LoopUnswitch.cpp revision 228ebd0f4cf9207d32d61ef4b11b81736895dc09
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/DerivedTypes.h"
33#include "llvm/Function.h"
34#include "llvm/Instructions.h"
35#include "llvm/LLVMContext.h"
36#include "llvm/Analysis/ConstantFolding.h"
37#include "llvm/Analysis/InlineCost.h"
38#include "llvm/Analysis/LoopInfo.h"
39#include "llvm/Analysis/LoopPass.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Transforms/Utils/Cloning.h"
42#include "llvm/Transforms/Utils/Local.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/SmallPtrSet.h"
46#include "llvm/ADT/STLExtras.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/raw_ostream.h"
50#include <algorithm>
51#include <set>
52using namespace llvm;
53
54STATISTIC(NumBranches, "Number of branches unswitched");
55STATISTIC(NumSwitches, "Number of switches unswitched");
56STATISTIC(NumSelects , "Number of selects unswitched");
57STATISTIC(NumTrivial , "Number of unswitches that are trivial");
58STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
59
60// The specific value of 50 here was chosen based only on intuition and a
61// few specific examples.
62static cl::opt<unsigned>
63Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
64          cl::init(50), cl::Hidden);
65
66namespace {
67  class LoopUnswitch : public LoopPass {
68    LoopInfo *LI;  // Loop information
69    LPPassManager *LPM;
70
71    // LoopProcessWorklist - Used to check if second loop needs processing
72    // after RewriteLoopBodyWithConditionConstant rewrites first loop.
73    std::vector<Loop*> LoopProcessWorklist;
74    SmallPtrSet<Value *,8> UnswitchedVals;
75
76    bool OptimizeForSize;
77    bool redoLoop;
78
79    Loop *currentLoop;
80    DominanceFrontier *DF;
81    DominatorTree *DT;
82    BasicBlock *loopHeader;
83    BasicBlock *loopPreheader;
84
85    // LoopBlocks contains all of the basic blocks of the loop, including the
86    // preheader of the loop, the body of the loop, and the exit blocks of the
87    // loop, in that order.
88    std::vector<BasicBlock*> LoopBlocks;
89    // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
90    std::vector<BasicBlock*> NewBlocks;
91
92  public:
93    static char ID; // Pass ID, replacement for typeid
94    explicit LoopUnswitch(bool Os = false) :
95      LoopPass(&ID), OptimizeForSize(Os), redoLoop(false),
96      currentLoop(NULL), DF(NULL), DT(NULL), loopHeader(NULL),
97      loopPreheader(NULL) {}
98
99    bool runOnLoop(Loop *L, LPPassManager &LPM);
100    bool processCurrentLoop();
101
102    /// This transformation requires natural loop information & requires that
103    /// loop preheaders be inserted into the CFG...
104    ///
105    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
106      AU.addRequiredID(LoopSimplifyID);
107      AU.addPreservedID(LoopSimplifyID);
108      AU.addRequired<LoopInfo>();
109      AU.addPreserved<LoopInfo>();
110      AU.addRequiredID(LCSSAID);
111      AU.addPreservedID(LCSSAID);
112      AU.addPreserved<DominatorTree>();
113      AU.addPreserved<DominanceFrontier>();
114    }
115
116  private:
117
118    virtual void releaseMemory() {
119      UnswitchedVals.clear();
120    }
121
122    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
123    /// remove it.
124    void RemoveLoopFromWorklist(Loop *L) {
125      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
126                                                 LoopProcessWorklist.end(), L);
127      if (I != LoopProcessWorklist.end())
128        LoopProcessWorklist.erase(I);
129    }
130
131    void initLoopData() {
132      loopHeader = currentLoop->getHeader();
133      loopPreheader = currentLoop->getLoopPreheader();
134    }
135
136    /// Split all of the edges from inside the loop to their exit blocks.
137    /// Update the appropriate Phi nodes as we do so.
138    void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);
139
140    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
141    unsigned getLoopUnswitchCost(Value *LIC);
142    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
143                                  BasicBlock *ExitBlock);
144    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
145
146    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
147                                              Constant *Val, bool isEqual);
148
149    void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
150                                        BasicBlock *TrueDest,
151                                        BasicBlock *FalseDest,
152                                        Instruction *InsertPt);
153
154    void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
155    void RemoveBlockIfDead(BasicBlock *BB,
156                           std::vector<Instruction*> &Worklist, Loop *l);
157    void RemoveLoopFromHierarchy(Loop *L);
158    bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
159                                    BasicBlock **LoopExit = 0);
160
161  };
162}
163char LoopUnswitch::ID = 0;
164static RegisterPass<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
165
166Pass *llvm::createLoopUnswitchPass(bool Os) {
167  return new LoopUnswitch(Os);
168}
169
170/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
171/// invariant in the loop, or has an invariant piece, return the invariant.
172/// Otherwise, return null.
173static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
174  // Constants should be folded, not unswitched on!
175  if (isa<Constant>(Cond)) return 0;
176
177  // TODO: Handle: br (VARIANT|INVARIANT).
178
179  // Hoist simple values out.
180  if (L->makeLoopInvariant(Cond, Changed))
181    return Cond;
182
183  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
184    if (BO->getOpcode() == Instruction::And ||
185        BO->getOpcode() == Instruction::Or) {
186      // If either the left or right side is invariant, we can unswitch on this,
187      // which will cause the branch to go away in one loop and the condition to
188      // simplify in the other one.
189      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
190        return LHS;
191      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
192        return RHS;
193    }
194
195  return 0;
196}
197
198bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
199  LI = &getAnalysis<LoopInfo>();
200  LPM = &LPM_Ref;
201  DF = getAnalysisIfAvailable<DominanceFrontier>();
202  DT = getAnalysisIfAvailable<DominatorTree>();
203  currentLoop = L;
204  Function *F = currentLoop->getHeader()->getParent();
205  bool Changed = false;
206  do {
207    assert(currentLoop->isLCSSAForm());
208    redoLoop = false;
209    Changed |= processCurrentLoop();
210  } while(redoLoop);
211
212  if (Changed) {
213    // FIXME: Reconstruct dom info, because it is not preserved properly.
214    if (DT)
215      DT->runOnFunction(*F);
216    if (DF)
217      DF->runOnFunction(*F);
218  }
219  return Changed;
220}
221
222/// processCurrentLoop - Do actual work and unswitch loop if possible
223/// and profitable.
224bool LoopUnswitch::processCurrentLoop() {
225  bool Changed = false;
226  LLVMContext &Context = currentLoop->getHeader()->getContext();
227
228  // Loop over all of the basic blocks in the loop.  If we find an interior
229  // block that is branching on a loop-invariant condition, we can unswitch this
230  // loop.
231  for (Loop::block_iterator I = currentLoop->block_begin(),
232         E = currentLoop->block_end();
233       I != E; ++I) {
234    TerminatorInst *TI = (*I)->getTerminator();
235    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
236      // If this isn't branching on an invariant condition, we can't unswitch
237      // it.
238      if (BI->isConditional()) {
239        // See if this, or some part of it, is loop invariant.  If so, we can
240        // unswitch on it if we desire.
241        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
242                                               currentLoop, Changed);
243        if (LoopCond && UnswitchIfProfitable(LoopCond,
244                                             ConstantInt::getTrue(Context))) {
245          ++NumBranches;
246          return true;
247        }
248      }
249    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
250      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
251                                             currentLoop, Changed);
252      if (LoopCond && SI->getNumCases() > 1) {
253        // Find a value to unswitch on:
254        // FIXME: this should chose the most expensive case!
255        Constant *UnswitchVal = SI->getCaseValue(1);
256        // Do not process same value again and again.
257        if (!UnswitchedVals.insert(UnswitchVal))
258          continue;
259
260        if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
261          ++NumSwitches;
262          return true;
263        }
264      }
265    }
266
267    // Scan the instructions to check for unswitchable values.
268    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
269         BBI != E; ++BBI)
270      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
271        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
272                                               currentLoop, Changed);
273        if (LoopCond && UnswitchIfProfitable(LoopCond,
274                                             ConstantInt::getTrue(Context))) {
275          ++NumSelects;
276          return true;
277        }
278      }
279  }
280  return Changed;
281}
282
283/// isTrivialLoopExitBlock - Check to see if all paths from BB either:
284///   1. Exit the loop with no side effects.
285///   2. Branch to the latch block with no side-effects.
286///
287/// If these conditions are true, we return true and set ExitBB to the block we
288/// exit through.
289///
290static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
291                                         BasicBlock *&ExitBB,
292                                         std::set<BasicBlock*> &Visited) {
293  if (!Visited.insert(BB).second) {
294    // Already visited and Ok, end of recursion.
295    return true;
296  } else if (!L->contains(BB)) {
297    // Otherwise, this is a loop exit, this is fine so long as this is the
298    // first exit.
299    if (ExitBB != 0) return false;
300    ExitBB = BB;
301    return true;
302  }
303
304  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
305  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
306    // Check to see if the successor is a trivial loop exit.
307    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
308      return false;
309  }
310
311  // Okay, everything after this looks good, check to make sure that this block
312  // doesn't include any side effects.
313  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
314    if (I->mayHaveSideEffects())
315      return false;
316
317  return true;
318}
319
320/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
321/// leads to an exit from the specified loop, and has no side-effects in the
322/// process.  If so, return the block that is exited to, otherwise return null.
323static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
324  std::set<BasicBlock*> Visited;
325  Visited.insert(L->getHeader());  // Branches to header are ok.
326  BasicBlock *ExitBB = 0;
327  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
328    return ExitBB;
329  return 0;
330}
331
332/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
333/// trivial: that is, that the condition controls whether or not the loop does
334/// anything at all.  If this is a trivial condition, unswitching produces no
335/// code duplications (equivalently, it produces a simpler loop and a new empty
336/// loop, which gets deleted).
337///
338/// If this is a trivial condition, return true, otherwise return false.  When
339/// returning true, this sets Cond and Val to the condition that controls the
340/// trivial condition: when Cond dynamically equals Val, the loop is known to
341/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
342/// Cond == Val.
343///
344bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
345                                       BasicBlock **LoopExit) {
346  BasicBlock *Header = currentLoop->getHeader();
347  TerminatorInst *HeaderTerm = Header->getTerminator();
348  LLVMContext &Context = Header->getContext();
349
350  BasicBlock *LoopExitBB = 0;
351  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
352    // If the header block doesn't end with a conditional branch on Cond, we
353    // can't handle it.
354    if (!BI->isConditional() || BI->getCondition() != Cond)
355      return false;
356
357    // Check to see if a successor of the branch is guaranteed to go to the
358    // latch block or exit through a one exit block without having any
359    // side-effects.  If so, determine the value of Cond that causes it to do
360    // this.
361    if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
362                                             BI->getSuccessor(0)))) {
363      if (Val) *Val = ConstantInt::getTrue(Context);
364    } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
365                                                    BI->getSuccessor(1)))) {
366      if (Val) *Val = ConstantInt::getFalse(Context);
367    }
368  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
369    // If this isn't a switch on Cond, we can't handle it.
370    if (SI->getCondition() != Cond) return false;
371
372    // Check to see if a successor of the switch is guaranteed to go to the
373    // latch block or exit through a one exit block without having any
374    // side-effects.  If so, determine the value of Cond that causes it to do
375    // this.  Note that we can't trivially unswitch on the default case.
376    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
377      if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
378                                               SI->getSuccessor(i)))) {
379        // Okay, we found a trivial case, remember the value that is trivial.
380        if (Val) *Val = SI->getCaseValue(i);
381        break;
382      }
383  }
384
385  // If we didn't find a single unique LoopExit block, or if the loop exit block
386  // contains phi nodes, this isn't trivial.
387  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
388    return false;   // Can't handle this.
389
390  if (LoopExit) *LoopExit = LoopExitBB;
391
392  // We already know that nothing uses any scalar values defined inside of this
393  // loop.  As such, we just have to check to see if this loop will execute any
394  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
395  // part of the loop that the code *would* execute.  We already checked the
396  // tail, check the header now.
397  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
398    if (I->mayHaveSideEffects())
399      return false;
400  return true;
401}
402
403/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
404/// we choose to unswitch current loop on the specified value.
405///
406unsigned LoopUnswitch::getLoopUnswitchCost(Value *LIC) {
407  // If the condition is trivial, always unswitch.  There is no code growth for
408  // this case.
409  if (IsTrivialUnswitchCondition(LIC))
410    return 0;
411
412  // FIXME: This is overly conservative because it does not take into
413  // consideration code simplification opportunities.
414  CodeMetrics Metrics;
415  for (Loop::block_iterator I = currentLoop->block_begin(),
416         E = currentLoop->block_end();
417       I != E; ++I)
418    Metrics.analyzeBasicBlock(*I);
419  return Metrics.NumInsts;
420}
421
422/// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
423/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
424/// unswitch the loop, reprocess the pieces, then return true.
425bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val){
426
427  initLoopData();
428  Function *F = loopHeader->getParent();
429
430
431  // Check to see if it would be profitable to unswitch current loop.
432  unsigned Cost = getLoopUnswitchCost(LoopCond);
433
434  // Do not do non-trivial unswitch while optimizing for size.
435  if (Cost && OptimizeForSize)
436    return false;
437  if (Cost && !F->isDeclaration() && F->hasFnAttr(Attribute::OptimizeForSize))
438    return false;
439
440  if (Cost > Threshold) {
441    // FIXME: this should estimate growth by the amount of code shared by the
442    // resultant unswitched loops.
443    //
444    DEBUG(errs() << "NOT unswitching loop %"
445          << currentLoop->getHeader()->getName() << ", cost too high: "
446          << currentLoop->getBlocks().size() << "\n");
447    return false;
448  }
449
450  Constant *CondVal;
451  BasicBlock *ExitBlock;
452  if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
453    UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
454  } else {
455    UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
456  }
457
458  return true;
459}
460
461// RemapInstruction - Convert the instruction operands from referencing the
462// current values into those specified by ValueMap.
463//
464static inline void RemapInstruction(Instruction *I,
465                                    DenseMap<const Value *, Value*> &ValueMap) {
466  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
467    Value *Op = I->getOperand(op);
468    DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
469    if (It != ValueMap.end()) Op = It->second;
470    I->setOperand(op, Op);
471  }
472}
473
474/// CloneLoop - Recursively clone the specified loop and all of its children,
475/// mapping the blocks with the specified map.
476static Loop *CloneLoop(Loop *L, Loop *PL, DenseMap<const Value*, Value*> &VM,
477                       LoopInfo *LI, LPPassManager *LPM) {
478  Loop *New = new Loop();
479
480  LPM->insertLoop(New, PL);
481
482  // Add all of the blocks in L to the new loop.
483  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
484       I != E; ++I)
485    if (LI->getLoopFor(*I) == L)
486      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
487
488  // Add all of the subloops to the new loop.
489  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
490    CloneLoop(*I, New, VM, LI, LPM);
491
492  return New;
493}
494
495/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
496/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
497/// code immediately before InsertPt.
498void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
499                                                  BasicBlock *TrueDest,
500                                                  BasicBlock *FalseDest,
501                                                  Instruction *InsertPt) {
502  // Insert a conditional branch on LIC to the two preheaders.  The original
503  // code is the true version and the new code is the false version.
504  Value *BranchVal = LIC;
505  if (!isa<ConstantInt>(Val) ||
506      Val->getType() != Type::getInt1Ty(LIC->getContext()))
507    BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val, "tmp");
508  else if (Val != ConstantInt::getTrue(Val->getContext()))
509    // We want to enter the new loop when the condition is true.
510    std::swap(TrueDest, FalseDest);
511
512  // Insert the new branch.
513  BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
514
515  // If either edge is critical, split it. This helps preserve LoopSimplify
516  // form for enclosing loops.
517  SplitCriticalEdge(BI, 0, this);
518  SplitCriticalEdge(BI, 1, this);
519}
520
521/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
522/// condition in it (a cond branch from its header block to its latch block,
523/// where the path through the loop that doesn't execute its body has no
524/// side-effects), unswitch it.  This doesn't involve any code duplication, just
525/// moving the conditional branch outside of the loop and updating loop info.
526void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
527                                            Constant *Val,
528                                            BasicBlock *ExitBlock) {
529  DEBUG(errs() << "loop-unswitch: Trivial-Unswitch loop %"
530        << loopHeader->getName() << " [" << L->getBlocks().size()
531        << " blocks] in Function " << L->getHeader()->getParent()->getName()
532        << " on cond: " << *Val << " == " << *Cond << "\n");
533
534  // First step, split the preheader, so that we know that there is a safe place
535  // to insert the conditional branch.  We will change loopPreheader to have a
536  // conditional branch on Cond.
537  BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
538
539  // Now that we have a place to insert the conditional branch, create a place
540  // to branch to: this is the exit block out of the loop that we should
541  // short-circuit to.
542
543  // Split this block now, so that the loop maintains its exit block, and so
544  // that the jump from the preheader can execute the contents of the exit block
545  // without actually branching to it (the exit block should be dominated by the
546  // loop header, not the preheader).
547  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
548  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
549
550  // Okay, now we have a position to branch from and a position to branch to,
551  // insert the new conditional branch.
552  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
553                                 loopPreheader->getTerminator());
554  LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
555  loopPreheader->getTerminator()->eraseFromParent();
556
557  // We need to reprocess this loop, it could be unswitched again.
558  redoLoop = true;
559
560  // Now that we know that the loop is never entered when this condition is a
561  // particular value, rewrite the loop with this info.  We know that this will
562  // at least eliminate the old branch.
563  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
564  ++NumTrivial;
565}
566
567/// SplitExitEdges - Split all of the edges from inside the loop to their exit
568/// blocks.  Update the appropriate Phi nodes as we do so.
569void LoopUnswitch::SplitExitEdges(Loop *L,
570                                const SmallVector<BasicBlock *, 8> &ExitBlocks)
571{
572
573  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
574    BasicBlock *ExitBlock = ExitBlocks[i];
575    SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
576                                       pred_end(ExitBlock));
577    SplitBlockPredecessors(ExitBlock, Preds.data(), Preds.size(),
578                           ".us-lcssa", this);
579  }
580}
581
582/// UnswitchNontrivialCondition - We determined that the loop is profitable
583/// to unswitch when LIC equal Val.  Split it into loop versions and test the
584/// condition outside of either loop.  Return the loops created as Out1/Out2.
585void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
586                                               Loop *L) {
587  Function *F = loopHeader->getParent();
588  DEBUG(errs() << "loop-unswitch: Unswitching loop %"
589        << loopHeader->getName() << " [" << L->getBlocks().size()
590        << " blocks] in Function " << F->getName()
591        << " when '" << *Val << "' == " << *LIC << "\n");
592
593  LoopBlocks.clear();
594  NewBlocks.clear();
595
596  // First step, split the preheader and exit blocks, and add these blocks to
597  // the LoopBlocks list.
598  BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
599  LoopBlocks.push_back(NewPreheader);
600
601  // We want the loop to come after the preheader, but before the exit blocks.
602  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
603
604  SmallVector<BasicBlock*, 8> ExitBlocks;
605  L->getUniqueExitBlocks(ExitBlocks);
606
607  // Split all of the edges from inside the loop to their exit blocks.  Update
608  // the appropriate Phi nodes as we do so.
609  SplitExitEdges(L, ExitBlocks);
610
611  // The exit blocks may have been changed due to edge splitting, recompute.
612  ExitBlocks.clear();
613  L->getUniqueExitBlocks(ExitBlocks);
614
615  // Add exit blocks to the loop blocks.
616  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
617
618  // Next step, clone all of the basic blocks that make up the loop (including
619  // the loop preheader and exit blocks), keeping track of the mapping between
620  // the instructions and blocks.
621  NewBlocks.reserve(LoopBlocks.size());
622  DenseMap<const Value*, Value*> ValueMap;
623  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
624    BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
625    NewBlocks.push_back(New);
626    ValueMap[LoopBlocks[i]] = New;  // Keep the BB mapping.
627    LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], New, L);
628  }
629
630  // Splice the newly inserted blocks into the function right before the
631  // original preheader.
632  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
633                                NewBlocks[0], F->end());
634
635  // Now we create the new Loop object for the versioned loop.
636  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI, LPM);
637  Loop *ParentLoop = L->getParentLoop();
638  if (ParentLoop) {
639    // Make sure to add the cloned preheader and exit blocks to the parent loop
640    // as well.
641    ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
642  }
643
644  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
645    BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
646    // The new exit block should be in the same loop as the old one.
647    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
648      ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
649
650    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
651           "Exit block should have been split to have one successor!");
652    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
653
654    // If the successor of the exit block had PHI nodes, add an entry for
655    // NewExit.
656    PHINode *PN;
657    for (BasicBlock::iterator I = ExitSucc->begin();
658         (PN = dyn_cast<PHINode>(I)); ++I) {
659      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
660      DenseMap<const Value *, Value*>::iterator It = ValueMap.find(V);
661      if (It != ValueMap.end()) V = It->second;
662      PN->addIncoming(V, NewExit);
663    }
664  }
665
666  // Rewrite the code to refer to itself.
667  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
668    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
669           E = NewBlocks[i]->end(); I != E; ++I)
670      RemapInstruction(I, ValueMap);
671
672  // Rewrite the original preheader to select between versions of the loop.
673  BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
674  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
675         "Preheader splitting did not work correctly!");
676
677  // Emit the new branch that selects between the two versions of this loop.
678  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
679  LPM->deleteSimpleAnalysisValue(OldBR, L);
680  OldBR->eraseFromParent();
681
682  LoopProcessWorklist.push_back(NewLoop);
683  redoLoop = true;
684
685  // Now we rewrite the original code to know that the condition is true and the
686  // new code to know that the condition is false.
687  RewriteLoopBodyWithConditionConstant(L      , LIC, Val, false);
688
689  // It's possible that simplifying one loop could cause the other to be
690  // deleted.  If so, don't simplify it.
691  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop)
692    RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
693
694}
695
696/// RemoveFromWorklist - Remove all instances of I from the worklist vector
697/// specified.
698static void RemoveFromWorklist(Instruction *I,
699                               std::vector<Instruction*> &Worklist) {
700  std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
701                                                     Worklist.end(), I);
702  while (WI != Worklist.end()) {
703    unsigned Offset = WI-Worklist.begin();
704    Worklist.erase(WI);
705    WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
706  }
707}
708
709/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
710/// program, replacing all uses with V and update the worklist.
711static void ReplaceUsesOfWith(Instruction *I, Value *V,
712                              std::vector<Instruction*> &Worklist,
713                              Loop *L, LPPassManager *LPM) {
714  DEBUG(errs() << "Replace with '" << *V << "': " << *I);
715
716  // Add uses to the worklist, which may be dead now.
717  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
718    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
719      Worklist.push_back(Use);
720
721  // Add users to the worklist which may be simplified now.
722  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
723       UI != E; ++UI)
724    Worklist.push_back(cast<Instruction>(*UI));
725  LPM->deleteSimpleAnalysisValue(I, L);
726  RemoveFromWorklist(I, Worklist);
727  I->replaceAllUsesWith(V);
728  I->eraseFromParent();
729  ++NumSimplify;
730}
731
732/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
733/// information, and remove any dead successors it has.
734///
735void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
736                                     std::vector<Instruction*> &Worklist,
737                                     Loop *L) {
738  if (pred_begin(BB) != pred_end(BB)) {
739    // This block isn't dead, since an edge to BB was just removed, see if there
740    // are any easy simplifications we can do now.
741    if (BasicBlock *Pred = BB->getSinglePredecessor()) {
742      // If it has one pred, fold phi nodes in BB.
743      while (isa<PHINode>(BB->begin()))
744        ReplaceUsesOfWith(BB->begin(),
745                          cast<PHINode>(BB->begin())->getIncomingValue(0),
746                          Worklist, L, LPM);
747
748      // If this is the header of a loop and the only pred is the latch, we now
749      // have an unreachable loop.
750      if (Loop *L = LI->getLoopFor(BB))
751        if (loopHeader == BB && L->contains(Pred)) {
752          // Remove the branch from the latch to the header block, this makes
753          // the header dead, which will make the latch dead (because the header
754          // dominates the latch).
755          LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
756          Pred->getTerminator()->eraseFromParent();
757          new UnreachableInst(BB->getContext(), Pred);
758
759          // The loop is now broken, remove it from LI.
760          RemoveLoopFromHierarchy(L);
761
762          // Reprocess the header, which now IS dead.
763          RemoveBlockIfDead(BB, Worklist, L);
764          return;
765        }
766
767      // If pred ends in a uncond branch, add uncond branch to worklist so that
768      // the two blocks will get merged.
769      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
770        if (BI->isUnconditional())
771          Worklist.push_back(BI);
772    }
773    return;
774  }
775
776  DEBUG(errs() << "Nuking dead block: " << *BB);
777
778  // Remove the instructions in the basic block from the worklist.
779  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
780    RemoveFromWorklist(I, Worklist);
781
782    // Anything that uses the instructions in this basic block should have their
783    // uses replaced with undefs.
784    // If I is not void type then replaceAllUsesWith undef.
785    // This allows ValueHandlers and custom metadata to adjust itself.
786    if (I->getType() != Type::getVoidTy(I->getContext()))
787      I->replaceAllUsesWith(UndefValue::get(I->getType()));
788  }
789
790  // If this is the edge to the header block for a loop, remove the loop and
791  // promote all subloops.
792  if (Loop *BBLoop = LI->getLoopFor(BB)) {
793    if (BBLoop->getLoopLatch() == BB)
794      RemoveLoopFromHierarchy(BBLoop);
795  }
796
797  // Remove the block from the loop info, which removes it from any loops it
798  // was in.
799  LI->removeBlock(BB);
800
801
802  // Remove phi node entries in successors for this block.
803  TerminatorInst *TI = BB->getTerminator();
804  SmallVector<BasicBlock*, 4> Succs;
805  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
806    Succs.push_back(TI->getSuccessor(i));
807    TI->getSuccessor(i)->removePredecessor(BB);
808  }
809
810  // Unique the successors, remove anything with multiple uses.
811  array_pod_sort(Succs.begin(), Succs.end());
812  Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
813
814  // Remove the basic block, including all of the instructions contained in it.
815  LPM->deleteSimpleAnalysisValue(BB, L);
816  BB->eraseFromParent();
817  // Remove successor blocks here that are not dead, so that we know we only
818  // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
819  // then getting removed before we revisit them, which is badness.
820  //
821  for (unsigned i = 0; i != Succs.size(); ++i)
822    if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
823      // One exception is loop headers.  If this block was the preheader for a
824      // loop, then we DO want to visit the loop so the loop gets deleted.
825      // We know that if the successor is a loop header, that this loop had to
826      // be the preheader: the case where this was the latch block was handled
827      // above and headers can only have two predecessors.
828      if (!LI->isLoopHeader(Succs[i])) {
829        Succs.erase(Succs.begin()+i);
830        --i;
831      }
832    }
833
834  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
835    RemoveBlockIfDead(Succs[i], Worklist, L);
836}
837
838/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
839/// become unwrapped, either because the backedge was deleted, or because the
840/// edge into the header was removed.  If the edge into the header from the
841/// latch block was removed, the loop is unwrapped but subloops are still alive,
842/// so they just reparent loops.  If the loops are actually dead, they will be
843/// removed later.
844void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
845  LPM->deleteLoopFromQueue(L);
846  RemoveLoopFromWorklist(L);
847}
848
849// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
850// the value specified by Val in the specified loop, or we know it does NOT have
851// that value.  Rewrite any uses of LIC or of properties correlated to it.
852void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
853                                                        Constant *Val,
854                                                        bool IsEqual) {
855  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
856
857  // FIXME: Support correlated properties, like:
858  //  for (...)
859  //    if (li1 < li2)
860  //      ...
861  //    if (li1 > li2)
862  //      ...
863
864  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
865  // selects, switches.
866  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
867  std::vector<Instruction*> Worklist;
868  LLVMContext &Context = Val->getContext();
869
870
871  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
872  // in the loop with the appropriate one directly.
873  if (IsEqual || (isa<ConstantInt>(Val) &&
874      Val->getType() == Type::getInt1Ty(Val->getContext()))) {
875    Value *Replacement;
876    if (IsEqual)
877      Replacement = Val;
878    else
879      Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
880                                     !cast<ConstantInt>(Val)->getZExtValue());
881
882    for (unsigned i = 0, e = Users.size(); i != e; ++i)
883      if (Instruction *U = cast<Instruction>(Users[i])) {
884        if (!L->contains(U->getParent()))
885          continue;
886        U->replaceUsesOfWith(LIC, Replacement);
887        Worklist.push_back(U);
888      }
889  } else {
890    // Otherwise, we don't know the precise value of LIC, but we do know that it
891    // is certainly NOT "Val".  As such, simplify any uses in the loop that we
892    // can.  This case occurs when we unswitch switch statements.
893    for (unsigned i = 0, e = Users.size(); i != e; ++i)
894      if (Instruction *U = cast<Instruction>(Users[i])) {
895        if (!L->contains(U->getParent()))
896          continue;
897
898        Worklist.push_back(U);
899
900        // If we know that LIC is not Val, use this info to simplify code.
901        if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
902          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
903            if (SI->getCaseValue(i) == Val) {
904              // Found a dead case value.  Don't remove PHI nodes in the
905              // successor if they become single-entry, those PHI nodes may
906              // be in the Users list.
907
908              // FIXME: This is a hack.  We need to keep the successor around
909              // and hooked up so as to preserve the loop structure, because
910              // trying to update it is complicated.  So instead we preserve the
911              // loop structure and put the block on a dead code path.
912              BasicBlock *Switch = SI->getParent();
913              SplitEdge(Switch, SI->getSuccessor(i), this);
914              // Compute the successors instead of relying on the return value
915              // of SplitEdge, since it may have split the switch successor
916              // after PHI nodes.
917              BasicBlock *NewSISucc = SI->getSuccessor(i);
918              BasicBlock *OldSISucc = *succ_begin(NewSISucc);
919              // Create an "unreachable" destination.
920              BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
921                                                     Switch->getParent(),
922                                                     OldSISucc);
923              new UnreachableInst(Context, Abort);
924              // Force the new case destination to branch to the "unreachable"
925              // block while maintaining a (dead) CFG edge to the old block.
926              NewSISucc->getTerminator()->eraseFromParent();
927              BranchInst::Create(Abort, OldSISucc,
928                                 ConstantInt::getTrue(Context), NewSISucc);
929              // Release the PHI operands for this edge.
930              for (BasicBlock::iterator II = NewSISucc->begin();
931                   PHINode *PN = dyn_cast<PHINode>(II); ++II)
932                PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
933                                     UndefValue::get(PN->getType()));
934              // Tell the domtree about the new block. We don't fully update the
935              // domtree here -- instead we force it to do a full recomputation
936              // after the pass is complete -- but we do need to inform it of
937              // new blocks.
938              if (DT)
939                DT->addNewBlock(Abort, NewSISucc);
940              break;
941            }
942          }
943        }
944
945        // TODO: We could do other simplifications, for example, turning
946        // LIC == Val -> false.
947      }
948  }
949
950  SimplifyCode(Worklist, L);
951}
952
953/// SimplifyCode - Okay, now that we have simplified some instructions in the
954/// loop, walk over it and constant prop, dce, and fold control flow where
955/// possible.  Note that this is effectively a very simple loop-structure-aware
956/// optimizer.  During processing of this loop, L could very well be deleted, so
957/// it must not be used.
958///
959/// FIXME: When the loop optimizer is more mature, separate this out to a new
960/// pass.
961///
962void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
963  while (!Worklist.empty()) {
964    Instruction *I = Worklist.back();
965    Worklist.pop_back();
966
967    // Simple constant folding.
968    if (Constant *C = ConstantFoldInstruction(I, I->getContext())) {
969      ReplaceUsesOfWith(I, C, Worklist, L, LPM);
970      continue;
971    }
972
973    // Simple DCE.
974    if (isInstructionTriviallyDead(I)) {
975      DEBUG(errs() << "Remove dead instruction '" << *I);
976
977      // Add uses to the worklist, which may be dead now.
978      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
979        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
980          Worklist.push_back(Use);
981      LPM->deleteSimpleAnalysisValue(I, L);
982      RemoveFromWorklist(I, Worklist);
983      I->eraseFromParent();
984      ++NumSimplify;
985      continue;
986    }
987
988    // Special case hacks that appear commonly in unswitched code.
989    switch (I->getOpcode()) {
990    case Instruction::Select:
991      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(0))) {
992        ReplaceUsesOfWith(I, I->getOperand(!CB->getZExtValue()+1), Worklist, L,
993                          LPM);
994        continue;
995      }
996      break;
997    case Instruction::And:
998      if (isa<ConstantInt>(I->getOperand(0)) &&
999          // constant -> RHS
1000          I->getOperand(0)->getType() == Type::getInt1Ty(I->getContext()))
1001        cast<BinaryOperator>(I)->swapOperands();
1002      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1003        if (CB->getType() == Type::getInt1Ty(I->getContext())) {
1004          if (CB->isOne())      // X & 1 -> X
1005            ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
1006          else                  // X & 0 -> 0
1007            ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
1008          continue;
1009        }
1010      break;
1011    case Instruction::Or:
1012      if (isa<ConstantInt>(I->getOperand(0)) &&
1013          // constant -> RHS
1014          I->getOperand(0)->getType() == Type::getInt1Ty(I->getContext()))
1015        cast<BinaryOperator>(I)->swapOperands();
1016      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1017        if (CB->getType() == Type::getInt1Ty(I->getContext())) {
1018          if (CB->isOne())   // X | 1 -> 1
1019            ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
1020          else                  // X | 0 -> X
1021            ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
1022          continue;
1023        }
1024      break;
1025    case Instruction::Br: {
1026      BranchInst *BI = cast<BranchInst>(I);
1027      if (BI->isUnconditional()) {
1028        // If BI's parent is the only pred of the successor, fold the two blocks
1029        // together.
1030        BasicBlock *Pred = BI->getParent();
1031        BasicBlock *Succ = BI->getSuccessor(0);
1032        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1033        if (!SinglePred) continue;  // Nothing to do.
1034        assert(SinglePred == Pred && "CFG broken");
1035
1036        DEBUG(errs() << "Merging blocks: " << Pred->getName() << " <- "
1037              << Succ->getName() << "\n");
1038
1039        // Resolve any single entry PHI nodes in Succ.
1040        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1041          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1042
1043        // Move all of the successor contents from Succ to Pred.
1044        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1045                                   Succ->end());
1046        LPM->deleteSimpleAnalysisValue(BI, L);
1047        BI->eraseFromParent();
1048        RemoveFromWorklist(BI, Worklist);
1049
1050        // If Succ has any successors with PHI nodes, update them to have
1051        // entries coming from Pred instead of Succ.
1052        Succ->replaceAllUsesWith(Pred);
1053
1054        // Remove Succ from the loop tree.
1055        LI->removeBlock(Succ);
1056        LPM->deleteSimpleAnalysisValue(Succ, L);
1057        Succ->eraseFromParent();
1058        ++NumSimplify;
1059      } else if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1060        // Conditional branch.  Turn it into an unconditional branch, then
1061        // remove dead blocks.
1062        break;  // FIXME: Enable.
1063
1064        DEBUG(errs() << "Folded branch: " << *BI);
1065        BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1066        BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1067        DeadSucc->removePredecessor(BI->getParent(), true);
1068        Worklist.push_back(BranchInst::Create(LiveSucc, BI));
1069        LPM->deleteSimpleAnalysisValue(BI, L);
1070        BI->eraseFromParent();
1071        RemoveFromWorklist(BI, Worklist);
1072        ++NumSimplify;
1073
1074        RemoveBlockIfDead(DeadSucc, Worklist, L);
1075      }
1076      break;
1077    }
1078    }
1079  }
1080}
1081