LoopUnswitch.cpp revision 4c41d49a9282047765df4cc101551d3fdd6f5d9f
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/Function.h"
33#include "llvm/Instructions.h"
34#include "llvm/Analysis/LoopInfo.h"
35#include "llvm/Transforms/Utils/Cloning.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/CommandLine.h"
40#include <algorithm>
41#include <iostream>
42#include <set>
43using namespace llvm;
44
45namespace {
46  Statistic<> NumUnswitched("loop-unswitch", "Number of loops unswitched");
47  cl::opt<unsigned>
48  Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
49            cl::init(10), cl::Hidden);
50
51  class LoopUnswitch : public FunctionPass {
52    LoopInfo *LI;  // Loop information
53  public:
54    virtual bool runOnFunction(Function &F);
55    bool visitLoop(Loop *L);
56
57    /// This transformation requires natural loop information & requires that
58    /// loop preheaders be inserted into the CFG...
59    ///
60    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
61      AU.addRequiredID(LoopSimplifyID);
62      AU.addPreservedID(LoopSimplifyID);
63      AU.addRequired<LoopInfo>();
64      AU.addPreserved<LoopInfo>();
65    }
66
67  private:
68    unsigned getLoopUnswitchCost(Loop *L, Value *LIC);
69    void VersionLoop(Value *LIC, Loop *L, Loop *&Out1, Loop *&Out2);
70    BasicBlock *SplitBlock(BasicBlock *BB, bool SplitAtTop);
71    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, bool Val);
72    void UnswitchTrivialCondition(Loop *L, Value *Cond, ConstantBool *LoopCond);
73  };
74  RegisterOpt<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
75}
76
77FunctionPass *llvm::createLoopUnswitchPass() { return new LoopUnswitch(); }
78
79bool LoopUnswitch::runOnFunction(Function &F) {
80  bool Changed = false;
81  LI = &getAnalysis<LoopInfo>();
82
83  // Transform all the top-level loops.  Copy the loop list so that the child
84  // can update the loop tree if it needs to delete the loop.
85  std::vector<Loop*> SubLoops(LI->begin(), LI->end());
86  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
87    Changed |= visitLoop(SubLoops[i]);
88
89  return Changed;
90}
91
92
93/// LoopValuesUsedOutsideLoop - Return true if there are any values defined in
94/// the loop that are used by instructions outside of it.
95static bool LoopValuesUsedOutsideLoop(Loop *L) {
96  // We will be doing lots of "loop contains block" queries.  Loop::contains is
97  // linear time, use a set to speed this up.
98  std::set<BasicBlock*> LoopBlocks;
99
100  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
101       BB != E; ++BB)
102    LoopBlocks.insert(*BB);
103
104  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
105       BB != E; ++BB) {
106    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
107      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
108           ++UI) {
109        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
110        if (!LoopBlocks.count(UserBB))
111          return true;
112      }
113  }
114  return false;
115}
116
117/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
118/// trivial: that is, that the condition controls whether or not the loop does
119/// anything at all.  If this is a trivial condition, unswitching produces no
120/// code duplications (equivalently, it produces a simpler loop and a new empty
121/// loop, which gets deleted).
122///
123/// If this is a trivial condition, return ConstantBool::True if the loop body
124/// runs when the condition is true, False if the loop body executes when the
125/// condition is false.  Otherwise, return null to indicate a complex condition.
126static ConstantBool *IsTrivialUnswitchCondition(Loop *L, Value *Cond) {
127  BasicBlock *Header = L->getHeader();
128  BranchInst *HeaderTerm = dyn_cast<BranchInst>(Header->getTerminator());
129  ConstantBool *RetVal = 0;
130
131  // If the header block doesn't end with a conditional branch on Cond, we can't
132  // handle it.
133  if (!HeaderTerm || !HeaderTerm->isConditional() ||
134      HeaderTerm->getCondition() != Cond)
135    return 0;
136
137  // Check to see if the conditional branch goes to the latch block.  If not,
138  // it's not trivial.  This also determines the value of Cond that will execute
139  // the loop.
140  BasicBlock *Latch = L->getLoopLatch();
141  if (HeaderTerm->getSuccessor(1) == Latch)
142    RetVal = ConstantBool::True;
143  else if (HeaderTerm->getSuccessor(0) == Latch)
144    RetVal = ConstantBool::False;
145  else
146    return 0;  // Doesn't branch to latch block.
147
148  // The latch block must end with a conditional branch where one edge goes to
149  // the header (this much we know) and one edge goes OUT of the loop.
150  BranchInst *LatchBranch = dyn_cast<BranchInst>(Latch->getTerminator());
151  if (!LatchBranch || !LatchBranch->isConditional()) return 0;
152
153  if (LatchBranch->getSuccessor(0) == Header) {
154    if (L->contains(LatchBranch->getSuccessor(1))) return 0;
155  } else {
156    assert(LatchBranch->getSuccessor(1) == Header);
157    if (L->contains(LatchBranch->getSuccessor(0))) return 0;
158  }
159
160  // We already know that nothing uses any scalar values defined inside of this
161  // loop.  As such, we just have to check to see if this loop will execute any
162  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
163  // part of the loop that the code *would* execute.
164  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
165    if (I->mayWriteToMemory())
166      return 0;
167  for (BasicBlock::iterator I = Latch->begin(), E = Latch->end(); I != E; ++I)
168    if (I->mayWriteToMemory())
169      return 0;
170  return RetVal;
171}
172
173/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
174/// we choose to unswitch the specified loop on the specified value.
175///
176unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) {
177  // If the condition is trivial, always unswitch.  There is no code growth for
178  // this case.
179  if (IsTrivialUnswitchCondition(L, LIC))
180    return 0;
181
182  unsigned Cost = 0;
183  // FIXME: this is brain dead.  It should take into consideration code
184  // shrinkage.
185  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
186       I != E; ++I) {
187    BasicBlock *BB = *I;
188    // Do not include empty blocks in the cost calculation.  This happen due to
189    // loop canonicalization and will be removed.
190    if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
191      continue;
192
193    // Count basic blocks.
194    ++Cost;
195  }
196
197  return Cost;
198}
199
200bool LoopUnswitch::visitLoop(Loop *L) {
201  bool Changed = false;
202
203  // Recurse through all subloops before we process this loop.  Copy the loop
204  // list so that the child can update the loop tree if it needs to delete the
205  // loop.
206  std::vector<Loop*> SubLoops(L->begin(), L->end());
207  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
208    Changed |= visitLoop(SubLoops[i]);
209
210  // Loop over all of the basic blocks in the loop.  If we find an interior
211  // block that is branching on a loop-invariant condition, we can unswitch this
212  // loop.
213  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
214       I != E; ++I) {
215    TerminatorInst *TI = (*I)->getTerminator();
216    if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
217      if (!isa<Constant>(SI) && L->isLoopInvariant(SI->getCondition()))
218        DEBUG(std::cerr << "TODO: Implement unswitching 'switch' loop %"
219              << L->getHeader()->getName() << ", cost = "
220              << L->getBlocks().size() << "\n" << **I);
221      continue;
222    }
223
224    BranchInst *BI = dyn_cast<BranchInst>(TI);
225    if (!BI) continue;
226
227    // If this isn't branching on an invariant condition, we can't unswitch it.
228    if (!BI->isConditional() || isa<Constant>(BI->getCondition()) ||
229        !L->isLoopInvariant(BI->getCondition()))
230      continue;
231
232    // Check to see if it would be profitable to unswitch this loop.
233    if (getLoopUnswitchCost(L, BI->getCondition()) > Threshold) {
234      // FIXME: this should estimate growth by the amount of code shared by the
235      // resultant unswitched loops.  This should have no code growth:
236      //    for () { if (iv) {...} }
237      // as one copy of the loop will be empty.
238      //
239      DEBUG(std::cerr << "NOT unswitching loop %"
240            << L->getHeader()->getName() << ", cost too high: "
241            << L->getBlocks().size() << "\n");
242      continue;
243    }
244
245    // If this loop has live-out values, we can't unswitch it. We need something
246    // like loop-closed SSA form in order to know how to insert PHI nodes for
247    // these values.
248    if (LoopValuesUsedOutsideLoop(L)) {
249      DEBUG(std::cerr << "NOT unswitching loop %"
250                      << L->getHeader()->getName()
251                      << ", a loop value is used outside loop!\n");
252      continue;
253    }
254
255    //std::cerr << "BEFORE:\n"; LI->dump();
256    Loop *NewLoop1 = 0, *NewLoop2 = 0;
257
258    // If this is a trivial condition to unswitch (which results in no code
259    // duplication), do it now.
260    if (ConstantBool *V = IsTrivialUnswitchCondition(L, BI->getCondition())) {
261      UnswitchTrivialCondition(L, BI->getCondition(), V);
262      NewLoop1 = L;
263    } else {
264      VersionLoop(BI->getCondition(), L, NewLoop1, NewLoop2);
265    }
266
267    //std::cerr << "AFTER:\n"; LI->dump();
268
269    // Try to unswitch each of our new loops now!
270    if (NewLoop1) visitLoop(NewLoop1);
271    if (NewLoop2) visitLoop(NewLoop2);
272    return true;
273  }
274
275  return Changed;
276}
277
278/// SplitBlock - Split the specified basic block into two pieces.  If SplitAtTop
279/// is false, this splits the block so the second half only has an unconditional
280/// branch.  If SplitAtTop is true, it makes it so the first half of the block
281/// only has an unconditional branch in it.
282///
283/// This method updates the LoopInfo for this function to correctly reflect the
284/// CFG changes made.
285///
286/// This routine returns the new basic block that was inserted, which is always
287/// the later part of the block.
288BasicBlock *LoopUnswitch::SplitBlock(BasicBlock *BB, bool SplitAtTop) {
289  BasicBlock::iterator SplitPoint;
290  if (!SplitAtTop)
291    SplitPoint = BB->getTerminator();
292  else {
293    SplitPoint = BB->begin();
294    while (isa<PHINode>(SplitPoint)) ++SplitPoint;
295  }
296
297  BasicBlock *New = BB->splitBasicBlock(SplitPoint, BB->getName()+".tail");
298  // New now lives in whichever loop that BB used to.
299  if (Loop *L = LI->getLoopFor(BB))
300    L->addBasicBlockToLoop(New, *LI);
301  return New;
302}
303
304
305// RemapInstruction - Convert the instruction operands from referencing the
306// current values into those specified by ValueMap.
307//
308static inline void RemapInstruction(Instruction *I,
309                                    std::map<const Value *, Value*> &ValueMap) {
310  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
311    Value *Op = I->getOperand(op);
312    std::map<const Value *, Value*>::iterator It = ValueMap.find(Op);
313    if (It != ValueMap.end()) Op = It->second;
314    I->setOperand(op, Op);
315  }
316}
317
318/// CloneLoop - Recursively clone the specified loop and all of its children,
319/// mapping the blocks with the specified map.
320static Loop *CloneLoop(Loop *L, Loop *PL, std::map<const Value*, Value*> &VM,
321                       LoopInfo *LI) {
322  Loop *New = new Loop();
323
324  if (PL)
325    PL->addChildLoop(New);
326  else
327    LI->addTopLevelLoop(New);
328
329  // Add all of the blocks in L to the new loop.
330  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
331       I != E; ++I)
332    if (LI->getLoopFor(*I) == L)
333      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
334
335  // Add all of the subloops to the new loop.
336  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
337    CloneLoop(*I, New, VM, LI);
338
339  return New;
340}
341
342/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
343/// condition in it (a cond branch from its header block to its latch block,
344/// where the path through the loop that doesn't execute its body has no
345/// side-effects), unswitch it.  This doesn't involve any code duplication, just
346/// moving the conditional branch outside of the loop and updating loop info.
347void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
348                                            ConstantBool *LoopCond) {
349  // First step, split the preahder, so that we know that there is a safe place
350  // to insert the conditional branch.  We will change 'OrigPH' to have a
351  // conditional branch on Cond.
352  BasicBlock *OrigPH = L->getLoopPreheader();
353  BasicBlock *NewPH = SplitBlock(OrigPH, false);
354
355  // Now that we have a place to insert the conditional branch, create a place
356  // to branch to: this is the non-header successor of the latch block.
357  BranchInst *LatchBranch =cast<BranchInst>(L->getLoopLatch()->getTerminator());
358  BasicBlock *ExitBlock =
359    LatchBranch->getSuccessor(LatchBranch->getSuccessor(0) == L->getHeader());
360  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
361
362  // Split this block now, so that the loop maintains its exit block.
363  BasicBlock *NewExit = SplitBlock(ExitBlock, true);
364
365  // Okay, now we have a position to branch from and a position to branch to,
366  // insert the new conditional branch.
367  bool EnterOnTrue = LoopCond->getValue();
368  new BranchInst(EnterOnTrue ? NewPH : NewExit, EnterOnTrue ? NewExit : NewPH,
369                 Cond, OrigPH->getTerminator());
370  OrigPH->getTerminator()->eraseFromParent();
371
372  // Now that we know that the loop is never entered when this condition is a
373  // particular value, rewrite the loop with this info.  We know that this will
374  // at least eliminate the old branch.
375  RewriteLoopBodyWithConditionConstant(L, Cond, EnterOnTrue);
376}
377
378
379/// VersionLoop - We determined that the loop is profitable to unswitch and
380/// contains a branch on a loop invariant condition.  Split it into loop
381/// versions and test the condition outside of either loop.  Return the loops
382/// created as Out1/Out2.
383void LoopUnswitch::VersionLoop(Value *LIC, Loop *L, Loop *&Out1, Loop *&Out2) {
384  Function *F = L->getHeader()->getParent();
385
386  DEBUG(std::cerr << "loop-unswitch: Unswitching loop %"
387        << L->getHeader()->getName() << " [" << L->getBlocks().size()
388        << " blocks] in Function " << F->getName()
389        << " on cond:" << *LIC << "\n");
390
391  std::vector<BasicBlock*> LoopBlocks;
392
393  // First step, split the preheader and exit blocks, and add these blocks to
394  // the LoopBlocks list.
395  BasicBlock *OrigPreheader = L->getLoopPreheader();
396  LoopBlocks.push_back(SplitBlock(OrigPreheader, false));
397
398  // We want the loop to come after the preheader, but before the exit blocks.
399  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
400
401  std::vector<BasicBlock*> ExitBlocks;
402  L->getExitBlocks(ExitBlocks);
403  std::sort(ExitBlocks.begin(), ExitBlocks.end());
404  ExitBlocks.erase(std::unique(ExitBlocks.begin(), ExitBlocks.end()),
405                   ExitBlocks.end());
406  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
407    SplitBlock(ExitBlocks[i], true);
408    LoopBlocks.push_back(ExitBlocks[i]);
409  }
410
411  // Next step, clone all of the basic blocks that make up the loop (including
412  // the loop preheader and exit blocks), keeping track of the mapping between
413  // the instructions and blocks.
414  std::vector<BasicBlock*> NewBlocks;
415  NewBlocks.reserve(LoopBlocks.size());
416  std::map<const Value*, Value*> ValueMap;
417  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
418    NewBlocks.push_back(CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F));
419    ValueMap[LoopBlocks[i]] = NewBlocks.back();  // Keep the BB mapping.
420  }
421
422  // Splice the newly inserted blocks into the function right before the
423  // original preheader.
424  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
425                                NewBlocks[0], F->end());
426
427  // Now we create the new Loop object for the versioned loop.
428  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI);
429  if (Loop *Parent = L->getParentLoop()) {
430    // Make sure to add the cloned preheader and exit blocks to the parent loop
431    // as well.
432    Parent->addBasicBlockToLoop(NewBlocks[0], *LI);
433    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
434      Parent->addBasicBlockToLoop(cast<BasicBlock>(ValueMap[ExitBlocks[i]]),
435                                  *LI);
436  }
437
438  // Rewrite the code to refer to itself.
439  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
440    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
441           E = NewBlocks[i]->end(); I != E; ++I)
442      RemapInstruction(I, ValueMap);
443
444  // Rewrite the original preheader to select between versions of the loop.
445  assert(isa<BranchInst>(OrigPreheader->getTerminator()) &&
446         cast<BranchInst>(OrigPreheader->getTerminator())->isUnconditional() &&
447         OrigPreheader->getTerminator()->getSuccessor(0) == LoopBlocks[0] &&
448         "Preheader splitting did not work correctly!");
449  // Remove the unconditional branch to LoopBlocks[0].
450  OrigPreheader->getInstList().pop_back();
451
452  // Insert a conditional branch on LIC to the two preheaders.  The original
453  // code is the true version and the new code is the false version.
454  new BranchInst(LoopBlocks[0], NewBlocks[0], LIC, OrigPreheader);
455
456  // Now we rewrite the original code to know that the condition is true and the
457  // new code to know that the condition is false.
458  RewriteLoopBodyWithConditionConstant(L, LIC, true);
459  RewriteLoopBodyWithConditionConstant(NewLoop, LIC, false);
460  ++NumUnswitched;
461  Out1 = L;
462  Out2 = NewLoop;
463}
464
465// RewriteLoopBodyWithConditionConstant - We know that the boolean value LIC has
466// the value specified by Val in the specified loop.  Rewrite any uses of LIC or
467// of properties correlated to it.
468void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
469                                                        bool Val) {
470  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
471  // FIXME: Support correlated properties, like:
472  //  for (...)
473  //    if (li1 < li2)
474  //      ...
475  //    if (li1 > li2)
476  //      ...
477  ConstantBool *BoolVal = ConstantBool::get(Val);
478
479  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
480  for (unsigned i = 0, e = Users.size(); i != e; ++i)
481    if (Instruction *U = cast<Instruction>(Users[i]))
482      if (L->contains(U->getParent()))
483        U->replaceUsesOfWith(LIC, BoolVal);
484}
485