MemCpyOptimizer.cpp revision fa5cbd6d0fbda23fd669c8718e07b19001b2d21a
1//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs various transformations related to eliminating memcpy
11// calls, or transforming sets of stores into memset's.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "memcpyopt"
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/IntrinsicInst.h"
18#include "llvm/Instructions.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/Dominators.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/MemoryDependenceAnalysis.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Target/TargetData.h"
28#include <list>
29using namespace llvm;
30
31STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
32STATISTIC(NumMemSetInfer, "Number of memsets inferred");
33
34/// isBytewiseValue - If the specified value can be set by repeating the same
35/// byte in memory, return the i8 value that it is represented with.  This is
36/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
37/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
38/// byte store (e.g. i16 0x1234), return null.
39static Value *isBytewiseValue(Value *V, LLVMContext* Context) {
40  // All byte-wide stores are splatable, even of arbitrary variables.
41  if (V->getType() == Type::Int8Ty) return V;
42
43  // Constant float and double values can be handled as integer values if the
44  // corresponding integer value is "byteable".  An important case is 0.0.
45  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
46    if (CFP->getType() == Type::FloatTy)
47      V = Context->getConstantExprBitCast(CFP, Type::Int32Ty);
48    if (CFP->getType() == Type::DoubleTy)
49      V = Context->getConstantExprBitCast(CFP, Type::Int64Ty);
50    // Don't handle long double formats, which have strange constraints.
51  }
52
53  // We can handle constant integers that are power of two in size and a
54  // multiple of 8 bits.
55  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
56    unsigned Width = CI->getBitWidth();
57    if (isPowerOf2_32(Width) && Width > 8) {
58      // We can handle this value if the recursive binary decomposition is the
59      // same at all levels.
60      APInt Val = CI->getValue();
61      APInt Val2;
62      while (Val.getBitWidth() != 8) {
63        unsigned NextWidth = Val.getBitWidth()/2;
64        Val2  = Val.lshr(NextWidth);
65        Val2.trunc(Val.getBitWidth()/2);
66        Val.trunc(Val.getBitWidth()/2);
67
68        // If the top/bottom halves aren't the same, reject it.
69        if (Val != Val2)
70          return 0;
71      }
72      return Context->getConstantInt(Val);
73    }
74  }
75
76  // Conceptually, we could handle things like:
77  //   %a = zext i8 %X to i16
78  //   %b = shl i16 %a, 8
79  //   %c = or i16 %a, %b
80  // but until there is an example that actually needs this, it doesn't seem
81  // worth worrying about.
82  return 0;
83}
84
85static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
86                                  bool &VariableIdxFound, TargetData &TD) {
87  // Skip over the first indices.
88  gep_type_iterator GTI = gep_type_begin(GEP);
89  for (unsigned i = 1; i != Idx; ++i, ++GTI)
90    /*skip along*/;
91
92  // Compute the offset implied by the rest of the indices.
93  int64_t Offset = 0;
94  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
95    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
96    if (OpC == 0)
97      return VariableIdxFound = true;
98    if (OpC->isZero()) continue;  // No offset.
99
100    // Handle struct indices, which add their field offset to the pointer.
101    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
102      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
103      continue;
104    }
105
106    // Otherwise, we have a sequential type like an array or vector.  Multiply
107    // the index by the ElementSize.
108    uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
109    Offset += Size*OpC->getSExtValue();
110  }
111
112  return Offset;
113}
114
115/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
116/// constant offset, and return that constant offset.  For example, Ptr1 might
117/// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
118static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
119                            TargetData &TD) {
120  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
121  // base.  After that base, they may have some number of common (and
122  // potentially variable) indices.  After that they handle some constant
123  // offset, which determines their offset from each other.  At this point, we
124  // handle no other case.
125  GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
126  GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
127  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
128    return false;
129
130  // Skip any common indices and track the GEP types.
131  unsigned Idx = 1;
132  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
133    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
134      break;
135
136  bool VariableIdxFound = false;
137  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
138  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
139  if (VariableIdxFound) return false;
140
141  Offset = Offset2-Offset1;
142  return true;
143}
144
145
146/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
147/// This allows us to analyze stores like:
148///   store 0 -> P+1
149///   store 0 -> P+0
150///   store 0 -> P+3
151///   store 0 -> P+2
152/// which sometimes happens with stores to arrays of structs etc.  When we see
153/// the first store, we make a range [1, 2).  The second store extends the range
154/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
155/// two ranges into [0, 3) which is memset'able.
156namespace {
157struct MemsetRange {
158  // Start/End - A semi range that describes the span that this range covers.
159  // The range is closed at the start and open at the end: [Start, End).
160  int64_t Start, End;
161
162  /// StartPtr - The getelementptr instruction that points to the start of the
163  /// range.
164  Value *StartPtr;
165
166  /// Alignment - The known alignment of the first store.
167  unsigned Alignment;
168
169  /// TheStores - The actual stores that make up this range.
170  SmallVector<StoreInst*, 16> TheStores;
171
172  bool isProfitableToUseMemset(const TargetData &TD) const;
173
174};
175} // end anon namespace
176
177bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
178  // If we found more than 8 stores to merge or 64 bytes, use memset.
179  if (TheStores.size() >= 8 || End-Start >= 64) return true;
180
181  // Assume that the code generator is capable of merging pairs of stores
182  // together if it wants to.
183  if (TheStores.size() <= 2) return false;
184
185  // If we have fewer than 8 stores, it can still be worthwhile to do this.
186  // For example, merging 4 i8 stores into an i32 store is useful almost always.
187  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
188  // memset will be split into 2 32-bit stores anyway) and doing so can
189  // pessimize the llvm optimizer.
190  //
191  // Since we don't have perfect knowledge here, make some assumptions: assume
192  // the maximum GPR width is the same size as the pointer size and assume that
193  // this width can be stored.  If so, check to see whether we will end up
194  // actually reducing the number of stores used.
195  unsigned Bytes = unsigned(End-Start);
196  unsigned NumPointerStores = Bytes/TD.getPointerSize();
197
198  // Assume the remaining bytes if any are done a byte at a time.
199  unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
200
201  // If we will reduce the # stores (according to this heuristic), do the
202  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
203  // etc.
204  return TheStores.size() > NumPointerStores+NumByteStores;
205}
206
207
208namespace {
209class MemsetRanges {
210  /// Ranges - A sorted list of the memset ranges.  We use std::list here
211  /// because each element is relatively large and expensive to copy.
212  std::list<MemsetRange> Ranges;
213  typedef std::list<MemsetRange>::iterator range_iterator;
214  TargetData &TD;
215public:
216  MemsetRanges(TargetData &td) : TD(td) {}
217
218  typedef std::list<MemsetRange>::const_iterator const_iterator;
219  const_iterator begin() const { return Ranges.begin(); }
220  const_iterator end() const { return Ranges.end(); }
221  bool empty() const { return Ranges.empty(); }
222
223  void addStore(int64_t OffsetFromFirst, StoreInst *SI);
224};
225
226} // end anon namespace
227
228
229/// addStore - Add a new store to the MemsetRanges data structure.  This adds a
230/// new range for the specified store at the specified offset, merging into
231/// existing ranges as appropriate.
232void MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
233  int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType());
234
235  // Do a linear search of the ranges to see if this can be joined and/or to
236  // find the insertion point in the list.  We keep the ranges sorted for
237  // simplicity here.  This is a linear search of a linked list, which is ugly,
238  // however the number of ranges is limited, so this won't get crazy slow.
239  range_iterator I = Ranges.begin(), E = Ranges.end();
240
241  while (I != E && Start > I->End)
242    ++I;
243
244  // We now know that I == E, in which case we didn't find anything to merge
245  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
246  // to insert a new range.  Handle this now.
247  if (I == E || End < I->Start) {
248    MemsetRange &R = *Ranges.insert(I, MemsetRange());
249    R.Start        = Start;
250    R.End          = End;
251    R.StartPtr     = SI->getPointerOperand();
252    R.Alignment    = SI->getAlignment();
253    R.TheStores.push_back(SI);
254    return;
255  }
256
257  // This store overlaps with I, add it.
258  I->TheStores.push_back(SI);
259
260  // At this point, we may have an interval that completely contains our store.
261  // If so, just add it to the interval and return.
262  if (I->Start <= Start && I->End >= End)
263    return;
264
265  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
266  // but is not entirely contained within the range.
267
268  // See if the range extends the start of the range.  In this case, it couldn't
269  // possibly cause it to join the prior range, because otherwise we would have
270  // stopped on *it*.
271  if (Start < I->Start) {
272    I->Start = Start;
273    I->StartPtr = SI->getPointerOperand();
274  }
275
276  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
277  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
278  // End.
279  if (End > I->End) {
280    I->End = End;
281    range_iterator NextI = I;
282    while (++NextI != E && End >= NextI->Start) {
283      // Merge the range in.
284      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
285      if (NextI->End > I->End)
286        I->End = NextI->End;
287      Ranges.erase(NextI);
288      NextI = I;
289    }
290  }
291}
292
293//===----------------------------------------------------------------------===//
294//                         MemCpyOpt Pass
295//===----------------------------------------------------------------------===//
296
297namespace {
298
299  class VISIBILITY_HIDDEN MemCpyOpt : public FunctionPass {
300    bool runOnFunction(Function &F);
301  public:
302    static char ID; // Pass identification, replacement for typeid
303    MemCpyOpt() : FunctionPass(&ID) {}
304
305  private:
306    // This transformation requires dominator postdominator info
307    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
308      AU.setPreservesCFG();
309      AU.addRequired<DominatorTree>();
310      AU.addRequired<MemoryDependenceAnalysis>();
311      AU.addRequired<AliasAnalysis>();
312      AU.addRequired<TargetData>();
313      AU.addPreserved<AliasAnalysis>();
314      AU.addPreserved<MemoryDependenceAnalysis>();
315      AU.addPreserved<TargetData>();
316    }
317
318    // Helper fuctions
319    bool processStore(StoreInst *SI, BasicBlock::iterator& BBI);
320    bool processMemCpy(MemCpyInst* M);
321    bool performCallSlotOptzn(MemCpyInst* cpy, CallInst* C);
322    bool iterateOnFunction(Function &F);
323  };
324
325  char MemCpyOpt::ID = 0;
326}
327
328// createMemCpyOptPass - The public interface to this file...
329FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
330
331static RegisterPass<MemCpyOpt> X("memcpyopt",
332                                 "MemCpy Optimization");
333
334
335
336/// processStore - When GVN is scanning forward over instructions, we look for
337/// some other patterns to fold away.  In particular, this looks for stores to
338/// neighboring locations of memory.  If it sees enough consequtive ones
339/// (currently 4) it attempts to merge them together into a memcpy/memset.
340bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) {
341  if (SI->isVolatile()) return false;
342
343  // There are two cases that are interesting for this code to handle: memcpy
344  // and memset.  Right now we only handle memset.
345
346  // Ensure that the value being stored is something that can be memset'able a
347  // byte at a time like "0" or "-1" or any width, as well as things like
348  // 0xA0A0A0A0 and 0.0.
349  Value *ByteVal = isBytewiseValue(SI->getOperand(0), Context);
350  if (!ByteVal)
351    return false;
352
353  TargetData &TD = getAnalysis<TargetData>();
354  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
355
356  // Okay, so we now have a single store that can be splatable.  Scan to find
357  // all subsequent stores of the same value to offset from the same pointer.
358  // Join these together into ranges, so we can decide whether contiguous blocks
359  // are stored.
360  MemsetRanges Ranges(TD);
361
362  Value *StartPtr = SI->getPointerOperand();
363
364  BasicBlock::iterator BI = SI;
365  for (++BI; !isa<TerminatorInst>(BI); ++BI) {
366    if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
367      // If the call is readnone, ignore it, otherwise bail out.  We don't even
368      // allow readonly here because we don't want something like:
369      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
370      if (AA.getModRefBehavior(CallSite::get(BI)) ==
371            AliasAnalysis::DoesNotAccessMemory)
372        continue;
373
374      // TODO: If this is a memset, try to join it in.
375
376      break;
377    } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
378      break;
379
380    // If this is a non-store instruction it is fine, ignore it.
381    StoreInst *NextStore = dyn_cast<StoreInst>(BI);
382    if (NextStore == 0) continue;
383
384    // If this is a store, see if we can merge it in.
385    if (NextStore->isVolatile()) break;
386
387    // Check to see if this stored value is of the same byte-splattable value.
388    if (ByteVal != isBytewiseValue(NextStore->getOperand(0), Context))
389      break;
390
391    // Check to see if this store is to a constant offset from the start ptr.
392    int64_t Offset;
393    if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, TD))
394      break;
395
396    Ranges.addStore(Offset, NextStore);
397  }
398
399  // If we have no ranges, then we just had a single store with nothing that
400  // could be merged in.  This is a very common case of course.
401  if (Ranges.empty())
402    return false;
403
404  // If we had at least one store that could be merged in, add the starting
405  // store as well.  We try to avoid this unless there is at least something
406  // interesting as a small compile-time optimization.
407  Ranges.addStore(0, SI);
408
409
410  Function *MemSetF = 0;
411
412  // Now that we have full information about ranges, loop over the ranges and
413  // emit memset's for anything big enough to be worthwhile.
414  bool MadeChange = false;
415  for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
416       I != E; ++I) {
417    const MemsetRange &Range = *I;
418
419    if (Range.TheStores.size() == 1) continue;
420
421    // If it is profitable to lower this range to memset, do so now.
422    if (!Range.isProfitableToUseMemset(TD))
423      continue;
424
425    // Otherwise, we do want to transform this!  Create a new memset.  We put
426    // the memset right before the first instruction that isn't part of this
427    // memset block.  This ensure that the memset is dominated by any addressing
428    // instruction needed by the start of the block.
429    BasicBlock::iterator InsertPt = BI;
430
431    if (MemSetF == 0) {
432      const Type *Tys[] = {Type::Int64Ty};
433      MemSetF = Intrinsic::getDeclaration(SI->getParent()->getParent()
434                                          ->getParent(), Intrinsic::memset,
435                                          Tys, 1);
436   }
437
438    // Get the starting pointer of the block.
439    StartPtr = Range.StartPtr;
440
441    // Cast the start ptr to be i8* as memset requires.
442    const Type *i8Ptr = Context->getPointerTypeUnqual(Type::Int8Ty);
443    if (StartPtr->getType() != i8Ptr)
444      StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getNameStart(),
445                                 InsertPt);
446
447    Value *Ops[] = {
448      StartPtr, ByteVal,   // Start, value
449      Context->getConstantInt(Type::Int64Ty, Range.End-Range.Start),  // size
450      Context->getConstantInt(Type::Int32Ty, Range.Alignment)   // align
451    };
452    Value *C = CallInst::Create(MemSetF, Ops, Ops+4, "", InsertPt);
453    DEBUG(cerr << "Replace stores:\n";
454          for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
455            cerr << *Range.TheStores[i];
456          cerr << "With: " << *C); C=C;
457
458    // Don't invalidate the iterator
459    BBI = BI;
460
461    // Zap all the stores.
462    for (SmallVector<StoreInst*, 16>::const_iterator SI = Range.TheStores.begin(),
463         SE = Range.TheStores.end(); SI != SE; ++SI)
464      (*SI)->eraseFromParent();
465    ++NumMemSetInfer;
466    MadeChange = true;
467  }
468
469  return MadeChange;
470}
471
472
473/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
474/// and checks for the possibility of a call slot optimization by having
475/// the call write its result directly into the destination of the memcpy.
476bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
477  // The general transformation to keep in mind is
478  //
479  //   call @func(..., src, ...)
480  //   memcpy(dest, src, ...)
481  //
482  // ->
483  //
484  //   memcpy(dest, src, ...)
485  //   call @func(..., dest, ...)
486  //
487  // Since moving the memcpy is technically awkward, we additionally check that
488  // src only holds uninitialized values at the moment of the call, meaning that
489  // the memcpy can be discarded rather than moved.
490
491  // Deliberately get the source and destination with bitcasts stripped away,
492  // because we'll need to do type comparisons based on the underlying type.
493  Value* cpyDest = cpy->getDest();
494  Value* cpySrc = cpy->getSource();
495  CallSite CS = CallSite::get(C);
496
497  // We need to be able to reason about the size of the memcpy, so we require
498  // that it be a constant.
499  ConstantInt* cpyLength = dyn_cast<ConstantInt>(cpy->getLength());
500  if (!cpyLength)
501    return false;
502
503  // Require that src be an alloca.  This simplifies the reasoning considerably.
504  AllocaInst* srcAlloca = dyn_cast<AllocaInst>(cpySrc);
505  if (!srcAlloca)
506    return false;
507
508  // Check that all of src is copied to dest.
509  TargetData& TD = getAnalysis<TargetData>();
510
511  ConstantInt* srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
512  if (!srcArraySize)
513    return false;
514
515  uint64_t srcSize = TD.getTypeAllocSize(srcAlloca->getAllocatedType()) *
516    srcArraySize->getZExtValue();
517
518  if (cpyLength->getZExtValue() < srcSize)
519    return false;
520
521  // Check that accessing the first srcSize bytes of dest will not cause a
522  // trap.  Otherwise the transform is invalid since it might cause a trap
523  // to occur earlier than it otherwise would.
524  if (AllocaInst* A = dyn_cast<AllocaInst>(cpyDest)) {
525    // The destination is an alloca.  Check it is larger than srcSize.
526    ConstantInt* destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
527    if (!destArraySize)
528      return false;
529
530    uint64_t destSize = TD.getTypeAllocSize(A->getAllocatedType()) *
531      destArraySize->getZExtValue();
532
533    if (destSize < srcSize)
534      return false;
535  } else if (Argument* A = dyn_cast<Argument>(cpyDest)) {
536    // If the destination is an sret parameter then only accesses that are
537    // outside of the returned struct type can trap.
538    if (!A->hasStructRetAttr())
539      return false;
540
541    const Type* StructTy = cast<PointerType>(A->getType())->getElementType();
542    uint64_t destSize = TD.getTypeAllocSize(StructTy);
543
544    if (destSize < srcSize)
545      return false;
546  } else {
547    return false;
548  }
549
550  // Check that src is not accessed except via the call and the memcpy.  This
551  // guarantees that it holds only undefined values when passed in (so the final
552  // memcpy can be dropped), that it is not read or written between the call and
553  // the memcpy, and that writing beyond the end of it is undefined.
554  SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
555                                   srcAlloca->use_end());
556  while (!srcUseList.empty()) {
557    User* UI = srcUseList.back();
558    srcUseList.pop_back();
559
560    if (isa<BitCastInst>(UI)) {
561      for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
562           I != E; ++I)
563        srcUseList.push_back(*I);
564    } else if (GetElementPtrInst* G = dyn_cast<GetElementPtrInst>(UI)) {
565      if (G->hasAllZeroIndices())
566        for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
567             I != E; ++I)
568          srcUseList.push_back(*I);
569      else
570        return false;
571    } else if (UI != C && UI != cpy) {
572      return false;
573    }
574  }
575
576  // Since we're changing the parameter to the callsite, we need to make sure
577  // that what would be the new parameter dominates the callsite.
578  DominatorTree& DT = getAnalysis<DominatorTree>();
579  if (Instruction* cpyDestInst = dyn_cast<Instruction>(cpyDest))
580    if (!DT.dominates(cpyDestInst, C))
581      return false;
582
583  // In addition to knowing that the call does not access src in some
584  // unexpected manner, for example via a global, which we deduce from
585  // the use analysis, we also need to know that it does not sneakily
586  // access dest.  We rely on AA to figure this out for us.
587  AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
588  if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) !=
589      AliasAnalysis::NoModRef)
590    return false;
591
592  // All the checks have passed, so do the transformation.
593  bool changedArgument = false;
594  for (unsigned i = 0; i < CS.arg_size(); ++i)
595    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
596      if (cpySrc->getType() != cpyDest->getType())
597        cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
598                                              cpyDest->getName(), C);
599      changedArgument = true;
600      if (CS.getArgument(i)->getType() != cpyDest->getType())
601        CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
602                       CS.getArgument(i)->getType(), cpyDest->getName(), C));
603      else
604        CS.setArgument(i, cpyDest);
605    }
606
607  if (!changedArgument)
608    return false;
609
610  // Drop any cached information about the call, because we may have changed
611  // its dependence information by changing its parameter.
612  MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
613  MD.removeInstruction(C);
614
615  // Remove the memcpy
616  MD.removeInstruction(cpy);
617  cpy->eraseFromParent();
618  NumMemCpyInstr++;
619
620  return true;
621}
622
623/// processMemCpy - perform simplication of memcpy's.  If we have memcpy A which
624/// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be
625/// a memcpy from X to Z (or potentially a memmove, depending on circumstances).
626///  This allows later passes to remove the first memcpy altogether.
627bool MemCpyOpt::processMemCpy(MemCpyInst* M) {
628  MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
629
630  // The are two possible optimizations we can do for memcpy:
631  //   a) memcpy-memcpy xform which exposes redundance for DSE
632  //   b) call-memcpy xform for return slot optimization
633  MemDepResult dep = MD.getDependency(M);
634  if (!dep.isClobber())
635    return false;
636  if (!isa<MemCpyInst>(dep.getInst())) {
637    if (CallInst* C = dyn_cast<CallInst>(dep.getInst()))
638      return performCallSlotOptzn(M, C);
639    return false;
640  }
641
642  MemCpyInst* MDep = cast<MemCpyInst>(dep.getInst());
643
644  // We can only transforms memcpy's where the dest of one is the source of the
645  // other
646  if (M->getSource() != MDep->getDest())
647    return false;
648
649  // Second, the length of the memcpy's must be the same, or the preceeding one
650  // must be larger than the following one.
651  ConstantInt* C1 = dyn_cast<ConstantInt>(MDep->getLength());
652  ConstantInt* C2 = dyn_cast<ConstantInt>(M->getLength());
653  if (!C1 || !C2)
654    return false;
655
656  uint64_t DepSize = C1->getValue().getZExtValue();
657  uint64_t CpySize = C2->getValue().getZExtValue();
658
659  if (DepSize < CpySize)
660    return false;
661
662  // Finally, we have to make sure that the dest of the second does not
663  // alias the source of the first
664  AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
665  if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) !=
666      AliasAnalysis::NoAlias)
667    return false;
668  else if (AA.alias(M->getRawDest(), CpySize, M->getRawSource(), CpySize) !=
669           AliasAnalysis::NoAlias)
670    return false;
671  else if (AA.alias(MDep->getRawDest(), DepSize, MDep->getRawSource(), DepSize)
672           != AliasAnalysis::NoAlias)
673    return false;
674
675  // If all checks passed, then we can transform these memcpy's
676  const Type *Tys[1];
677  Tys[0] = M->getLength()->getType();
678  Function* MemCpyFun = Intrinsic::getDeclaration(
679                                 M->getParent()->getParent()->getParent(),
680                                 M->getIntrinsicID(), Tys, 1);
681
682  Value *Args[4] = {
683    M->getRawDest(), MDep->getRawSource(), M->getLength(), M->getAlignmentCst()
684  };
685
686  CallInst* C = CallInst::Create(MemCpyFun, Args, Args+4, "", M);
687
688
689  // If C and M don't interfere, then this is a valid transformation.  If they
690  // did, this would mean that the two sources overlap, which would be bad.
691  if (MD.getDependency(C) == dep) {
692    MD.removeInstruction(M);
693    M->eraseFromParent();
694    NumMemCpyInstr++;
695    return true;
696  }
697
698  // Otherwise, there was no point in doing this, so we remove the call we
699  // inserted and act like nothing happened.
700  MD.removeInstruction(C);
701  C->eraseFromParent();
702  return false;
703}
704
705// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
706// function.
707//
708bool MemCpyOpt::runOnFunction(Function& F) {
709
710  bool changed = false;
711  bool shouldContinue = true;
712
713  while (shouldContinue) {
714    shouldContinue = iterateOnFunction(F);
715    changed |= shouldContinue;
716  }
717
718  return changed;
719}
720
721
722// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN
723bool MemCpyOpt::iterateOnFunction(Function &F) {
724  bool changed_function = false;
725
726  // Walk all instruction in the function
727  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
728    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
729         BI != BE;) {
730      // Avoid invalidating the iterator
731      Instruction* I = BI++;
732
733      if (StoreInst *SI = dyn_cast<StoreInst>(I))
734        changed_function |= processStore(SI, BI);
735      else if (MemCpyInst* M = dyn_cast<MemCpyInst>(I)) {
736        changed_function |= processMemCpy(M);
737      }
738    }
739  }
740
741  return changed_function;
742}
743