LoopUnswitch.cpp revision b7427031372337e6d67f9573ec6c722ab5ea913e
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/Function.h"
33#include "llvm/Instructions.h"
34#include "llvm/Analysis/LoopInfo.h"
35#include "llvm/Transforms/Utils/Cloning.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Transforms/Utils/BasicBlockUtils.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/ADT/PostOrderIterator.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/CommandLine.h"
42#include <algorithm>
43#include <set>
44using namespace llvm;
45
46namespace {
47  Statistic<> NumBranches("loop-unswitch", "Number of branches unswitched");
48  Statistic<> NumSwitches("loop-unswitch", "Number of switches unswitched");
49  Statistic<> NumSelects ("loop-unswitch", "Number of selects unswitched");
50  Statistic<> NumTrivial ("loop-unswitch",
51                          "Number of unswitches that are trivial");
52  Statistic<> NumSimplify("loop-unswitch",
53                          "Number of simplifications of unswitched code");
54  cl::opt<unsigned>
55  Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
56            cl::init(10), cl::Hidden);
57
58  class LoopUnswitch : public FunctionPass {
59    LoopInfo *LI;  // Loop information
60
61    // LoopProcessWorklist - List of loops we need to process.
62    std::vector<Loop*> LoopProcessWorklist;
63  public:
64    virtual bool runOnFunction(Function &F);
65    bool visitLoop(Loop *L);
66
67    /// This transformation requires natural loop information & requires that
68    /// loop preheaders be inserted into the CFG...
69    ///
70    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
71      AU.addRequiredID(LoopSimplifyID);
72      AU.addPreservedID(LoopSimplifyID);
73      AU.addRequired<LoopInfo>();
74      AU.addPreserved<LoopInfo>();
75      AU.addRequiredID(LCSSAID);
76      AU.addPreservedID(LCSSAID);
77    }
78
79  private:
80    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
81    /// remove it.
82    void RemoveLoopFromWorklist(Loop *L) {
83      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
84                                                 LoopProcessWorklist.end(), L);
85      if (I != LoopProcessWorklist.end())
86        LoopProcessWorklist.erase(I);
87    }
88
89    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L);
90    unsigned getLoopUnswitchCost(Loop *L, Value *LIC);
91    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
92                                  BasicBlock *ExitBlock);
93    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
94    BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To);
95    BasicBlock *SplitBlock(BasicBlock *Old, Instruction *SplitPt);
96
97    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
98                                              Constant *Val, bool isEqual);
99
100    void SimplifyCode(std::vector<Instruction*> &Worklist);
101    void RemoveBlockIfDead(BasicBlock *BB,
102                           std::vector<Instruction*> &Worklist);
103    void RemoveLoopFromHierarchy(Loop *L);
104  };
105  RegisterPass<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
106}
107
108FunctionPass *llvm::createLoopUnswitchPass() { return new LoopUnswitch(); }
109
110bool LoopUnswitch::runOnFunction(Function &F) {
111  bool Changed = false;
112  LI = &getAnalysis<LoopInfo>();
113
114  // Populate the worklist of loops to process in post-order.
115  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
116    for (po_iterator<Loop*> LI = po_begin(*I), E = po_end(*I); LI != E; ++LI)
117      LoopProcessWorklist.push_back(*LI);
118
119  // Process the loops in worklist order, this is a post-order visitation of
120  // the loops.  We use a worklist of loops so that loops can be removed at any
121  // time if they are deleted (e.g. the backedge of a loop is removed).
122  while (!LoopProcessWorklist.empty()) {
123    Loop *L = LoopProcessWorklist.back();
124    LoopProcessWorklist.pop_back();
125    Changed |= visitLoop(L);
126  }
127
128  return Changed;
129}
130
131/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
132/// invariant in the loop, or has an invariant piece, return the invariant.
133/// Otherwise, return null.
134static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
135  // Constants should be folded, not unswitched on!
136  if (isa<Constant>(Cond)) return false;
137
138  // TODO: Handle: br (VARIANT|INVARIANT).
139  // TODO: Hoist simple expressions out of loops.
140  if (L->isLoopInvariant(Cond)) return Cond;
141
142  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
143    if (BO->getOpcode() == Instruction::And ||
144        BO->getOpcode() == Instruction::Or) {
145      // If either the left or right side is invariant, we can unswitch on this,
146      // which will cause the branch to go away in one loop and the condition to
147      // simplify in the other one.
148      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
149        return LHS;
150      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
151        return RHS;
152    }
153
154      return 0;
155}
156
157bool LoopUnswitch::visitLoop(Loop *L) {
158  assert(L->isLCSSAForm());
159
160  bool Changed = false;
161
162  // Loop over all of the basic blocks in the loop.  If we find an interior
163  // block that is branching on a loop-invariant condition, we can unswitch this
164  // loop.
165  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
166       I != E; ++I) {
167    TerminatorInst *TI = (*I)->getTerminator();
168    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
169      // If this isn't branching on an invariant condition, we can't unswitch
170      // it.
171      if (BI->isConditional()) {
172        // See if this, or some part of it, is loop invariant.  If so, we can
173        // unswitch on it if we desire.
174        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), L, Changed);
175        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantBool::getTrue(),
176                                             L)) {
177          ++NumBranches;
178          return true;
179        }
180      }
181    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
182      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
183      if (LoopCond && SI->getNumCases() > 1) {
184        // Find a value to unswitch on:
185        // FIXME: this should chose the most expensive case!
186        Constant *UnswitchVal = SI->getCaseValue(1);
187        if (UnswitchIfProfitable(LoopCond, UnswitchVal, L)) {
188          ++NumSwitches;
189          return true;
190        }
191      }
192    }
193
194    // Scan the instructions to check for unswitchable values.
195    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
196         BBI != E; ++BBI)
197      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
198        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
199        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantBool::getTrue(),
200                                             L)) {
201          ++NumSelects;
202          return true;
203        }
204      }
205  }
206
207  assert(L->isLCSSAForm());
208
209  return Changed;
210}
211
212/// isTrivialLoopExitBlock - Check to see if all paths from BB either:
213///   1. Exit the loop with no side effects.
214///   2. Branch to the latch block with no side-effects.
215///
216/// If these conditions are true, we return true and set ExitBB to the block we
217/// exit through.
218///
219static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
220                                         BasicBlock *&ExitBB,
221                                         std::set<BasicBlock*> &Visited) {
222  if (!Visited.insert(BB).second) {
223    // Already visited and Ok, end of recursion.
224    return true;
225  } else if (!L->contains(BB)) {
226    // Otherwise, this is a loop exit, this is fine so long as this is the
227    // first exit.
228    if (ExitBB != 0) return false;
229    ExitBB = BB;
230    return true;
231  }
232
233  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
234  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
235    // Check to see if the successor is a trivial loop exit.
236    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
237      return false;
238  }
239
240  // Okay, everything after this looks good, check to make sure that this block
241  // doesn't include any side effects.
242  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
243    if (I->mayWriteToMemory())
244      return false;
245
246  return true;
247}
248
249/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
250/// leads to an exit from the specified loop, and has no side-effects in the
251/// process.  If so, return the block that is exited to, otherwise return null.
252static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
253  std::set<BasicBlock*> Visited;
254  Visited.insert(L->getHeader());  // Branches to header are ok.
255  BasicBlock *ExitBB = 0;
256  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
257    return ExitBB;
258  return 0;
259}
260
261/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
262/// trivial: that is, that the condition controls whether or not the loop does
263/// anything at all.  If this is a trivial condition, unswitching produces no
264/// code duplications (equivalently, it produces a simpler loop and a new empty
265/// loop, which gets deleted).
266///
267/// If this is a trivial condition, return true, otherwise return false.  When
268/// returning true, this sets Cond and Val to the condition that controls the
269/// trivial condition: when Cond dynamically equals Val, the loop is known to
270/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
271/// Cond == Val.
272///
273static bool IsTrivialUnswitchCondition(Loop *L, Value *Cond, Constant **Val = 0,
274                                       BasicBlock **LoopExit = 0) {
275  BasicBlock *Header = L->getHeader();
276  TerminatorInst *HeaderTerm = Header->getTerminator();
277
278  BasicBlock *LoopExitBB = 0;
279  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
280    // If the header block doesn't end with a conditional branch on Cond, we
281    // can't handle it.
282    if (!BI->isConditional() || BI->getCondition() != Cond)
283      return false;
284
285    // Check to see if a successor of the branch is guaranteed to go to the
286    // latch block or exit through a one exit block without having any
287    // side-effects.  If so, determine the value of Cond that causes it to do
288    // this.
289    if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(0)))) {
290      if (Val) *Val = ConstantBool::getTrue();
291    } else if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(1)))) {
292      if (Val) *Val = ConstantBool::getFalse();
293    }
294  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
295    // If this isn't a switch on Cond, we can't handle it.
296    if (SI->getCondition() != Cond) return false;
297
298    // Check to see if a successor of the switch is guaranteed to go to the
299    // latch block or exit through a one exit block without having any
300    // side-effects.  If so, determine the value of Cond that causes it to do
301    // this.  Note that we can't trivially unswitch on the default case.
302    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
303      if ((LoopExitBB = isTrivialLoopExitBlock(L, SI->getSuccessor(i)))) {
304        // Okay, we found a trivial case, remember the value that is trivial.
305        if (Val) *Val = SI->getCaseValue(i);
306        break;
307      }
308  }
309
310  // If we didn't find a single unique LoopExit block, or if the loop exit block
311  // contains phi nodes, this isn't trivial.
312  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
313    return false;   // Can't handle this.
314
315  if (LoopExit) *LoopExit = LoopExitBB;
316
317  // We already know that nothing uses any scalar values defined inside of this
318  // loop.  As such, we just have to check to see if this loop will execute any
319  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
320  // part of the loop that the code *would* execute.  We already checked the
321  // tail, check the header now.
322  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
323    if (I->mayWriteToMemory())
324      return false;
325  return true;
326}
327
328/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
329/// we choose to unswitch the specified loop on the specified value.
330///
331unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) {
332  // If the condition is trivial, always unswitch.  There is no code growth for
333  // this case.
334  if (IsTrivialUnswitchCondition(L, LIC))
335    return 0;
336
337  // FIXME: This is really overly conservative.  However, more liberal
338  // estimations have thus far resulted in excessive unswitching, which is bad
339  // both in compile time and in code size.  This should be replaced once
340  // someone figures out how a good estimation.
341  return L->getBlocks().size();
342
343  unsigned Cost = 0;
344  // FIXME: this is brain dead.  It should take into consideration code
345  // shrinkage.
346  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
347       I != E; ++I) {
348    BasicBlock *BB = *I;
349    // Do not include empty blocks in the cost calculation.  This happen due to
350    // loop canonicalization and will be removed.
351    if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
352      continue;
353
354    // Count basic blocks.
355    ++Cost;
356  }
357
358  return Cost;
359}
360
361/// UnswitchIfProfitable - We have found that we can unswitch L when
362/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
363/// unswitch the loop, reprocess the pieces, then return true.
364bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L){
365  // Check to see if it would be profitable to unswitch this loop.
366  unsigned Cost = getLoopUnswitchCost(L, LoopCond);
367  if (Cost > Threshold) {
368    // FIXME: this should estimate growth by the amount of code shared by the
369    // resultant unswitched loops.
370    //
371    DOUT << "NOT unswitching loop %"
372         << L->getHeader()->getName() << ", cost too high: "
373         << L->getBlocks().size() << "\n";
374    return false;
375  }
376
377  // If this is a trivial condition to unswitch (which results in no code
378  // duplication), do it now.
379  Constant *CondVal;
380  BasicBlock *ExitBlock;
381  if (IsTrivialUnswitchCondition(L, LoopCond, &CondVal, &ExitBlock)) {
382    UnswitchTrivialCondition(L, LoopCond, CondVal, ExitBlock);
383  } else {
384    UnswitchNontrivialCondition(LoopCond, Val, L);
385  }
386
387  return true;
388}
389
390/// SplitBlock - Split the specified block at the specified instruction - every
391/// thing before SplitPt stays in Old and everything starting with SplitPt moves
392/// to a new block.  The two blocks are joined by an unconditional branch and
393/// the loop info is updated.
394///
395BasicBlock *LoopUnswitch::SplitBlock(BasicBlock *Old, Instruction *SplitPt) {
396  BasicBlock::iterator SplitIt = SplitPt;
397  while (isa<PHINode>(SplitIt))
398    ++SplitIt;
399  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
400
401  // The new block lives in whichever loop the old one did.
402  if (Loop *L = LI->getLoopFor(Old))
403    L->addBasicBlockToLoop(New, *LI);
404
405  return New;
406}
407
408
409BasicBlock *LoopUnswitch::SplitEdge(BasicBlock *BB, BasicBlock *Succ) {
410  TerminatorInst *LatchTerm = BB->getTerminator();
411  unsigned SuccNum = 0;
412  for (unsigned i = 0, e = LatchTerm->getNumSuccessors(); ; ++i) {
413    assert(i != e && "Didn't find edge?");
414    if (LatchTerm->getSuccessor(i) == Succ) {
415      SuccNum = i;
416      break;
417    }
418  }
419
420  // If this is a critical edge, let SplitCriticalEdge do it.
421  if (SplitCriticalEdge(BB->getTerminator(), SuccNum, this))
422    return LatchTerm->getSuccessor(SuccNum);
423
424  // If the edge isn't critical, then BB has a single successor or Succ has a
425  // single pred.  Split the block.
426  BasicBlock::iterator SplitPoint;
427  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
428    // If the successor only has a single pred, split the top of the successor
429    // block.
430    assert(SP == BB && "CFG broken");
431    return SplitBlock(Succ, Succ->begin());
432  } else {
433    // Otherwise, if BB has a single successor, split it at the bottom of the
434    // block.
435    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
436           "Should have a single succ!");
437    return SplitBlock(BB, BB->getTerminator());
438  }
439}
440
441
442
443// RemapInstruction - Convert the instruction operands from referencing the
444// current values into those specified by ValueMap.
445//
446static inline void RemapInstruction(Instruction *I,
447                                    std::map<const Value *, Value*> &ValueMap) {
448  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
449    Value *Op = I->getOperand(op);
450    std::map<const Value *, Value*>::iterator It = ValueMap.find(Op);
451    if (It != ValueMap.end()) Op = It->second;
452    I->setOperand(op, Op);
453  }
454}
455
456/// CloneLoop - Recursively clone the specified loop and all of its children,
457/// mapping the blocks with the specified map.
458static Loop *CloneLoop(Loop *L, Loop *PL, std::map<const Value*, Value*> &VM,
459                       LoopInfo *LI) {
460  Loop *New = new Loop();
461
462  if (PL)
463    PL->addChildLoop(New);
464  else
465    LI->addTopLevelLoop(New);
466
467  // Add all of the blocks in L to the new loop.
468  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
469       I != E; ++I)
470    if (LI->getLoopFor(*I) == L)
471      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
472
473  // Add all of the subloops to the new loop.
474  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
475    CloneLoop(*I, New, VM, LI);
476
477  return New;
478}
479
480/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
481/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
482/// code immediately before InsertPt.
483static void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
484                                           BasicBlock *TrueDest,
485                                           BasicBlock *FalseDest,
486                                           Instruction *InsertPt) {
487  // Insert a conditional branch on LIC to the two preheaders.  The original
488  // code is the true version and the new code is the false version.
489  Value *BranchVal = LIC;
490  if (!isa<ConstantBool>(Val)) {
491    BranchVal = BinaryOperator::createSetEQ(LIC, Val, "tmp", InsertPt);
492  } else if (Val != ConstantBool::getTrue()) {
493    // We want to enter the new loop when the condition is true.
494    std::swap(TrueDest, FalseDest);
495  }
496
497  // Insert the new branch.
498  new BranchInst(TrueDest, FalseDest, BranchVal, InsertPt);
499}
500
501
502/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
503/// condition in it (a cond branch from its header block to its latch block,
504/// where the path through the loop that doesn't execute its body has no
505/// side-effects), unswitch it.  This doesn't involve any code duplication, just
506/// moving the conditional branch outside of the loop and updating loop info.
507void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
508                                            Constant *Val,
509                                            BasicBlock *ExitBlock) {
510  DOUT << "loop-unswitch: Trivial-Unswitch loop %"
511       << L->getHeader()->getName() << " [" << L->getBlocks().size()
512       << " blocks] in Function " << L->getHeader()->getParent()->getName()
513       << " on cond: " << *Val << " == " << *Cond << "\n";
514
515  // First step, split the preheader, so that we know that there is a safe place
516  // to insert the conditional branch.  We will change 'OrigPH' to have a
517  // conditional branch on Cond.
518  BasicBlock *OrigPH = L->getLoopPreheader();
519  BasicBlock *NewPH = SplitEdge(OrigPH, L->getHeader());
520
521  // Now that we have a place to insert the conditional branch, create a place
522  // to branch to: this is the exit block out of the loop that we should
523  // short-circuit to.
524
525  // Split this block now, so that the loop maintains its exit block, and so
526  // that the jump from the preheader can execute the contents of the exit block
527  // without actually branching to it (the exit block should be dominated by the
528  // loop header, not the preheader).
529  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
530  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin());
531
532  // Okay, now we have a position to branch from and a position to branch to,
533  // insert the new conditional branch.
534  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
535                                 OrigPH->getTerminator());
536  OrigPH->getTerminator()->eraseFromParent();
537
538  // We need to reprocess this loop, it could be unswitched again.
539  LoopProcessWorklist.push_back(L);
540
541  // Now that we know that the loop is never entered when this condition is a
542  // particular value, rewrite the loop with this info.  We know that this will
543  // at least eliminate the old branch.
544  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
545  ++NumTrivial;
546}
547
548
549/// VersionLoop - We determined that the loop is profitable to unswitch when LIC
550/// equal Val.  Split it into loop versions and test the condition outside of
551/// either loop.  Return the loops created as Out1/Out2.
552void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
553                                               Loop *L) {
554  Function *F = L->getHeader()->getParent();
555  DOUT << "loop-unswitch: Unswitching loop %"
556       << L->getHeader()->getName() << " [" << L->getBlocks().size()
557       << " blocks] in Function " << F->getName()
558       << " when '" << *Val << "' == " << *LIC << "\n";
559
560  // LoopBlocks contains all of the basic blocks of the loop, including the
561  // preheader of the loop, the body of the loop, and the exit blocks of the
562  // loop, in that order.
563  std::vector<BasicBlock*> LoopBlocks;
564
565  // First step, split the preheader and exit blocks, and add these blocks to
566  // the LoopBlocks list.
567  BasicBlock *OrigPreheader = L->getLoopPreheader();
568  LoopBlocks.push_back(SplitEdge(OrigPreheader, L->getHeader()));
569
570  // We want the loop to come after the preheader, but before the exit blocks.
571  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
572
573  std::vector<BasicBlock*> ExitBlocks;
574  L->getUniqueExitBlocks(ExitBlocks);
575
576  // Split all of the edges from inside the loop to their exit blocks.  Update
577  // the appropriate Phi nodes as we do so.
578  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
579    BasicBlock *ExitBlock = ExitBlocks[i];
580    std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
581
582    for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
583      assert(L->contains(Preds[j]) &&
584             "All preds of loop exit blocks must be the same loop!");
585      BasicBlock* MiddleBlock = SplitEdge(Preds[j], ExitBlock);
586      BasicBlock* StartBlock = Preds[j];
587      BasicBlock* EndBlock;
588      if (MiddleBlock->getSinglePredecessor() == ExitBlock) {
589        EndBlock = MiddleBlock;
590        MiddleBlock = EndBlock->getSinglePredecessor();;
591      } else {
592        EndBlock = ExitBlock;
593      }
594
595      std::set<PHINode*> InsertedPHIs;
596      PHINode* OldLCSSA = 0;
597      for (BasicBlock::iterator I = EndBlock->begin();
598           (OldLCSSA = dyn_cast<PHINode>(I)); ++I) {
599        Value* OldValue = OldLCSSA->getIncomingValueForBlock(MiddleBlock);
600        PHINode* NewLCSSA = new PHINode(OldLCSSA->getType(),
601                                        OldLCSSA->getName() + ".us-lcssa",
602                                        MiddleBlock->getTerminator());
603        NewLCSSA->addIncoming(OldValue, StartBlock);
604        OldLCSSA->setIncomingValue(OldLCSSA->getBasicBlockIndex(MiddleBlock),
605                                   NewLCSSA);
606        InsertedPHIs.insert(NewLCSSA);
607      }
608
609      BasicBlock::iterator InsertPt = EndBlock->begin();
610      while (dyn_cast<PHINode>(InsertPt)) ++InsertPt;
611      for (BasicBlock::iterator I = MiddleBlock->begin();
612         (OldLCSSA = dyn_cast<PHINode>(I)) && InsertedPHIs.count(OldLCSSA) == 0;
613         ++I) {
614        PHINode *NewLCSSA = new PHINode(OldLCSSA->getType(),
615                                        OldLCSSA->getName() + ".us-lcssa",
616                                        InsertPt);
617        OldLCSSA->replaceAllUsesWith(NewLCSSA);
618        NewLCSSA->addIncoming(OldLCSSA, MiddleBlock);
619      }
620    }
621  }
622
623  // The exit blocks may have been changed due to edge splitting, recompute.
624  ExitBlocks.clear();
625  L->getUniqueExitBlocks(ExitBlocks);
626
627  // Add exit blocks to the loop blocks.
628  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
629
630  // Next step, clone all of the basic blocks that make up the loop (including
631  // the loop preheader and exit blocks), keeping track of the mapping between
632  // the instructions and blocks.
633  std::vector<BasicBlock*> NewBlocks;
634  NewBlocks.reserve(LoopBlocks.size());
635  std::map<const Value*, Value*> ValueMap;
636  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
637    BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
638    NewBlocks.push_back(New);
639    ValueMap[LoopBlocks[i]] = New;  // Keep the BB mapping.
640  }
641
642  // Splice the newly inserted blocks into the function right before the
643  // original preheader.
644  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
645                                NewBlocks[0], F->end());
646
647  // Now we create the new Loop object for the versioned loop.
648  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI);
649  Loop *ParentLoop = L->getParentLoop();
650  if (ParentLoop) {
651    // Make sure to add the cloned preheader and exit blocks to the parent loop
652    // as well.
653    ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
654  }
655
656  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
657    BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
658    // The new exit block should be in the same loop as the old one.
659    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
660      ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
661
662    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
663           "Exit block should have been split to have one successor!");
664    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
665
666    // If the successor of the exit block had PHI nodes, add an entry for
667    // NewExit.
668    PHINode *PN;
669    for (BasicBlock::iterator I = ExitSucc->begin();
670         (PN = dyn_cast<PHINode>(I)); ++I) {
671      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
672      std::map<const Value *, Value*>::iterator It = ValueMap.find(V);
673      if (It != ValueMap.end()) V = It->second;
674      PN->addIncoming(V, NewExit);
675    }
676  }
677
678  // Rewrite the code to refer to itself.
679  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
680    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
681           E = NewBlocks[i]->end(); I != E; ++I)
682      RemapInstruction(I, ValueMap);
683
684  // Rewrite the original preheader to select between versions of the loop.
685  BranchInst *OldBR = cast<BranchInst>(OrigPreheader->getTerminator());
686  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
687         "Preheader splitting did not work correctly!");
688
689  // Emit the new branch that selects between the two versions of this loop.
690  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
691  OldBR->eraseFromParent();
692
693  LoopProcessWorklist.push_back(L);
694  LoopProcessWorklist.push_back(NewLoop);
695
696  // Now we rewrite the original code to know that the condition is true and the
697  // new code to know that the condition is false.
698  RewriteLoopBodyWithConditionConstant(L      , LIC, Val, false);
699
700  // It's possible that simplifying one loop could cause the other to be
701  // deleted.  If so, don't simplify it.
702  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop)
703    RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
704}
705
706/// RemoveFromWorklist - Remove all instances of I from the worklist vector
707/// specified.
708static void RemoveFromWorklist(Instruction *I,
709                               std::vector<Instruction*> &Worklist) {
710  std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
711                                                     Worklist.end(), I);
712  while (WI != Worklist.end()) {
713    unsigned Offset = WI-Worklist.begin();
714    Worklist.erase(WI);
715    WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
716  }
717}
718
719/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
720/// program, replacing all uses with V and update the worklist.
721static void ReplaceUsesOfWith(Instruction *I, Value *V,
722                              std::vector<Instruction*> &Worklist) {
723  DOUT << "Replace with '" << *V << "': " << *I;
724
725  // Add uses to the worklist, which may be dead now.
726  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
727    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
728      Worklist.push_back(Use);
729
730  // Add users to the worklist which may be simplified now.
731  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
732       UI != E; ++UI)
733    Worklist.push_back(cast<Instruction>(*UI));
734  I->replaceAllUsesWith(V);
735  I->eraseFromParent();
736  RemoveFromWorklist(I, Worklist);
737  ++NumSimplify;
738}
739
740/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
741/// information, and remove any dead successors it has.
742///
743void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
744                                     std::vector<Instruction*> &Worklist) {
745  if (pred_begin(BB) != pred_end(BB)) {
746    // This block isn't dead, since an edge to BB was just removed, see if there
747    // are any easy simplifications we can do now.
748    if (BasicBlock *Pred = BB->getSinglePredecessor()) {
749      // If it has one pred, fold phi nodes in BB.
750      while (isa<PHINode>(BB->begin()))
751        ReplaceUsesOfWith(BB->begin(),
752                          cast<PHINode>(BB->begin())->getIncomingValue(0),
753                          Worklist);
754
755      // If this is the header of a loop and the only pred is the latch, we now
756      // have an unreachable loop.
757      if (Loop *L = LI->getLoopFor(BB))
758        if (L->getHeader() == BB && L->contains(Pred)) {
759          // Remove the branch from the latch to the header block, this makes
760          // the header dead, which will make the latch dead (because the header
761          // dominates the latch).
762          Pred->getTerminator()->eraseFromParent();
763          new UnreachableInst(Pred);
764
765          // The loop is now broken, remove it from LI.
766          RemoveLoopFromHierarchy(L);
767
768          // Reprocess the header, which now IS dead.
769          RemoveBlockIfDead(BB, Worklist);
770          return;
771        }
772
773      // If pred ends in a uncond branch, add uncond branch to worklist so that
774      // the two blocks will get merged.
775      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
776        if (BI->isUnconditional())
777          Worklist.push_back(BI);
778    }
779    return;
780  }
781
782  DOUT << "Nuking dead block: " << *BB;
783
784  // Remove the instructions in the basic block from the worklist.
785  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
786    RemoveFromWorklist(I, Worklist);
787
788    // Anything that uses the instructions in this basic block should have their
789    // uses replaced with undefs.
790    if (!I->use_empty())
791      I->replaceAllUsesWith(UndefValue::get(I->getType()));
792  }
793
794  // If this is the edge to the header block for a loop, remove the loop and
795  // promote all subloops.
796  if (Loop *BBLoop = LI->getLoopFor(BB)) {
797    if (BBLoop->getLoopLatch() == BB)
798      RemoveLoopFromHierarchy(BBLoop);
799  }
800
801  // Remove the block from the loop info, which removes it from any loops it
802  // was in.
803  LI->removeBlock(BB);
804
805
806  // Remove phi node entries in successors for this block.
807  TerminatorInst *TI = BB->getTerminator();
808  std::vector<BasicBlock*> Succs;
809  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
810    Succs.push_back(TI->getSuccessor(i));
811    TI->getSuccessor(i)->removePredecessor(BB);
812  }
813
814  // Unique the successors, remove anything with multiple uses.
815  std::sort(Succs.begin(), Succs.end());
816  Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
817
818  // Remove the basic block, including all of the instructions contained in it.
819  BB->eraseFromParent();
820
821  // Remove successor blocks here that are not dead, so that we know we only
822  // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
823  // then getting removed before we revisit them, which is badness.
824  //
825  for (unsigned i = 0; i != Succs.size(); ++i)
826    if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
827      // One exception is loop headers.  If this block was the preheader for a
828      // loop, then we DO want to visit the loop so the loop gets deleted.
829      // We know that if the successor is a loop header, that this loop had to
830      // be the preheader: the case where this was the latch block was handled
831      // above and headers can only have two predecessors.
832      if (!LI->isLoopHeader(Succs[i])) {
833        Succs.erase(Succs.begin()+i);
834        --i;
835      }
836    }
837
838  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
839    RemoveBlockIfDead(Succs[i], Worklist);
840}
841
842/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
843/// become unwrapped, either because the backedge was deleted, or because the
844/// edge into the header was removed.  If the edge into the header from the
845/// latch block was removed, the loop is unwrapped but subloops are still alive,
846/// so they just reparent loops.  If the loops are actually dead, they will be
847/// removed later.
848void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
849  if (Loop *ParentLoop = L->getParentLoop()) { // Not a top-level loop.
850    // Reparent all of the blocks in this loop.  Since BBLoop had a parent,
851    // they are now all in it.
852    for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
853         I != E; ++I)
854      if (LI->getLoopFor(*I) == L)    // Don't change blocks in subloops.
855        LI->changeLoopFor(*I, ParentLoop);
856
857    // Remove the loop from its parent loop.
858    for (Loop::iterator I = ParentLoop->begin(), E = ParentLoop->end();;
859         ++I) {
860      assert(I != E && "Couldn't find loop");
861      if (*I == L) {
862        ParentLoop->removeChildLoop(I);
863        break;
864      }
865    }
866
867    // Move all subloops into the parent loop.
868    while (L->begin() != L->end())
869      ParentLoop->addChildLoop(L->removeChildLoop(L->end()-1));
870  } else {
871    // Reparent all of the blocks in this loop.  Since BBLoop had no parent,
872    // they no longer in a loop at all.
873
874    for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
875      // Don't change blocks in subloops.
876      if (LI->getLoopFor(L->getBlocks()[i]) == L) {
877        LI->removeBlock(L->getBlocks()[i]);
878        --i;
879      }
880    }
881
882    // Remove the loop from the top-level LoopInfo object.
883    for (LoopInfo::iterator I = LI->begin(), E = LI->end();; ++I) {
884      assert(I != E && "Couldn't find loop");
885      if (*I == L) {
886        LI->removeLoop(I);
887        break;
888      }
889    }
890
891    // Move all of the subloops to the top-level.
892    while (L->begin() != L->end())
893      LI->addTopLevelLoop(L->removeChildLoop(L->end()-1));
894  }
895
896  delete L;
897  RemoveLoopFromWorklist(L);
898}
899
900
901
902// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
903// the value specified by Val in the specified loop, or we know it does NOT have
904// that value.  Rewrite any uses of LIC or of properties correlated to it.
905void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
906                                                        Constant *Val,
907                                                        bool IsEqual) {
908  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
909
910  // FIXME: Support correlated properties, like:
911  //  for (...)
912  //    if (li1 < li2)
913  //      ...
914  //    if (li1 > li2)
915  //      ...
916
917  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
918  // selects, switches.
919  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
920  std::vector<Instruction*> Worklist;
921
922  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
923  // in the loop with the appropriate one directly.
924  if (IsEqual || isa<ConstantBool>(Val)) {
925    Value *Replacement;
926    if (IsEqual)
927      Replacement = Val;
928    else
929      Replacement = ConstantBool::get(!cast<ConstantBool>(Val)->getValue());
930
931    for (unsigned i = 0, e = Users.size(); i != e; ++i)
932      if (Instruction *U = cast<Instruction>(Users[i])) {
933        if (!L->contains(U->getParent()))
934          continue;
935        U->replaceUsesOfWith(LIC, Replacement);
936        Worklist.push_back(U);
937      }
938  } else {
939    // Otherwise, we don't know the precise value of LIC, but we do know that it
940    // is certainly NOT "Val".  As such, simplify any uses in the loop that we
941    // can.  This case occurs when we unswitch switch statements.
942    for (unsigned i = 0, e = Users.size(); i != e; ++i)
943      if (Instruction *U = cast<Instruction>(Users[i])) {
944        if (!L->contains(U->getParent()))
945          continue;
946
947        Worklist.push_back(U);
948
949        // If we know that LIC is not Val, use this info to simplify code.
950        if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
951          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
952            if (SI->getCaseValue(i) == Val) {
953              // Found a dead case value.  Don't remove PHI nodes in the
954              // successor if they become single-entry, those PHI nodes may
955              // be in the Users list.
956
957              // FIXME: This is a hack.  We need to keep the successor around
958              // and hooked up so as to preserve the loop structure, because
959              // trying to update it is complicated.  So instead we preserve the
960              // loop structure and put the block on an dead code path.
961
962              BasicBlock* Old = SI->getParent();
963              BasicBlock* Split = SplitBlock(Old, SI);
964
965              Instruction* OldTerm = Old->getTerminator();
966              new BranchInst(Split, SI->getSuccessor(i),
967                             ConstantBool::getTrue(), OldTerm);
968
969              Old->getTerminator()->eraseFromParent();
970
971
972              PHINode *PN;
973              for (BasicBlock::iterator II = SI->getSuccessor(i)->begin();
974                   (PN = dyn_cast<PHINode>(II)); ++II) {
975                Value *InVal = PN->removeIncomingValue(Split, false);
976                PN->addIncoming(InVal, Old);
977              }
978
979              SI->removeCase(i);
980              break;
981            }
982          }
983        }
984
985        // TODO: We could do other simplifications, for example, turning
986        // LIC == Val -> false.
987      }
988  }
989
990  SimplifyCode(Worklist);
991}
992
993/// SimplifyCode - Okay, now that we have simplified some instructions in the
994/// loop, walk over it and constant prop, dce, and fold control flow where
995/// possible.  Note that this is effectively a very simple loop-structure-aware
996/// optimizer.  During processing of this loop, L could very well be deleted, so
997/// it must not be used.
998///
999/// FIXME: When the loop optimizer is more mature, separate this out to a new
1000/// pass.
1001///
1002void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist) {
1003  while (!Worklist.empty()) {
1004    Instruction *I = Worklist.back();
1005    Worklist.pop_back();
1006
1007    // Simple constant folding.
1008    if (Constant *C = ConstantFoldInstruction(I)) {
1009      ReplaceUsesOfWith(I, C, Worklist);
1010      continue;
1011    }
1012
1013    // Simple DCE.
1014    if (isInstructionTriviallyDead(I)) {
1015      DOUT << "Remove dead instruction '" << *I;
1016
1017      // Add uses to the worklist, which may be dead now.
1018      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1019        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1020          Worklist.push_back(Use);
1021      I->eraseFromParent();
1022      RemoveFromWorklist(I, Worklist);
1023      ++NumSimplify;
1024      continue;
1025    }
1026
1027    // Special case hacks that appear commonly in unswitched code.
1028    switch (I->getOpcode()) {
1029    case Instruction::Select:
1030      if (ConstantBool *CB = dyn_cast<ConstantBool>(I->getOperand(0))) {
1031        ReplaceUsesOfWith(I, I->getOperand(!CB->getValue()+1), Worklist);
1032        continue;
1033      }
1034      break;
1035    case Instruction::And:
1036      if (isa<ConstantBool>(I->getOperand(0)))   // constant -> RHS
1037        cast<BinaryOperator>(I)->swapOperands();
1038      if (ConstantBool *CB = dyn_cast<ConstantBool>(I->getOperand(1))) {
1039        if (CB->getValue())   // X & 1 -> X
1040          ReplaceUsesOfWith(I, I->getOperand(0), Worklist);
1041        else                  // X & 0 -> 0
1042          ReplaceUsesOfWith(I, I->getOperand(1), Worklist);
1043        continue;
1044      }
1045      break;
1046    case Instruction::Or:
1047      if (isa<ConstantBool>(I->getOperand(0)))   // constant -> RHS
1048        cast<BinaryOperator>(I)->swapOperands();
1049      if (ConstantBool *CB = dyn_cast<ConstantBool>(I->getOperand(1))) {
1050        if (CB->getValue())   // X | 1 -> 1
1051          ReplaceUsesOfWith(I, I->getOperand(1), Worklist);
1052        else                  // X | 0 -> X
1053          ReplaceUsesOfWith(I, I->getOperand(0), Worklist);
1054        continue;
1055      }
1056      break;
1057    case Instruction::Br: {
1058      BranchInst *BI = cast<BranchInst>(I);
1059      if (BI->isUnconditional()) {
1060        // If BI's parent is the only pred of the successor, fold the two blocks
1061        // together.
1062        BasicBlock *Pred = BI->getParent();
1063        BasicBlock *Succ = BI->getSuccessor(0);
1064        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1065        if (!SinglePred) continue;  // Nothing to do.
1066        assert(SinglePred == Pred && "CFG broken");
1067
1068        DOUT << "Merging blocks: " << Pred->getName() << " <- "
1069             << Succ->getName() << "\n";
1070
1071        // Resolve any single entry PHI nodes in Succ.
1072        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1073          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist);
1074
1075        // Move all of the successor contents from Succ to Pred.
1076        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1077                                   Succ->end());
1078        BI->eraseFromParent();
1079        RemoveFromWorklist(BI, Worklist);
1080
1081        // If Succ has any successors with PHI nodes, update them to have
1082        // entries coming from Pred instead of Succ.
1083        Succ->replaceAllUsesWith(Pred);
1084
1085        // Remove Succ from the loop tree.
1086        LI->removeBlock(Succ);
1087        Succ->eraseFromParent();
1088        ++NumSimplify;
1089      } else if (ConstantBool *CB = dyn_cast<ConstantBool>(BI->getCondition())){
1090        // Conditional branch.  Turn it into an unconditional branch, then
1091        // remove dead blocks.
1092        break;  // FIXME: Enable.
1093
1094        DOUT << "Folded branch: " << *BI;
1095        BasicBlock *DeadSucc = BI->getSuccessor(CB->getValue());
1096        BasicBlock *LiveSucc = BI->getSuccessor(!CB->getValue());
1097        DeadSucc->removePredecessor(BI->getParent(), true);
1098        Worklist.push_back(new BranchInst(LiveSucc, BI));
1099        BI->eraseFromParent();
1100        RemoveFromWorklist(BI, Worklist);
1101        ++NumSimplify;
1102
1103        RemoveBlockIfDead(DeadSucc, Worklist);
1104      }
1105      break;
1106    }
1107    }
1108  }
1109}
1110