LoopUnswitch.cpp revision 7f8897f22e88271cfa114998a4d6088e7c8e8e11
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/Function.h"
33#include "llvm/Instructions.h"
34#include "llvm/Analysis/LoopInfo.h"
35#include "llvm/Transforms/Utils/Cloning.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Transforms/Utils/BasicBlockUtils.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/ADT/PostOrderIterator.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/CommandLine.h"
42#include <algorithm>
43#include <iostream>
44#include <set>
45using namespace llvm;
46
47namespace {
48  Statistic<> NumBranches("loop-unswitch", "Number of branches unswitched");
49  Statistic<> NumSwitches("loop-unswitch", "Number of switches unswitched");
50  Statistic<> NumSelects ("loop-unswitch", "Number of selects unswitched");
51  Statistic<> NumTrivial ("loop-unswitch",
52                          "Number of unswitches that are trivial");
53  Statistic<> NumSimplify("loop-unswitch",
54                          "Number of simplifications of unswitched code");
55  cl::opt<unsigned>
56  Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
57            cl::init(10), cl::Hidden);
58
59  class LoopUnswitch : public FunctionPass {
60    LoopInfo *LI;  // Loop information
61
62    // LoopProcessWorklist - List of loops we need to process.
63    std::vector<Loop*> LoopProcessWorklist;
64  public:
65    virtual bool runOnFunction(Function &F);
66    bool visitLoop(Loop *L);
67
68    /// This transformation requires natural loop information & requires that
69    /// loop preheaders be inserted into the CFG...
70    ///
71    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
72      AU.addRequiredID(LoopSimplifyID);
73      AU.addPreservedID(LoopSimplifyID);
74      AU.addRequired<LoopInfo>();
75      AU.addPreserved<LoopInfo>();
76      AU.addRequiredID(LCSSAID);
77      AU.addPreservedID(LCSSAID);
78    }
79
80  private:
81    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
82    /// remove it.
83    void RemoveLoopFromWorklist(Loop *L) {
84      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
85                                                 LoopProcessWorklist.end(), L);
86      if (I != LoopProcessWorklist.end())
87        LoopProcessWorklist.erase(I);
88    }
89
90    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L);
91    unsigned getLoopUnswitchCost(Loop *L, Value *LIC);
92    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
93                                  BasicBlock *ExitBlock);
94    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
95    BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To);
96    BasicBlock *SplitBlock(BasicBlock *Old, Instruction *SplitPt);
97
98    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
99                                              Constant *Val, bool isEqual);
100
101    void SimplifyCode(std::vector<Instruction*> &Worklist);
102    void RemoveBlockIfDead(BasicBlock *BB,
103                           std::vector<Instruction*> &Worklist);
104    void RemoveLoopFromHierarchy(Loop *L);
105  };
106  RegisterPass<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
107}
108
109FunctionPass *llvm::createLoopUnswitchPass() { return new LoopUnswitch(); }
110
111bool LoopUnswitch::runOnFunction(Function &F) {
112  bool Changed = false;
113  LI = &getAnalysis<LoopInfo>();
114
115  // Populate the worklist of loops to process in post-order.
116  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
117    for (po_iterator<Loop*> LI = po_begin(*I), E = po_end(*I); LI != E; ++LI)
118      LoopProcessWorklist.push_back(*LI);
119
120  // Process the loops in worklist order, this is a post-order visitation of
121  // the loops.  We use a worklist of loops so that loops can be removed at any
122  // time if they are deleted (e.g. the backedge of a loop is removed).
123  while (!LoopProcessWorklist.empty()) {
124    Loop *L = LoopProcessWorklist.back();
125    LoopProcessWorklist.pop_back();
126    Changed |= visitLoop(L);
127  }
128
129  return Changed;
130}
131
132/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
133/// invariant in the loop, or has an invariant piece, return the invariant.
134/// Otherwise, return null.
135static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
136  // Constants should be folded, not unswitched on!
137  if (isa<Constant>(Cond)) return false;
138
139  // TODO: Handle: br (VARIANT|INVARIANT).
140  // TODO: Hoist simple expressions out of loops.
141  if (L->isLoopInvariant(Cond)) return Cond;
142
143  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
144    if (BO->getOpcode() == Instruction::And ||
145        BO->getOpcode() == Instruction::Or) {
146      // If either the left or right side is invariant, we can unswitch on this,
147      // which will cause the branch to go away in one loop and the condition to
148      // simplify in the other one.
149      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
150        return LHS;
151      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
152        return RHS;
153    }
154
155      return 0;
156}
157
158bool LoopUnswitch::visitLoop(Loop *L) {
159  assert(L->isLCSSAForm());
160
161  bool Changed = false;
162
163  // Loop over all of the basic blocks in the loop.  If we find an interior
164  // block that is branching on a loop-invariant condition, we can unswitch this
165  // loop.
166  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
167       I != E; ++I) {
168    TerminatorInst *TI = (*I)->getTerminator();
169    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
170      // If this isn't branching on an invariant condition, we can't unswitch
171      // it.
172      if (BI->isConditional()) {
173        // See if this, or some part of it, is loop invariant.  If so, we can
174        // unswitch on it if we desire.
175        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), L, Changed);
176        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantBool::True, L)) {
177          ++NumBranches;
178          return true;
179        }
180      }
181    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
182      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
183      if (LoopCond && SI->getNumCases() > 1) {
184        // Find a value to unswitch on:
185        // FIXME: this should chose the most expensive case!
186        Constant *UnswitchVal = SI->getCaseValue(1);
187        if (UnswitchIfProfitable(LoopCond, UnswitchVal, L)) {
188          ++NumSwitches;
189          return true;
190        }
191      }
192    }
193
194    // Scan the instructions to check for unswitchable values.
195    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
196         BBI != E; ++BBI)
197      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
198        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
199        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantBool::True, L)) {
200          ++NumSelects;
201          return true;
202        }
203      }
204  }
205
206  assert(L->isLCSSAForm());
207
208  return Changed;
209}
210
211/// isTrivialLoopExitBlock - Check to see if all paths from BB either:
212///   1. Exit the loop with no side effects.
213///   2. Branch to the latch block with no side-effects.
214///
215/// If these conditions are true, we return true and set ExitBB to the block we
216/// exit through.
217///
218static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
219                                         BasicBlock *&ExitBB,
220                                         std::set<BasicBlock*> &Visited) {
221  if (!Visited.insert(BB).second) {
222    // Already visited and Ok, end of recursion.
223    return true;
224  } else if (!L->contains(BB)) {
225    // Otherwise, this is a loop exit, this is fine so long as this is the
226    // first exit.
227    if (ExitBB != 0) return false;
228    ExitBB = BB;
229    return true;
230  }
231
232  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
233  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
234    // Check to see if the successor is a trivial loop exit.
235    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
236      return false;
237  }
238
239  // Okay, everything after this looks good, check to make sure that this block
240  // doesn't include any side effects.
241  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
242    if (I->mayWriteToMemory())
243      return false;
244
245  return true;
246}
247
248/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
249/// leads to an exit from the specified loop, and has no side-effects in the
250/// process.  If so, return the block that is exited to, otherwise return null.
251static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
252  std::set<BasicBlock*> Visited;
253  Visited.insert(L->getHeader());  // Branches to header are ok.
254  BasicBlock *ExitBB = 0;
255  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
256    return ExitBB;
257  return 0;
258}
259
260/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
261/// trivial: that is, that the condition controls whether or not the loop does
262/// anything at all.  If this is a trivial condition, unswitching produces no
263/// code duplications (equivalently, it produces a simpler loop and a new empty
264/// loop, which gets deleted).
265///
266/// If this is a trivial condition, return true, otherwise return false.  When
267/// returning true, this sets Cond and Val to the condition that controls the
268/// trivial condition: when Cond dynamically equals Val, the loop is known to
269/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
270/// Cond == Val.
271///
272static bool IsTrivialUnswitchCondition(Loop *L, Value *Cond, Constant **Val = 0,
273                                       BasicBlock **LoopExit = 0) {
274  BasicBlock *Header = L->getHeader();
275  TerminatorInst *HeaderTerm = Header->getTerminator();
276
277  BasicBlock *LoopExitBB = 0;
278  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
279    // If the header block doesn't end with a conditional branch on Cond, we
280    // can't handle it.
281    if (!BI->isConditional() || BI->getCondition() != Cond)
282      return false;
283
284    // Check to see if a successor of the branch is guaranteed to go to the
285    // latch block or exit through a one exit block without having any
286    // side-effects.  If so, determine the value of Cond that causes it to do
287    // this.
288    if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(0)))) {
289      if (Val) *Val = ConstantBool::True;
290    } else if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(1)))) {
291      if (Val) *Val = ConstantBool::False;
292    }
293  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
294    // If this isn't a switch on Cond, we can't handle it.
295    if (SI->getCondition() != Cond) return false;
296
297    // Check to see if a successor of the switch is guaranteed to go to the
298    // latch block or exit through a one exit block without having any
299    // side-effects.  If so, determine the value of Cond that causes it to do
300    // this.  Note that we can't trivially unswitch on the default case.
301    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
302      if ((LoopExitBB = isTrivialLoopExitBlock(L, SI->getSuccessor(i)))) {
303        // Okay, we found a trivial case, remember the value that is trivial.
304        if (Val) *Val = SI->getCaseValue(i);
305        break;
306      }
307  }
308
309  // If we didn't find a single unique LoopExit block, or if the loop exit block
310  // contains phi nodes, this isn't trivial.
311  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
312    return false;   // Can't handle this.
313
314  if (LoopExit) *LoopExit = LoopExitBB;
315
316  // We already know that nothing uses any scalar values defined inside of this
317  // loop.  As such, we just have to check to see if this loop will execute any
318  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
319  // part of the loop that the code *would* execute.  We already checked the
320  // tail, check the header now.
321  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
322    if (I->mayWriteToMemory())
323      return false;
324  return true;
325}
326
327/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
328/// we choose to unswitch the specified loop on the specified value.
329///
330unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) {
331  // If the condition is trivial, always unswitch.  There is no code growth for
332  // this case.
333  if (IsTrivialUnswitchCondition(L, LIC))
334    return 0;
335
336  // FIXME: This is really overly conservative.  However, more liberal
337  // estimations have thus far resulted in excessive unswitching, which is bad
338  // both in compile time and in code size.  This should be replaced once
339  // someone figures out how a good estimation.
340  return L->getBlocks().size();
341
342  unsigned Cost = 0;
343  // FIXME: this is brain dead.  It should take into consideration code
344  // shrinkage.
345  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
346       I != E; ++I) {
347    BasicBlock *BB = *I;
348    // Do not include empty blocks in the cost calculation.  This happen due to
349    // loop canonicalization and will be removed.
350    if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
351      continue;
352
353    // Count basic blocks.
354    ++Cost;
355  }
356
357  return Cost;
358}
359
360/// UnswitchIfProfitable - We have found that we can unswitch L when
361/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
362/// unswitch the loop, reprocess the pieces, then return true.
363bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L){
364  // Check to see if it would be profitable to unswitch this loop.
365  unsigned Cost = getLoopUnswitchCost(L, LoopCond);
366  if (Cost > Threshold) {
367    // FIXME: this should estimate growth by the amount of code shared by the
368    // resultant unswitched loops.
369    //
370    DEBUG(std::cerr << "NOT unswitching loop %"
371                    << L->getHeader()->getName() << ", cost too high: "
372                    << L->getBlocks().size() << "\n");
373    return false;
374  }
375
376  // If this is a trivial condition to unswitch (which results in no code
377  // duplication), do it now.
378  Constant *CondVal;
379  BasicBlock *ExitBlock;
380  if (IsTrivialUnswitchCondition(L, LoopCond, &CondVal, &ExitBlock)) {
381    UnswitchTrivialCondition(L, LoopCond, CondVal, ExitBlock);
382  } else {
383    UnswitchNontrivialCondition(LoopCond, Val, L);
384  }
385
386  return true;
387}
388
389/// SplitBlock - Split the specified block at the specified instruction - every
390/// thing before SplitPt stays in Old and everything starting with SplitPt moves
391/// to a new block.  The two blocks are joined by an unconditional branch and
392/// the loop info is updated.
393///
394BasicBlock *LoopUnswitch::SplitBlock(BasicBlock *Old, Instruction *SplitPt) {
395  BasicBlock::iterator SplitIt = SplitPt;
396  while (isa<PHINode>(SplitIt))
397    ++SplitIt;
398  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
399
400  // The new block lives in whichever loop the old one did.
401  if (Loop *L = LI->getLoopFor(Old))
402    L->addBasicBlockToLoop(New, *LI);
403
404  return New;
405}
406
407
408BasicBlock *LoopUnswitch::SplitEdge(BasicBlock *BB, BasicBlock *Succ) {
409  TerminatorInst *LatchTerm = BB->getTerminator();
410  unsigned SuccNum = 0;
411  for (unsigned i = 0, e = LatchTerm->getNumSuccessors(); ; ++i) {
412    assert(i != e && "Didn't find edge?");
413    if (LatchTerm->getSuccessor(i) == Succ) {
414      SuccNum = i;
415      break;
416    }
417  }
418
419  // If this is a critical edge, let SplitCriticalEdge do it.
420  if (SplitCriticalEdge(BB->getTerminator(), SuccNum, this))
421    return LatchTerm->getSuccessor(SuccNum);
422
423  // If the edge isn't critical, then BB has a single successor or Succ has a
424  // single pred.  Split the block.
425  BasicBlock::iterator SplitPoint;
426  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
427    // If the successor only has a single pred, split the top of the successor
428    // block.
429    assert(SP == BB && "CFG broken");
430    return SplitBlock(Succ, Succ->begin());
431  } else {
432    // Otherwise, if BB has a single successor, split it at the bottom of the
433    // block.
434    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
435           "Should have a single succ!");
436    return SplitBlock(BB, BB->getTerminator());
437  }
438}
439
440
441
442// RemapInstruction - Convert the instruction operands from referencing the
443// current values into those specified by ValueMap.
444//
445static inline void RemapInstruction(Instruction *I,
446                                    std::map<const Value *, Value*> &ValueMap) {
447  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
448    Value *Op = I->getOperand(op);
449    std::map<const Value *, Value*>::iterator It = ValueMap.find(Op);
450    if (It != ValueMap.end()) Op = It->second;
451    I->setOperand(op, Op);
452  }
453}
454
455/// CloneLoop - Recursively clone the specified loop and all of its children,
456/// mapping the blocks with the specified map.
457static Loop *CloneLoop(Loop *L, Loop *PL, std::map<const Value*, Value*> &VM,
458                       LoopInfo *LI) {
459  Loop *New = new Loop();
460
461  if (PL)
462    PL->addChildLoop(New);
463  else
464    LI->addTopLevelLoop(New);
465
466  // Add all of the blocks in L to the new loop.
467  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
468       I != E; ++I)
469    if (LI->getLoopFor(*I) == L)
470      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
471
472  // Add all of the subloops to the new loop.
473  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
474    CloneLoop(*I, New, VM, LI);
475
476  return New;
477}
478
479/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
480/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
481/// code immediately before InsertPt.
482static void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
483                                           BasicBlock *TrueDest,
484                                           BasicBlock *FalseDest,
485                                           Instruction *InsertPt) {
486  // Insert a conditional branch on LIC to the two preheaders.  The original
487  // code is the true version and the new code is the false version.
488  Value *BranchVal = LIC;
489  if (!isa<ConstantBool>(Val)) {
490    BranchVal = BinaryOperator::createSetEQ(LIC, Val, "tmp", InsertPt);
491  } else if (Val != ConstantBool::True) {
492    // We want to enter the new loop when the condition is true.
493    std::swap(TrueDest, FalseDest);
494  }
495
496  // Insert the new branch.
497  new BranchInst(TrueDest, FalseDest, BranchVal, InsertPt);
498}
499
500
501/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
502/// condition in it (a cond branch from its header block to its latch block,
503/// where the path through the loop that doesn't execute its body has no
504/// side-effects), unswitch it.  This doesn't involve any code duplication, just
505/// moving the conditional branch outside of the loop and updating loop info.
506void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
507                                            Constant *Val,
508                                            BasicBlock *ExitBlock) {
509  DEBUG(std::cerr << "loop-unswitch: Trivial-Unswitch loop %"
510        << L->getHeader()->getName() << " [" << L->getBlocks().size()
511        << " blocks] in Function " << L->getHeader()->getParent()->getName()
512        << " on cond: " << *Val << " == " << *Cond << "\n");
513
514  // First step, split the preheader, so that we know that there is a safe place
515  // to insert the conditional branch.  We will change 'OrigPH' to have a
516  // conditional branch on Cond.
517  BasicBlock *OrigPH = L->getLoopPreheader();
518  BasicBlock *NewPH = SplitEdge(OrigPH, L->getHeader());
519
520  // Now that we have a place to insert the conditional branch, create a place
521  // to branch to: this is the exit block out of the loop that we should
522  // short-circuit to.
523
524  // Split this block now, so that the loop maintains its exit block, and so
525  // that the jump from the preheader can execute the contents of the exit block
526  // without actually branching to it (the exit block should be dominated by the
527  // loop header, not the preheader).
528  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
529  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin());
530
531  // Okay, now we have a position to branch from and a position to branch to,
532  // insert the new conditional branch.
533  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
534                                 OrigPH->getTerminator());
535  OrigPH->getTerminator()->eraseFromParent();
536
537  // We need to reprocess this loop, it could be unswitched again.
538  LoopProcessWorklist.push_back(L);
539
540  // Now that we know that the loop is never entered when this condition is a
541  // particular value, rewrite the loop with this info.  We know that this will
542  // at least eliminate the old branch.
543  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
544  ++NumTrivial;
545}
546
547
548/// VersionLoop - We determined that the loop is profitable to unswitch when LIC
549/// equal Val.  Split it into loop versions and test the condition outside of
550/// either loop.  Return the loops created as Out1/Out2.
551void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
552                                               Loop *L) {
553  Function *F = L->getHeader()->getParent();
554  DEBUG(std::cerr << "loop-unswitch: Unswitching loop %"
555                  << L->getHeader()->getName() << " [" << L->getBlocks().size()
556                  << " blocks] in Function " << F->getName()
557                  << " when '" << *Val << "' == " << *LIC << "\n");
558
559  // LoopBlocks contains all of the basic blocks of the loop, including the
560  // preheader of the loop, the body of the loop, and the exit blocks of the
561  // loop, in that order.
562  std::vector<BasicBlock*> LoopBlocks;
563
564  // First step, split the preheader and exit blocks, and add these blocks to
565  // the LoopBlocks list.
566  BasicBlock *OrigPreheader = L->getLoopPreheader();
567  LoopBlocks.push_back(SplitEdge(OrigPreheader, L->getHeader()));
568
569  // We want the loop to come after the preheader, but before the exit blocks.
570  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
571
572  std::vector<BasicBlock*> ExitBlocks;
573  L->getExitBlocks(ExitBlocks);
574  std::sort(ExitBlocks.begin(), ExitBlocks.end());
575  ExitBlocks.erase(std::unique(ExitBlocks.begin(), ExitBlocks.end()),
576                   ExitBlocks.end());
577
578  // Split all of the edges from inside the loop to their exit blocks.  Update
579  // the appropriate Phi nodes as we do so.
580  unsigned NumBlocks = L->getBlocks().size();
581
582  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
583    BasicBlock *ExitBlock = ExitBlocks[i];
584    std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
585
586    for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
587      assert(L->contains(Preds[j]) &&
588             "All preds of loop exit blocks must be the same loop!");
589      BasicBlock* MiddleBlock = SplitEdge(Preds[j], ExitBlock);
590      BasicBlock* StartBlock = Preds[j];
591      BasicBlock* EndBlock;
592      if (MiddleBlock->getSinglePredecessor() == ExitBlock) {
593        EndBlock = MiddleBlock;
594        MiddleBlock = EndBlock->getSinglePredecessor();;
595      } else {
596        EndBlock = ExitBlock;
597      }
598
599      std::set<PHINode*> InsertedPHIs;
600      PHINode* OldLCSSA = 0;
601      for (BasicBlock::iterator I = EndBlock->begin();
602           (OldLCSSA = dyn_cast<PHINode>(I)); ++I) {
603        Value* OldValue = OldLCSSA->getIncomingValueForBlock(MiddleBlock);
604        PHINode* NewLCSSA = new PHINode(OldLCSSA->getType(),
605                                        OldLCSSA->getName() + ".us-lcssa",
606                                        MiddleBlock->getTerminator());
607        NewLCSSA->addIncoming(OldValue, StartBlock);
608        OldLCSSA->setIncomingValue(OldLCSSA->getBasicBlockIndex(MiddleBlock),
609                                   NewLCSSA);
610        InsertedPHIs.insert(NewLCSSA);
611      }
612
613      BasicBlock::iterator InsertPt = EndBlock->begin();
614      while (dyn_cast<PHINode>(InsertPt)) ++InsertPt;
615      for (BasicBlock::iterator I = MiddleBlock->begin();
616         (OldLCSSA = dyn_cast<PHINode>(I)) && InsertedPHIs.count(OldLCSSA) == 0;
617         ++I) {
618        PHINode *NewLCSSA = new PHINode(OldLCSSA->getType(),
619                                        OldLCSSA->getName() + ".us-lcssa",
620                                        InsertPt);
621        OldLCSSA->replaceAllUsesWith(NewLCSSA);
622        NewLCSSA->addIncoming(OldLCSSA, MiddleBlock);
623      }
624    }
625  }
626
627  // The exit blocks may have been changed due to edge splitting, recompute.
628  ExitBlocks.clear();
629  L->getExitBlocks(ExitBlocks);
630  std::sort(ExitBlocks.begin(), ExitBlocks.end());
631  ExitBlocks.erase(std::unique(ExitBlocks.begin(), ExitBlocks.end()),
632                   ExitBlocks.end());
633
634  // Add exit blocks to the loop blocks.
635  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
636
637  // Next step, clone all of the basic blocks that make up the loop (including
638  // the loop preheader and exit blocks), keeping track of the mapping between
639  // the instructions and blocks.
640  std::vector<BasicBlock*> NewBlocks;
641  NewBlocks.reserve(LoopBlocks.size());
642  std::map<const Value*, Value*> ValueMap;
643  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
644    BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
645    NewBlocks.push_back(New);
646    ValueMap[LoopBlocks[i]] = New;  // Keep the BB mapping.
647  }
648
649  // Splice the newly inserted blocks into the function right before the
650  // original preheader.
651  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
652                                NewBlocks[0], F->end());
653
654  // Now we create the new Loop object for the versioned loop.
655  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI);
656  Loop *ParentLoop = L->getParentLoop();
657  if (ParentLoop) {
658    // Make sure to add the cloned preheader and exit blocks to the parent loop
659    // as well.
660    ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
661  }
662
663  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
664    BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
665    // The new exit block should be in the same loop as the old one.
666    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
667      ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
668
669    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
670           "Exit block should have been split to have one successor!");
671    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
672
673    // If the successor of the exit block had PHI nodes, add an entry for
674    // NewExit.
675    PHINode *PN;
676    for (BasicBlock::iterator I = ExitSucc->begin();
677         (PN = dyn_cast<PHINode>(I)); ++I) {
678      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
679      std::map<const Value *, Value*>::iterator It = ValueMap.find(V);
680      if (It != ValueMap.end()) V = It->second;
681      PN->addIncoming(V, NewExit);
682    }
683  }
684
685  // Rewrite the code to refer to itself.
686  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
687    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
688           E = NewBlocks[i]->end(); I != E; ++I)
689      RemapInstruction(I, ValueMap);
690
691  // Rewrite the original preheader to select between versions of the loop.
692  BranchInst *OldBR = cast<BranchInst>(OrigPreheader->getTerminator());
693  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
694         "Preheader splitting did not work correctly!");
695
696  // Emit the new branch that selects between the two versions of this loop.
697  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
698  OldBR->eraseFromParent();
699
700  LoopProcessWorklist.push_back(L);
701  LoopProcessWorklist.push_back(NewLoop);
702
703  // Now we rewrite the original code to know that the condition is true and the
704  // new code to know that the condition is false.
705  RewriteLoopBodyWithConditionConstant(L      , LIC, Val, false);
706
707  // It's possible that simplifying one loop could cause the other to be
708  // deleted.  If so, don't simplify it.
709  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop)
710    RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
711}
712
713/// RemoveFromWorklist - Remove all instances of I from the worklist vector
714/// specified.
715static void RemoveFromWorklist(Instruction *I,
716                               std::vector<Instruction*> &Worklist) {
717  std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
718                                                     Worklist.end(), I);
719  while (WI != Worklist.end()) {
720    unsigned Offset = WI-Worklist.begin();
721    Worklist.erase(WI);
722    WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
723  }
724}
725
726/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
727/// program, replacing all uses with V and update the worklist.
728static void ReplaceUsesOfWith(Instruction *I, Value *V,
729                              std::vector<Instruction*> &Worklist) {
730  DEBUG(std::cerr << "Replace with '" << *V << "': " << *I);
731
732  // Add uses to the worklist, which may be dead now.
733  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
734    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
735      Worklist.push_back(Use);
736
737  // Add users to the worklist which may be simplified now.
738  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
739       UI != E; ++UI)
740    Worklist.push_back(cast<Instruction>(*UI));
741  I->replaceAllUsesWith(V);
742  I->eraseFromParent();
743  RemoveFromWorklist(I, Worklist);
744  ++NumSimplify;
745}
746
747/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
748/// information, and remove any dead successors it has.
749///
750void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
751                                     std::vector<Instruction*> &Worklist) {
752  if (pred_begin(BB) != pred_end(BB)) {
753    // This block isn't dead, since an edge to BB was just removed, see if there
754    // are any easy simplifications we can do now.
755    if (BasicBlock *Pred = BB->getSinglePredecessor()) {
756      // If it has one pred, fold phi nodes in BB.
757      while (isa<PHINode>(BB->begin()))
758        ReplaceUsesOfWith(BB->begin(),
759                          cast<PHINode>(BB->begin())->getIncomingValue(0),
760                          Worklist);
761
762      // If this is the header of a loop and the only pred is the latch, we now
763      // have an unreachable loop.
764      if (Loop *L = LI->getLoopFor(BB))
765        if (L->getHeader() == BB && L->contains(Pred)) {
766          // Remove the branch from the latch to the header block, this makes
767          // the header dead, which will make the latch dead (because the header
768          // dominates the latch).
769          Pred->getTerminator()->eraseFromParent();
770          new UnreachableInst(Pred);
771
772          // The loop is now broken, remove it from LI.
773          RemoveLoopFromHierarchy(L);
774
775          // Reprocess the header, which now IS dead.
776          RemoveBlockIfDead(BB, Worklist);
777          return;
778        }
779
780      // If pred ends in a uncond branch, add uncond branch to worklist so that
781      // the two blocks will get merged.
782      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
783        if (BI->isUnconditional())
784          Worklist.push_back(BI);
785    }
786    return;
787  }
788
789  DEBUG(std::cerr << "Nuking dead block: " << *BB);
790
791  // Remove the instructions in the basic block from the worklist.
792  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
793    RemoveFromWorklist(I, Worklist);
794
795    // Anything that uses the instructions in this basic block should have their
796    // uses replaced with undefs.
797    if (!I->use_empty())
798      I->replaceAllUsesWith(UndefValue::get(I->getType()));
799  }
800
801  // If this is the edge to the header block for a loop, remove the loop and
802  // promote all subloops.
803  if (Loop *BBLoop = LI->getLoopFor(BB)) {
804    if (BBLoop->getLoopLatch() == BB)
805      RemoveLoopFromHierarchy(BBLoop);
806  }
807
808  // Remove the block from the loop info, which removes it from any loops it
809  // was in.
810  LI->removeBlock(BB);
811
812
813  // Remove phi node entries in successors for this block.
814  TerminatorInst *TI = BB->getTerminator();
815  std::vector<BasicBlock*> Succs;
816  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
817    Succs.push_back(TI->getSuccessor(i));
818    TI->getSuccessor(i)->removePredecessor(BB);
819  }
820
821  // Unique the successors, remove anything with multiple uses.
822  std::sort(Succs.begin(), Succs.end());
823  Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
824
825  // Remove the basic block, including all of the instructions contained in it.
826  BB->eraseFromParent();
827
828  // Remove successor blocks here that are not dead, so that we know we only
829  // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
830  // then getting removed before we revisit them, which is badness.
831  //
832  for (unsigned i = 0; i != Succs.size(); ++i)
833    if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
834      // One exception is loop headers.  If this block was the preheader for a
835      // loop, then we DO want to visit the loop so the loop gets deleted.
836      // We know that if the successor is a loop header, that this loop had to
837      // be the preheader: the case where this was the latch block was handled
838      // above and headers can only have two predecessors.
839      if (!LI->isLoopHeader(Succs[i])) {
840        Succs.erase(Succs.begin()+i);
841        --i;
842      }
843    }
844
845  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
846    RemoveBlockIfDead(Succs[i], Worklist);
847}
848
849/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
850/// become unwrapped, either because the backedge was deleted, or because the
851/// edge into the header was removed.  If the edge into the header from the
852/// latch block was removed, the loop is unwrapped but subloops are still alive,
853/// so they just reparent loops.  If the loops are actually dead, they will be
854/// removed later.
855void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
856  if (Loop *ParentLoop = L->getParentLoop()) { // Not a top-level loop.
857    // Reparent all of the blocks in this loop.  Since BBLoop had a parent,
858    // they are now all in it.
859    for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
860         I != E; ++I)
861      if (LI->getLoopFor(*I) == L)    // Don't change blocks in subloops.
862        LI->changeLoopFor(*I, ParentLoop);
863
864    // Remove the loop from its parent loop.
865    for (Loop::iterator I = ParentLoop->begin(), E = ParentLoop->end();;
866         ++I) {
867      assert(I != E && "Couldn't find loop");
868      if (*I == L) {
869        ParentLoop->removeChildLoop(I);
870        break;
871      }
872    }
873
874    // Move all subloops into the parent loop.
875    while (L->begin() != L->end())
876      ParentLoop->addChildLoop(L->removeChildLoop(L->end()-1));
877  } else {
878    // Reparent all of the blocks in this loop.  Since BBLoop had no parent,
879    // they no longer in a loop at all.
880
881    for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
882      // Don't change blocks in subloops.
883      if (LI->getLoopFor(L->getBlocks()[i]) == L) {
884        LI->removeBlock(L->getBlocks()[i]);
885        --i;
886      }
887    }
888
889    // Remove the loop from the top-level LoopInfo object.
890    for (LoopInfo::iterator I = LI->begin(), E = LI->end();; ++I) {
891      assert(I != E && "Couldn't find loop");
892      if (*I == L) {
893        LI->removeLoop(I);
894        break;
895      }
896    }
897
898    // Move all of the subloops to the top-level.
899    while (L->begin() != L->end())
900      LI->addTopLevelLoop(L->removeChildLoop(L->end()-1));
901  }
902
903  delete L;
904  RemoveLoopFromWorklist(L);
905}
906
907
908
909// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
910// the value specified by Val in the specified loop, or we know it does NOT have
911// that value.  Rewrite any uses of LIC or of properties correlated to it.
912void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
913                                                        Constant *Val,
914                                                        bool IsEqual) {
915  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
916
917  // FIXME: Support correlated properties, like:
918  //  for (...)
919  //    if (li1 < li2)
920  //      ...
921  //    if (li1 > li2)
922  //      ...
923
924  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
925  // selects, switches.
926  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
927  std::vector<Instruction*> Worklist;
928
929  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
930  // in the loop with the appropriate one directly.
931  if (IsEqual || isa<ConstantBool>(Val)) {
932    Value *Replacement;
933    if (IsEqual)
934      Replacement = Val;
935    else
936      Replacement = ConstantBool::get(!cast<ConstantBool>(Val)->getValue());
937
938    for (unsigned i = 0, e = Users.size(); i != e; ++i)
939      if (Instruction *U = cast<Instruction>(Users[i])) {
940        if (!L->contains(U->getParent()))
941          continue;
942        U->replaceUsesOfWith(LIC, Replacement);
943        Worklist.push_back(U);
944      }
945  } else {
946    // Otherwise, we don't know the precise value of LIC, but we do know that it
947    // is certainly NOT "Val".  As such, simplify any uses in the loop that we
948    // can.  This case occurs when we unswitch switch statements.
949    for (unsigned i = 0, e = Users.size(); i != e; ++i)
950      if (Instruction *U = cast<Instruction>(Users[i])) {
951        if (!L->contains(U->getParent()))
952          continue;
953
954        Worklist.push_back(U);
955
956        // If we know that LIC is not Val, use this info to simplify code.
957        if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
958          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
959            if (SI->getCaseValue(i) == Val) {
960              // Found a dead case value.  Don't remove PHI nodes in the
961              // successor if they become single-entry, those PHI nodes may
962              // be in the Users list.
963
964              // FIXME: This is a hack.  We need to keep the successor around
965              // and hooked up so as to preserve the loop structure, because
966              // trying to update it is complicated.  So instead we preserve the
967              // loop structure and put the block on an dead code path.
968
969              BasicBlock* Old = SI->getParent();
970              BasicBlock* Split = SplitBlock(Old, SI);
971
972              Instruction* OldTerm = Old->getTerminator();
973              BranchInst* Branch = new BranchInst(Split,
974                                        SI->getSuccessor(i),
975                                        ConstantBool::True,
976                                        OldTerm);
977
978              Old->getTerminator()->eraseFromParent();
979
980
981              PHINode *PN;
982              for (BasicBlock::iterator II = SI->getSuccessor(i)->begin();
983                   (PN = dyn_cast<PHINode>(II)); ++II) {
984                Value *InVal = PN->removeIncomingValue(Split, false);
985                PN->addIncoming(InVal, Old);
986              }
987
988              SI->removeCase(i);
989              break;
990            }
991          }
992        }
993
994        // TODO: We could do other simplifications, for example, turning
995        // LIC == Val -> false.
996      }
997  }
998
999  SimplifyCode(Worklist);
1000}
1001
1002/// SimplifyCode - Okay, now that we have simplified some instructions in the
1003/// loop, walk over it and constant prop, dce, and fold control flow where
1004/// possible.  Note that this is effectively a very simple loop-structure-aware
1005/// optimizer.  During processing of this loop, L could very well be deleted, so
1006/// it must not be used.
1007///
1008/// FIXME: When the loop optimizer is more mature, separate this out to a new
1009/// pass.
1010///
1011void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist) {
1012  while (!Worklist.empty()) {
1013    Instruction *I = Worklist.back();
1014    Worklist.pop_back();
1015
1016    // Simple constant folding.
1017    if (Constant *C = ConstantFoldInstruction(I)) {
1018      ReplaceUsesOfWith(I, C, Worklist);
1019      continue;
1020    }
1021
1022    // Simple DCE.
1023    if (isInstructionTriviallyDead(I)) {
1024      DEBUG(std::cerr << "Remove dead instruction '" << *I);
1025
1026      // Add uses to the worklist, which may be dead now.
1027      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1028        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1029          Worklist.push_back(Use);
1030      I->eraseFromParent();
1031      RemoveFromWorklist(I, Worklist);
1032      ++NumSimplify;
1033      continue;
1034    }
1035
1036    // Special case hacks that appear commonly in unswitched code.
1037    switch (I->getOpcode()) {
1038    case Instruction::Select:
1039      if (ConstantBool *CB = dyn_cast<ConstantBool>(I->getOperand(0))) {
1040        ReplaceUsesOfWith(I, I->getOperand(!CB->getValue()+1), Worklist);
1041        continue;
1042      }
1043      break;
1044    case Instruction::And:
1045      if (isa<ConstantBool>(I->getOperand(0)))   // constant -> RHS
1046        cast<BinaryOperator>(I)->swapOperands();
1047      if (ConstantBool *CB = dyn_cast<ConstantBool>(I->getOperand(1))) {
1048        if (CB->getValue())   // X & 1 -> X
1049          ReplaceUsesOfWith(I, I->getOperand(0), Worklist);
1050        else                  // X & 0 -> 0
1051          ReplaceUsesOfWith(I, I->getOperand(1), Worklist);
1052        continue;
1053      }
1054      break;
1055    case Instruction::Or:
1056      if (isa<ConstantBool>(I->getOperand(0)))   // constant -> RHS
1057        cast<BinaryOperator>(I)->swapOperands();
1058      if (ConstantBool *CB = dyn_cast<ConstantBool>(I->getOperand(1))) {
1059        if (CB->getValue())   // X | 1 -> 1
1060          ReplaceUsesOfWith(I, I->getOperand(1), Worklist);
1061        else                  // X | 0 -> X
1062          ReplaceUsesOfWith(I, I->getOperand(0), Worklist);
1063        continue;
1064      }
1065      break;
1066    case Instruction::Br: {
1067      BranchInst *BI = cast<BranchInst>(I);
1068      if (BI->isUnconditional()) {
1069        // If BI's parent is the only pred of the successor, fold the two blocks
1070        // together.
1071        BasicBlock *Pred = BI->getParent();
1072        BasicBlock *Succ = BI->getSuccessor(0);
1073        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1074        if (!SinglePred) continue;  // Nothing to do.
1075        assert(SinglePred == Pred && "CFG broken");
1076
1077        DEBUG(std::cerr << "Merging blocks: " << Pred->getName() << " <- "
1078                        << Succ->getName() << "\n");
1079
1080        // Resolve any single entry PHI nodes in Succ.
1081        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1082          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist);
1083
1084        // Move all of the successor contents from Succ to Pred.
1085        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1086                                   Succ->end());
1087        BI->eraseFromParent();
1088        RemoveFromWorklist(BI, Worklist);
1089
1090        // If Succ has any successors with PHI nodes, update them to have
1091        // entries coming from Pred instead of Succ.
1092        Succ->replaceAllUsesWith(Pred);
1093
1094        // Remove Succ from the loop tree.
1095        LI->removeBlock(Succ);
1096        Succ->eraseFromParent();
1097        ++NumSimplify;
1098      } else if (ConstantBool *CB = dyn_cast<ConstantBool>(BI->getCondition())){
1099        // Conditional branch.  Turn it into an unconditional branch, then
1100        // remove dead blocks.
1101        break;  // FIXME: Enable.
1102
1103        DEBUG(std::cerr << "Folded branch: " << *BI);
1104        BasicBlock *DeadSucc = BI->getSuccessor(CB->getValue());
1105        BasicBlock *LiveSucc = BI->getSuccessor(!CB->getValue());
1106        DeadSucc->removePredecessor(BI->getParent(), true);
1107        Worklist.push_back(new BranchInst(LiveSucc, BI));
1108        BI->eraseFromParent();
1109        RemoveFromWorklist(BI, Worklist);
1110        ++NumSimplify;
1111
1112        RemoveBlockIfDead(DeadSucc, Worklist);
1113      }
1114      break;
1115    }
1116    }
1117  }
1118}
1119