBlock *BB = *I;
522        DenseMap<const Value*, Value*>::iterator IDM = VM.find(BB);
523        if (IDM != VM.end())
524          NewDFSet.insert(cast<BasicBlock>(IDM->second));
525        else
526          NewDFSet.insert(BB);
527      }
528    }
529    DF->addBasicBlock(NewBB, NewDFSet);
530  }
531}
532
533/// CloneLoop - Recursively clone the specified loop and all of its children,
534/// mapping the blocks with the specified map.
535static Loop *CloneLoop(Loop *L, Loop *PL, DenseMap<const Value*, Value*> &VM,
536                       LoopInfo *LI, LPPassManager *LPM) {
537  Loop *New = new Loop();
538
539  LPM->insertLoop(New, PL);
540
541  // Add all of the blocks in L to the new loop.
542  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
543       I != E; ++I)
544    if (LI->getLoopFor(*I) == L)
545      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
546
547  // Add all of the subloops to the new loop.
548  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
549    CloneLoop(*I, New, VM, LI, LPM);
550
551  return New;
552}
553
554/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
555/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
556/// code immediately before InsertPt.
557void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
558                                                  BasicBlock *TrueDest,
559                                                  BasicBlock *FalseDest,
560                                                  Instruction *InsertPt) {
561  // Insert a conditional branch on LIC to the two preheaders.  The original
562  // code is the true version and the new code is the false version.
563  Value *BranchVal = LIC;
564  if (!isa<ConstantInt>(Val) || Val->getType() != Type::Int1Ty)
565    BranchVal = new ICmpInst(ICmpInst::ICMP_EQ, LIC, Val, "tmp", InsertPt);
566  else if (Val != ConstantInt::getTrue())
567    // We want to enter the new loop when the condition is true.
568    std::swap(TrueDest, FalseDest);
569
570  // Insert the new branch.
571  BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
572
573}
574
575
576/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
577/// condition in it (a cond branch from its header block to its latch block,
578/// where the path through the loop that doesn't execute its body has no
579/// side-effects), unswitch it.  This doesn't involve any code duplication, just
580/// moving the conditional branch outside of the loop and updating loop info.
581void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
582                                            Constant *Val,
583                                            BasicBlock *ExitBlock) {
584  DOUT << "loop-unswitch: Trivial-Unswitch loop %"
585       << L->getHeader()->getName() << " [" << L->getBlocks().size()
586       << " blocks] in Function " << L->getHeader()->getParent()->getName()
587       << " on cond: " << *Val << " == " << *Cond << "\n";
588
589  // First step, split the preheader, so that we know that there is a safe place
590  // to insert the conditional branch.  We will change 'OrigPH' to have a
591  // conditional branch on Cond.
592  BasicBlock *OrigPH = L->getLoopPreheader();
593  BasicBlock *NewPH = SplitEdge(OrigPH, L->getHeader(), this);
594
595  // Now that we have a place to insert the conditional branch, create a place
596  // to branch to: this is the exit block out of the loop that we should
597  // short-circuit to.
598
599  // Split this block now, so that the loop maintains its exit block, and so
600  // that the jump from the preheader can execute the contents of the exit block
601  // without actually branching to it (the exit block should be dominated by the
602  // loop header, not the preheader).
603  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
604  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
605
606  // Okay, now we have a position to branch from and a position to branch to,
607  // insert the new conditional branch.
608  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
609                                 OrigPH->getTerminator());
610  LPM->deleteSimpleAnalysisValue(OrigPH->getTerminator(), L);
611  OrigPH->getTerminator()->eraseFromParent();
612
613  // We need to reprocess this loop, it could be unswitched again.
614  redoLoop = true;
615
616  // Now that we know that the loop is never entered when this condition is a
617  // particular value, rewrite the loop with this info.  We know that this will
618  // at least eliminate the old branch.
619  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
620  ++NumTrivial;
621}
622
623/// ReplaceLoopExternalDFMember -
624/// If BB's dominance frontier  has a member that is not part of loop L then
625/// remove it. Add NewDFMember in BB's dominance frontier.
626void LoopUnswitch::ReplaceLoopExternalDFMember(Loop *L, BasicBlock *BB,
627                                               BasicBlock *NewDFMember) {
628
629  DominanceFrontier::iterator DFI = DF->find(BB);
630  if (DFI == DF->end())
631    return;
632
633  DominanceFrontier::DomSetType &DFSet = DFI->second;
634  for (DominanceFrontier::DomSetType::iterator DI = DFSet.begin(),
635         DE = DFSet.end(); DI != DE;) {
636    BasicBlock *B = *DI++;
637    if (L->contains(B))
638      continue;
639
640    DF->removeFromFrontier(DFI, B);
641    LoopDF.insert(B);
642  }
643
644  DF->addToFrontier(DFI, NewDFMember);
645}
646
647/// SplitExitEdges - Split all of the edges from inside the loop to their exit
648/// blocks.  Update the appropriate Phi nodes as we do so.
649void LoopUnswitch::SplitExitEdges(Loop *L,
650                                 const SmallVector<BasicBlock *, 8> &ExitBlocks,
651                                  SmallVector<BasicBlock *, 8> &MiddleBlocks) {
652
653  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
654    BasicBlock *ExitBlock = ExitBlocks[i];
655    std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
656
657    for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
658      BasicBlock* MiddleBlock = SplitEdge(Preds[j], ExitBlock, this);
659      MiddleBlocks.push_back(MiddleBlock);
660      BasicBlock* StartBlock = Preds[j];
661      BasicBlock* EndBlock;
662      if (MiddleBlock->getSinglePredecessor() == ExitBlock) {
663        EndBlock = MiddleBlock;
664        MiddleBlock = EndBlock->getSinglePredecessor();;
665      } else {
666        EndBlock = ExitBlock;
667      }
668
669      OrigLoopExitMap[StartBlock] = EndBlock;
670
671      std::set<PHINode*> InsertedPHIs;
672      PHINode* OldLCSSA = 0;
673      for (BasicBlock::iterator I = EndBlock->begin();
674           (OldLCSSA = dyn_cast<PHINode>(I)); ++I) {
675        Value* OldValue = OldLCSSA->getIncomingValueForBlock(MiddleBlock);
676        PHINode* NewLCSSA = PHINode::Create(OldLCSSA->getType(),
677                                            OldLCSSA->getName() + ".us-lcssa",
678                                            MiddleBlock->getTerminator());
679        NewLCSSA->addIncoming(OldValue, StartBlock);
680        OldLCSSA->setIncomingValue(OldLCSSA->getBasicBlockIndex(MiddleBlock),
681                                   NewLCSSA);
682        InsertedPHIs.insert(NewLCSSA);
683      }
684
685      BasicBlock::iterator InsertPt = EndBlock->getFirstNonPHI();
686      for (BasicBlock::iterator I = MiddleBlock->begin();
687         (OldLCSSA = dyn_cast<PHINode>(I)) && InsertedPHIs.count(OldLCSSA) == 0;
688         ++I) {
689        PHINode *NewLCSSA = PHINode::Create(OldLCSSA->getType(),
690                                            OldLCSSA->getName() + ".us-lcssa",
691                                            InsertPt);
692        OldLCSSA->replaceAllUsesWith(NewLCSSA);
693        NewLCSSA->addIncoming(OldLCSSA, MiddleBlock);
694      }
695
696      if (DF && DT) {
697        // StartBlock -- > MiddleBlock -- > EndBlock
698        // StartBlock is loop exiting block. EndBlock will become merge point
699        // of two loop exits after loop unswitch.
700
701        // If StartBlock's DF member includes a block that is not loop member
702        // then replace that DF member with EndBlock.
703
704        // If MiddleBlock's DF member includes a block that is not loop member
705        // tnen replace that DF member with EndBlock.
706
707        ReplaceLoopExternalDFMember(L, StartBlock, EndBlock);
708        ReplaceLoopExternalDFMember(L, MiddleBlock, EndBlock);
709      }
710    }
711  }
712
713}
714
715/// UnswitchNontrivialCondition - We determined that the loop is profitable
716/// to unswitch when LIC equal Val.  Split it into loop versions and test the
717/// condition outside of either loop.  Return the loops created as Out1/Out2.
718void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
719                                               Loop *L) {
720  Function *F = L->getHeader()->getParent();
721  DOUT << "loop-unswitch: Unswitching loop %"
722       << L->getHeader()->getName() << " [" << L->getBlocks().size()
723       << " blocks] in Function " << F->getName()
724       << " when '" << *Val << "' == " << *LIC << "\n";
725
726  // LoopBlocks contains all of the basic blocks of the loop, including the
727  // preheader of the loop, the body of the loop, and the exit blocks of the
728  // loop, in that order.
729  std::vector<BasicBlock*> LoopBlocks;
730
731  // First step, split the preheader and exit blocks, and add these blocks to
732  // the LoopBlocks list.
733  BasicBlock *OrigHeader = L->getHeader();
734  BasicBlock *OrigPreheader = L->getLoopPreheader();
735  BasicBlock *NewPreheader = SplitEdge(OrigPreheader, L->getHeader(), this);
736  LoopBlocks.push_back(NewPreheader);
737
738  // We want the loop to come after the preheader, but before the exit blocks.
739  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
740
741  SmallVector<BasicBlock*, 8> ExitBlocks;
742  L->getUniqueExitBlocks(ExitBlocks);
743
744  // Split all of the edges from inside the loop to their exit blocks.  Update
745  // the appropriate Phi nodes as we do so.
746  SmallVector<BasicBlock *,8> MiddleBlocks;
747  SplitExitEdges(L, ExitBlocks, MiddleBlocks);
748
749  // The exit blocks may have been changed due to edge splitting, recompute.
750  ExitBlocks.clear();
751  L->getUniqueExitBlocks(ExitBlocks);
752
753  // Add exit blocks to the loop blocks.
754  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
755
756  // Next step, clone all of the basic blocks that make up the loop (including
757  // the loop preheader and exit blocks), keeping track of the mapping between
758  // the instructions and blocks.
759  std::vector<BasicBlock*> NewBlocks;
760  NewBlocks.reserve(LoopBlocks.size());
761  DenseMap<const Value*, Value*> ValueMap;
762  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
763    BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
764    NewBlocks.push_back(New);
765    ValueMap[LoopBlocks[i]] = New;  // Keep the BB mapping.
766    LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], New, L);
767  }
768
769  // OutSiders are basic block that are dominated by original header and
770  // at the same time they are not part of loop.
771  SmallPtrSet<BasicBlock *, 8> OutSiders;
772  if (DT) {
773    DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
774    for(std::vector<DomTreeNode*>::iterator DI = OrigHeaderNode->begin(),
775          DE = OrigHeaderNode->end();  DI != DE; ++DI) {
776      BasicBlock *B = (*DI)->getBlock();
777
778      DenseMap<const Value*, Value*>::iterator VI = ValueMap.find(B);
779      if (VI == ValueMap.end())
780        OutSiders.insert(B);
781    }
782  }
783
784  // Splice the newly inserted blocks into the function right before the
785  // original preheader.
786  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
787                                NewBlocks[0], F->end());
788
789  // Now we create the new Loop object for the versioned loop.
790  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI, LPM);
791  Loop *ParentLoop = L->getParentLoop();
792  if (ParentLoop) {
793    // Make sure to add the cloned preheader and exit blocks to the parent loop
794    // as well.
795    ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
796  }
797
798  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
799    BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
800    // The new exit block should be in the same loop as the old one.
801    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
802      ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
803
804    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
805           "Exit block should have been split to have one successor!");
806    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
807
808    // If the successor of the exit block had PHI nodes, add an entry for
809    // NewExit.
810    PHINode *PN;
811    for (BasicBlock::iterator I = ExitSucc->begin();
812         (PN = dyn_cast<PHINode>(I)); ++I) {
813      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
814      DenseMap<const Value *, Value*>::iterator It = ValueMap.find(V);
815      if (It != ValueMap.end()) V = It->second;
816      PN->addIncoming(V, NewExit);
817    }
818  }
819
820  // Rewrite the code to refer to itself.
821  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
822    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
823           E = NewBlocks[i]->end(); I != E; ++I)
824      RemapInstruction(I, ValueMap);
825
826  // Rewrite the original preheader to select between versions of the loop.
827  BranchInst *OldBR = cast<BranchInst>(OrigPreheader->getTerminator());
828  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
829         "Preheader splitting did not work correctly!");
830
831  // Emit the new branch that selects between the two versions of this loop.
832  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
833  LPM->deleteSimpleAnalysisValue(OldBR, L);
834  OldBR->eraseFromParent();
835
836  // Update dominator info
837  if (DF && DT) {
838
839    SmallVector<BasicBlock *,4> ExitingBlocks;
840    L->getExitingBlocks(ExitingBlocks);
841
842    // Clone dominator info for all cloned basic block.
843    for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
844      BasicBlock *LBB = LoopBlocks[i];
845      BasicBlock *NBB = NewBlocks[i];
846      CloneDomInfo(NBB, LBB, NewPreheader, OrigPreheader,
847                   OrigHeader, DT, DF, ValueMap);
848
849      //   If LBB's dominance frontier includes DFMember
850      //      such that DFMember is also a member of LoopDF then
851      //         - Remove DFMember from LBB's dominance frontier
852      //         - Copy loop exiting blocks', that are dominated by BB,
853      //           dominance frontier member in BB's dominance frontier
854
855      DominanceFrontier::iterator LBBI = DF->find(LBB);
856      DominanceFrontier::iterator NBBI = DF->find(NBB);
857      if (LBBI == DF->end())
858        continue;
859
860      DominanceFrontier::DomSetType &LBSet = LBBI->second;
861      for (DominanceFrontier::DomSetType::iterator LI = LBSet.begin(),
862             LE = LBSet.end(); LI != LE; /* NULL */) {
863        BasicBlock *B = *LI++;
864        if (B == LBB && B == L->getHeader())
865          continue;
866        bool removeB = false;
867        if (!LoopDF.count(B))
868          continue;
869
870        // If LBB dominates loop exits then insert loop exit block's DF
871        // into B's DF.
872        for(SmallVector<BasicBlock *, 4>::iterator
873              LExitI = ExitingBlocks.begin(),
874              LExitE = ExitingBlocks.end(); LExitI != LExitE; ++LExitI) {
875          BasicBlock *E = *LExitI;
876
877          if (!DT->dominates(LBB,E))
878            continue;
879
880          DenseMap<BasicBlock *, BasicBlock *>::iterator DFBI =
881            OrigLoopExitMap.find(E);
882          if (DFBI == OrigLoopExitMap.end())
883            continue;
884
885          BasicBlock *DFB = DFBI->second;
886          DF->addToFrontier(LBBI, DFB);
887          DF->addToFrontier(NBBI, DFB);
888          removeB = true;
889        }
890
891        // If B's replacement is inserted in DF then now is the time to remove
892        // B.
893        if (removeB) {
894          DF->removeFromFrontier(LBBI, B);
895          if (L->contains(B))
896            DF->removeFromFrontier(NBBI, cast<BasicBlock>(ValueMap[B]));
897          else
898            DF->removeFromFrontier(NBBI, B);
899        }
900      }
901
902    }
903
904    // MiddleBlocks are dominated by original pre header. SplitEdge updated
905    // MiddleBlocks' dominance frontier appropriately.
906    for (unsigned i = 0, e = MiddleBlocks.size(); i != e; ++i) {
907      BasicBlock *MBB = MiddleBlocks[i];
908      if (!MBB->getSinglePredecessor())
909        DT->changeImmediateDominator(MBB, OrigPreheader);
910    }
911
912    // All Outsiders are now dominated by original pre header.
913    for (SmallPtrSet<BasicBlock *, 8>::iterator OI = OutSiders.begin(),
914           OE = OutSiders.end(); OI != OE; ++OI) {
915      BasicBlock *OB = *OI;
916      DT->changeImmediateDominator(OB, OrigPreheader);
917    }
918
919    // New loop headers are dominated by original preheader
920    DT->changeImmediateDominator(NewBlocks[0], OrigPreheader);
921    DT->changeImmediateDominator(LoopBlocks[0], OrigPreheader);
922  }
923
924  LoopProcessWorklist.push_back(NewLoop);
925  redoLoop = true;
926
927  // Now we rewrite the original code to know that the condition is true and the
928  // new code to know that the condition is false.
929  RewriteLoopBodyWithConditionConstant(L      , LIC, Val, false);
930
931  // It's possible that simplifying one loop could cause the other to be
932  // deleted.  If so, don't simplify it.
933  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop)
934    RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
935}
936
937/// RemoveFromWorklist - Remove all instances of I from the worklist vector
938/// specified.
939static void RemoveFromWorklist(Instruction *I,
940                               std::vector<Instruction*> &Worklist) {
941  std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
942                                                     Worklist.end(), I);
943  while (WI != Worklist.end()) {
944    unsigned Offset = WI-Worklist.begin();
945    Worklist.erase(WI);
946    WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
947  }
948}
949
950/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
951/// program, replacing all uses with V and update the worklist.
952static void ReplaceUsesOfWith(Instruction *I, Value *V,
953                              std::vector<Instruction*> &Worklist,
954                              Loop *L, LPPassManager *LPM) {
955  DOUT << "Replace with '" << *V << "': " << *I;
956
957  // Add uses to the worklist, which may be dead now.
958  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
959    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
960      Worklist.push_back(Use);
961
962  // Add users to the worklist which may be simplified now.
963  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
964       UI != E; ++UI)
965    Worklist.push_back(cast<Instruction>(*UI));
966  LPM->deleteSimpleAnalysisValue(I, L);
967  RemoveFromWorklist(I, Worklist);
968  I->replaceAllUsesWith(V);
969  I->eraseFromParent();
970  ++NumSimplify;
971}
972
973/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
974/// information, and remove any dead successors it has.
975///
976void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
977                                     std::vector<Instruction*> &Worklist,
978                                     Loop *L) {
979  if (pred_begin(BB) != pred_end(BB)) {
980    // This block isn't dead, since an edge to BB was just removed, see if there
981    // are any easy simplifications we can do now.
982    if (BasicBlock *Pred = BB->getSinglePredecessor()) {
983      // If it has one pred, fold phi nodes in BB.
984      while (isa<PHINode>(BB->begin()))
985        ReplaceUsesOfWith(BB->begin(),
986                          cast<PHINode>(BB->begin())->getIncomingValue(0),
987                          Worklist, L, LPM);
988
989      // If this is the header of a loop and the only pred is the latch, we now
990      // have an unreachable loop.
991      if (Loop *L = LI->getLoopFor(BB))
992        if (L->getHeader() == BB && L->contains(Pred)) {
993          // Remove the branch from the latch to the header block, this makes
994          // the header dead, which will make the latch dead (because the header
995          // dominates the latch).
996          LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
997          Pred->getTerminator()->eraseFromParent();
998          new UnreachableInst(Pred);
999
1000          // The loop is now broken, remove it from LI.
1001          RemoveLoopFromHierarchy(L);
1002
1003          // Reprocess the header, which now IS dead.
1004          RemoveBlockIfDead(BB, Worklist, L);
1005          return;
1006        }
1007
1008      // If pred ends in a uncond branch, add uncond branch to worklist so that
1009      // the two blocks will get merged.
1010      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
1011        if (BI->isUnconditional())
1012          Worklist.push_back(BI);
1013    }
1014    return;
1015  }
1016
1017  DOUT << "Nuking dead block: " << *BB;
1018
1019  // Remove the instructions in the basic block from the worklist.
1020  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1021    RemoveFromWorklist(I, Worklist);
1022
1023    // Anything that uses the instructions in this basic block should have their
1024    // uses replaced with undefs.
1025    if (!I->use_empty())
1026      I->replaceAllUsesWith(UndefValue::get(I->getType()));
1027  }
1028
1029  // If this is the edge to the header block for a loop, remove the loop and
1030  // promote all subloops.
1031  if (Loop *BBLoop = LI->getLoopFor(BB)) {
1032    if (BBLoop->getLoopLatch() == BB)
1033      RemoveLoopFromHierarchy(BBLoop);
1034  }
1035
1036  // Remove the block from the loop info, which removes it from any loops it
1037  // was in.
1038  LI->removeBlock(BB);
1039
1040
1041  // Remove phi node entries in successors for this block.
1042  TerminatorInst *TI = BB->getTerminator();
1043  std::vector<BasicBlock*> Succs;
1044  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1045    Succs.push_back(TI->getSuccessor(i));
1046    TI->getSuccessor(i)->removePredecessor(BB);
1047  }
1048
1049  // Unique the successors, remove anything with multiple uses.
1050  std::sort(Succs.begin(), Succs.end());
1051  Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
1052
1053  // Remove the basic block, including all of the instructions contained in it.
1054  LPM->deleteSimpleAnalysisValue(BB, L);
1055  BB->eraseFromParent();
1056  // Remove successor blocks here that are not dead, so that we know we only
1057  // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
1058  // then getting removed before we revisit them, which is badness.
1059  //
1060  for (unsigned i = 0; i != Succs.size(); ++i)
1061    if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
1062      // One exception is loop headers.  If this block was the preheader for a
1063      // loop, then we DO want to visit the loop so the loop gets deleted.
1064      // We know that if the successor is a loop header, that this loop had to
1065      // be the preheader: the case where this was the latch block was handled
1066      // above and headers can only have two predecessors.
1067      if (!LI->isLoopHeader(Succs[i])) {
1068        Succs.erase(Succs.begin()+i);
1069        --i;
1070      }
1071    }
1072
1073  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
1074    RemoveBlockIfDead(Succs[i], Worklist, L);
1075}
1076
1077/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
1078/// become unwrapped, either because the backedge was deleted, or because the
1079/// edge into the header was removed.  If the edge into the header from the
1080/// latch block was removed, the loop is unwrapped but subloops are still alive,
1081/// so they just reparent loops.  If the loops are actually dead, they will be
1082/// removed later.
1083void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
1084  LPM->deleteLoopFromQueue(L);
1085  RemoveLoopFromWorklist(L);
1086}
1087
1088
1089
1090// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
1091// the value specified by Val in the specified loop, or we know it does NOT have
1092// that value.  Rewrite any uses of LIC or of properties correlated to it.
1093void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1094                                                        Constant *Val,
1095                                                        bool IsEqual) {
1096  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1097
1098  // FIXME: Support correlated properties, like:
1099  //  for (...)
1100  //    if (li1 < li2)
1101  //      ...
1102  //    if (li1 > li2)
1103  //      ...
1104
1105  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
1106  // selects, switches.
1107  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
1108  std::vector<Instruction*> Worklist;
1109
1110  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1111  // in the loop with the appropriate one directly.
1112  if (IsEqual || (isa<ConstantInt>(Val) && Val->getType() == Type::Int1Ty)) {
1113    Value *Replacement;
1114    if (IsEqual)
1115      Replacement = Val;
1116    else
1117      Replacement = ConstantInt::get(Type::Int1Ty,
1118                                     !cast<ConstantInt>(Val)->getZExtValue());
1119
1120    for (unsigned i = 0, e = Users.size(); i != e; ++i)
1121      if (Instruction *U = cast<Instruction>(Users[i])) {
1122        if (!L->contains(U->getParent()))
1123          continue;
1124        U->replaceUsesOfWith(LIC, Replacement);
1125        Worklist.push_back(U);
1126      }
1127  } else {
1128    // Otherwise, we don't know the precise value of LIC, but we do know that it
1129    // is certainly NOT "Val".  As such, simplify any uses in the loop that we
1130    // can.  This case occurs when we unswitch switch statements.
1131    for (unsigned i = 0, e = Users.size(); i != e; ++i)
1132      if (Instruction *U = cast<Instruction>(Users[i])) {
1133        if (!L->contains(U->getParent()))
1134          continue;
1135
1136        Worklist.push_back(U);
1137
1138        // If we know that LIC is not Val, use this info to simplify code.
1139        if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
1140          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
1141            if (SI->getCaseValue(i) == Val) {
1142              // Found a dead case value.  Don't remove PHI nodes in the
1143              // successor if they become single-entry, those PHI nodes may
1144              // be in the Users list.
1145
1146              // FIXME: This is a hack.  We need to keep the successor around
1147              // and hooked up so as to preserve the loop structure, because
1148              // trying to update it is complicated.  So instead we preserve the
1149              // loop structure and put the block on an dead code path.
1150
1151              BasicBlock* Old = SI->getParent();
1152              BasicBlock* Split = SplitBlock(Old, SI, this);
1153
1154              Instruction* OldTerm = Old->getTerminator();
1155              BranchInst::Create(Split, SI->getSuccessor(i),
1156                                 ConstantInt::getTrue(), OldTerm);
1157
1158              LPM->deleteSimpleAnalysisValue(Old->getTerminator(), L);
1159              Old->getTerminator()->eraseFromParent();
1160
1161              PHINode *PN;
1162              for (BasicBlock::iterator II = SI->getSuccessor(i)->begin();
1163                   (PN = dyn_cast<PHINode>(II)); ++II) {
1164                Value *InVal = PN->removeIncomingValue(Split, false);
1165                PN->addIncoming(InVal, Old);
1166              }
1167
1168              SI->removeCase(i);
1169              break;
1170            }
1171          }
1172        }
1173
1174        // TODO: We could do other simplifications, for example, turning
1175        // LIC == Val -> false.
1176      }
1177  }
1178
1179  SimplifyCode(Worklist, L);
1180}
1181
1182/// SimplifyCode - Okay, now that we have simplified some instructions in the
1183/// loop, walk over it and constant prop, dce, and fold control flow where
1184/// possible.  Note that this is effectively a very simple loop-structure-aware
1185/// optimizer.  During processing of this loop, L could very well be deleted, so
1186/// it must not be used.
1187///
1188/// FIXME: When the loop optimizer is more mature, separate this out to a new
1189/// pass.
1190///
1191void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1192  while (!Worklist.empty()) {
1193    Instruction *I = Worklist.back();
1194    Worklist.pop_back();
1195
1196    // Simple constant folding.
1197    if (Constant *C = ConstantFoldInstruction(I)) {
1198      ReplaceUsesOfWith(I, C, Worklist, L, LPM);
1199      continue;
1200    }
1201
1202    // Simple DCE.
1203    if (isInstructionTriviallyDead(I)) {
1204      DOUT << "Remove dead instruction '" << *I;
1205
1206      // Add uses to the worklist, which may be dead now.
1207      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1208        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1209          Worklist.push_back(Use);
1210      LPM->deleteSimpleAnalysisValue(I, L);
1211      RemoveFromWorklist(I, Worklist);
1212      I->eraseFromParent();
1213      ++NumSimplify;
1214      continue;
1215    }
1216
1217    // Special case hacks that appear commonly in unswitched code.
1218    switch (I->getOpcode()) {
1219    case Instruction::Select:
1220      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(0))) {
1221        ReplaceUsesOfWith(I, I->getOperand(!CB->getZExtValue()+1), Worklist, L,
1222                          LPM);
1223        continue;
1224      }
1225      break;
1226    case Instruction::And:
1227      if (isa<ConstantInt>(I->getOperand(0)) &&
1228          I->getOperand(0)->getType() == Type::Int1Ty)   // constant -> RHS
1229        cast<BinaryOperator>(I)->swapOperands();
1230      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1231        if (CB->getType() == Type::Int1Ty) {
1232          if (CB->isOne())      // X & 1 -> X
1233            ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
1234          else                  // X & 0 -> 0
1235            ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
1236          continue;
1237        }
1238      break;
1239    case Instruction::Or:
1240      if (isa<ConstantInt>(I->getOperand(0)) &&
1241          I->getOperand(0)->getType() == Type::Int1Ty)   // constant -> RHS
1242        cast<BinaryOperator>(I)->swapOperands();
1243      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1244        if (CB->getType() == Type::Int1Ty) {
1245          if (CB->isOne())   // X | 1 -> 1
1246            ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
1247          else                  // X | 0 -> X
1248            ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
1249          continue;
1250        }
1251      break;
1252    case Instruction::Br: {
1253      BranchInst *BI = cast<BranchInst>(I);
1254      if (BI->isUnconditional()) {
1255        // If BI's parent is the only pred of the successor, fold the two blocks
1256        // together.
1257        BasicBlock *Pred = BI->getParent();
1258        BasicBlock *Succ = BI->getSuccessor(0);
1259        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1260        if (!SinglePred) continue;  // Nothing to do.
1261        assert(SinglePred == Pred && "CFG broken");
1262
1263        DOUT << "Merging blocks: " << Pred->getName() << " <- "
1264             << Succ->getName() << "\n";
1265
1266        // Resolve any single entry PHI nodes in Succ.
1267        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1268          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1269
1270        // Move all of the successor contents from Succ to Pred.
1271        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1272                                   Succ->end());
1273        LPM->deleteSimpleAnalysisValue(BI, L);
1274        BI->eraseFromParent();
1275        RemoveFromWorklist(BI, Worklist);
1276
1277        // If Succ has any successors with PHI nodes, update them to have
1278        // entries coming from Pred instead of Succ.
1279        Succ->replaceAllUsesWith(Pred);
1280
1281        // Remove Succ from the loop tree.
1282        LI->removeBlock(Succ);
1283        LPM->deleteSimpleAnalysisValue(Succ, L);
1284        Succ->eraseFromParent();
1285        ++NumSimplify;
1286      } else if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1287        // Conditional branch.  Turn it into an unconditional branch, then
1288        // remove dead blocks.
1289        break;  // FIXME: Enable.
1290
1291        DOUT << "Folded branch: " << *BI;
1292        BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1293        BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1294        DeadSucc->removePredecessor(BI->getParent(), true);
1295        Worklist.push_back(BranchInst::Create(LiveSucc, BI));
1296        LPM->deleteSimpleAnalysisValue(BI, L);
1297        BI->eraseFromParent();
1298        RemoveFromWorklist(BI, Worklist);
1299        ++NumSimplify;
1300
1301        RemoveBlockIfDead(DeadSucc, Worklist, L);
1302      }
1303      break;
1304    }
1305    }
1306  }
1307}
1308