LoopUnswitch.cpp revision 4e1323969c4afa60cd6675cbbaade90afe7e6632
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/Function.h"
33#include "llvm/Instructions.h"
34#include "llvm/Analysis/LoopInfo.h"
35#include "llvm/Transforms/Utils/Cloning.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Transforms/Utils/BasicBlockUtils.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/CommandLine.h"
41#include <algorithm>
42#include <iostream>
43#include <set>
44using namespace llvm;
45
46namespace {
47  Statistic<> NumBranches("loop-unswitch", "Number of branches unswitched");
48  Statistic<> NumSwitches("loop-unswitch", "Number of switches unswitched");
49  Statistic<> NumSelects ("loop-unswitch", "Number of selects unswitched");
50  Statistic<> NumTrivial ("loop-unswitch",
51                          "Number of unswitches that are trivial");
52  cl::opt<unsigned>
53  Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
54            cl::init(10), cl::Hidden);
55
56  class LoopUnswitch : public FunctionPass {
57    LoopInfo *LI;  // Loop information
58  public:
59    virtual bool runOnFunction(Function &F);
60    bool visitLoop(Loop *L);
61
62    /// This transformation requires natural loop information & requires that
63    /// loop preheaders be inserted into the CFG...
64    ///
65    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66      AU.addRequiredID(LoopSimplifyID);
67      AU.addPreservedID(LoopSimplifyID);
68      AU.addRequired<LoopInfo>();
69      AU.addPreserved<LoopInfo>();
70    }
71
72  private:
73    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L);
74    unsigned getLoopUnswitchCost(Loop *L, Value *LIC);
75    void VersionLoop(Value *LIC, Constant *OnVal,
76                     Loop *L, Loop *&Out1, Loop *&Out2);
77    BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To);
78    BasicBlock *SplitBlock(BasicBlock *Old, Instruction *SplitPt);
79    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,Constant *Val,
80                                              bool isEqual);
81    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
82                                  BasicBlock *ExitBlock);
83  };
84  RegisterOpt<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
85}
86
87FunctionPass *llvm::createLoopUnswitchPass() { return new LoopUnswitch(); }
88
89bool LoopUnswitch::runOnFunction(Function &F) {
90  bool Changed = false;
91  LI = &getAnalysis<LoopInfo>();
92
93  // Transform all the top-level loops.  Copy the loop list so that the child
94  // can update the loop tree if it needs to delete the loop.
95  std::vector<Loop*> SubLoops(LI->begin(), LI->end());
96  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
97    Changed |= visitLoop(SubLoops[i]);
98
99  return Changed;
100}
101
102
103/// LoopValuesUsedOutsideLoop - Return true if there are any values defined in
104/// the loop that are used by instructions outside of it.
105static bool LoopValuesUsedOutsideLoop(Loop *L) {
106  // We will be doing lots of "loop contains block" queries.  Loop::contains is
107  // linear time, use a set to speed this up.
108  std::set<BasicBlock*> LoopBlocks;
109
110  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
111       BB != E; ++BB)
112    LoopBlocks.insert(*BB);
113
114  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
115       BB != E; ++BB) {
116    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
117      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
118           ++UI) {
119        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
120        if (!LoopBlocks.count(UserBB))
121          return true;
122      }
123  }
124  return false;
125}
126
127/// isTrivialLoopExitBlock - Check to see if all paths from BB either:
128///   1. Exit the loop with no side effects.
129///   2. Branch to the latch block with no side-effects.
130///
131/// If these conditions are true, we return true and set ExitBB to the block we
132/// exit through.
133///
134static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
135                                         BasicBlock *&ExitBB,
136                                         std::set<BasicBlock*> &Visited) {
137  BasicBlock *Header = L->getHeader();
138  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
139    if (!Visited.insert(*SI).second) {
140      // Already visited and Ok, end of recursion.
141    } else if (L->contains(*SI)) {
142      // Check to see if the successor is a trivial loop exit.
143      if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
144        return false;
145    } else {
146      // Otherwise, this is a loop exit, this is fine so long as this is the
147      // first exit.
148      if (ExitBB != 0) return false;
149      ExitBB = *SI;
150    }
151  }
152
153  // Okay, everything after this looks good, check to make sure that this block
154  // doesn't include any side effects.
155  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
156    if (I->mayWriteToMemory())
157      return false;
158
159  return true;
160}
161
162static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
163  std::set<BasicBlock*> Visited;
164  Visited.insert(L->getHeader());  // Branches to header are ok.
165  Visited.insert(BB);              // Don't revisit BB after we do.
166  BasicBlock *ExitBB = 0;
167  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
168    return ExitBB;
169  return 0;
170}
171
172/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
173/// trivial: that is, that the condition controls whether or not the loop does
174/// anything at all.  If this is a trivial condition, unswitching produces no
175/// code duplications (equivalently, it produces a simpler loop and a new empty
176/// loop, which gets deleted).
177///
178/// If this is a trivial condition, return ConstantBool::True if the loop body
179/// runs when the condition is true, False if the loop body executes when the
180/// condition is false.  Otherwise, return null to indicate a complex condition.
181static bool IsTrivialUnswitchCondition(Loop *L, Value *Cond,
182                                       Constant **Val = 0,
183                                       BasicBlock **LoopExit = 0) {
184  BasicBlock *Header = L->getHeader();
185  BranchInst *HeaderTerm = dyn_cast<BranchInst>(Header->getTerminator());
186
187  // If the header block doesn't end with a conditional branch on Cond, we can't
188  // handle it.
189  if (!HeaderTerm || !HeaderTerm->isConditional() ||
190      HeaderTerm->getCondition() != Cond)
191    return false;
192
193  // Check to see if a successor of the branch is guaranteed to go to the latch
194  // block or exit through a one exit block without having any side-effects.  If
195  // so, determine the value of Cond that causes it to do this.
196  BasicBlock *LoopExitBlock = 0;
197  if ((LoopExitBlock = isTrivialLoopExitBlock(L, HeaderTerm->getSuccessor(0)))){
198    if (Val) *Val = ConstantBool::True;
199  } else if ((LoopExitBlock =
200                  isTrivialLoopExitBlock(L, HeaderTerm->getSuccessor(1)))) {
201    if (Val) *Val = ConstantBool::False;
202  }
203
204  if (!LoopExitBlock)
205    return false;   // Can't handle this.
206
207  if (LoopExit) *LoopExit = LoopExitBlock;
208
209  // We already know that nothing uses any scalar values defined inside of this
210  // loop.  As such, we just have to check to see if this loop will execute any
211  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
212  // part of the loop that the code *would* execute.  We already checked the
213  // tail, check the header now.
214  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
215    if (I->mayWriteToMemory())
216      return false;
217  return true;
218}
219
220/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
221/// we choose to unswitch the specified loop on the specified value.
222///
223unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) {
224  // If the condition is trivial, always unswitch.  There is no code growth for
225  // this case.
226  if (IsTrivialUnswitchCondition(L, LIC))
227    return 0;
228
229  unsigned Cost = 0;
230  // FIXME: this is brain dead.  It should take into consideration code
231  // shrinkage.
232  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
233       I != E; ++I) {
234    BasicBlock *BB = *I;
235    // Do not include empty blocks in the cost calculation.  This happen due to
236    // loop canonicalization and will be removed.
237    if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
238      continue;
239
240    // Count basic blocks.
241    ++Cost;
242  }
243
244  return Cost;
245}
246
247/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
248/// invariant in the loop, or has an invariant piece, return the invariant.
249/// Otherwise, return null.
250static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
251  // Constants should be folded, not unswitched on!
252  if (isa<Constant>(Cond)) return false;
253
254  // TODO: Handle: br (VARIANT|INVARIANT).
255  // TODO: Hoist simple expressions out of loops.
256  if (L->isLoopInvariant(Cond)) return Cond;
257
258  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
259    if (BO->getOpcode() == Instruction::And ||
260        BO->getOpcode() == Instruction::Or) {
261      // If either the left or right side is invariant, we can unswitch on this,
262      // which will cause the branch to go away in one loop and the condition to
263      // simplify in the other one.
264      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
265        return LHS;
266      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
267        return RHS;
268    }
269
270  return 0;
271}
272
273bool LoopUnswitch::visitLoop(Loop *L) {
274  bool Changed = false;
275
276  // Recurse through all subloops before we process this loop.  Copy the loop
277  // list so that the child can update the loop tree if it needs to delete the
278  // loop.
279  std::vector<Loop*> SubLoops(L->begin(), L->end());
280  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
281    Changed |= visitLoop(SubLoops[i]);
282
283  // Loop over all of the basic blocks in the loop.  If we find an interior
284  // block that is branching on a loop-invariant condition, we can unswitch this
285  // loop.
286  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
287       I != E; ++I) {
288    TerminatorInst *TI = (*I)->getTerminator();
289    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
290      // If this isn't branching on an invariant condition, we can't unswitch
291      // it.
292      if (BI->isConditional()) {
293        // See if this, or some part of it, is loop invariant.  If so, we can
294        // unswitch on it if we desire.
295        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), L, Changed);
296        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantBool::True, L)) {
297          ++NumBranches;
298          return true;
299        }
300      }
301    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
302      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
303      if (LoopCond && SI->getNumCases() > 1) {
304        // Find a value to unswitch on:
305        // FIXME: this should chose the most expensive case!
306        Constant *UnswitchVal = SI->getCaseValue(1);
307        if (UnswitchIfProfitable(LoopCond, UnswitchVal, L)) {
308          ++NumSwitches;
309          return true;
310        }
311      }
312    }
313
314    // Scan the instructions to check for unswitchable values.
315    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
316         BBI != E; ++BBI)
317      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
318        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
319        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantBool::True, L)) {
320          ++NumSelects;
321          return true;
322        }
323      }
324  }
325
326  return Changed;
327}
328
329/// UnswitchIfProfitable - We have found that we can unswitch L when
330/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
331/// unswitch the loop, reprocess the pieces, then return true.
332bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L){
333  // Check to see if it would be profitable to unswitch this loop.
334  if (getLoopUnswitchCost(L, LoopCond) > Threshold) {
335    // FIXME: this should estimate growth by the amount of code shared by the
336    // resultant unswitched loops.
337    //
338    DEBUG(std::cerr << "NOT unswitching loop %"
339                    << L->getHeader()->getName() << ", cost too high: "
340                    << L->getBlocks().size() << "\n");
341    return false;
342  }
343
344  // If this loop has live-out values, we can't unswitch it. We need something
345  // like loop-closed SSA form in order to know how to insert PHI nodes for
346  // these values.
347  if (LoopValuesUsedOutsideLoop(L)) {
348    DEBUG(std::cerr << "NOT unswitching loop %" << L->getHeader()->getName()
349                    << ", a loop value is used outside loop!\n");
350    return false;
351  }
352
353  //std::cerr << "BEFORE:\n"; LI->dump();
354  Loop *NewLoop1 = 0, *NewLoop2 = 0;
355
356  // If this is a trivial condition to unswitch (which results in no code
357  // duplication), do it now.
358  Constant *CondVal;
359  BasicBlock *ExitBlock;
360  if (IsTrivialUnswitchCondition(L, LoopCond, &CondVal, &ExitBlock)){
361    UnswitchTrivialCondition(L, LoopCond, CondVal, ExitBlock);
362    NewLoop1 = L;
363  } else {
364    VersionLoop(LoopCond, Val, L, NewLoop1, NewLoop2);
365  }
366
367  //std::cerr << "AFTER:\n"; LI->dump();
368
369  // Try to unswitch each of our new loops now!
370  if (NewLoop1) visitLoop(NewLoop1);
371  if (NewLoop2) visitLoop(NewLoop2);
372  return true;
373}
374
375/// SplitBlock - Split the specified block at the specified instruction - every
376/// thing before SplitPt stays in Old and everything starting with SplitPt moves
377/// to a new block.  The two blocks are joined by an unconditional branch and
378/// the loop info is updated.
379///
380BasicBlock *LoopUnswitch::SplitBlock(BasicBlock *Old, Instruction *SplitPt) {
381  while (isa<PHINode>(SplitPt))
382    ++SplitPt;
383  BasicBlock *New = Old->splitBasicBlock(SplitPt, Old->getName()+".split");
384
385  // The new block lives in whichever loop the old one did.
386  if (Loop *L = LI->getLoopFor(Old))
387    L->addBasicBlockToLoop(New, *LI);
388
389  return New;
390}
391
392
393BasicBlock *LoopUnswitch::SplitEdge(BasicBlock *BB, BasicBlock *Succ) {
394  TerminatorInst *LatchTerm = BB->getTerminator();
395  unsigned SuccNum = 0;
396  for (unsigned i = 0, e = LatchTerm->getNumSuccessors(); ; ++i) {
397    assert(i != e && "Didn't find edge?");
398    if (LatchTerm->getSuccessor(i) == Succ) {
399      SuccNum = i;
400      break;
401    }
402  }
403
404  // If this is a critical edge, let SplitCriticalEdge do it.
405  if (SplitCriticalEdge(BB->getTerminator(), SuccNum, this))
406    return LatchTerm->getSuccessor(SuccNum);
407
408  // If the edge isn't critical, then BB has a single successor or Succ has a
409  // single pred.  Split the block.
410  BasicBlock *BlockToSplit;
411  BasicBlock::iterator SplitPoint;
412  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
413    // If the successor only has a single pred, split the top of the successor
414    // block.
415    assert(SP == BB && "CFG broken");
416    return SplitBlock(Succ, Succ->begin());
417  } else {
418    // Otherwise, if BB has a single successor, split it at the bottom of the
419    // block.
420    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
421           "Should have a single succ!");
422    return SplitBlock(BB, BB->getTerminator());
423  }
424}
425
426
427
428// RemapInstruction - Convert the instruction operands from referencing the
429// current values into those specified by ValueMap.
430//
431static inline void RemapInstruction(Instruction *I,
432                                    std::map<const Value *, Value*> &ValueMap) {
433  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
434    Value *Op = I->getOperand(op);
435    std::map<const Value *, Value*>::iterator It = ValueMap.find(Op);
436    if (It != ValueMap.end()) Op = It->second;
437    I->setOperand(op, Op);
438  }
439}
440
441/// CloneLoop - Recursively clone the specified loop and all of its children,
442/// mapping the blocks with the specified map.
443static Loop *CloneLoop(Loop *L, Loop *PL, std::map<const Value*, Value*> &VM,
444                       LoopInfo *LI) {
445  Loop *New = new Loop();
446
447  if (PL)
448    PL->addChildLoop(New);
449  else
450    LI->addTopLevelLoop(New);
451
452  // Add all of the blocks in L to the new loop.
453  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
454       I != E; ++I)
455    if (LI->getLoopFor(*I) == L)
456      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
457
458  // Add all of the subloops to the new loop.
459  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
460    CloneLoop(*I, New, VM, LI);
461
462  return New;
463}
464
465/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
466/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
467/// code immediately before InsertPt.
468static void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
469                                           BasicBlock *TrueDest,
470                                           BasicBlock *FalseDest,
471                                           Instruction *InsertPt) {
472  // Insert a conditional branch on LIC to the two preheaders.  The original
473  // code is the true version and the new code is the false version.
474  Value *BranchVal = LIC;
475  if (!isa<ConstantBool>(Val)) {
476    BranchVal = BinaryOperator::createSetEQ(LIC, Val, "tmp", InsertPt);
477  } else if (Val != ConstantBool::True) {
478    // We want to enter the new loop when the condition is true.
479    std::swap(TrueDest, FalseDest);
480  }
481
482  // Insert the new branch.
483  new BranchInst(TrueDest, FalseDest, BranchVal, InsertPt);
484}
485
486
487/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
488/// condition in it (a cond branch from its header block to its latch block,
489/// where the path through the loop that doesn't execute its body has no
490/// side-effects), unswitch it.  This doesn't involve any code duplication, just
491/// moving the conditional branch outside of the loop and updating loop info.
492void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
493                                            Constant *Val,
494                                            BasicBlock *ExitBlock) {
495  DEBUG(std::cerr << "loop-unswitch: Trivial-Unswitch loop %"
496        << L->getHeader()->getName() << " [" << L->getBlocks().size()
497        << " blocks] in Function " << L->getHeader()->getParent()->getName()
498        << " on cond:" << *Cond << "\n");
499
500  // First step, split the preheader, so that we know that there is a safe place
501  // to insert the conditional branch.  We will change 'OrigPH' to have a
502  // conditional branch on Cond.
503  BasicBlock *OrigPH = L->getLoopPreheader();
504  BasicBlock *NewPH = SplitEdge(OrigPH, L->getHeader());
505
506  // Now that we have a place to insert the conditional branch, create a place
507  // to branch to: this is the exit block out of the loop that we should
508  // short-circuit to.
509
510  // Split this block now, so that the loop maintains its exit block, and so
511  // that the jump from the preheader can execute the contents of the exit block
512  // without actually branching to it (the exit block should be dominated by the
513  // loop header, not the preheader).
514  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
515  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin());
516
517  // Okay, now we have a position to branch from and a position to branch to,
518  // insert the new conditional branch.
519  EmitPreheaderBranchOnCondition(Cond, Val, NewPH, NewExit,
520                                 OrigPH->getTerminator());
521  OrigPH->getTerminator()->eraseFromParent();
522
523  // Now that we know that the loop is never entered when this condition is a
524  // particular value, rewrite the loop with this info.  We know that this will
525  // at least eliminate the old branch.
526  RewriteLoopBodyWithConditionConstant(L, Cond, Val, true);
527  ++NumTrivial;
528}
529
530
531/// VersionLoop - We determined that the loop is profitable to unswitch when LIC
532/// equal Val.  Split it into loop versions and test the condition outside of
533/// either loop.  Return the loops created as Out1/Out2.
534void LoopUnswitch::VersionLoop(Value *LIC, Constant *Val, Loop *L,
535                               Loop *&Out1, Loop *&Out2) {
536  Function *F = L->getHeader()->getParent();
537
538  DEBUG(std::cerr << "loop-unswitch: Unswitching loop %"
539                  << L->getHeader()->getName() << " [" << L->getBlocks().size()
540                  << " blocks] in Function " << F->getName()
541                  << " when '" << *Val << "' == " << *LIC << "\n");
542
543  // LoopBlocks contains all of the basic blocks of the loop, including the
544  // preheader of the loop, the body of the loop, and the exit blocks of the
545  // loop, in that order.
546  std::vector<BasicBlock*> LoopBlocks;
547
548  // First step, split the preheader and exit blocks, and add these blocks to
549  // the LoopBlocks list.
550  BasicBlock *OrigPreheader = L->getLoopPreheader();
551  LoopBlocks.push_back(SplitEdge(OrigPreheader, L->getHeader()));
552
553  // We want the loop to come after the preheader, but before the exit blocks.
554  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
555
556  std::vector<BasicBlock*> ExitBlocks;
557  L->getExitBlocks(ExitBlocks);
558  std::sort(ExitBlocks.begin(), ExitBlocks.end());
559  ExitBlocks.erase(std::unique(ExitBlocks.begin(), ExitBlocks.end()),
560                   ExitBlocks.end());
561
562  // Split all of the edges from inside the loop to their exit blocks.  This
563  // unswitching trivial: no phi nodes to update.
564  unsigned NumBlocks = L->getBlocks().size();
565  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
566    BasicBlock *ExitBlock = ExitBlocks[i];
567    std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
568
569    for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
570      assert(L->contains(Preds[j]) &&
571             "All preds of loop exit blocks must be the same loop!");
572      SplitEdge(Preds[j], ExitBlock);
573    }
574  }
575
576  // The exit blocks may have been changed due to edge splitting, recompute.
577  ExitBlocks.clear();
578  L->getExitBlocks(ExitBlocks);
579  std::sort(ExitBlocks.begin(), ExitBlocks.end());
580  ExitBlocks.erase(std::unique(ExitBlocks.begin(), ExitBlocks.end()),
581                   ExitBlocks.end());
582
583  // Add exit blocks to the loop blocks.
584  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
585
586  // Next step, clone all of the basic blocks that make up the loop (including
587  // the loop preheader and exit blocks), keeping track of the mapping between
588  // the instructions and blocks.
589  std::vector<BasicBlock*> NewBlocks;
590  NewBlocks.reserve(LoopBlocks.size());
591  std::map<const Value*, Value*> ValueMap;
592  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
593    BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
594    NewBlocks.push_back(New);
595    ValueMap[LoopBlocks[i]] = New;  // Keep the BB mapping.
596  }
597
598  // Splice the newly inserted blocks into the function right before the
599  // original preheader.
600  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
601                                NewBlocks[0], F->end());
602
603  // Now we create the new Loop object for the versioned loop.
604  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI);
605  Loop *ParentLoop = L->getParentLoop();
606  if (ParentLoop) {
607    // Make sure to add the cloned preheader and exit blocks to the parent loop
608    // as well.
609    ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
610  }
611
612  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
613    BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
614    if (ParentLoop)
615      ParentLoop->addBasicBlockToLoop(cast<BasicBlock>(NewExit), *LI);
616
617    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
618           "Exit block should have been split to have one successor!");
619    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
620
621    // If the successor of the exit block had PHI nodes, add an entry for
622    // NewExit.
623    PHINode *PN;
624    for (BasicBlock::iterator I = ExitSucc->begin();
625         (PN = dyn_cast<PHINode>(I)); ++I) {
626      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
627      std::map<const Value *, Value*>::iterator It = ValueMap.find(V);
628      if (It != ValueMap.end()) V = It->second;
629      PN->addIncoming(V, NewExit);
630    }
631  }
632
633  // Rewrite the code to refer to itself.
634  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
635    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
636           E = NewBlocks[i]->end(); I != E; ++I)
637      RemapInstruction(I, ValueMap);
638
639  // Rewrite the original preheader to select between versions of the loop.
640  BranchInst *OldBR = cast<BranchInst>(OrigPreheader->getTerminator());
641  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
642         "Preheader splitting did not work correctly!");
643
644  // Emit the new branch that selects between the two versions of this loop.
645  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
646  OldBR->eraseFromParent();
647
648  // Now we rewrite the original code to know that the condition is true and the
649  // new code to know that the condition is false.
650  RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
651  RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
652  Out1 = L;
653  Out2 = NewLoop;
654}
655
656// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
657// the value specified by Val in the specified loop, or we know it does NOT have
658// that value.  Rewrite any uses of LIC or of properties correlated to it.
659void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
660                                                        Constant *Val,
661                                                        bool IsEqual) {
662  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
663
664  // FIXME: Support correlated properties, like:
665  //  for (...)
666  //    if (li1 < li2)
667  //      ...
668  //    if (li1 > li2)
669  //      ...
670
671  // NotVal - If Val is a bool, this contains its inverse.
672  Constant *NotVal = 0;
673  if (ConstantBool *CB = dyn_cast<ConstantBool>(Val))
674    NotVal = ConstantBool::get(!CB->getValue());
675
676  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
677  // selects, switches.
678  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
679
680  // Haha, this loop could be unswitched.  Get it? The unswitch pass could
681  // unswitch itself. Amazing.
682  for (unsigned i = 0, e = Users.size(); i != e; ++i)
683    if (Instruction *U = cast<Instruction>(Users[i]))
684      if (L->contains(U->getParent()))
685        if (IsEqual) {
686          U->replaceUsesOfWith(LIC, Val);
687        } else if (NotVal) {
688          U->replaceUsesOfWith(LIC, NotVal);
689        } else {
690          // If we know that LIC is not Val, use this info to simplify code.
691          if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
692            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
693              if (SI->getCaseValue(i) == Val) {
694                // Found a dead case value.  Don't remove PHI nodes in the
695                // successor if they become single-entry, those PHI nodes may
696                // be in the Users list.
697                SI->getSuccessor(i)->removePredecessor(SI->getParent(), true);
698                SI->removeCase(i);
699                break;
700              }
701            }
702          }
703
704          // TODO: We could simplify stuff like X == C.
705        }
706}
707