LoopUnswitch.cpp revision 6d9d13d2e493250b62fdf9812058a7a4dbcc6513
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/Function.h"
33#include "llvm/Instructions.h"
34#include "llvm/Analysis/LoopInfo.h"
35#include "llvm/Transforms/Utils/Cloning.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Transforms/Utils/BasicBlockUtils.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/CommandLine.h"
41#include <algorithm>
42#include <iostream>
43#include <set>
44using namespace llvm;
45
46namespace {
47  Statistic<> NumBranches("loop-unswitch", "Number of branches unswitched");
48  Statistic<> NumSwitches("loop-unswitch", "Number of switches unswitched");
49  Statistic<> NumSelects ("loop-unswitch", "Number of selects unswitched");
50  Statistic<> NumTrivial ("loop-unswitch",
51                          "Number of unswitches that are trivial");
52  cl::opt<unsigned>
53  Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
54            cl::init(10), cl::Hidden);
55
56  class LoopUnswitch : public FunctionPass {
57    LoopInfo *LI;  // Loop information
58  public:
59    virtual bool runOnFunction(Function &F);
60    bool visitLoop(Loop *L);
61
62    /// This transformation requires natural loop information & requires that
63    /// loop preheaders be inserted into the CFG...
64    ///
65    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66      AU.addRequiredID(LoopSimplifyID);
67      AU.addPreservedID(LoopSimplifyID);
68      AU.addRequired<LoopInfo>();
69      AU.addPreserved<LoopInfo>();
70    }
71
72  private:
73    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L);
74    unsigned getLoopUnswitchCost(Loop *L, Value *LIC);
75    void VersionLoop(Value *LIC, Constant *OnVal,
76                     Loop *L, Loop *&Out1, Loop *&Out2);
77    BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To);
78    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,Constant *Val,
79                                              bool isEqual);
80    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
81                                  BasicBlock *ExitBlock);
82  };
83  RegisterOpt<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
84}
85
86FunctionPass *llvm::createLoopUnswitchPass() { return new LoopUnswitch(); }
87
88bool LoopUnswitch::runOnFunction(Function &F) {
89  bool Changed = false;
90  LI = &getAnalysis<LoopInfo>();
91
92  // Transform all the top-level loops.  Copy the loop list so that the child
93  // can update the loop tree if it needs to delete the loop.
94  std::vector<Loop*> SubLoops(LI->begin(), LI->end());
95  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
96    Changed |= visitLoop(SubLoops[i]);
97
98  return Changed;
99}
100
101
102/// LoopValuesUsedOutsideLoop - Return true if there are any values defined in
103/// the loop that are used by instructions outside of it.
104static bool LoopValuesUsedOutsideLoop(Loop *L) {
105  // We will be doing lots of "loop contains block" queries.  Loop::contains is
106  // linear time, use a set to speed this up.
107  std::set<BasicBlock*> LoopBlocks;
108
109  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
110       BB != E; ++BB)
111    LoopBlocks.insert(*BB);
112
113  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
114       BB != E; ++BB) {
115    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
116      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
117           ++UI) {
118        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
119        if (!LoopBlocks.count(UserBB))
120          return true;
121      }
122  }
123  return false;
124}
125
126/// FindTrivialLoopExitBlock - We know that we have a branch from the loop
127/// header to the specified latch block.   See if one of the successors of the
128/// latch block is an exit, and if so what block it is.
129static BasicBlock *FindTrivialLoopExitBlock(Loop *L, BasicBlock *Latch) {
130  BasicBlock *Header = L->getHeader();
131  BranchInst *LatchBranch = dyn_cast<BranchInst>(Latch->getTerminator());
132  if (!LatchBranch || !LatchBranch->isConditional()) return 0;
133
134  // Simple case, the latch block is a conditional branch.  The target that
135  // doesn't go to the loop header is our block if it is not in the loop.
136  if (LatchBranch->getSuccessor(0) == Header) {
137    if (L->contains(LatchBranch->getSuccessor(1))) return false;
138    return LatchBranch->getSuccessor(1);
139  } else {
140    assert(LatchBranch->getSuccessor(1) == Header);
141    if (L->contains(LatchBranch->getSuccessor(0))) return false;
142    return LatchBranch->getSuccessor(0);
143  }
144}
145
146
147/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
148/// trivial: that is, that the condition controls whether or not the loop does
149/// anything at all.  If this is a trivial condition, unswitching produces no
150/// code duplications (equivalently, it produces a simpler loop and a new empty
151/// loop, which gets deleted).
152///
153/// If this is a trivial condition, return ConstantBool::True if the loop body
154/// runs when the condition is true, False if the loop body executes when the
155/// condition is false.  Otherwise, return null to indicate a complex condition.
156static bool IsTrivialUnswitchCondition(Loop *L, Value *Cond,
157                                       Constant **Val = 0,
158                                       BasicBlock **LoopExit = 0) {
159  BasicBlock *Header = L->getHeader();
160  BranchInst *HeaderTerm = dyn_cast<BranchInst>(Header->getTerminator());
161
162  // If the header block doesn't end with a conditional branch on Cond, we can't
163  // handle it.
164  if (!HeaderTerm || !HeaderTerm->isConditional() ||
165      HeaderTerm->getCondition() != Cond)
166    return false;
167
168  // Check to see if the conditional branch goes to the latch block.  If not,
169  // it's not trivial.  This also determines the value of Cond that will execute
170  // the loop.
171  BasicBlock *Latch = L->getLoopLatch();
172  if (HeaderTerm->getSuccessor(1) == Latch) {
173    if (Val) *Val = ConstantBool::True;
174  } else if (HeaderTerm->getSuccessor(0) == Latch)
175    if (Val) *Val = ConstantBool::False;
176  else
177    return false;  // Doesn't branch to latch block.
178
179  // The latch block must end with a conditional branch where one edge goes to
180  // the header (this much we know) and one edge goes OUT of the loop.
181  BasicBlock *LoopExitBlock = FindTrivialLoopExitBlock(L, Latch);
182  if (!LoopExitBlock) return 0;
183  if (LoopExit) *LoopExit = LoopExitBlock;
184
185  // We already know that nothing uses any scalar values defined inside of this
186  // loop.  As such, we just have to check to see if this loop will execute any
187  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
188  // part of the loop that the code *would* execute.
189  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
190    if (I->mayWriteToMemory())
191      return false;
192  for (BasicBlock::iterator I = Latch->begin(), E = Latch->end(); I != E; ++I)
193    if (I->mayWriteToMemory())
194      return false;
195  return true;
196}
197
198/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
199/// we choose to unswitch the specified loop on the specified value.
200///
201unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) {
202  // If the condition is trivial, always unswitch.  There is no code growth for
203  // this case.
204  if (IsTrivialUnswitchCondition(L, LIC))
205    return 0;
206
207  unsigned Cost = 0;
208  // FIXME: this is brain dead.  It should take into consideration code
209  // shrinkage.
210  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
211       I != E; ++I) {
212    BasicBlock *BB = *I;
213    // Do not include empty blocks in the cost calculation.  This happen due to
214    // loop canonicalization and will be removed.
215    if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
216      continue;
217
218    // Count basic blocks.
219    ++Cost;
220  }
221
222  return Cost;
223}
224
225/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
226/// invariant in the loop, or has an invariant piece, return the invariant.
227/// Otherwise, return null.
228static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
229  // Constants should be folded, not unswitched on!
230  if (isa<Constant>(Cond)) return false;
231
232  // TODO: Handle: br (VARIANT|INVARIANT).
233  // TODO: Hoist simple expressions out of loops.
234  if (L->isLoopInvariant(Cond)) return Cond;
235
236  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
237    if (BO->getOpcode() == Instruction::And ||
238        BO->getOpcode() == Instruction::Or) {
239      // If either the left or right side is invariant, we can unswitch on this,
240      // which will cause the branch to go away in one loop and the condition to
241      // simplify in the other one.
242      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
243        return LHS;
244      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
245        return RHS;
246    }
247
248  return 0;
249}
250
251bool LoopUnswitch::visitLoop(Loop *L) {
252  bool Changed = false;
253
254  // Recurse through all subloops before we process this loop.  Copy the loop
255  // list so that the child can update the loop tree if it needs to delete the
256  // loop.
257  std::vector<Loop*> SubLoops(L->begin(), L->end());
258  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
259    Changed |= visitLoop(SubLoops[i]);
260
261  // Loop over all of the basic blocks in the loop.  If we find an interior
262  // block that is branching on a loop-invariant condition, we can unswitch this
263  // loop.
264  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
265       I != E; ++I) {
266    TerminatorInst *TI = (*I)->getTerminator();
267    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
268      // If this isn't branching on an invariant condition, we can't unswitch
269      // it.
270      if (BI->isConditional()) {
271        // See if this, or some part of it, is loop invariant.  If so, we can
272        // unswitch on it if we desire.
273        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), L, Changed);
274        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantBool::True, L)) {
275          ++NumBranches;
276          return true;
277        }
278      }
279    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
280      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
281      if (LoopCond && SI->getNumCases() > 1) {
282        // Find a value to unswitch on:
283        // FIXME: this should chose the most expensive case!
284        Constant *UnswitchVal = SI->getCaseValue(1);
285        if (UnswitchIfProfitable(LoopCond, UnswitchVal, L)) {
286          ++NumSwitches;
287          return true;
288        }
289      }
290    }
291
292    // Scan the instructions to check for unswitchable values.
293    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
294         BBI != E; ++BBI)
295      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
296        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
297        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantBool::True, L)) {
298          ++NumSelects;
299          return true;
300        }
301      }
302  }
303
304  return Changed;
305}
306
307/// UnswitchIfProfitable - We have found that we can unswitch L when
308/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
309/// unswitch the loop, reprocess the pieces, then return true.
310bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L){
311  // Check to see if it would be profitable to unswitch this loop.
312  if (getLoopUnswitchCost(L, LoopCond) > Threshold) {
313    // FIXME: this should estimate growth by the amount of code shared by the
314    // resultant unswitched loops.
315    //
316    DEBUG(std::cerr << "NOT unswitching loop %"
317                    << L->getHeader()->getName() << ", cost too high: "
318                    << L->getBlocks().size() << "\n");
319    return false;
320  }
321
322  // If this loop has live-out values, we can't unswitch it. We need something
323  // like loop-closed SSA form in order to know how to insert PHI nodes for
324  // these values.
325  if (LoopValuesUsedOutsideLoop(L)) {
326    DEBUG(std::cerr << "NOT unswitching loop %" << L->getHeader()->getName()
327                    << ", a loop value is used outside loop!\n");
328    return false;
329  }
330
331  //std::cerr << "BEFORE:\n"; LI->dump();
332  Loop *NewLoop1 = 0, *NewLoop2 = 0;
333
334  // If this is a trivial condition to unswitch (which results in no code
335  // duplication), do it now.
336  Constant *CondVal;
337  BasicBlock *ExitBlock;
338  if (IsTrivialUnswitchCondition(L, LoopCond, &CondVal, &ExitBlock)){
339    UnswitchTrivialCondition(L, LoopCond, CondVal, ExitBlock);
340    NewLoop1 = L;
341  } else {
342    VersionLoop(LoopCond, Val, L, NewLoop1, NewLoop2);
343  }
344
345  //std::cerr << "AFTER:\n"; LI->dump();
346
347  // Try to unswitch each of our new loops now!
348  if (NewLoop1) visitLoop(NewLoop1);
349  if (NewLoop2) visitLoop(NewLoop2);
350  return true;
351}
352
353BasicBlock *LoopUnswitch::SplitEdge(BasicBlock *BB, BasicBlock *Succ) {
354  TerminatorInst *LatchTerm = BB->getTerminator();
355  unsigned SuccNum = 0;
356  for (unsigned i = 0, e = LatchTerm->getNumSuccessors(); ; ++i) {
357    assert(i != e && "Didn't find edge?");
358    if (LatchTerm->getSuccessor(i) == Succ) {
359      SuccNum = i;
360      break;
361    }
362  }
363
364  // If this is a critical edge, let SplitCriticalEdge do it.
365  if (SplitCriticalEdge(BB->getTerminator(), SuccNum, this))
366    return LatchTerm->getSuccessor(SuccNum);
367
368  // If the edge isn't critical, then BB has a single successor or Succ has a
369  // single pred.  Split the block.
370  BasicBlock *BlockToSplit;
371  BasicBlock::iterator SplitPoint;
372  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
373    // If the successor only has a single pred, split the top of the successor
374    // block.
375    assert(SP == BB && "CFG broken");
376    BlockToSplit = Succ;
377    SplitPoint = Succ->begin();
378  } else {
379    // Otherwise, if BB has a single successor, split it at the bottom of the
380    // block.
381    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
382           "Should have a single succ!");
383    BlockToSplit = BB;
384    SplitPoint = BB->getTerminator();
385  }
386
387  BasicBlock *New =
388    BlockToSplit->splitBasicBlock(SplitPoint,
389                                  BlockToSplit->getName()+".tail");
390  // New now lives in whichever loop that BB used to.
391  if (Loop *L = LI->getLoopFor(BlockToSplit))
392    L->addBasicBlockToLoop(New, *LI);
393  return New;
394}
395
396
397
398// RemapInstruction - Convert the instruction operands from referencing the
399// current values into those specified by ValueMap.
400//
401static inline void RemapInstruction(Instruction *I,
402                                    std::map<const Value *, Value*> &ValueMap) {
403  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
404    Value *Op = I->getOperand(op);
405    std::map<const Value *, Value*>::iterator It = ValueMap.find(Op);
406    if (It != ValueMap.end()) Op = It->second;
407    I->setOperand(op, Op);
408  }
409}
410
411/// CloneLoop - Recursively clone the specified loop and all of its children,
412/// mapping the blocks with the specified map.
413static Loop *CloneLoop(Loop *L, Loop *PL, std::map<const Value*, Value*> &VM,
414                       LoopInfo *LI) {
415  Loop *New = new Loop();
416
417  if (PL)
418    PL->addChildLoop(New);
419  else
420    LI->addTopLevelLoop(New);
421
422  // Add all of the blocks in L to the new loop.
423  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
424       I != E; ++I)
425    if (LI->getLoopFor(*I) == L)
426      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
427
428  // Add all of the subloops to the new loop.
429  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
430    CloneLoop(*I, New, VM, LI);
431
432  return New;
433}
434
435/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
436/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
437/// code immediately before InsertPt.
438static void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
439                                           BasicBlock *TrueDest,
440                                           BasicBlock *FalseDest,
441                                           Instruction *InsertPt) {
442  // Insert a conditional branch on LIC to the two preheaders.  The original
443  // code is the true version and the new code is the false version.
444  Value *BranchVal = LIC;
445  if (!isa<ConstantBool>(BranchVal)) {
446    BranchVal = BinaryOperator::createSetEQ(LIC, Val, "tmp", InsertPt);
447  } else if (Val != ConstantBool::True) {
448    // We want to enter the new loop when the condition is true.
449    std::swap(TrueDest, FalseDest);
450  }
451
452  // Insert the new branch.
453  new BranchInst(TrueDest, FalseDest, BranchVal, InsertPt);
454}
455
456
457/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
458/// condition in it (a cond branch from its header block to its latch block,
459/// where the path through the loop that doesn't execute its body has no
460/// side-effects), unswitch it.  This doesn't involve any code duplication, just
461/// moving the conditional branch outside of the loop and updating loop info.
462void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
463                                            Constant *Val,
464                                            BasicBlock *ExitBlock) {
465  DEBUG(std::cerr << "loop-unswitch: Trivial-Unswitch loop %"
466        << L->getHeader()->getName() << " [" << L->getBlocks().size()
467        << " blocks] in Function " << L->getHeader()->getParent()->getName()
468        << " on cond:" << *Cond << "\n");
469
470  // First step, split the preheader, so that we know that there is a safe place
471  // to insert the conditional branch.  We will change 'OrigPH' to have a
472  // conditional branch on Cond.
473  BasicBlock *OrigPH = L->getLoopPreheader();
474  BasicBlock *NewPH = SplitEdge(OrigPH, L->getHeader());
475
476  // Now that we have a place to insert the conditional branch, create a place
477  // to branch to: this is the exit block out of the loop that we should
478  // short-circuit to.
479
480  // Split this edge now, so that the loop maintains its exit block.
481  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
482  BasicBlock *NewExit = SplitEdge(L->getLoopLatch(), ExitBlock);
483  assert(NewExit != ExitBlock && "Edge not split!");
484
485  // Okay, now we have a position to branch from and a position to branch to,
486  // insert the new conditional branch.
487  EmitPreheaderBranchOnCondition(Cond, Val, NewPH, NewExit,
488                                 OrigPH->getTerminator());
489  OrigPH->getTerminator()->eraseFromParent();
490
491  // Now that we know that the loop is never entered when this condition is a
492  // particular value, rewrite the loop with this info.  We know that this will
493  // at least eliminate the old branch.
494  RewriteLoopBodyWithConditionConstant(L, Cond, Val, true);
495  ++NumTrivial;
496}
497
498
499/// VersionLoop - We determined that the loop is profitable to unswitch when LIC
500/// equal Val.  Split it into loop versions and test the condition outside of
501/// either loop.  Return the loops created as Out1/Out2.
502void LoopUnswitch::VersionLoop(Value *LIC, Constant *Val, Loop *L,
503                               Loop *&Out1, Loop *&Out2) {
504  Function *F = L->getHeader()->getParent();
505
506  DEBUG(std::cerr << "loop-unswitch: Unswitching loop %"
507                  << L->getHeader()->getName() << " [" << L->getBlocks().size()
508                  << " blocks] in Function " << F->getName()
509                  << " when '" << *Val << "' == " << *LIC << "\n");
510
511  // LoopBlocks contains all of the basic blocks of the loop, including the
512  // preheader of the loop, the body of the loop, and the exit blocks of the
513  // loop, in that order.
514  std::vector<BasicBlock*> LoopBlocks;
515
516  // First step, split the preheader and exit blocks, and add these blocks to
517  // the LoopBlocks list.
518  BasicBlock *OrigPreheader = L->getLoopPreheader();
519  LoopBlocks.push_back(SplitEdge(OrigPreheader, L->getHeader()));
520
521  // We want the loop to come after the preheader, but before the exit blocks.
522  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
523
524  std::vector<BasicBlock*> ExitBlocks;
525  L->getExitBlocks(ExitBlocks);
526  std::sort(ExitBlocks.begin(), ExitBlocks.end());
527  ExitBlocks.erase(std::unique(ExitBlocks.begin(), ExitBlocks.end()),
528                   ExitBlocks.end());
529
530  // Split all of the edges from inside the loop to their exit blocks.  This
531  // unswitching trivial: no phi nodes to update.
532  unsigned NumBlocks = L->getBlocks().size();
533  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
534    BasicBlock *ExitBlock = ExitBlocks[i];
535    std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
536
537    for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
538      assert(L->contains(Preds[j]) &&
539             "All preds of loop exit blocks must be the same loop!");
540      SplitEdge(Preds[j], ExitBlock);
541    }
542  }
543
544  // The exit blocks may have been changed due to edge splitting, recompute.
545  ExitBlocks.clear();
546  L->getExitBlocks(ExitBlocks);
547  std::sort(ExitBlocks.begin(), ExitBlocks.end());
548  ExitBlocks.erase(std::unique(ExitBlocks.begin(), ExitBlocks.end()),
549                   ExitBlocks.end());
550
551  // Add exit blocks to the loop blocks.
552  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
553
554  // Next step, clone all of the basic blocks that make up the loop (including
555  // the loop preheader and exit blocks), keeping track of the mapping between
556  // the instructions and blocks.
557  std::vector<BasicBlock*> NewBlocks;
558  NewBlocks.reserve(LoopBlocks.size());
559  std::map<const Value*, Value*> ValueMap;
560  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
561    BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
562    NewBlocks.push_back(New);
563    ValueMap[LoopBlocks[i]] = New;  // Keep the BB mapping.
564  }
565
566  // Splice the newly inserted blocks into the function right before the
567  // original preheader.
568  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
569                                NewBlocks[0], F->end());
570
571  // Now we create the new Loop object for the versioned loop.
572  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI);
573  Loop *ParentLoop = L->getParentLoop();
574  if (ParentLoop) {
575    // Make sure to add the cloned preheader and exit blocks to the parent loop
576    // as well.
577    ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
578  }
579
580  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
581    BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
582    if (ParentLoop)
583      ParentLoop->addBasicBlockToLoop(cast<BasicBlock>(NewExit), *LI);
584
585    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
586           "Exit block should have been split to have one successor!");
587    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
588
589    // If the successor of the exit block had PHI nodes, add an entry for
590    // NewExit.
591    PHINode *PN;
592    for (BasicBlock::iterator I = ExitSucc->begin();
593         (PN = dyn_cast<PHINode>(I)); ++I) {
594      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
595      std::map<const Value *, Value*>::iterator It = ValueMap.find(V);
596      if (It != ValueMap.end()) V = It->second;
597      PN->addIncoming(V, NewExit);
598    }
599  }
600
601  // Rewrite the code to refer to itself.
602  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
603    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
604           E = NewBlocks[i]->end(); I != E; ++I)
605      RemapInstruction(I, ValueMap);
606
607  // Rewrite the original preheader to select between versions of the loop.
608  BranchInst *OldBR = cast<BranchInst>(OrigPreheader->getTerminator());
609  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
610         "Preheader splitting did not work correctly!");
611
612  // Emit the new branch that selects between the two versions of this loop.
613  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
614  OldBR->eraseFromParent();
615
616  // Now we rewrite the original code to know that the condition is true and the
617  // new code to know that the condition is false.
618  RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
619  RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
620  Out1 = L;
621  Out2 = NewLoop;
622}
623
624// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
625// the value specified by Val in the specified loop, or we know it does NOT have
626// that value.  Rewrite any uses of LIC or of properties correlated to it.
627void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
628                                                        Constant *Val,
629                                                        bool IsEqual) {
630  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
631
632  // FIXME: Support correlated properties, like:
633  //  for (...)
634  //    if (li1 < li2)
635  //      ...
636  //    if (li1 > li2)
637  //      ...
638
639  // NotVal - If Val is a bool, this contains its inverse.
640  Constant *NotVal = 0;
641  if (ConstantBool *CB = dyn_cast<ConstantBool>(Val))
642    NotVal = ConstantBool::get(!CB->getValue());
643
644  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
645  // selects, switches.
646  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
647
648  // Haha, this loop could be unswitched.  Get it? The unswitch pass could
649  // unswitch itself. Amazing.
650  for (unsigned i = 0, e = Users.size(); i != e; ++i)
651    if (Instruction *U = cast<Instruction>(Users[i]))
652      if (L->contains(U->getParent()))
653        if (IsEqual) {
654          U->replaceUsesOfWith(LIC, Val);
655        } else if (NotVal) {
656          U->replaceUsesOfWith(LIC, NotVal);
657        } else {
658          // If we know that LIC is not Val, use this info to simplify code.
659          if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
660            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
661              if (SI->getCaseValue(i) == Val) {
662                // Found a dead case value.  Don't remove PHI nodes in the
663                // successor if they become single-entry, those PHI nodes may
664                // be in the Users list.
665                SI->getSuccessor(i)->removePredecessor(SI->getParent(), true);
666                SI->removeCase(i);
667                break;
668              }
669            }
670          }
671
672          // TODO: We could simplify stuff like X == C.
673        }
674}
675