LoopUnswitch.cpp revision 10cd9bbde7bda0b125cb5153f330ddc1f8509bd1
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/Function.h"
33#include "llvm/Instructions.h"
34#include "llvm/Analysis/LoopInfo.h"
35#include "llvm/Transforms/Utils/Cloning.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Transforms/Utils/BasicBlockUtils.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/CommandLine.h"
41#include <algorithm>
42#include <iostream>
43#include <set>
44using namespace llvm;
45
46namespace {
47  Statistic<> NumBranches("loop-unswitch", "Number of branches unswitched");
48  Statistic<> NumSwitches("loop-unswitch", "Number of switches unswitched");
49  Statistic<> NumSelects ("loop-unswitch", "Number of selects unswitched");
50  Statistic<> NumTrivial ("loop-unswitch",
51                          "Number of unswitches that are trivial");
52  cl::opt<unsigned>
53  Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
54            cl::init(10), cl::Hidden);
55
56  class LoopUnswitch : public FunctionPass {
57    LoopInfo *LI;  // Loop information
58  public:
59    virtual bool runOnFunction(Function &F);
60    bool visitLoop(Loop *L);
61
62    /// This transformation requires natural loop information & requires that
63    /// loop preheaders be inserted into the CFG...
64    ///
65    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66      AU.addRequiredID(LoopSimplifyID);
67      AU.addPreservedID(LoopSimplifyID);
68      AU.addRequired<LoopInfo>();
69      AU.addPreserved<LoopInfo>();
70    }
71
72  private:
73    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L);
74    unsigned getLoopUnswitchCost(Loop *L, Value *LIC);
75    void VersionLoop(Value *LIC, Constant *OnVal,
76                     Loop *L, Loop *&Out1, Loop *&Out2);
77    BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To);
78    BasicBlock *SplitBlock(BasicBlock *Old, Instruction *SplitPt);
79    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,Constant *Val,
80                                              bool isEqual);
81    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
82                                  bool EntersWhenTrue, BasicBlock *ExitBlock);
83  };
84  RegisterOpt<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
85}
86
87FunctionPass *llvm::createLoopUnswitchPass() { return new LoopUnswitch(); }
88
89bool LoopUnswitch::runOnFunction(Function &F) {
90  bool Changed = false;
91  LI = &getAnalysis<LoopInfo>();
92
93  // Transform all the top-level loops.  Copy the loop list so that the child
94  // can update the loop tree if it needs to delete the loop.
95  std::vector<Loop*> SubLoops(LI->begin(), LI->end());
96  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
97    Changed |= visitLoop(SubLoops[i]);
98
99  return Changed;
100}
101
102
103/// LoopValuesUsedOutsideLoop - Return true if there are any values defined in
104/// the loop that are used by instructions outside of it.
105static bool LoopValuesUsedOutsideLoop(Loop *L) {
106  // We will be doing lots of "loop contains block" queries.  Loop::contains is
107  // linear time, use a set to speed this up.
108  std::set<BasicBlock*> LoopBlocks;
109
110  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
111       BB != E; ++BB)
112    LoopBlocks.insert(*BB);
113
114  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
115       BB != E; ++BB) {
116    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
117      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
118           ++UI) {
119        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
120        if (!LoopBlocks.count(UserBB))
121          return true;
122      }
123  }
124  return false;
125}
126
127/// isTrivialLoopExitBlock - Check to see if all paths from BB either:
128///   1. Exit the loop with no side effects.
129///   2. Branch to the latch block with no side-effects.
130///
131/// If these conditions are true, we return true and set ExitBB to the block we
132/// exit through.
133///
134static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
135                                         BasicBlock *&ExitBB,
136                                         std::set<BasicBlock*> &Visited) {
137  BasicBlock *Header = L->getHeader();
138  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
139    if (!Visited.insert(*SI).second) {
140      // Already visited and Ok, end of recursion.
141    } else if (L->contains(*SI)) {
142      // Check to see if the successor is a trivial loop exit.
143      if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
144        return false;
145    } else {
146      // Otherwise, this is a loop exit, this is fine so long as this is the
147      // first exit.
148      if (ExitBB != 0) return false;
149      ExitBB = *SI;
150    }
151  }
152
153  // Okay, everything after this looks good, check to make sure that this block
154  // doesn't include any side effects.
155  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
156    if (I->mayWriteToMemory())
157      return false;
158
159  return true;
160}
161
162static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
163  std::set<BasicBlock*> Visited;
164  Visited.insert(L->getHeader());  // Branches to header are ok.
165  Visited.insert(BB);              // Don't revisit BB after we do.
166  BasicBlock *ExitBB = 0;
167  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
168    return ExitBB;
169  return 0;
170}
171
172/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
173/// trivial: that is, that the condition controls whether or not the loop does
174/// anything at all.  If this is a trivial condition, unswitching produces no
175/// code duplications (equivalently, it produces a simpler loop and a new empty
176/// loop, which gets deleted).
177///
178/// If this is a trivial condition, return ConstantBool::True if the loop body
179/// runs when the condition is true, False if the loop body executes when the
180/// condition is false.  Otherwise, return null to indicate a complex condition.
181static bool IsTrivialUnswitchCondition(Loop *L, Value *Cond,
182                                       Constant **Val = 0,
183                                       bool *EntersWhenTrue = 0,
184                                       BasicBlock **LoopExit = 0) {
185  BasicBlock *Header = L->getHeader();
186  TerminatorInst *HeaderTerm = Header->getTerminator();
187
188  BasicBlock *LoopExitBB = 0;
189  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
190    // If the header block doesn't end with a conditional branch on Cond, we
191    // can't handle it.
192    if (!BI->isConditional() || BI->getCondition() != Cond)
193      return false;
194
195    // Check to see if a successor of the branch is guaranteed to go to the
196    // latch block or exit through a one exit block without having any
197    // side-effects.  If so, determine the value of Cond that causes it to do
198    // this.
199    if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(0)))) {
200      if (Val) *Val = ConstantBool::False;
201    } else if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(1)))) {
202      if (Val) *Val = ConstantBool::True;
203    }
204  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
205    // If this isn't a switch on Cond, we can't handle it.
206    if (SI->getCondition() != Cond) return false;
207
208    // Check to see if a successor of the switch is guaranteed to go to the
209    // latch block or exit through a one exit block without having any
210    // side-effects.  If so, determine the value of Cond that causes it to do
211    // this.  Note that we can't trivially unswitch on the default case.
212    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
213      if ((LoopExitBB = isTrivialLoopExitBlock(L, SI->getSuccessor(i)))) {
214        // Okay, we found a trivial case, remember the value that is trivial.
215        if (Val) *Val = SI->getCaseValue(i);
216        if (EntersWhenTrue) *EntersWhenTrue = false;
217        break;
218      }
219  }
220
221  if (!LoopExitBB)
222    return false;   // Can't handle this.
223
224  if (LoopExit) *LoopExit = LoopExitBB;
225
226  // We already know that nothing uses any scalar values defined inside of this
227  // loop.  As such, we just have to check to see if this loop will execute any
228  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
229  // part of the loop that the code *would* execute.  We already checked the
230  // tail, check the header now.
231  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
232    if (I->mayWriteToMemory())
233      return false;
234  return true;
235}
236
237/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
238/// we choose to unswitch the specified loop on the specified value.
239///
240unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) {
241  // If the condition is trivial, always unswitch.  There is no code growth for
242  // this case.
243  if (IsTrivialUnswitchCondition(L, LIC))
244    return 0;
245
246  unsigned Cost = 0;
247  // FIXME: this is brain dead.  It should take into consideration code
248  // shrinkage.
249  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
250       I != E; ++I) {
251    BasicBlock *BB = *I;
252    // Do not include empty blocks in the cost calculation.  This happen due to
253    // loop canonicalization and will be removed.
254    if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
255      continue;
256
257    // Count basic blocks.
258    ++Cost;
259  }
260
261  return Cost;
262}
263
264/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
265/// invariant in the loop, or has an invariant piece, return the invariant.
266/// Otherwise, return null.
267static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
268  // Constants should be folded, not unswitched on!
269  if (isa<Constant>(Cond)) return false;
270
271  // TODO: Handle: br (VARIANT|INVARIANT).
272  // TODO: Hoist simple expressions out of loops.
273  if (L->isLoopInvariant(Cond)) return Cond;
274
275  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
276    if (BO->getOpcode() == Instruction::And ||
277        BO->getOpcode() == Instruction::Or) {
278      // If either the left or right side is invariant, we can unswitch on this,
279      // which will cause the branch to go away in one loop and the condition to
280      // simplify in the other one.
281      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
282        return LHS;
283      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
284        return RHS;
285    }
286
287  return 0;
288}
289
290bool LoopUnswitch::visitLoop(Loop *L) {
291  bool Changed = false;
292
293  // Recurse through all subloops before we process this loop.  Copy the loop
294  // list so that the child can update the loop tree if it needs to delete the
295  // loop.
296  std::vector<Loop*> SubLoops(L->begin(), L->end());
297  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
298    Changed |= visitLoop(SubLoops[i]);
299
300  // Loop over all of the basic blocks in the loop.  If we find an interior
301  // block that is branching on a loop-invariant condition, we can unswitch this
302  // loop.
303  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
304       I != E; ++I) {
305    TerminatorInst *TI = (*I)->getTerminator();
306    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
307      // If this isn't branching on an invariant condition, we can't unswitch
308      // it.
309      if (BI->isConditional()) {
310        // See if this, or some part of it, is loop invariant.  If so, we can
311        // unswitch on it if we desire.
312        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), L, Changed);
313        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantBool::True, L)) {
314          ++NumBranches;
315          return true;
316        }
317      }
318    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
319      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
320      if (LoopCond && SI->getNumCases() > 1) {
321        // Find a value to unswitch on:
322        // FIXME: this should chose the most expensive case!
323        Constant *UnswitchVal = SI->getCaseValue(1);
324        if (UnswitchIfProfitable(LoopCond, UnswitchVal, L)) {
325          ++NumSwitches;
326          return true;
327        }
328      }
329    }
330
331    // Scan the instructions to check for unswitchable values.
332    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
333         BBI != E; ++BBI)
334      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
335        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
336        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantBool::True, L)) {
337          ++NumSelects;
338          return true;
339        }
340      }
341  }
342
343  return Changed;
344}
345
346/// UnswitchIfProfitable - We have found that we can unswitch L when
347/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
348/// unswitch the loop, reprocess the pieces, then return true.
349bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L){
350  // Check to see if it would be profitable to unswitch this loop.
351  if (getLoopUnswitchCost(L, LoopCond) > Threshold) {
352    // FIXME: this should estimate growth by the amount of code shared by the
353    // resultant unswitched loops.
354    //
355    DEBUG(std::cerr << "NOT unswitching loop %"
356                    << L->getHeader()->getName() << ", cost too high: "
357                    << L->getBlocks().size() << "\n");
358    return false;
359  }
360
361  // If this loop has live-out values, we can't unswitch it. We need something
362  // like loop-closed SSA form in order to know how to insert PHI nodes for
363  // these values.
364  if (LoopValuesUsedOutsideLoop(L)) {
365    DEBUG(std::cerr << "NOT unswitching loop %" << L->getHeader()->getName()
366                    << ", a loop value is used outside loop!\n");
367    return false;
368  }
369
370  //std::cerr << "BEFORE:\n"; LI->dump();
371  Loop *NewLoop1 = 0, *NewLoop2 = 0;
372
373  // If this is a trivial condition to unswitch (which results in no code
374  // duplication), do it now.
375  Constant *CondVal;
376  bool EntersWhenTrue = true;
377  BasicBlock *ExitBlock;
378  if (IsTrivialUnswitchCondition(L, LoopCond, &CondVal,
379                                 &EntersWhenTrue, &ExitBlock)) {
380    UnswitchTrivialCondition(L, LoopCond, CondVal, EntersWhenTrue, ExitBlock);
381    NewLoop1 = L;
382  } else {
383    VersionLoop(LoopCond, Val, L, NewLoop1, NewLoop2);
384  }
385
386  //std::cerr << "AFTER:\n"; LI->dump();
387
388  // Try to unswitch each of our new loops now!
389  if (NewLoop1) visitLoop(NewLoop1);
390  if (NewLoop2) visitLoop(NewLoop2);
391  return true;
392}
393
394/// SplitBlock - Split the specified block at the specified instruction - every
395/// thing before SplitPt stays in Old and everything starting with SplitPt moves
396/// to a new block.  The two blocks are joined by an unconditional branch and
397/// the loop info is updated.
398///
399BasicBlock *LoopUnswitch::SplitBlock(BasicBlock *Old, Instruction *SplitPt) {
400  BasicBlock::iterator SplitIt = SplitPt;
401  while (isa<PHINode>(SplitIt))
402    ++SplitIt;
403  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
404
405  // The new block lives in whichever loop the old one did.
406  if (Loop *L = LI->getLoopFor(Old))
407    L->addBasicBlockToLoop(New, *LI);
408
409  return New;
410}
411
412
413BasicBlock *LoopUnswitch::SplitEdge(BasicBlock *BB, BasicBlock *Succ) {
414  TerminatorInst *LatchTerm = BB->getTerminator();
415  unsigned SuccNum = 0;
416  for (unsigned i = 0, e = LatchTerm->getNumSuccessors(); ; ++i) {
417    assert(i != e && "Didn't find edge?");
418    if (LatchTerm->getSuccessor(i) == Succ) {
419      SuccNum = i;
420      break;
421    }
422  }
423
424  // If this is a critical edge, let SplitCriticalEdge do it.
425  if (SplitCriticalEdge(BB->getTerminator(), SuccNum, this))
426    return LatchTerm->getSuccessor(SuccNum);
427
428  // If the edge isn't critical, then BB has a single successor or Succ has a
429  // single pred.  Split the block.
430  BasicBlock::iterator SplitPoint;
431  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
432    // If the successor only has a single pred, split the top of the successor
433    // block.
434    assert(SP == BB && "CFG broken");
435    return SplitBlock(Succ, Succ->begin());
436  } else {
437    // Otherwise, if BB has a single successor, split it at the bottom of the
438    // block.
439    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
440           "Should have a single succ!");
441    return SplitBlock(BB, BB->getTerminator());
442  }
443}
444
445
446
447// RemapInstruction - Convert the instruction operands from referencing the
448// current values into those specified by ValueMap.
449//
450static inline void RemapInstruction(Instruction *I,
451                                    std::map<const Value *, Value*> &ValueMap) {
452  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
453    Value *Op = I->getOperand(op);
454    std::map<const Value *, Value*>::iterator It = ValueMap.find(Op);
455    if (It != ValueMap.end()) Op = It->second;
456    I->setOperand(op, Op);
457  }
458}
459
460/// CloneLoop - Recursively clone the specified loop and all of its children,
461/// mapping the blocks with the specified map.
462static Loop *CloneLoop(Loop *L, Loop *PL, std::map<const Value*, Value*> &VM,
463                       LoopInfo *LI) {
464  Loop *New = new Loop();
465
466  if (PL)
467    PL->addChildLoop(New);
468  else
469    LI->addTopLevelLoop(New);
470
471  // Add all of the blocks in L to the new loop.
472  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
473       I != E; ++I)
474    if (LI->getLoopFor(*I) == L)
475      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
476
477  // Add all of the subloops to the new loop.
478  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
479    CloneLoop(*I, New, VM, LI);
480
481  return New;
482}
483
484/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
485/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
486/// code immediately before InsertPt.
487static void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
488                                           BasicBlock *TrueDest,
489                                           BasicBlock *FalseDest,
490                                           Instruction *InsertPt) {
491  // Insert a conditional branch on LIC to the two preheaders.  The original
492  // code is the true version and the new code is the false version.
493  Value *BranchVal = LIC;
494  if (!isa<ConstantBool>(Val)) {
495    BranchVal = BinaryOperator::createSetEQ(LIC, Val, "tmp", InsertPt);
496  } else if (Val != ConstantBool::True) {
497    // We want to enter the new loop when the condition is true.
498    std::swap(TrueDest, FalseDest);
499  }
500
501  // Insert the new branch.
502  new BranchInst(TrueDest, FalseDest, BranchVal, InsertPt);
503}
504
505
506/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
507/// condition in it (a cond branch from its header block to its latch block,
508/// where the path through the loop that doesn't execute its body has no
509/// side-effects), unswitch it.  This doesn't involve any code duplication, just
510/// moving the conditional branch outside of the loop and updating loop info.
511void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
512                                            Constant *Val, bool EntersWhenTrue,
513                                            BasicBlock *ExitBlock) {
514  DEBUG(std::cerr << "loop-unswitch: Trivial-Unswitch loop %"
515        << L->getHeader()->getName() << " [" << L->getBlocks().size()
516        << " blocks] in Function " << L->getHeader()->getParent()->getName()
517        << " on cond: " << *Val << (EntersWhenTrue ? " == " : " != ") <<
518        *Cond << "\n");
519
520  // First step, split the preheader, so that we know that there is a safe place
521  // to insert the conditional branch.  We will change 'OrigPH' to have a
522  // conditional branch on Cond.
523  BasicBlock *OrigPH = L->getLoopPreheader();
524  BasicBlock *NewPH = SplitEdge(OrigPH, L->getHeader());
525
526  // Now that we have a place to insert the conditional branch, create a place
527  // to branch to: this is the exit block out of the loop that we should
528  // short-circuit to.
529
530  // Split this block now, so that the loop maintains its exit block, and so
531  // that the jump from the preheader can execute the contents of the exit block
532  // without actually branching to it (the exit block should be dominated by the
533  // loop header, not the preheader).
534  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
535  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin());
536
537  // Okay, now we have a position to branch from and a position to branch to,
538  // insert the new conditional branch.
539  {
540    BasicBlock *TrueDest = NewPH, *FalseDest = NewExit;
541    if (!EntersWhenTrue) std::swap(TrueDest, FalseDest);
542    EmitPreheaderBranchOnCondition(Cond, Val, TrueDest, FalseDest,
543                                   OrigPH->getTerminator());
544  }
545  OrigPH->getTerminator()->eraseFromParent();
546
547  // Now that we know that the loop is never entered when this condition is a
548  // particular value, rewrite the loop with this info.  We know that this will
549  // at least eliminate the old branch.
550  RewriteLoopBodyWithConditionConstant(L, Cond, Val, EntersWhenTrue);
551  ++NumTrivial;
552}
553
554
555/// VersionLoop - We determined that the loop is profitable to unswitch when LIC
556/// equal Val.  Split it into loop versions and test the condition outside of
557/// either loop.  Return the loops created as Out1/Out2.
558void LoopUnswitch::VersionLoop(Value *LIC, Constant *Val, Loop *L,
559                               Loop *&Out1, Loop *&Out2) {
560  Function *F = L->getHeader()->getParent();
561
562  DEBUG(std::cerr << "loop-unswitch: Unswitching loop %"
563                  << L->getHeader()->getName() << " [" << L->getBlocks().size()
564                  << " blocks] in Function " << F->getName()
565                  << " when '" << *Val << "' == " << *LIC << "\n");
566
567  // LoopBlocks contains all of the basic blocks of the loop, including the
568  // preheader of the loop, the body of the loop, and the exit blocks of the
569  // loop, in that order.
570  std::vector<BasicBlock*> LoopBlocks;
571
572  // First step, split the preheader and exit blocks, and add these blocks to
573  // the LoopBlocks list.
574  BasicBlock *OrigPreheader = L->getLoopPreheader();
575  LoopBlocks.push_back(SplitEdge(OrigPreheader, L->getHeader()));
576
577  // We want the loop to come after the preheader, but before the exit blocks.
578  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
579
580  std::vector<BasicBlock*> ExitBlocks;
581  L->getExitBlocks(ExitBlocks);
582  std::sort(ExitBlocks.begin(), ExitBlocks.end());
583  ExitBlocks.erase(std::unique(ExitBlocks.begin(), ExitBlocks.end()),
584                   ExitBlocks.end());
585
586  // Split all of the edges from inside the loop to their exit blocks.  This
587  // unswitching trivial: no phi nodes to update.
588  unsigned NumBlocks = L->getBlocks().size();
589  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
590    BasicBlock *ExitBlock = ExitBlocks[i];
591    std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
592
593    for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
594      assert(L->contains(Preds[j]) &&
595             "All preds of loop exit blocks must be the same loop!");
596      SplitEdge(Preds[j], ExitBlock);
597    }
598  }
599
600  // The exit blocks may have been changed due to edge splitting, recompute.
601  ExitBlocks.clear();
602  L->getExitBlocks(ExitBlocks);
603  std::sort(ExitBlocks.begin(), ExitBlocks.end());
604  ExitBlocks.erase(std::unique(ExitBlocks.begin(), ExitBlocks.end()),
605                   ExitBlocks.end());
606
607  // Add exit blocks to the loop blocks.
608  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
609
610  // Next step, clone all of the basic blocks that make up the loop (including
611  // the loop preheader and exit blocks), keeping track of the mapping between
612  // the instructions and blocks.
613  std::vector<BasicBlock*> NewBlocks;
614  NewBlocks.reserve(LoopBlocks.size());
615  std::map<const Value*, Value*> ValueMap;
616  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
617    BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
618    NewBlocks.push_back(New);
619    ValueMap[LoopBlocks[i]] = New;  // Keep the BB mapping.
620  }
621
622  // Splice the newly inserted blocks into the function right before the
623  // original preheader.
624  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
625                                NewBlocks[0], F->end());
626
627  // Now we create the new Loop object for the versioned loop.
628  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI);
629  Loop *ParentLoop = L->getParentLoop();
630  if (ParentLoop) {
631    // Make sure to add the cloned preheader and exit blocks to the parent loop
632    // as well.
633    ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
634  }
635
636  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
637    BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
638    if (ParentLoop)
639      ParentLoop->addBasicBlockToLoop(cast<BasicBlock>(NewExit), *LI);
640
641    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
642           "Exit block should have been split to have one successor!");
643    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
644
645    // If the successor of the exit block had PHI nodes, add an entry for
646    // NewExit.
647    PHINode *PN;
648    for (BasicBlock::iterator I = ExitSucc->begin();
649         (PN = dyn_cast<PHINode>(I)); ++I) {
650      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
651      std::map<const Value *, Value*>::iterator It = ValueMap.find(V);
652      if (It != ValueMap.end()) V = It->second;
653      PN->addIncoming(V, NewExit);
654    }
655  }
656
657  // Rewrite the code to refer to itself.
658  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
659    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
660           E = NewBlocks[i]->end(); I != E; ++I)
661      RemapInstruction(I, ValueMap);
662
663  // Rewrite the original preheader to select between versions of the loop.
664  BranchInst *OldBR = cast<BranchInst>(OrigPreheader->getTerminator());
665  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
666         "Preheader splitting did not work correctly!");
667
668  // Emit the new branch that selects between the two versions of this loop.
669  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
670  OldBR->eraseFromParent();
671
672  // Now we rewrite the original code to know that the condition is true and the
673  // new code to know that the condition is false.
674  RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
675  RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
676  Out1 = L;
677  Out2 = NewLoop;
678}
679
680// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
681// the value specified by Val in the specified loop, or we know it does NOT have
682// that value.  Rewrite any uses of LIC or of properties correlated to it.
683void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
684                                                        Constant *Val,
685                                                        bool IsEqual) {
686  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
687
688  // FIXME: Support correlated properties, like:
689  //  for (...)
690  //    if (li1 < li2)
691  //      ...
692  //    if (li1 > li2)
693  //      ...
694
695  // NotVal - If Val is a bool, this contains its inverse.
696  Constant *NotVal = 0;
697  if (ConstantBool *CB = dyn_cast<ConstantBool>(Val))
698    NotVal = ConstantBool::get(!CB->getValue());
699
700  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
701  // selects, switches.
702  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
703
704  // Haha, this loop could be unswitched.  Get it? The unswitch pass could
705  // unswitch itself. Amazing.
706  for (unsigned i = 0, e = Users.size(); i != e; ++i)
707    if (Instruction *U = cast<Instruction>(Users[i])) {
708      if (!L->contains(U->getParent()))
709        continue;
710
711      if (IsEqual) {
712        U->replaceUsesOfWith(LIC, Val);
713      } else if (NotVal) {
714        U->replaceUsesOfWith(LIC, NotVal);
715      } else {
716        // If we know that LIC is not Val, use this info to simplify code.
717        if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
718          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
719            if (SI->getCaseValue(i) == Val) {
720              // Found a dead case value.  Don't remove PHI nodes in the
721              // successor if they become single-entry, those PHI nodes may
722              // be in the Users list.
723              SI->getSuccessor(i)->removePredecessor(SI->getParent(), true);
724              SI->removeCase(i);
725              break;
726            }
727          }
728        }
729
730        // TODO: We could simplify stuff like X == C.
731      }
732    }
733}
734