LoopUnswitch.cpp revision c2bbfc18e9adbbdcf5b3375d8d25e2452f7df7f1
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/DerivedTypes.h"
33#include "llvm/Function.h"
34#include "llvm/Instructions.h"
35#include "llvm/Analysis/ConstantFolding.h"
36#include "llvm/Analysis/LoopInfo.h"
37#include "llvm/Analysis/LoopPass.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Transforms/Utils/Cloning.h"
40#include "llvm/Transforms/Utils/Local.h"
41#include "llvm/Transforms/Utils/BasicBlockUtils.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/ADT/SmallPtrSet.h"
44#include "llvm/ADT/PostOrderIterator.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Compiler.h"
47#include "llvm/Support/Debug.h"
48#include <algorithm>
49#include <set>
50using namespace llvm;
51
52STATISTIC(NumBranches, "Number of branches unswitched");
53STATISTIC(NumSwitches, "Number of switches unswitched");
54STATISTIC(NumSelects , "Number of selects unswitched");
55STATISTIC(NumTrivial , "Number of unswitches that are trivial");
56STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
57
58namespace {
59  cl::opt<unsigned>
60  Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
61            cl::init(10), cl::Hidden);
62
63  class VISIBILITY_HIDDEN LoopUnswitch : public LoopPass {
64    LoopInfo *LI;  // Loop information
65    LPPassManager *LPM;
66
67    // LoopProcessWorklist - Used to check if second loop needs processing
68    // after RewriteLoopBodyWithConditionConstant rewrites first loop.
69    std::vector<Loop*> LoopProcessWorklist;
70    SmallPtrSet<Value *,8> UnswitchedVals;
71
72    bool OptimizeForSize;
73    bool redoLoop;
74  public:
75    static char ID; // Pass ID, replacement for typeid
76    explicit LoopUnswitch(bool Os = false) :
77      LoopPass((intptr_t)&ID), OptimizeForSize(Os), redoLoop(false) {}
78
79    bool runOnLoop(Loop *L, LPPassManager &LPM);
80    bool processLoop(Loop *L);
81
82    /// This transformation requires natural loop information & requires that
83    /// loop preheaders be inserted into the CFG...
84    ///
85    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86      AU.addRequiredID(LoopSimplifyID);
87      AU.addPreservedID(LoopSimplifyID);
88      AU.addRequired<LoopInfo>();
89      AU.addPreserved<LoopInfo>();
90      AU.addRequiredID(LCSSAID);
91      AU.addPreservedID(LCSSAID);
92      AU.addPreserved<DominatorTree>();
93      AU.addPreserved<DominanceFrontier>();
94    }
95
96  private:
97
98    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
99    /// remove it.
100    void RemoveLoopFromWorklist(Loop *L) {
101      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
102                                                 LoopProcessWorklist.end(), L);
103      if (I != LoopProcessWorklist.end())
104        LoopProcessWorklist.erase(I);
105    }
106
107    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L);
108    unsigned getLoopUnswitchCost(Loop *L, Value *LIC);
109    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
110                                  BasicBlock *ExitBlock);
111    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
112
113    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
114                                              Constant *Val, bool isEqual);
115
116    void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
117                                        BasicBlock *TrueDest,
118                                        BasicBlock *FalseDest,
119                                        Instruction *InsertPt);
120
121    void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
122    void RemoveBlockIfDead(BasicBlock *BB,
123                           std::vector<Instruction*> &Worklist, Loop *l);
124    void RemoveLoopFromHierarchy(Loop *L);
125  };
126  char LoopUnswitch::ID = 0;
127  RegisterPass<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
128}
129
130LoopPass *llvm::createLoopUnswitchPass(bool Os) {
131  return new LoopUnswitch(Os);
132}
133
134/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
135/// invariant in the loop, or has an invariant piece, return the invariant.
136/// Otherwise, return null.
137static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
138  // Constants should be folded, not unswitched on!
139  if (isa<Constant>(Cond)) return false;
140
141  // TODO: Handle: br (VARIANT|INVARIANT).
142  // TODO: Hoist simple expressions out of loops.
143  if (L->isLoopInvariant(Cond)) return Cond;
144
145  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
146    if (BO->getOpcode() == Instruction::And ||
147        BO->getOpcode() == Instruction::Or) {
148      // If either the left or right side is invariant, we can unswitch on this,
149      // which will cause the branch to go away in one loop and the condition to
150      // simplify in the other one.
151      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
152        return LHS;
153      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
154        return RHS;
155    }
156
157      return 0;
158}
159
160bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
161  LI = &getAnalysis<LoopInfo>();
162  LPM = &LPM_Ref;
163  bool Changed = false;
164
165  do {
166    redoLoop = false;
167    Changed |= processLoop(L);
168  } while(redoLoop);
169
170  return Changed;
171}
172
173/// processLoop - Do actual work and unswitch loop if possible and profitable.
174bool LoopUnswitch::processLoop(Loop *L) {
175  assert(L->isLCSSAForm());
176  bool Changed = false;
177
178  // Loop over all of the basic blocks in the loop.  If we find an interior
179  // block that is branching on a loop-invariant condition, we can unswitch this
180  // loop.
181  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
182       I != E; ++I) {
183    TerminatorInst *TI = (*I)->getTerminator();
184    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
185      // If this isn't branching on an invariant condition, we can't unswitch
186      // it.
187      if (BI->isConditional()) {
188        // See if this, or some part of it, is loop invariant.  If so, we can
189        // unswitch on it if we desire.
190        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), L, Changed);
191        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(),
192                                             L)) {
193          ++NumBranches;
194          return true;
195        }
196      }
197    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
198      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
199      if (LoopCond && SI->getNumCases() > 1) {
200        // Find a value to unswitch on:
201        // FIXME: this should chose the most expensive case!
202        Constant *UnswitchVal = SI->getCaseValue(1);
203        // Do not process same value again and again.
204        if (!UnswitchedVals.insert(UnswitchVal))
205          continue;
206
207        if (UnswitchIfProfitable(LoopCond, UnswitchVal, L)) {
208          ++NumSwitches;
209          return true;
210        }
211      }
212    }
213
214    // Scan the instructions to check for unswitchable values.
215    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
216         BBI != E; ++BBI)
217      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
218        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
219        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(),
220                                             L)) {
221          ++NumSelects;
222          return true;
223        }
224      }
225  }
226
227  assert(L->isLCSSAForm());
228
229  return Changed;
230}
231
232/// isTrivialLoopExitBlock - Check to see if all paths from BB either:
233///   1. Exit the loop with no side effects.
234///   2. Branch to the latch block with no side-effects.
235///
236/// If these conditions are true, we return true and set ExitBB to the block we
237/// exit through.
238///
239static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
240                                         BasicBlock *&ExitBB,
241                                         std::set<BasicBlock*> &Visited) {
242  if (!Visited.insert(BB).second) {
243    // Already visited and Ok, end of recursion.
244    return true;
245  } else if (!L->contains(BB)) {
246    // Otherwise, this is a loop exit, this is fine so long as this is the
247    // first exit.
248    if (ExitBB != 0) return false;
249    ExitBB = BB;
250    return true;
251  }
252
253  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
254  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
255    // Check to see if the successor is a trivial loop exit.
256    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
257      return false;
258  }
259
260  // Okay, everything after this looks good, check to make sure that this block
261  // doesn't include any side effects.
262  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
263    if (I->mayWriteToMemory())
264      return false;
265
266  return true;
267}
268
269/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
270/// leads to an exit from the specified loop, and has no side-effects in the
271/// process.  If so, return the block that is exited to, otherwise return null.
272static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
273  std::set<BasicBlock*> Visited;
274  Visited.insert(L->getHeader());  // Branches to header are ok.
275  BasicBlock *ExitBB = 0;
276  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
277    return ExitBB;
278  return 0;
279}
280
281/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
282/// trivial: that is, that the condition controls whether or not the loop does
283/// anything at all.  If this is a trivial condition, unswitching produces no
284/// code duplications (equivalently, it produces a simpler loop and a new empty
285/// loop, which gets deleted).
286///
287/// If this is a trivial condition, return true, otherwise return false.  When
288/// returning true, this sets Cond and Val to the condition that controls the
289/// trivial condition: when Cond dynamically equals Val, the loop is known to
290/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
291/// Cond == Val.
292///
293static bool IsTrivialUnswitchCondition(Loop *L, Value *Cond, Constant **Val = 0,
294                                       BasicBlock **LoopExit = 0) {
295  BasicBlock *Header = L->getHeader();
296  TerminatorInst *HeaderTerm = Header->getTerminator();
297
298  BasicBlock *LoopExitBB = 0;
299  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
300    // If the header block doesn't end with a conditional branch on Cond, we
301    // can't handle it.
302    if (!BI->isConditional() || BI->getCondition() != Cond)
303      return false;
304
305    // Check to see if a successor of the branch is guaranteed to go to the
306    // latch block or exit through a one exit block without having any
307    // side-effects.  If so, determine the value of Cond that causes it to do
308    // this.
309    if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(0)))) {
310      if (Val) *Val = ConstantInt::getTrue();
311    } else if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(1)))) {
312      if (Val) *Val = ConstantInt::getFalse();
313    }
314  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
315    // If this isn't a switch on Cond, we can't handle it.
316    if (SI->getCondition() != Cond) return false;
317
318    // Check to see if a successor of the switch is guaranteed to go to the
319    // latch block or exit through a one exit block without having any
320    // side-effects.  If so, determine the value of Cond that causes it to do
321    // this.  Note that we can't trivially unswitch on the default case.
322    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
323      if ((LoopExitBB = isTrivialLoopExitBlock(L, SI->getSuccessor(i)))) {
324        // Okay, we found a trivial case, remember the value that is trivial.
325        if (Val) *Val = SI->getCaseValue(i);
326        break;
327      }
328  }
329
330  // If we didn't find a single unique LoopExit block, or if the loop exit block
331  // contains phi nodes, this isn't trivial.
332  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
333    return false;   // Can't handle this.
334
335  if (LoopExit) *LoopExit = LoopExitBB;
336
337  // We already know that nothing uses any scalar values defined inside of this
338  // loop.  As such, we just have to check to see if this loop will execute any
339  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
340  // part of the loop that the code *would* execute.  We already checked the
341  // tail, check the header now.
342  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
343    if (I->mayWriteToMemory())
344      return false;
345  return true;
346}
347
348/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
349/// we choose to unswitch the specified loop on the specified value.
350///
351unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) {
352  // If the condition is trivial, always unswitch.  There is no code growth for
353  // this case.
354  if (IsTrivialUnswitchCondition(L, LIC))
355    return 0;
356
357  // FIXME: This is really overly conservative.  However, more liberal
358  // estimations have thus far resulted in excessive unswitching, which is bad
359  // both in compile time and in code size.  This should be replaced once
360  // someone figures out how a good estimation.
361  return L->getBlocks().size();
362
363  unsigned Cost = 0;
364  // FIXME: this is brain dead.  It should take into consideration code
365  // shrinkage.
366  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
367       I != E; ++I) {
368    BasicBlock *BB = *I;
369    // Do not include empty blocks in the cost calculation.  This happen due to
370    // loop canonicalization and will be removed.
371    if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
372      continue;
373
374    // Count basic blocks.
375    ++Cost;
376  }
377
378  return Cost;
379}
380
381/// UnswitchIfProfitable - We have found that we can unswitch L when
382/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
383/// unswitch the loop, reprocess the pieces, then return true.
384bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L){
385  // Check to see if it would be profitable to unswitch this loop.
386  unsigned Cost = getLoopUnswitchCost(L, LoopCond);
387
388  // Do not do non-trivial unswitch while optimizing for size.
389  if (Cost && OptimizeForSize)
390    return false;
391
392  if (Cost > Threshold) {
393    // FIXME: this should estimate growth by the amount of code shared by the
394    // resultant unswitched loops.
395    //
396    DOUT << "NOT unswitching loop %"
397         << L->getHeader()->getName() << ", cost too high: "
398         << L->getBlocks().size() << "\n";
399    return false;
400  }
401
402  // If this is a trivial condition to unswitch (which results in no code
403  // duplication), do it now.
404  Constant *CondVal;
405  BasicBlock *ExitBlock;
406  if (IsTrivialUnswitchCondition(L, LoopCond, &CondVal, &ExitBlock)) {
407    UnswitchTrivialCondition(L, LoopCond, CondVal, ExitBlock);
408  } else {
409    UnswitchNontrivialCondition(LoopCond, Val, L);
410  }
411
412  return true;
413}
414
415// RemapInstruction - Convert the instruction operands from referencing the
416// current values into those specified by ValueMap.
417//
418static inline void RemapInstruction(Instruction *I,
419                                    DenseMap<const Value *, Value*> &ValueMap) {
420  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
421    Value *Op = I->getOperand(op);
422    DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
423    if (It != ValueMap.end()) Op = It->second;
424    I->setOperand(op, Op);
425  }
426}
427
428// CloneDomInfo - NewBB is cloned from Orig basic block. Now clone Dominator Info.
429//
430// If Orig block's immediate dominator is mapped in VM then use corresponding
431// immediate dominator from the map. Otherwise Orig block's dominator is also
432// NewBB's dominator.
433//
434// OrigPreheader is loop pre-header before this pass started
435// updating CFG. NewPrehader is loops new pre-header. However, after CFG
436// manipulation, loop L may not exist. So rely on input parameter NewPreheader.
437void CloneDomInfo(BasicBlock *NewBB, BasicBlock *Orig,
438                  BasicBlock *NewPreheader, BasicBlock *OrigPreheader,
439                  BasicBlock *OrigHeader,
440                  DominatorTree *DT, DominanceFrontier *DF,
441                  DenseMap<const Value*, Value*> &VM) {
442
443  // If NewBB alreay has found its place in domiantor tree then no need to do
444  // anything.
445  if (DT->getNode(NewBB))
446    return;
447
448  // If Orig does not have any immediate domiantor then its clone, NewBB, does
449  // not need any immediate dominator.
450  DomTreeNode *OrigNode = DT->getNode(Orig);
451  if (!OrigNode)
452    return;
453  DomTreeNode *OrigIDomNode = OrigNode->getIDom();
454  if (!OrigIDomNode)
455    return;
456
457  BasicBlock *OrigIDom = NULL;
458
459  // If Orig is original loop header then its immediate dominator is
460  // NewPreheader.
461  if (Orig == OrigHeader)
462    OrigIDom = NewPreheader;
463
464  // If Orig is new pre-header then its immediate dominator is
465  // original pre-header.
466  else if (Orig == NewPreheader)
467    OrigIDom = OrigPreheader;
468
469  // Other as DT to find Orig's immediate dominator.
470  else
471     OrigIDom = OrigIDomNode->getBlock();
472
473  // Initially use Orig's immediate dominator as NewBB's immediate dominator.
474  BasicBlock *NewIDom = OrigIDom;
475  DenseMap<const Value*, Value*>::iterator I = VM.find(OrigIDom);
476  if (I != VM.end()) {
477    NewIDom = cast<BasicBlock>(I->second);
478
479    // If NewIDom does not have corresponding dominatore tree node then
480    // get one.
481    if (!DT->getNode(NewIDom))
482      CloneDomInfo(NewIDom, OrigIDom, NewPreheader, OrigPreheader,
483                   OrigHeader, DT, DF, VM);
484  }
485
486  DT->addNewBlock(NewBB, NewIDom);
487
488  // Copy cloned dominance frontiner set
489  DominanceFrontier::DomSetType NewDFSet;
490  if (DF) {
491    DominanceFrontier::iterator DFI = DF->find(Orig);
492    if ( DFI != DF->end()) {
493      DominanceFrontier::DomSetType S = DFI->second;
494      for (DominanceFrontier::DomSetType::iterator I = S.begin(), E = S.end();
495           I != E; ++I) {
496        BasicBlock *BB = *I;
497        DenseMap<const Value*, Value*>::iterator IDM = VM.find(BB);
498        if (IDM != VM.end())
499          NewDFSet.insert(cast<BasicBlock>(IDM->second));
500        else
501          NewDFSet.insert(BB);
502      }
503    }
504    DF->addBasicBlock(NewBB, NewDFSet);
505  }
506}
507
508/// CloneLoop - Recursively clone the specified loop and all of its children,
509/// mapping the blocks with the specified map.
510static Loop *CloneLoop(Loop *L, Loop *PL, DenseMap<const Value*, Value*> &VM,
511                       LoopInfo *LI, LPPassManager *LPM) {
512  Loop *New = new Loop();
513
514  LPM->insertLoop(New, PL);
515
516  // Add all of the blocks in L to the new loop.
517  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
518       I != E; ++I)
519    if (LI->getLoopFor(*I) == L)
520      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
521
522  // Add all of the subloops to the new loop.
523  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
524    CloneLoop(*I, New, VM, LI, LPM);
525
526  return New;
527}
528
529/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
530/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
531/// code immediately before InsertPt.
532void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
533                                                  BasicBlock *TrueDest,
534                                                  BasicBlock *FalseDest,
535                                                  Instruction *InsertPt) {
536  // Insert a conditional branch on LIC to the two preheaders.  The original
537  // code is the true version and the new code is the false version.
538  Value *BranchVal = LIC;
539  if (!isa<ConstantInt>(Val) || Val->getType() != Type::Int1Ty)
540    BranchVal = new ICmpInst(ICmpInst::ICMP_EQ, LIC, Val, "tmp", InsertPt);
541  else if (Val != ConstantInt::getTrue())
542    // We want to enter the new loop when the condition is true.
543    std::swap(TrueDest, FalseDest);
544
545  // Insert the new branch.
546  BranchInst *BRI = new BranchInst(TrueDest, FalseDest, BranchVal, InsertPt);
547
548  // Update dominator info.
549  // BranchVal is a new preheader so it dominates true and false destination
550  // loop headers.
551  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
552    DT->changeImmediateDominator(TrueDest, BRI->getParent());
553    DT->changeImmediateDominator(FalseDest, BRI->getParent());
554  }
555  // No need to update DominanceFrontier. BRI->getParent() dominated TrueDest
556  // and FalseDest anyway. Now it immediately dominates them.
557}
558
559
560/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
561/// condition in it (a cond branch from its header block to its latch block,
562/// where the path through the loop that doesn't execute its body has no
563/// side-effects), unswitch it.  This doesn't involve any code duplication, just
564/// moving the conditional branch outside of the loop and updating loop info.
565void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
566                                            Constant *Val,
567                                            BasicBlock *ExitBlock) {
568  DOUT << "loop-unswitch: Trivial-Unswitch loop %"
569       << L->getHeader()->getName() << " [" << L->getBlocks().size()
570       << " blocks] in Function " << L->getHeader()->getParent()->getName()
571       << " on cond: " << *Val << " == " << *Cond << "\n";
572
573  // First step, split the preheader, so that we know that there is a safe place
574  // to insert the conditional branch.  We will change 'OrigPH' to have a
575  // conditional branch on Cond.
576  BasicBlock *OrigPH = L->getLoopPreheader();
577  BasicBlock *NewPH = SplitEdge(OrigPH, L->getHeader(), this);
578
579  // Now that we have a place to insert the conditional branch, create a place
580  // to branch to: this is the exit block out of the loop that we should
581  // short-circuit to.
582
583  // Split this block now, so that the loop maintains its exit block, and so
584  // that the jump from the preheader can execute the contents of the exit block
585  // without actually branching to it (the exit block should be dominated by the
586  // loop header, not the preheader).
587  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
588  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
589
590  // Okay, now we have a position to branch from and a position to branch to,
591  // insert the new conditional branch.
592  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
593                                 OrigPH->getTerminator());
594  OrigPH->getTerminator()->eraseFromParent();
595  LPM->deleteSimpleAnalysisValue(OrigPH->getTerminator(), L);
596
597  // We need to reprocess this loop, it could be unswitched again.
598  redoLoop = true;
599
600  // Now that we know that the loop is never entered when this condition is a
601  // particular value, rewrite the loop with this info.  We know that this will
602  // at least eliminate the old branch.
603  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
604  ++NumTrivial;
605}
606
607/// VersionLoop - We determined that the loop is profitable to unswitch when LIC
608/// equal Val.  Split it into loop versions and test the condition outside of
609/// either loop.  Return the loops created as Out1/Out2.
610void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
611                                               Loop *L) {
612  Function *F = L->getHeader()->getParent();
613  DOUT << "loop-unswitch: Unswitching loop %"
614       << L->getHeader()->getName() << " [" << L->getBlocks().size()
615       << " blocks] in Function " << F->getName()
616       << " when '" << *Val << "' == " << *LIC << "\n";
617
618  // LoopBlocks contains all of the basic blocks of the loop, including the
619  // preheader of the loop, the body of the loop, and the exit blocks of the
620  // loop, in that order.
621  std::vector<BasicBlock*> LoopBlocks;
622
623  // First step, split the preheader and exit blocks, and add these blocks to
624  // the LoopBlocks list.
625  BasicBlock *OrigHeader = L->getHeader();
626  BasicBlock *OrigPreheader = L->getLoopPreheader();
627  BasicBlock *NewPreheader = SplitEdge(OrigPreheader, L->getHeader(), this);
628  LoopBlocks.push_back(NewPreheader);
629
630  // We want the loop to come after the preheader, but before the exit blocks.
631  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
632
633  std::vector<BasicBlock*> ExitBlocks;
634  L->getUniqueExitBlocks(ExitBlocks);
635
636  // Split all of the edges from inside the loop to their exit blocks.  Update
637  // the appropriate Phi nodes as we do so.
638  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
639    BasicBlock *ExitBlock = ExitBlocks[i];
640    std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
641
642    for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
643      BasicBlock* MiddleBlock = SplitEdge(Preds[j], ExitBlock, this);
644      BasicBlock* StartBlock = Preds[j];
645      BasicBlock* EndBlock;
646      if (MiddleBlock->getSinglePredecessor() == ExitBlock) {
647        EndBlock = MiddleBlock;
648        MiddleBlock = EndBlock->getSinglePredecessor();;
649      } else {
650        EndBlock = ExitBlock;
651      }
652
653      std::set<PHINode*> InsertedPHIs;
654      PHINode* OldLCSSA = 0;
655      for (BasicBlock::iterator I = EndBlock->begin();
656           (OldLCSSA = dyn_cast<PHINode>(I)); ++I) {
657        Value* OldValue = OldLCSSA->getIncomingValueForBlock(MiddleBlock);
658        PHINode* NewLCSSA = new PHINode(OldLCSSA->getType(),
659                                        OldLCSSA->getName() + ".us-lcssa",
660                                        MiddleBlock->getTerminator());
661        NewLCSSA->addIncoming(OldValue, StartBlock);
662        OldLCSSA->setIncomingValue(OldLCSSA->getBasicBlockIndex(MiddleBlock),
663                                   NewLCSSA);
664        InsertedPHIs.insert(NewLCSSA);
665      }
666
667      BasicBlock::iterator InsertPt = EndBlock->begin();
668      while (dyn_cast<PHINode>(InsertPt)) ++InsertPt;
669      for (BasicBlock::iterator I = MiddleBlock->begin();
670         (OldLCSSA = dyn_cast<PHINode>(I)) && InsertedPHIs.count(OldLCSSA) == 0;
671         ++I) {
672        PHINode *NewLCSSA = new PHINode(OldLCSSA->getType(),
673                                        OldLCSSA->getName() + ".us-lcssa",
674                                        InsertPt);
675        OldLCSSA->replaceAllUsesWith(NewLCSSA);
676        NewLCSSA->addIncoming(OldLCSSA, MiddleBlock);
677      }
678    }
679  }
680
681  // The exit blocks may have been changed due to edge splitting, recompute.
682  ExitBlocks.clear();
683  L->getUniqueExitBlocks(ExitBlocks);
684
685  // Add exit blocks to the loop blocks.
686  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
687
688  // Next step, clone all of the basic blocks that make up the loop (including
689  // the loop preheader and exit blocks), keeping track of the mapping between
690  // the instructions and blocks.
691  std::vector<BasicBlock*> NewBlocks;
692  NewBlocks.reserve(LoopBlocks.size());
693  DenseMap<const Value*, Value*> ValueMap;
694  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
695    BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
696    NewBlocks.push_back(New);
697    ValueMap[LoopBlocks[i]] = New;  // Keep the BB mapping.
698    LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], New, L);
699  }
700
701  // Update dominator info
702  DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>();
703  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>())
704    for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
705      BasicBlock *LBB = LoopBlocks[i];
706      BasicBlock *NBB = NewBlocks[i];
707      CloneDomInfo(NBB, LBB, NewPreheader, OrigPreheader,
708                   OrigHeader, DT, DF, ValueMap);
709    }
710
711  // Splice the newly inserted blocks into the function right before the
712  // original preheader.
713  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
714                                NewBlocks[0], F->end());
715
716  // Now we create the new Loop object for the versioned loop.
717  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI, LPM);
718  Loop *ParentLoop = L->getParentLoop();
719  if (ParentLoop) {
720    // Make sure to add the cloned preheader and exit blocks to the parent loop
721    // as well.
722    ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
723  }
724
725  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
726    BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
727    // The new exit block should be in the same loop as the old one.
728    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
729      ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
730
731    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
732           "Exit block should have been split to have one successor!");
733    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
734
735    // If the successor of the exit block had PHI nodes, add an entry for
736    // NewExit.
737    PHINode *PN;
738    for (BasicBlock::iterator I = ExitSucc->begin();
739         (PN = dyn_cast<PHINode>(I)); ++I) {
740      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
741      DenseMap<const Value *, Value*>::iterator It = ValueMap.find(V);
742      if (It != ValueMap.end()) V = It->second;
743      PN->addIncoming(V, NewExit);
744    }
745  }
746
747  // Rewrite the code to refer to itself.
748  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
749    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
750           E = NewBlocks[i]->end(); I != E; ++I)
751      RemapInstruction(I, ValueMap);
752
753  // Rewrite the original preheader to select between versions of the loop.
754  BranchInst *OldBR = cast<BranchInst>(OrigPreheader->getTerminator());
755  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
756         "Preheader splitting did not work correctly!");
757
758  // Emit the new branch that selects between the two versions of this loop.
759  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
760  OldBR->eraseFromParent();
761  LPM->deleteSimpleAnalysisValue(OldBR, L);
762
763  LoopProcessWorklist.push_back(NewLoop);
764  redoLoop = true;
765
766  // Now we rewrite the original code to know that the condition is true and the
767  // new code to know that the condition is false.
768  RewriteLoopBodyWithConditionConstant(L      , LIC, Val, false);
769
770  // It's possible that simplifying one loop could cause the other to be
771  // deleted.  If so, don't simplify it.
772  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop)
773    RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
774}
775
776/// RemoveFromWorklist - Remove all instances of I from the worklist vector
777/// specified.
778static void RemoveFromWorklist(Instruction *I,
779                               std::vector<Instruction*> &Worklist) {
780  std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
781                                                     Worklist.end(), I);
782  while (WI != Worklist.end()) {
783    unsigned Offset = WI-Worklist.begin();
784    Worklist.erase(WI);
785    WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
786  }
787}
788
789/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
790/// program, replacing all uses with V and update the worklist.
791static void ReplaceUsesOfWith(Instruction *I, Value *V,
792                              std::vector<Instruction*> &Worklist,
793                              Loop *L, LPPassManager *LPM) {
794  DOUT << "Replace with '" << *V << "': " << *I;
795
796  // Add uses to the worklist, which may be dead now.
797  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
798    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
799      Worklist.push_back(Use);
800
801  // Add users to the worklist which may be simplified now.
802  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
803       UI != E; ++UI)
804    Worklist.push_back(cast<Instruction>(*UI));
805  I->replaceAllUsesWith(V);
806  I->eraseFromParent();
807  LPM->deleteSimpleAnalysisValue(I, L);
808  RemoveFromWorklist(I, Worklist);
809  ++NumSimplify;
810}
811
812/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
813/// information, and remove any dead successors it has.
814///
815void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
816                                     std::vector<Instruction*> &Worklist,
817                                     Loop *L) {
818  if (pred_begin(BB) != pred_end(BB)) {
819    // This block isn't dead, since an edge to BB was just removed, see if there
820    // are any easy simplifications we can do now.
821    if (BasicBlock *Pred = BB->getSinglePredecessor()) {
822      // If it has one pred, fold phi nodes in BB.
823      while (isa<PHINode>(BB->begin()))
824        ReplaceUsesOfWith(BB->begin(),
825                          cast<PHINode>(BB->begin())->getIncomingValue(0),
826                          Worklist, L, LPM);
827
828      // If this is the header of a loop and the only pred is the latch, we now
829      // have an unreachable loop.
830      if (Loop *L = LI->getLoopFor(BB))
831        if (L->getHeader() == BB && L->contains(Pred)) {
832          // Remove the branch from the latch to the header block, this makes
833          // the header dead, which will make the latch dead (because the header
834          // dominates the latch).
835          Pred->getTerminator()->eraseFromParent();
836          LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
837          new UnreachableInst(Pred);
838
839          // The loop is now broken, remove it from LI.
840          RemoveLoopFromHierarchy(L);
841
842          // Reprocess the header, which now IS dead.
843          RemoveBlockIfDead(BB, Worklist, L);
844          return;
845        }
846
847      // If pred ends in a uncond branch, add uncond branch to worklist so that
848      // the two blocks will get merged.
849      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
850        if (BI->isUnconditional())
851          Worklist.push_back(BI);
852    }
853    return;
854  }
855
856  DOUT << "Nuking dead block: " << *BB;
857
858  // Remove the instructions in the basic block from the worklist.
859  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
860    RemoveFromWorklist(I, Worklist);
861
862    // Anything that uses the instructions in this basic block should have their
863    // uses replaced with undefs.
864    if (!I->use_empty())
865      I->replaceAllUsesWith(UndefValue::get(I->getType()));
866  }
867
868  // If this is the edge to the header block for a loop, remove the loop and
869  // promote all subloops.
870  if (Loop *BBLoop = LI->getLoopFor(BB)) {
871    if (BBLoop->getLoopLatch() == BB)
872      RemoveLoopFromHierarchy(BBLoop);
873  }
874
875  // Remove the block from the loop info, which removes it from any loops it
876  // was in.
877  LI->removeBlock(BB);
878
879
880  // Remove phi node entries in successors for this block.
881  TerminatorInst *TI = BB->getTerminator();
882  std::vector<BasicBlock*> Succs;
883  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
884    Succs.push_back(TI->getSuccessor(i));
885    TI->getSuccessor(i)->removePredecessor(BB);
886  }
887
888  // Unique the successors, remove anything with multiple uses.
889  std::sort(Succs.begin(), Succs.end());
890  Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
891
892  // Remove the basic block, including all of the instructions contained in it.
893  BB->eraseFromParent();
894  LPM->deleteSimpleAnalysisValue(BB, L);
895  // Remove successor blocks here that are not dead, so that we know we only
896  // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
897  // then getting removed before we revisit them, which is badness.
898  //
899  for (unsigned i = 0; i != Succs.size(); ++i)
900    if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
901      // One exception is loop headers.  If this block was the preheader for a
902      // loop, then we DO want to visit the loop so the loop gets deleted.
903      // We know that if the successor is a loop header, that this loop had to
904      // be the preheader: the case where this was the latch block was handled
905      // above and headers can only have two predecessors.
906      if (!LI->isLoopHeader(Succs[i])) {
907        Succs.erase(Succs.begin()+i);
908        --i;
909      }
910    }
911
912  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
913    RemoveBlockIfDead(Succs[i], Worklist, L);
914}
915
916/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
917/// become unwrapped, either because the backedge was deleted, or because the
918/// edge into the header was removed.  If the edge into the header from the
919/// latch block was removed, the loop is unwrapped but subloops are still alive,
920/// so they just reparent loops.  If the loops are actually dead, they will be
921/// removed later.
922void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
923  LPM->deleteLoopFromQueue(L);
924  RemoveLoopFromWorklist(L);
925}
926
927
928
929// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
930// the value specified by Val in the specified loop, or we know it does NOT have
931// that value.  Rewrite any uses of LIC or of properties correlated to it.
932void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
933                                                        Constant *Val,
934                                                        bool IsEqual) {
935  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
936
937  // FIXME: Support correlated properties, like:
938  //  for (...)
939  //    if (li1 < li2)
940  //      ...
941  //    if (li1 > li2)
942  //      ...
943
944  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
945  // selects, switches.
946  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
947  std::vector<Instruction*> Worklist;
948
949  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
950  // in the loop with the appropriate one directly.
951  if (IsEqual || (isa<ConstantInt>(Val) && Val->getType() == Type::Int1Ty)) {
952    Value *Replacement;
953    if (IsEqual)
954      Replacement = Val;
955    else
956      Replacement = ConstantInt::get(Type::Int1Ty,
957                                     !cast<ConstantInt>(Val)->getZExtValue());
958
959    for (unsigned i = 0, e = Users.size(); i != e; ++i)
960      if (Instruction *U = cast<Instruction>(Users[i])) {
961        if (!L->contains(U->getParent()))
962          continue;
963        U->replaceUsesOfWith(LIC, Replacement);
964        Worklist.push_back(U);
965      }
966  } else {
967    // Otherwise, we don't know the precise value of LIC, but we do know that it
968    // is certainly NOT "Val".  As such, simplify any uses in the loop that we
969    // can.  This case occurs when we unswitch switch statements.
970    for (unsigned i = 0, e = Users.size(); i != e; ++i)
971      if (Instruction *U = cast<Instruction>(Users[i])) {
972        if (!L->contains(U->getParent()))
973          continue;
974
975        Worklist.push_back(U);
976
977        // If we know that LIC is not Val, use this info to simplify code.
978        if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
979          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
980            if (SI->getCaseValue(i) == Val) {
981              // Found a dead case value.  Don't remove PHI nodes in the
982              // successor if they become single-entry, those PHI nodes may
983              // be in the Users list.
984
985              // FIXME: This is a hack.  We need to keep the successor around
986              // and hooked up so as to preserve the loop structure, because
987              // trying to update it is complicated.  So instead we preserve the
988              // loop structure and put the block on an dead code path.
989
990              BasicBlock* Old = SI->getParent();
991              BasicBlock* Split = SplitBlock(Old, SI, this);
992
993              Instruction* OldTerm = Old->getTerminator();
994              new BranchInst(Split, SI->getSuccessor(i),
995                             ConstantInt::getTrue(), OldTerm);
996
997              Old->getTerminator()->eraseFromParent();
998
999
1000              PHINode *PN;
1001              for (BasicBlock::iterator II = SI->getSuccessor(i)->begin();
1002                   (PN = dyn_cast<PHINode>(II)); ++II) {
1003                Value *InVal = PN->removeIncomingValue(Split, false);
1004                PN->addIncoming(InVal, Old);
1005              }
1006
1007              SI->removeCase(i);
1008              break;
1009            }
1010          }
1011        }
1012
1013        // TODO: We could do other simplifications, for example, turning
1014        // LIC == Val -> false.
1015      }
1016  }
1017
1018  SimplifyCode(Worklist, L);
1019}
1020
1021/// SimplifyCode - Okay, now that we have simplified some instructions in the
1022/// loop, walk over it and constant prop, dce, and fold control flow where
1023/// possible.  Note that this is effectively a very simple loop-structure-aware
1024/// optimizer.  During processing of this loop, L could very well be deleted, so
1025/// it must not be used.
1026///
1027/// FIXME: When the loop optimizer is more mature, separate this out to a new
1028/// pass.
1029///
1030void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1031  while (!Worklist.empty()) {
1032    Instruction *I = Worklist.back();
1033    Worklist.pop_back();
1034
1035    // Simple constant folding.
1036    if (Constant *C = ConstantFoldInstruction(I)) {
1037      ReplaceUsesOfWith(I, C, Worklist, L, LPM);
1038      continue;
1039    }
1040
1041    // Simple DCE.
1042    if (isInstructionTriviallyDead(I)) {
1043      DOUT << "Remove dead instruction '" << *I;
1044
1045      // Add uses to the worklist, which may be dead now.
1046      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1047        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1048          Worklist.push_back(Use);
1049      I->eraseFromParent();
1050      LPM->deleteSimpleAnalysisValue(I, L);
1051      RemoveFromWorklist(I, Worklist);
1052      ++NumSimplify;
1053      continue;
1054    }
1055
1056    // Special case hacks that appear commonly in unswitched code.
1057    switch (I->getOpcode()) {
1058    case Instruction::Select:
1059      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(0))) {
1060        ReplaceUsesOfWith(I, I->getOperand(!CB->getZExtValue()+1), Worklist, L, LPM);
1061        continue;
1062      }
1063      break;
1064    case Instruction::And:
1065      if (isa<ConstantInt>(I->getOperand(0)) &&
1066          I->getOperand(0)->getType() == Type::Int1Ty)   // constant -> RHS
1067        cast<BinaryOperator>(I)->swapOperands();
1068      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1069        if (CB->getType() == Type::Int1Ty) {
1070          if (CB->isOne())      // X & 1 -> X
1071            ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
1072          else                  // X & 0 -> 0
1073            ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
1074          continue;
1075        }
1076      break;
1077    case Instruction::Or:
1078      if (isa<ConstantInt>(I->getOperand(0)) &&
1079          I->getOperand(0)->getType() == Type::Int1Ty)   // constant -> RHS
1080        cast<BinaryOperator>(I)->swapOperands();
1081      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1082        if (CB->getType() == Type::Int1Ty) {
1083          if (CB->isOne())   // X | 1 -> 1
1084            ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
1085          else                  // X | 0 -> X
1086            ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
1087          continue;
1088        }
1089      break;
1090    case Instruction::Br: {
1091      BranchInst *BI = cast<BranchInst>(I);
1092      if (BI->isUnconditional()) {
1093        // If BI's parent is the only pred of the successor, fold the two blocks
1094        // together.
1095        BasicBlock *Pred = BI->getParent();
1096        BasicBlock *Succ = BI->getSuccessor(0);
1097        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1098        if (!SinglePred) continue;  // Nothing to do.
1099        assert(SinglePred == Pred && "CFG broken");
1100
1101        DOUT << "Merging blocks: " << Pred->getName() << " <- "
1102             << Succ->getName() << "\n";
1103
1104        // Resolve any single entry PHI nodes in Succ.
1105        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1106          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1107
1108        // Move all of the successor contents from Succ to Pred.
1109        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1110                                   Succ->end());
1111        BI->eraseFromParent();
1112        LPM->deleteSimpleAnalysisValue(BI, L);
1113        RemoveFromWorklist(BI, Worklist);
1114
1115        // If Succ has any successors with PHI nodes, update them to have
1116        // entries coming from Pred instead of Succ.
1117        Succ->replaceAllUsesWith(Pred);
1118
1119        // Remove Succ from the loop tree.
1120        LI->removeBlock(Succ);
1121        Succ->eraseFromParent();
1122        LPM->deleteSimpleAnalysisValue(Succ, L);
1123        ++NumSimplify;
1124      } else if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1125        // Conditional branch.  Turn it into an unconditional branch, then
1126        // remove dead blocks.
1127        break;  // FIXME: Enable.
1128
1129        DOUT << "Folded branch: " << *BI;
1130        BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1131        BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1132        DeadSucc->removePredecessor(BI->getParent(), true);
1133        Worklist.push_back(new BranchInst(LiveSucc, BI));
1134        BI->eraseFromParent();
1135        LPM->deleteSimpleAnalysisValue(BI, L);
1136        RemoveFromWorklist(BI, Worklist);
1137        ++NumSimplify;
1138
1139        RemoveBlockIfDead(DeadSucc, Worklist, L);
1140      }
1141      break;
1142    }
1143    }
1144  }
1145}
1146