LoopUnswitch.cpp revision 81be2e961be525834d2ac1ee37c880286a508151
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/Function.h"
33#include "llvm/Instructions.h"
34#include "llvm/Analysis/LoopInfo.h"
35#include "llvm/Transforms/Utils/Cloning.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Transforms/Utils/BasicBlockUtils.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/CommandLine.h"
41#include <algorithm>
42#include <iostream>
43#include <set>
44using namespace llvm;
45
46namespace {
47  Statistic<> NumUnswitched("loop-unswitch", "Number of loops unswitched");
48  cl::opt<unsigned>
49  Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
50            cl::init(10), cl::Hidden);
51
52  class LoopUnswitch : public FunctionPass {
53    LoopInfo *LI;  // Loop information
54  public:
55    virtual bool runOnFunction(Function &F);
56    bool visitLoop(Loop *L);
57
58    /// This transformation requires natural loop information & requires that
59    /// loop preheaders be inserted into the CFG...
60    ///
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
62      AU.addRequiredID(LoopSimplifyID);
63      AU.addPreservedID(LoopSimplifyID);
64      AU.addRequired<LoopInfo>();
65      AU.addPreserved<LoopInfo>();
66    }
67
68  private:
69    unsigned getLoopUnswitchCost(Loop *L, Value *LIC);
70    void VersionLoop(Value *LIC, Loop *L, Loop *&Out1, Loop *&Out2);
71    BasicBlock *SplitBlock(BasicBlock *BB, bool SplitAtTop);
72    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, bool Val);
73    void UnswitchTrivialCondition(Loop *L, Value *Cond, bool EntersLoopOnCond,
74                                  BasicBlock *ExitBlock);
75  };
76  RegisterOpt<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
77}
78
79FunctionPass *llvm::createLoopUnswitchPass() { return new LoopUnswitch(); }
80
81bool LoopUnswitch::runOnFunction(Function &F) {
82  bool Changed = false;
83  LI = &getAnalysis<LoopInfo>();
84
85  // Transform all the top-level loops.  Copy the loop list so that the child
86  // can update the loop tree if it needs to delete the loop.
87  std::vector<Loop*> SubLoops(LI->begin(), LI->end());
88  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
89    Changed |= visitLoop(SubLoops[i]);
90
91  return Changed;
92}
93
94
95/// LoopValuesUsedOutsideLoop - Return true if there are any values defined in
96/// the loop that are used by instructions outside of it.
97static bool LoopValuesUsedOutsideLoop(Loop *L) {
98  // We will be doing lots of "loop contains block" queries.  Loop::contains is
99  // linear time, use a set to speed this up.
100  std::set<BasicBlock*> LoopBlocks;
101
102  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
103       BB != E; ++BB)
104    LoopBlocks.insert(*BB);
105
106  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
107       BB != E; ++BB) {
108    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
109      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
110           ++UI) {
111        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
112        if (!LoopBlocks.count(UserBB))
113          return true;
114      }
115  }
116  return false;
117}
118
119/// FindTrivialLoopExitBlock - We know that we have a branch from the loop
120/// header to the specified latch block.   See if one of the successors of the
121/// latch block is an exit, and if so what block it is.
122static BasicBlock *FindTrivialLoopExitBlock(Loop *L, BasicBlock *Latch) {
123  BasicBlock *Header = L->getHeader();
124  BranchInst *LatchBranch = dyn_cast<BranchInst>(Latch->getTerminator());
125  if (!LatchBranch || !LatchBranch->isConditional()) return 0;
126
127  // Simple case, the latch block is a conditional branch.  The target that
128  // doesn't go to the loop header is our block if it is not in the loop.
129  if (LatchBranch->getSuccessor(0) == Header) {
130    if (L->contains(LatchBranch->getSuccessor(1))) return false;
131    return LatchBranch->getSuccessor(1);
132  } else {
133    assert(LatchBranch->getSuccessor(1) == Header);
134    if (L->contains(LatchBranch->getSuccessor(0))) return false;
135    return LatchBranch->getSuccessor(0);
136  }
137}
138
139
140/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
141/// trivial: that is, that the condition controls whether or not the loop does
142/// anything at all.  If this is a trivial condition, unswitching produces no
143/// code duplications (equivalently, it produces a simpler loop and a new empty
144/// loop, which gets deleted).
145///
146/// If this is a trivial condition, return ConstantBool::True if the loop body
147/// runs when the condition is true, False if the loop body executes when the
148/// condition is false.  Otherwise, return null to indicate a complex condition.
149static bool IsTrivialUnswitchCondition(Loop *L, Value *Cond,
150                                       bool *CondEntersLoop = 0,
151                                       BasicBlock **LoopExit = 0) {
152  BasicBlock *Header = L->getHeader();
153  BranchInst *HeaderTerm = dyn_cast<BranchInst>(Header->getTerminator());
154
155  // If the header block doesn't end with a conditional branch on Cond, we can't
156  // handle it.
157  if (!HeaderTerm || !HeaderTerm->isConditional() ||
158      HeaderTerm->getCondition() != Cond)
159    return false;
160
161  // Check to see if the conditional branch goes to the latch block.  If not,
162  // it's not trivial.  This also determines the value of Cond that will execute
163  // the loop.
164  BasicBlock *Latch = L->getLoopLatch();
165  if (HeaderTerm->getSuccessor(1) == Latch) {
166    if (CondEntersLoop) *CondEntersLoop = true;
167  } else if (HeaderTerm->getSuccessor(0) == Latch)
168    if (CondEntersLoop) *CondEntersLoop = false;
169  else
170    return false;  // Doesn't branch to latch block.
171
172  // The latch block must end with a conditional branch where one edge goes to
173  // the header (this much we know) and one edge goes OUT of the loop.
174  BasicBlock *LoopExitBlock = FindTrivialLoopExitBlock(L, Latch);
175  if (!LoopExitBlock) return 0;
176  if (LoopExit) *LoopExit = LoopExitBlock;
177
178  // We already know that nothing uses any scalar values defined inside of this
179  // loop.  As such, we just have to check to see if this loop will execute any
180  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
181  // part of the loop that the code *would* execute.
182  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
183    if (I->mayWriteToMemory())
184      return false;
185  for (BasicBlock::iterator I = Latch->begin(), E = Latch->end(); I != E; ++I)
186    if (I->mayWriteToMemory())
187      return false;
188  return true;
189}
190
191/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
192/// we choose to unswitch the specified loop on the specified value.
193///
194unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) {
195  // If the condition is trivial, always unswitch.  There is no code growth for
196  // this case.
197  if (IsTrivialUnswitchCondition(L, LIC))
198    return 0;
199
200  unsigned Cost = 0;
201  // FIXME: this is brain dead.  It should take into consideration code
202  // shrinkage.
203  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
204       I != E; ++I) {
205    BasicBlock *BB = *I;
206    // Do not include empty blocks in the cost calculation.  This happen due to
207    // loop canonicalization and will be removed.
208    if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
209      continue;
210
211    // Count basic blocks.
212    ++Cost;
213  }
214
215  return Cost;
216}
217
218/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
219/// invariant in the loop, or has an invariant piece, return the invariant.
220/// Otherwise, return null.
221static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
222  // Constants should be folded, not unswitched on!
223  if (isa<Constant>(Cond)) return false;
224
225  // TODO: Handle: br (VARIANT|INVARIANT).
226  // TODO: Hoist simple expressions out of loops.
227  if (L->isLoopInvariant(Cond)) return Cond;
228
229  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
230    if (BO->getOpcode() == Instruction::And ||
231        BO->getOpcode() == Instruction::Or) {
232      // If either the left or right side is invariant, we can unswitch on this,
233      // which will cause the branch to go away in one loop and the condition to
234      // simplify in the other one.
235      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
236        return LHS;
237      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
238        return RHS;
239    }
240
241  return 0;
242}
243
244bool LoopUnswitch::visitLoop(Loop *L) {
245  bool Changed = false;
246
247  // Recurse through all subloops before we process this loop.  Copy the loop
248  // list so that the child can update the loop tree if it needs to delete the
249  // loop.
250  std::vector<Loop*> SubLoops(L->begin(), L->end());
251  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
252    Changed |= visitLoop(SubLoops[i]);
253
254  // Loop over all of the basic blocks in the loop.  If we find an interior
255  // block that is branching on a loop-invariant condition, we can unswitch this
256  // loop.
257  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
258       I != E; ++I) {
259    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
260         BBI != E; ++BBI)
261    TerminatorInst *TI = (*I)->getTerminator();
262    // FIXME: Handle invariant select instructions.
263
264    if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
265      if (!isa<Constant>(SI) && L->isLoopInvariant(SI->getCondition()))
266        DEBUG(std::cerr << "TODO: Implement unswitching 'switch' loop %"
267              << L->getHeader()->getName() << ", cost = "
268              << L->getBlocks().size() << "\n" << **I);
269      continue;
270    }
271
272    BranchInst *BI = dyn_cast<BranchInst>(TI);
273    if (!BI) continue;
274
275    // If this isn't branching on an invariant condition, we can't unswitch it.
276    if (!BI->isConditional())
277      continue;
278
279    // See if this, or some part of it, is loop invariant.  If so, we can
280    // unswitch on it if we desire.
281    Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), L, Changed);
282    if (LoopCond == 0) continue;
283
284    // Check to see if it would be profitable to unswitch this loop.
285    if (getLoopUnswitchCost(L, LoopCond) > Threshold) {
286      // FIXME: this should estimate growth by the amount of code shared by the
287      // resultant unswitched loops.  This should have no code growth:
288      //    for () { if (iv) {...} }
289      // as one copy of the loop will be empty.
290      //
291      DEBUG(std::cerr << "NOT unswitching loop %"
292            << L->getHeader()->getName() << ", cost too high: "
293            << L->getBlocks().size() << "\n");
294      continue;
295    }
296
297    // If this loop has live-out values, we can't unswitch it. We need something
298    // like loop-closed SSA form in order to know how to insert PHI nodes for
299    // these values.
300    if (LoopValuesUsedOutsideLoop(L)) {
301      DEBUG(std::cerr << "NOT unswitching loop %"
302                      << L->getHeader()->getName()
303                      << ", a loop value is used outside loop!\n");
304      continue;
305    }
306
307    //std::cerr << "BEFORE:\n"; LI->dump();
308    Loop *NewLoop1 = 0, *NewLoop2 = 0;
309
310    // If this is a trivial condition to unswitch (which results in no code
311    // duplication), do it now.
312    bool EntersLoopOnCond;
313    BasicBlock *ExitBlock;
314    if (IsTrivialUnswitchCondition(L, LoopCond, &EntersLoopOnCond, &ExitBlock)){
315      UnswitchTrivialCondition(L, LoopCond, EntersLoopOnCond, ExitBlock);
316      NewLoop1 = L;
317    } else {
318      VersionLoop(LoopCond, L, NewLoop1, NewLoop2);
319    }
320
321    //std::cerr << "AFTER:\n"; LI->dump();
322
323    // Try to unswitch each of our new loops now!
324    if (NewLoop1) visitLoop(NewLoop1);
325    if (NewLoop2) visitLoop(NewLoop2);
326    return true;
327  }
328
329  return Changed;
330}
331
332/// SplitBlock - Split the specified basic block into two pieces.  If SplitAtTop
333/// is false, this splits the block so the second half only has an unconditional
334/// branch.  If SplitAtTop is true, it makes it so the first half of the block
335/// only has an unconditional branch in it.
336///
337/// This method updates the LoopInfo for this function to correctly reflect the
338/// CFG changes made.
339///
340/// This routine returns the new basic block that was inserted, which is always
341/// the later part of the block.
342BasicBlock *LoopUnswitch::SplitBlock(BasicBlock *BB, bool SplitAtTop) {
343  BasicBlock::iterator SplitPoint;
344  if (!SplitAtTop)
345    SplitPoint = BB->getTerminator();
346  else {
347    SplitPoint = BB->begin();
348    while (isa<PHINode>(SplitPoint)) ++SplitPoint;
349  }
350
351  BasicBlock *New = BB->splitBasicBlock(SplitPoint, BB->getName()+".tail");
352  // New now lives in whichever loop that BB used to.
353  if (Loop *L = LI->getLoopFor(BB))
354    L->addBasicBlockToLoop(New, *LI);
355  return New;
356}
357
358
359// RemapInstruction - Convert the instruction operands from referencing the
360// current values into those specified by ValueMap.
361//
362static inline void RemapInstruction(Instruction *I,
363                                    std::map<const Value *, Value*> &ValueMap) {
364  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
365    Value *Op = I->getOperand(op);
366    std::map<const Value *, Value*>::iterator It = ValueMap.find(Op);
367    if (It != ValueMap.end()) Op = It->second;
368    I->setOperand(op, Op);
369  }
370}
371
372/// CloneLoop - Recursively clone the specified loop and all of its children,
373/// mapping the blocks with the specified map.
374static Loop *CloneLoop(Loop *L, Loop *PL, std::map<const Value*, Value*> &VM,
375                       LoopInfo *LI) {
376  Loop *New = new Loop();
377
378  if (PL)
379    PL->addChildLoop(New);
380  else
381    LI->addTopLevelLoop(New);
382
383  // Add all of the blocks in L to the new loop.
384  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
385       I != E; ++I)
386    if (LI->getLoopFor(*I) == L)
387      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
388
389  // Add all of the subloops to the new loop.
390  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
391    CloneLoop(*I, New, VM, LI);
392
393  return New;
394}
395
396/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
397/// condition in it (a cond branch from its header block to its latch block,
398/// where the path through the loop that doesn't execute its body has no
399/// side-effects), unswitch it.  This doesn't involve any code duplication, just
400/// moving the conditional branch outside of the loop and updating loop info.
401void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
402                                            bool EnterOnCond,
403                                            BasicBlock *ExitBlock) {
404  DEBUG(std::cerr << "loop-unswitch: Trivial-Unswitch loop %"
405        << L->getHeader()->getName() << " [" << L->getBlocks().size()
406        << " blocks] in Function " << L->getHeader()->getParent()->getName()
407        << " on cond:" << *Cond << "\n");
408
409  // First step, split the preahder, so that we know that there is a safe place
410  // to insert the conditional branch.  We will change 'OrigPH' to have a
411  // conditional branch on Cond.
412  BasicBlock *OrigPH = L->getLoopPreheader();
413  BasicBlock *NewPH = SplitBlock(OrigPH, false);
414
415  // Now that we have a place to insert the conditional branch, create a place
416  // to branch to: this is the exit block out of the loop that we should
417  // short-circuit to.
418
419  // Split this block now, so that the loop maintains its exit block.
420  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
421  BasicBlock *NewExit;
422  if (BasicBlock *SinglePred = ExitBlock->getSinglePredecessor()) {
423    assert(SinglePred == L->getLoopLatch() && "Unexpected case");
424    NewExit = SplitBlock(ExitBlock, true);
425  } else {
426    // Otherwise, this is a critical edge.  Split block would split the wrong
427    // edge here, so we use SplitCriticalEdge, which allows us to specify the
428    // edge to split, not just the block.
429    TerminatorInst *LatchTerm = L->getLoopLatch()->getTerminator();
430    unsigned SuccNum = 0;
431    for (unsigned i = 0, e = LatchTerm->getNumSuccessors(); ; ++i) {
432      assert(i != e && "Didn't find edge?");
433      if (LatchTerm->getSuccessor(i) == ExitBlock) {
434        SuccNum = i;
435        break;
436      }
437    }
438    SplitCriticalEdge(LatchTerm, SuccNum, this);
439    NewExit = LatchTerm->getSuccessor(SuccNum);
440    assert(NewExit != ExitBlock && "Edge not split!");
441  }
442
443  // Okay, now we have a position to branch from and a position to branch to,
444  // insert the new conditional branch.
445  new BranchInst(EnterOnCond ? NewPH : NewExit, EnterOnCond ? NewExit : NewPH,
446                 Cond, OrigPH->getTerminator());
447  OrigPH->getTerminator()->eraseFromParent();
448
449  // Now that we know that the loop is never entered when this condition is a
450  // particular value, rewrite the loop with this info.  We know that this will
451  // at least eliminate the old branch.
452  RewriteLoopBodyWithConditionConstant(L, Cond, EnterOnCond);
453
454  ++NumUnswitched;
455}
456
457
458/// VersionLoop - We determined that the loop is profitable to unswitch and
459/// contains a branch on a loop invariant condition.  Split it into loop
460/// versions and test the condition outside of either loop.  Return the loops
461/// created as Out1/Out2.
462void LoopUnswitch::VersionLoop(Value *LIC, Loop *L, Loop *&Out1, Loop *&Out2) {
463  Function *F = L->getHeader()->getParent();
464
465  DEBUG(std::cerr << "loop-unswitch: Unswitching loop %"
466        << L->getHeader()->getName() << " [" << L->getBlocks().size()
467        << " blocks] in Function " << F->getName()
468        << " on cond:" << *LIC << "\n");
469
470  std::vector<BasicBlock*> LoopBlocks;
471
472  // First step, split the preheader and exit blocks, and add these blocks to
473  // the LoopBlocks list.
474  BasicBlock *OrigPreheader = L->getLoopPreheader();
475  LoopBlocks.push_back(SplitBlock(OrigPreheader, false));
476
477  // We want the loop to come after the preheader, but before the exit blocks.
478  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
479
480  std::vector<BasicBlock*> ExitBlocks;
481  L->getExitBlocks(ExitBlocks);
482  std::sort(ExitBlocks.begin(), ExitBlocks.end());
483  ExitBlocks.erase(std::unique(ExitBlocks.begin(), ExitBlocks.end()),
484                   ExitBlocks.end());
485  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
486    SplitBlock(ExitBlocks[i], true);
487    LoopBlocks.push_back(ExitBlocks[i]);
488  }
489
490  // Next step, clone all of the basic blocks that make up the loop (including
491  // the loop preheader and exit blocks), keeping track of the mapping between
492  // the instructions and blocks.
493  std::vector<BasicBlock*> NewBlocks;
494  NewBlocks.reserve(LoopBlocks.size());
495  std::map<const Value*, Value*> ValueMap;
496  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
497    NewBlocks.push_back(CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F));
498    ValueMap[LoopBlocks[i]] = NewBlocks.back();  // Keep the BB mapping.
499  }
500
501  // Splice the newly inserted blocks into the function right before the
502  // original preheader.
503  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
504                                NewBlocks[0], F->end());
505
506  // Now we create the new Loop object for the versioned loop.
507  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI);
508  if (Loop *Parent = L->getParentLoop()) {
509    // Make sure to add the cloned preheader and exit blocks to the parent loop
510    // as well.
511    Parent->addBasicBlockToLoop(NewBlocks[0], *LI);
512    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
513      Parent->addBasicBlockToLoop(cast<BasicBlock>(ValueMap[ExitBlocks[i]]),
514                                  *LI);
515  }
516
517  // Rewrite the code to refer to itself.
518  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
519    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
520           E = NewBlocks[i]->end(); I != E; ++I)
521      RemapInstruction(I, ValueMap);
522
523  // Rewrite the original preheader to select between versions of the loop.
524  assert(isa<BranchInst>(OrigPreheader->getTerminator()) &&
525         cast<BranchInst>(OrigPreheader->getTerminator())->isUnconditional() &&
526         OrigPreheader->getTerminator()->getSuccessor(0) == LoopBlocks[0] &&
527         "Preheader splitting did not work correctly!");
528  // Remove the unconditional branch to LoopBlocks[0].
529  OrigPreheader->getInstList().pop_back();
530
531  // Insert a conditional branch on LIC to the two preheaders.  The original
532  // code is the true version and the new code is the false version.
533  new BranchInst(LoopBlocks[0], NewBlocks[0], LIC, OrigPreheader);
534
535  // Now we rewrite the original code to know that the condition is true and the
536  // new code to know that the condition is false.
537  RewriteLoopBodyWithConditionConstant(L, LIC, true);
538  RewriteLoopBodyWithConditionConstant(NewLoop, LIC, false);
539  ++NumUnswitched;
540  Out1 = L;
541  Out2 = NewLoop;
542}
543
544// RewriteLoopBodyWithConditionConstant - We know that the boolean value LIC has
545// the value specified by Val in the specified loop.  Rewrite any uses of LIC or
546// of properties correlated to it.
547void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
548                                                        bool Val) {
549  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
550  // FIXME: Support correlated properties, like:
551  //  for (...)
552  //    if (li1 < li2)
553  //      ...
554  //    if (li1 > li2)
555  //      ...
556  ConstantBool *BoolVal = ConstantBool::get(Val);
557
558  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
559  // selects, switches.
560  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
561  for (unsigned i = 0, e = Users.size(); i != e; ++i)
562    if (Instruction *U = cast<Instruction>(Users[i]))
563      if (L->contains(U->getParent()))
564        U->replaceUsesOfWith(LIC, BoolVal);
565}
566