LoopUnswitch.cpp revision fd98dc9a76b0b00b3f076fb9c09f698b1b592ab1
1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "loop-unswitch"
30#include "llvm/Transforms/Scalar.h"
31#include "llvm/Constants.h"
32#include "llvm/DerivedTypes.h"
33#include "llvm/Function.h"
34#include "llvm/Instructions.h"
35#include "llvm/Analysis/ConstantFolding.h"
36#include "llvm/Analysis/LoopInfo.h"
37#include "llvm/Analysis/LoopPass.h"
38#include "llvm/Transforms/Utils/Cloning.h"
39#include "llvm/Transforms/Utils/Local.h"
40#include "llvm/Transforms/Utils/BasicBlockUtils.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/SmallPtrSet.h"
43#include "llvm/ADT/PostOrderIterator.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include <algorithm>
48#include <set>
49using namespace llvm;
50
51STATISTIC(NumBranches, "Number of branches unswitched");
52STATISTIC(NumSwitches, "Number of switches unswitched");
53STATISTIC(NumSelects , "Number of selects unswitched");
54STATISTIC(NumTrivial , "Number of unswitches that are trivial");
55STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
56
57namespace {
58  cl::opt<unsigned>
59  Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
60            cl::init(10), cl::Hidden);
61
62  class VISIBILITY_HIDDEN LoopUnswitch : public LoopPass {
63    LoopInfo *LI;  // Loop information
64    LPPassManager *LPM;
65
66    // LoopProcessWorklist - Used to check if second loop needs processing
67    // after RewriteLoopBodyWithConditionConstant rewrites first loop.
68    std::vector<Loop*> LoopProcessWorklist;
69    SmallPtrSet<Value *,8> UnswitchedVals;
70
71  public:
72    static char ID; // Pass ID, replacement for typeid
73    LoopUnswitch() : LoopPass((intptr_t)&ID) {}
74
75    bool runOnLoop(Loop *L, LPPassManager &LPM);
76
77    /// This transformation requires natural loop information & requires that
78    /// loop preheaders be inserted into the CFG...
79    ///
80    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
81      AU.addRequiredID(LoopSimplifyID);
82      AU.addPreservedID(LoopSimplifyID);
83      AU.addRequired<LoopInfo>();
84      AU.addPreserved<LoopInfo>();
85      AU.addRequiredID(LCSSAID);
86      AU.addPreservedID(LCSSAID);
87    }
88
89  private:
90    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
91    /// remove it.
92    void RemoveLoopFromWorklist(Loop *L) {
93      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
94                                                 LoopProcessWorklist.end(), L);
95      if (I != LoopProcessWorklist.end())
96        LoopProcessWorklist.erase(I);
97    }
98
99    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L);
100    unsigned getLoopUnswitchCost(Loop *L, Value *LIC);
101    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
102                                  BasicBlock *ExitBlock);
103    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
104    BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To);
105    BasicBlock *SplitBlock(BasicBlock *Old, Instruction *SplitPt);
106
107    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
108                                              Constant *Val, bool isEqual);
109
110    void SimplifyCode(std::vector<Instruction*> &Worklist);
111    void RemoveBlockIfDead(BasicBlock *BB,
112                           std::vector<Instruction*> &Worklist);
113    void RemoveLoopFromHierarchy(Loop *L);
114  };
115  char LoopUnswitch::ID = 0;
116  RegisterPass<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
117}
118
119LoopPass *llvm::createLoopUnswitchPass() { return new LoopUnswitch(); }
120
121/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
122/// invariant in the loop, or has an invariant piece, return the invariant.
123/// Otherwise, return null.
124static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
125  // Constants should be folded, not unswitched on!
126  if (isa<Constant>(Cond)) return false;
127
128  // TODO: Handle: br (VARIANT|INVARIANT).
129  // TODO: Hoist simple expressions out of loops.
130  if (L->isLoopInvariant(Cond)) return Cond;
131
132  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
133    if (BO->getOpcode() == Instruction::And ||
134        BO->getOpcode() == Instruction::Or) {
135      // If either the left or right side is invariant, we can unswitch on this,
136      // which will cause the branch to go away in one loop and the condition to
137      // simplify in the other one.
138      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
139        return LHS;
140      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
141        return RHS;
142    }
143
144      return 0;
145}
146
147bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
148  assert(L->isLCSSAForm());
149  LI = &getAnalysis<LoopInfo>();
150  LPM = &LPM_Ref;
151  bool Changed = false;
152
153  // Loop over all of the basic blocks in the loop.  If we find an interior
154  // block that is branching on a loop-invariant condition, we can unswitch this
155  // loop.
156  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
157       I != E; ++I) {
158    TerminatorInst *TI = (*I)->getTerminator();
159    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
160      // If this isn't branching on an invariant condition, we can't unswitch
161      // it.
162      if (BI->isConditional()) {
163        // See if this, or some part of it, is loop invariant.  If so, we can
164        // unswitch on it if we desire.
165        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), L, Changed);
166        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(),
167                                             L)) {
168          ++NumBranches;
169          return true;
170        }
171      }
172    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
173      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
174      if (LoopCond && SI->getNumCases() > 1) {
175        // Find a value to unswitch on:
176        // FIXME: this should chose the most expensive case!
177        Constant *UnswitchVal = SI->getCaseValue(1);
178        // Do not process same value again and again.
179        if (!UnswitchedVals.insert(UnswitchVal))
180          continue;
181
182        if (UnswitchIfProfitable(LoopCond, UnswitchVal, L)) {
183          ++NumSwitches;
184          return true;
185        }
186      }
187    }
188
189    // Scan the instructions to check for unswitchable values.
190    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
191         BBI != E; ++BBI)
192      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
193        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed);
194        if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(),
195                                             L)) {
196          ++NumSelects;
197          return true;
198        }
199      }
200  }
201
202  assert(L->isLCSSAForm());
203
204  return Changed;
205}
206
207/// isTrivialLoopExitBlock - Check to see if all paths from BB either:
208///   1. Exit the loop with no side effects.
209///   2. Branch to the latch block with no side-effects.
210///
211/// If these conditions are true, we return true and set ExitBB to the block we
212/// exit through.
213///
214static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
215                                         BasicBlock *&ExitBB,
216                                         std::set<BasicBlock*> &Visited) {
217  if (!Visited.insert(BB).second) {
218    // Already visited and Ok, end of recursion.
219    return true;
220  } else if (!L->contains(BB)) {
221    // Otherwise, this is a loop exit, this is fine so long as this is the
222    // first exit.
223    if (ExitBB != 0) return false;
224    ExitBB = BB;
225    return true;
226  }
227
228  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
229  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
230    // Check to see if the successor is a trivial loop exit.
231    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
232      return false;
233  }
234
235  // Okay, everything after this looks good, check to make sure that this block
236  // doesn't include any side effects.
237  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
238    if (I->mayWriteToMemory())
239      return false;
240
241  return true;
242}
243
244/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
245/// leads to an exit from the specified loop, and has no side-effects in the
246/// process.  If so, return the block that is exited to, otherwise return null.
247static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
248  std::set<BasicBlock*> Visited;
249  Visited.insert(L->getHeader());  // Branches to header are ok.
250  BasicBlock *ExitBB = 0;
251  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
252    return ExitBB;
253  return 0;
254}
255
256/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
257/// trivial: that is, that the condition controls whether or not the loop does
258/// anything at all.  If this is a trivial condition, unswitching produces no
259/// code duplications (equivalently, it produces a simpler loop and a new empty
260/// loop, which gets deleted).
261///
262/// If this is a trivial condition, return true, otherwise return false.  When
263/// returning true, this sets Cond and Val to the condition that controls the
264/// trivial condition: when Cond dynamically equals Val, the loop is known to
265/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
266/// Cond == Val.
267///
268static bool IsTrivialUnswitchCondition(Loop *L, Value *Cond, Constant **Val = 0,
269                                       BasicBlock **LoopExit = 0) {
270  BasicBlock *Header = L->getHeader();
271  TerminatorInst *HeaderTerm = Header->getTerminator();
272
273  BasicBlock *LoopExitBB = 0;
274  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
275    // If the header block doesn't end with a conditional branch on Cond, we
276    // can't handle it.
277    if (!BI->isConditional() || BI->getCondition() != Cond)
278      return false;
279
280    // Check to see if a successor of the branch is guaranteed to go to the
281    // latch block or exit through a one exit block without having any
282    // side-effects.  If so, determine the value of Cond that causes it to do
283    // this.
284    if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(0)))) {
285      if (Val) *Val = ConstantInt::getTrue();
286    } else if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(1)))) {
287      if (Val) *Val = ConstantInt::getFalse();
288    }
289  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
290    // If this isn't a switch on Cond, we can't handle it.
291    if (SI->getCondition() != Cond) return false;
292
293    // Check to see if a successor of the switch is guaranteed to go to the
294    // latch block or exit through a one exit block without having any
295    // side-effects.  If so, determine the value of Cond that causes it to do
296    // this.  Note that we can't trivially unswitch on the default case.
297    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
298      if ((LoopExitBB = isTrivialLoopExitBlock(L, SI->getSuccessor(i)))) {
299        // Okay, we found a trivial case, remember the value that is trivial.
300        if (Val) *Val = SI->getCaseValue(i);
301        break;
302      }
303  }
304
305  // If we didn't find a single unique LoopExit block, or if the loop exit block
306  // contains phi nodes, this isn't trivial.
307  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
308    return false;   // Can't handle this.
309
310  if (LoopExit) *LoopExit = LoopExitBB;
311
312  // We already know that nothing uses any scalar values defined inside of this
313  // loop.  As such, we just have to check to see if this loop will execute any
314  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
315  // part of the loop that the code *would* execute.  We already checked the
316  // tail, check the header now.
317  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
318    if (I->mayWriteToMemory())
319      return false;
320  return true;
321}
322
323/// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
324/// we choose to unswitch the specified loop on the specified value.
325///
326unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) {
327  // If the condition is trivial, always unswitch.  There is no code growth for
328  // this case.
329  if (IsTrivialUnswitchCondition(L, LIC))
330    return 0;
331
332  // FIXME: This is really overly conservative.  However, more liberal
333  // estimations have thus far resulted in excessive unswitching, which is bad
334  // both in compile time and in code size.  This should be replaced once
335  // someone figures out how a good estimation.
336  return L->getBlocks().size();
337
338  unsigned Cost = 0;
339  // FIXME: this is brain dead.  It should take into consideration code
340  // shrinkage.
341  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
342       I != E; ++I) {
343    BasicBlock *BB = *I;
344    // Do not include empty blocks in the cost calculation.  This happen due to
345    // loop canonicalization and will be removed.
346    if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
347      continue;
348
349    // Count basic blocks.
350    ++Cost;
351  }
352
353  return Cost;
354}
355
356/// UnswitchIfProfitable - We have found that we can unswitch L when
357/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
358/// unswitch the loop, reprocess the pieces, then return true.
359bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L){
360  // Check to see if it would be profitable to unswitch this loop.
361  unsigned Cost = getLoopUnswitchCost(L, LoopCond);
362  if (Cost > Threshold) {
363    // FIXME: this should estimate growth by the amount of code shared by the
364    // resultant unswitched loops.
365    //
366    DOUT << "NOT unswitching loop %"
367         << L->getHeader()->getName() << ", cost too high: "
368         << L->getBlocks().size() << "\n";
369    return false;
370  }
371
372  // If this is a trivial condition to unswitch (which results in no code
373  // duplication), do it now.
374  Constant *CondVal;
375  BasicBlock *ExitBlock;
376  if (IsTrivialUnswitchCondition(L, LoopCond, &CondVal, &ExitBlock)) {
377    UnswitchTrivialCondition(L, LoopCond, CondVal, ExitBlock);
378  } else {
379    UnswitchNontrivialCondition(LoopCond, Val, L);
380  }
381
382  return true;
383}
384
385/// SplitBlock - Split the specified block at the specified instruction - every
386/// thing before SplitPt stays in Old and everything starting with SplitPt moves
387/// to a new block.  The two blocks are joined by an unconditional branch and
388/// the loop info is updated.
389///
390BasicBlock *LoopUnswitch::SplitBlock(BasicBlock *Old, Instruction *SplitPt) {
391  BasicBlock::iterator SplitIt = SplitPt;
392  while (isa<PHINode>(SplitIt))
393    ++SplitIt;
394  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
395
396  // The new block lives in whichever loop the old one did.
397  if (Loop *L = LI->getLoopFor(Old))
398    L->addBasicBlockToLoop(New, *LI);
399
400  return New;
401}
402
403
404BasicBlock *LoopUnswitch::SplitEdge(BasicBlock *BB, BasicBlock *Succ) {
405  TerminatorInst *LatchTerm = BB->getTerminator();
406  unsigned SuccNum = 0;
407  for (unsigned i = 0, e = LatchTerm->getNumSuccessors(); ; ++i) {
408    assert(i != e && "Didn't find edge?");
409    if (LatchTerm->getSuccessor(i) == Succ) {
410      SuccNum = i;
411      break;
412    }
413  }
414
415  // If this is a critical edge, let SplitCriticalEdge do it.
416  Loop *OrigDestBBL = LI->getLoopFor(BB->getTerminator()->getSuccessor(SuccNum));
417  if (SplitCriticalEdge(BB->getTerminator(), SuccNum)) {
418    BasicBlock *NewBB = LatchTerm->getSuccessor(SuccNum);
419
420    Loop *BBL = LI->getLoopFor(BB);
421    if (!BBL || !OrigDestBBL)
422      return NewBB;
423
424    // If edge is inside a loop then NewBB is part of same loop.
425    if (BBL == OrigDestBBL)
426      BBL->addBasicBlockToLoop(NewBB, *LI);
427    // If edge is entering loop then NewBB is part of outer loop.
428    else if (BBL->contains(OrigDestBBL->getHeader()))
429      BBL->addBasicBlockToLoop(NewBB, *LI);
430    // If edge is from an inner loop to outer loop then NewBB is part
431    // of outer loop.
432    else if (OrigDestBBL->contains(BBL->getHeader()))
433      OrigDestBBL->addBasicBlockToLoop(NewBB, *LI);
434    // Else edge is connecting two loops and NewBB is part of their parent loop
435    else if (Loop *PL = OrigDestBBL->getParentLoop())
436      PL->addBasicBlockToLoop(NewBB, *LI);
437
438    return NewBB;
439  }
440
441  // If the edge isn't critical, then BB has a single successor or Succ has a
442  // single pred.  Split the block.
443  BasicBlock::iterator SplitPoint;
444  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
445    // If the successor only has a single pred, split the top of the successor
446    // block.
447    assert(SP == BB && "CFG broken");
448    return SplitBlock(Succ, Succ->begin());
449  } else {
450    // Otherwise, if BB has a single successor, split it at the bottom of the
451    // block.
452    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
453           "Should have a single succ!");
454    return SplitBlock(BB, BB->getTerminator());
455  }
456}
457
458
459
460// RemapInstruction - Convert the instruction operands from referencing the
461// current values into those specified by ValueMap.
462//
463static inline void RemapInstruction(Instruction *I,
464                                    DenseMap<const Value *, Value*> &ValueMap) {
465  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
466    Value *Op = I->getOperand(op);
467    DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
468    if (It != ValueMap.end()) Op = It->second;
469    I->setOperand(op, Op);
470  }
471}
472
473/// CloneLoop - Recursively clone the specified loop and all of its children,
474/// mapping the blocks with the specified map.
475static Loop *CloneLoop(Loop *L, Loop *PL, DenseMap<const Value*, Value*> &VM,
476                       LoopInfo *LI, LPPassManager *LPM) {
477  Loop *New = new Loop();
478
479  LPM->insertLoop(New, PL);
480
481  // Add all of the blocks in L to the new loop.
482  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
483       I != E; ++I)
484    if (LI->getLoopFor(*I) == L)
485      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
486
487  // Add all of the subloops to the new loop.
488  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
489    CloneLoop(*I, New, VM, LI, LPM);
490
491  return New;
492}
493
494/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
495/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
496/// code immediately before InsertPt.
497static void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
498                                           BasicBlock *TrueDest,
499                                           BasicBlock *FalseDest,
500                                           Instruction *InsertPt) {
501  // Insert a conditional branch on LIC to the two preheaders.  The original
502  // code is the true version and the new code is the false version.
503  Value *BranchVal = LIC;
504  if (!isa<ConstantInt>(Val) || Val->getType() != Type::Int1Ty)
505    BranchVal = new ICmpInst(ICmpInst::ICMP_EQ, LIC, Val, "tmp", InsertPt);
506  else if (Val != ConstantInt::getTrue())
507    // We want to enter the new loop when the condition is true.
508    std::swap(TrueDest, FalseDest);
509
510  // Insert the new branch.
511  new BranchInst(TrueDest, FalseDest, BranchVal, InsertPt);
512}
513
514
515/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
516/// condition in it (a cond branch from its header block to its latch block,
517/// where the path through the loop that doesn't execute its body has no
518/// side-effects), unswitch it.  This doesn't involve any code duplication, just
519/// moving the conditional branch outside of the loop and updating loop info.
520void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
521                                            Constant *Val,
522                                            BasicBlock *ExitBlock) {
523  DOUT << "loop-unswitch: Trivial-Unswitch loop %"
524       << L->getHeader()->getName() << " [" << L->getBlocks().size()
525       << " blocks] in Function " << L->getHeader()->getParent()->getName()
526       << " on cond: " << *Val << " == " << *Cond << "\n";
527
528  // First step, split the preheader, so that we know that there is a safe place
529  // to insert the conditional branch.  We will change 'OrigPH' to have a
530  // conditional branch on Cond.
531  BasicBlock *OrigPH = L->getLoopPreheader();
532  BasicBlock *NewPH = SplitEdge(OrigPH, L->getHeader());
533
534  // Now that we have a place to insert the conditional branch, create a place
535  // to branch to: this is the exit block out of the loop that we should
536  // short-circuit to.
537
538  // Split this block now, so that the loop maintains its exit block, and so
539  // that the jump from the preheader can execute the contents of the exit block
540  // without actually branching to it (the exit block should be dominated by the
541  // loop header, not the preheader).
542  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
543  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin());
544
545  // Okay, now we have a position to branch from and a position to branch to,
546  // insert the new conditional branch.
547  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
548                                 OrigPH->getTerminator());
549  OrigPH->getTerminator()->eraseFromParent();
550
551  // We need to reprocess this loop, it could be unswitched again.
552  LPM->redoLoop(L);
553
554  // Now that we know that the loop is never entered when this condition is a
555  // particular value, rewrite the loop with this info.  We know that this will
556  // at least eliminate the old branch.
557  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
558  ++NumTrivial;
559}
560
561
562/// VersionLoop - We determined that the loop is profitable to unswitch when LIC
563/// equal Val.  Split it into loop versions and test the condition outside of
564/// either loop.  Return the loops created as Out1/Out2.
565void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
566                                               Loop *L) {
567  Function *F = L->getHeader()->getParent();
568  DOUT << "loop-unswitch: Unswitching loop %"
569       << L->getHeader()->getName() << " [" << L->getBlocks().size()
570       << " blocks] in Function " << F->getName()
571       << " when '" << *Val << "' == " << *LIC << "\n";
572
573  // LoopBlocks contains all of the basic blocks of the loop, including the
574  // preheader of the loop, the body of the loop, and the exit blocks of the
575  // loop, in that order.
576  std::vector<BasicBlock*> LoopBlocks;
577
578  // First step, split the preheader and exit blocks, and add these blocks to
579  // the LoopBlocks list.
580  BasicBlock *OrigPreheader = L->getLoopPreheader();
581  LoopBlocks.push_back(SplitEdge(OrigPreheader, L->getHeader()));
582
583  // We want the loop to come after the preheader, but before the exit blocks.
584  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
585
586  std::vector<BasicBlock*> ExitBlocks;
587  L->getUniqueExitBlocks(ExitBlocks);
588
589  // Split all of the edges from inside the loop to their exit blocks.  Update
590  // the appropriate Phi nodes as we do so.
591  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
592    BasicBlock *ExitBlock = ExitBlocks[i];
593    std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
594
595    for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
596      BasicBlock* MiddleBlock = SplitEdge(Preds[j], ExitBlock);
597      BasicBlock* StartBlock = Preds[j];
598      BasicBlock* EndBlock;
599      if (MiddleBlock->getSinglePredecessor() == ExitBlock) {
600        EndBlock = MiddleBlock;
601        MiddleBlock = EndBlock->getSinglePredecessor();;
602      } else {
603        EndBlock = ExitBlock;
604      }
605
606      std::set<PHINode*> InsertedPHIs;
607      PHINode* OldLCSSA = 0;
608      for (BasicBlock::iterator I = EndBlock->begin();
609           (OldLCSSA = dyn_cast<PHINode>(I)); ++I) {
610        Value* OldValue = OldLCSSA->getIncomingValueForBlock(MiddleBlock);
611        PHINode* NewLCSSA = new PHINode(OldLCSSA->getType(),
612                                        OldLCSSA->getName() + ".us-lcssa",
613                                        MiddleBlock->getTerminator());
614        NewLCSSA->addIncoming(OldValue, StartBlock);
615        OldLCSSA->setIncomingValue(OldLCSSA->getBasicBlockIndex(MiddleBlock),
616                                   NewLCSSA);
617        InsertedPHIs.insert(NewLCSSA);
618      }
619
620      BasicBlock::iterator InsertPt = EndBlock->begin();
621      while (dyn_cast<PHINode>(InsertPt)) ++InsertPt;
622      for (BasicBlock::iterator I = MiddleBlock->begin();
623         (OldLCSSA = dyn_cast<PHINode>(I)) && InsertedPHIs.count(OldLCSSA) == 0;
624         ++I) {
625        PHINode *NewLCSSA = new PHINode(OldLCSSA->getType(),
626                                        OldLCSSA->getName() + ".us-lcssa",
627                                        InsertPt);
628        OldLCSSA->replaceAllUsesWith(NewLCSSA);
629        NewLCSSA->addIncoming(OldLCSSA, MiddleBlock);
630      }
631    }
632  }
633
634  // The exit blocks may have been changed due to edge splitting, recompute.
635  ExitBlocks.clear();
636  L->getUniqueExitBlocks(ExitBlocks);
637
638  // Add exit blocks to the loop blocks.
639  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
640
641  // Next step, clone all of the basic blocks that make up the loop (including
642  // the loop preheader and exit blocks), keeping track of the mapping between
643  // the instructions and blocks.
644  std::vector<BasicBlock*> NewBlocks;
645  NewBlocks.reserve(LoopBlocks.size());
646  DenseMap<const Value*, Value*> ValueMap;
647  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
648    BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
649    NewBlocks.push_back(New);
650    ValueMap[LoopBlocks[i]] = New;  // Keep the BB mapping.
651  }
652
653  // Splice the newly inserted blocks into the function right before the
654  // original preheader.
655  F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
656                                NewBlocks[0], F->end());
657
658  // Now we create the new Loop object for the versioned loop.
659  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI, LPM);
660  Loop *ParentLoop = L->getParentLoop();
661  if (ParentLoop) {
662    // Make sure to add the cloned preheader and exit blocks to the parent loop
663    // as well.
664    ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
665  }
666
667  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
668    BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
669    // The new exit block should be in the same loop as the old one.
670    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
671      ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
672
673    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
674           "Exit block should have been split to have one successor!");
675    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
676
677    // If the successor of the exit block had PHI nodes, add an entry for
678    // NewExit.
679    PHINode *PN;
680    for (BasicBlock::iterator I = ExitSucc->begin();
681         (PN = dyn_cast<PHINode>(I)); ++I) {
682      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
683      DenseMap<const Value *, Value*>::iterator It = ValueMap.find(V);
684      if (It != ValueMap.end()) V = It->second;
685      PN->addIncoming(V, NewExit);
686    }
687  }
688
689  // Rewrite the code to refer to itself.
690  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
691    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
692           E = NewBlocks[i]->end(); I != E; ++I)
693      RemapInstruction(I, ValueMap);
694
695  // Rewrite the original preheader to select between versions of the loop.
696  BranchInst *OldBR = cast<BranchInst>(OrigPreheader->getTerminator());
697  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
698         "Preheader splitting did not work correctly!");
699
700  // Emit the new branch that selects between the two versions of this loop.
701  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
702  OldBR->eraseFromParent();
703
704  LoopProcessWorklist.push_back(NewLoop);
705  LPM->redoLoop(L);
706
707  // Now we rewrite the original code to know that the condition is true and the
708  // new code to know that the condition is false.
709  RewriteLoopBodyWithConditionConstant(L      , LIC, Val, false);
710
711  // It's possible that simplifying one loop could cause the other to be
712  // deleted.  If so, don't simplify it.
713  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop)
714    RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
715}
716
717/// RemoveFromWorklist - Remove all instances of I from the worklist vector
718/// specified.
719static void RemoveFromWorklist(Instruction *I,
720                               std::vector<Instruction*> &Worklist) {
721  std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
722                                                     Worklist.end(), I);
723  while (WI != Worklist.end()) {
724    unsigned Offset = WI-Worklist.begin();
725    Worklist.erase(WI);
726    WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
727  }
728}
729
730/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
731/// program, replacing all uses with V and update the worklist.
732static void ReplaceUsesOfWith(Instruction *I, Value *V,
733                              std::vector<Instruction*> &Worklist) {
734  DOUT << "Replace with '" << *V << "': " << *I;
735
736  // Add uses to the worklist, which may be dead now.
737  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
738    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
739      Worklist.push_back(Use);
740
741  // Add users to the worklist which may be simplified now.
742  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
743       UI != E; ++UI)
744    Worklist.push_back(cast<Instruction>(*UI));
745  I->replaceAllUsesWith(V);
746  I->eraseFromParent();
747  RemoveFromWorklist(I, Worklist);
748  ++NumSimplify;
749}
750
751/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
752/// information, and remove any dead successors it has.
753///
754void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
755                                     std::vector<Instruction*> &Worklist) {
756  if (pred_begin(BB) != pred_end(BB)) {
757    // This block isn't dead, since an edge to BB was just removed, see if there
758    // are any easy simplifications we can do now.
759    if (BasicBlock *Pred = BB->getSinglePredecessor()) {
760      // If it has one pred, fold phi nodes in BB.
761      while (isa<PHINode>(BB->begin()))
762        ReplaceUsesOfWith(BB->begin(),
763                          cast<PHINode>(BB->begin())->getIncomingValue(0),
764                          Worklist);
765
766      // If this is the header of a loop and the only pred is the latch, we now
767      // have an unreachable loop.
768      if (Loop *L = LI->getLoopFor(BB))
769        if (L->getHeader() == BB && L->contains(Pred)) {
770          // Remove the branch from the latch to the header block, this makes
771          // the header dead, which will make the latch dead (because the header
772          // dominates the latch).
773          Pred->getTerminator()->eraseFromParent();
774          new UnreachableInst(Pred);
775
776          // The loop is now broken, remove it from LI.
777          RemoveLoopFromHierarchy(L);
778
779          // Reprocess the header, which now IS dead.
780          RemoveBlockIfDead(BB, Worklist);
781          return;
782        }
783
784      // If pred ends in a uncond branch, add uncond branch to worklist so that
785      // the two blocks will get merged.
786      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
787        if (BI->isUnconditional())
788          Worklist.push_back(BI);
789    }
790    return;
791  }
792
793  DOUT << "Nuking dead block: " << *BB;
794
795  // Remove the instructions in the basic block from the worklist.
796  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
797    RemoveFromWorklist(I, Worklist);
798
799    // Anything that uses the instructions in this basic block should have their
800    // uses replaced with undefs.
801    if (!I->use_empty())
802      I->replaceAllUsesWith(UndefValue::get(I->getType()));
803  }
804
805  // If this is the edge to the header block for a loop, remove the loop and
806  // promote all subloops.
807  if (Loop *BBLoop = LI->getLoopFor(BB)) {
808    if (BBLoop->getLoopLatch() == BB)
809      RemoveLoopFromHierarchy(BBLoop);
810  }
811
812  // Remove the block from the loop info, which removes it from any loops it
813  // was in.
814  LI->removeBlock(BB);
815
816
817  // Remove phi node entries in successors for this block.
818  TerminatorInst *TI = BB->getTerminator();
819  std::vector<BasicBlock*> Succs;
820  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
821    Succs.push_back(TI->getSuccessor(i));
822    TI->getSuccessor(i)->removePredecessor(BB);
823  }
824
825  // Unique the successors, remove anything with multiple uses.
826  std::sort(Succs.begin(), Succs.end());
827  Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
828
829  // Remove the basic block, including all of the instructions contained in it.
830  BB->eraseFromParent();
831
832  // Remove successor blocks here that are not dead, so that we know we only
833  // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
834  // then getting removed before we revisit them, which is badness.
835  //
836  for (unsigned i = 0; i != Succs.size(); ++i)
837    if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
838      // One exception is loop headers.  If this block was the preheader for a
839      // loop, then we DO want to visit the loop so the loop gets deleted.
840      // We know that if the successor is a loop header, that this loop had to
841      // be the preheader: the case where this was the latch block was handled
842      // above and headers can only have two predecessors.
843      if (!LI->isLoopHeader(Succs[i])) {
844        Succs.erase(Succs.begin()+i);
845        --i;
846      }
847    }
848
849  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
850    RemoveBlockIfDead(Succs[i], Worklist);
851}
852
853/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
854/// become unwrapped, either because the backedge was deleted, or because the
855/// edge into the header was removed.  If the edge into the header from the
856/// latch block was removed, the loop is unwrapped but subloops are still alive,
857/// so they just reparent loops.  If the loops are actually dead, they will be
858/// removed later.
859void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
860  LPM->deleteLoopFromQueue(L);
861  RemoveLoopFromWorklist(L);
862}
863
864
865
866// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
867// the value specified by Val in the specified loop, or we know it does NOT have
868// that value.  Rewrite any uses of LIC or of properties correlated to it.
869void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
870                                                        Constant *Val,
871                                                        bool IsEqual) {
872  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
873
874  // FIXME: Support correlated properties, like:
875  //  for (...)
876  //    if (li1 < li2)
877  //      ...
878  //    if (li1 > li2)
879  //      ...
880
881  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
882  // selects, switches.
883  std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
884  std::vector<Instruction*> Worklist;
885
886  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
887  // in the loop with the appropriate one directly.
888  if (IsEqual || (isa<ConstantInt>(Val) && Val->getType() == Type::Int1Ty)) {
889    Value *Replacement;
890    if (IsEqual)
891      Replacement = Val;
892    else
893      Replacement = ConstantInt::get(Type::Int1Ty,
894                                     !cast<ConstantInt>(Val)->getZExtValue());
895
896    for (unsigned i = 0, e = Users.size(); i != e; ++i)
897      if (Instruction *U = cast<Instruction>(Users[i])) {
898        if (!L->contains(U->getParent()))
899          continue;
900        U->replaceUsesOfWith(LIC, Replacement);
901        Worklist.push_back(U);
902      }
903  } else {
904    // Otherwise, we don't know the precise value of LIC, but we do know that it
905    // is certainly NOT "Val".  As such, simplify any uses in the loop that we
906    // can.  This case occurs when we unswitch switch statements.
907    for (unsigned i = 0, e = Users.size(); i != e; ++i)
908      if (Instruction *U = cast<Instruction>(Users[i])) {
909        if (!L->contains(U->getParent()))
910          continue;
911
912        Worklist.push_back(U);
913
914        // If we know that LIC is not Val, use this info to simplify code.
915        if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
916          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
917            if (SI->getCaseValue(i) == Val) {
918              // Found a dead case value.  Don't remove PHI nodes in the
919              // successor if they become single-entry, those PHI nodes may
920              // be in the Users list.
921
922              // FIXME: This is a hack.  We need to keep the successor around
923              // and hooked up so as to preserve the loop structure, because
924              // trying to update it is complicated.  So instead we preserve the
925              // loop structure and put the block on an dead code path.
926
927              BasicBlock* Old = SI->getParent();
928              BasicBlock* Split = SplitBlock(Old, SI);
929
930              Instruction* OldTerm = Old->getTerminator();
931              new BranchInst(Split, SI->getSuccessor(i),
932                             ConstantInt::getTrue(), OldTerm);
933
934              Old->getTerminator()->eraseFromParent();
935
936
937              PHINode *PN;
938              for (BasicBlock::iterator II = SI->getSuccessor(i)->begin();
939                   (PN = dyn_cast<PHINode>(II)); ++II) {
940                Value *InVal = PN->removeIncomingValue(Split, false);
941                PN->addIncoming(InVal, Old);
942              }
943
944              SI->removeCase(i);
945              break;
946            }
947          }
948        }
949
950        // TODO: We could do other simplifications, for example, turning
951        // LIC == Val -> false.
952      }
953  }
954
955  SimplifyCode(Worklist);
956}
957
958/// SimplifyCode - Okay, now that we have simplified some instructions in the
959/// loop, walk over it and constant prop, dce, and fold control flow where
960/// possible.  Note that this is effectively a very simple loop-structure-aware
961/// optimizer.  During processing of this loop, L could very well be deleted, so
962/// it must not be used.
963///
964/// FIXME: When the loop optimizer is more mature, separate this out to a new
965/// pass.
966///
967void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist) {
968  while (!Worklist.empty()) {
969    Instruction *I = Worklist.back();
970    Worklist.pop_back();
971
972    // Simple constant folding.
973    if (Constant *C = ConstantFoldInstruction(I)) {
974      ReplaceUsesOfWith(I, C, Worklist);
975      continue;
976    }
977
978    // Simple DCE.
979    if (isInstructionTriviallyDead(I)) {
980      DOUT << "Remove dead instruction '" << *I;
981
982      // Add uses to the worklist, which may be dead now.
983      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
984        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
985          Worklist.push_back(Use);
986      I->eraseFromParent();
987      RemoveFromWorklist(I, Worklist);
988      ++NumSimplify;
989      continue;
990    }
991
992    // Special case hacks that appear commonly in unswitched code.
993    switch (I->getOpcode()) {
994    case Instruction::Select:
995      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(0))) {
996        ReplaceUsesOfWith(I, I->getOperand(!CB->getZExtValue()+1), Worklist);
997        continue;
998      }
999      break;
1000    case Instruction::And:
1001      if (isa<ConstantInt>(I->getOperand(0)) &&
1002          I->getOperand(0)->getType() == Type::Int1Ty)   // constant -> RHS
1003        cast<BinaryOperator>(I)->swapOperands();
1004      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1005        if (CB->getType() == Type::Int1Ty) {
1006          if (CB->isOne())      // X & 1 -> X
1007            ReplaceUsesOfWith(I, I->getOperand(0), Worklist);
1008          else                  // X & 0 -> 0
1009            ReplaceUsesOfWith(I, I->getOperand(1), Worklist);
1010          continue;
1011        }
1012      break;
1013    case Instruction::Or:
1014      if (isa<ConstantInt>(I->getOperand(0)) &&
1015          I->getOperand(0)->getType() == Type::Int1Ty)   // constant -> RHS
1016        cast<BinaryOperator>(I)->swapOperands();
1017      if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1018        if (CB->getType() == Type::Int1Ty) {
1019          if (CB->isOne())   // X | 1 -> 1
1020            ReplaceUsesOfWith(I, I->getOperand(1), Worklist);
1021          else                  // X | 0 -> X
1022            ReplaceUsesOfWith(I, I->getOperand(0), Worklist);
1023          continue;
1024        }
1025      break;
1026    case Instruction::Br: {
1027      BranchInst *BI = cast<BranchInst>(I);
1028      if (BI->isUnconditional()) {
1029        // If BI's parent is the only pred of the successor, fold the two blocks
1030        // together.
1031        BasicBlock *Pred = BI->getParent();
1032        BasicBlock *Succ = BI->getSuccessor(0);
1033        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1034        if (!SinglePred) continue;  // Nothing to do.
1035        assert(SinglePred == Pred && "CFG broken");
1036
1037        DOUT << "Merging blocks: " << Pred->getName() << " <- "
1038             << Succ->getName() << "\n";
1039
1040        // Resolve any single entry PHI nodes in Succ.
1041        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1042          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist);
1043
1044        // Move all of the successor contents from Succ to Pred.
1045        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1046                                   Succ->end());
1047        BI->eraseFromParent();
1048        RemoveFromWorklist(BI, Worklist);
1049
1050        // If Succ has any successors with PHI nodes, update them to have
1051        // entries coming from Pred instead of Succ.
1052        Succ->replaceAllUsesWith(Pred);
1053
1054        // Remove Succ from the loop tree.
1055        LI->removeBlock(Succ);
1056        Succ->eraseFromParent();
1057        ++NumSimplify;
1058      } else if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1059        // Conditional branch.  Turn it into an unconditional branch, then
1060        // remove dead blocks.
1061        break;  // FIXME: Enable.
1062
1063        DOUT << "Folded branch: " << *BI;
1064        BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1065        BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1066        DeadSucc->removePredecessor(BI->getParent(), true);
1067        Worklist.push_back(new BranchInst(LiveSucc, BI));
1068        BI->eraseFromParent();
1069        RemoveFromWorklist(BI, Worklist);
1070        ++NumSimplify;
1071
1072        RemoveBlockIfDead(DeadSucc, Worklist);
1073      }
1074      break;
1075    }
1076    }
1077  }
1078}
1079