InlineFunction.cpp revision 0e13821c96937830ec817f08095c3cef1fdcac8d
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/Analysis/CallGraph.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/Support/CallSite.h"
24using namespace llvm;
25
26bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
27  return InlineFunction(CallSite(CI), CG, TD);
28}
29bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
30  return InlineFunction(CallSite(II), CG, TD);
31}
32
33/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
34/// in the body of the inlined function into invokes and turn unwind
35/// instructions into branches to the invoke unwind dest.
36///
37/// II is the invoke instruction begin inlined.  FirstNewBlock is the first
38/// block of the inlined code (the last block is the end of the function),
39/// and InlineCodeInfo is information about the code that got inlined.
40static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
41                                ClonedCodeInfo &InlinedCodeInfo) {
42  BasicBlock *InvokeDest = II->getUnwindDest();
43  std::vector<Value*> InvokeDestPHIValues;
44
45  // If there are PHI nodes in the unwind destination block, we need to
46  // keep track of which values came into them from this invoke, then remove
47  // the entry for this block.
48  BasicBlock *InvokeBlock = II->getParent();
49  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
50    PHINode *PN = cast<PHINode>(I);
51    // Save the value to use for this edge.
52    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
53  }
54
55  Function *Caller = FirstNewBlock->getParent();
56
57  // The inlined code is currently at the end of the function, scan from the
58  // start of the inlined code to its end, checking for stuff we need to
59  // rewrite.
60  if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
61    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
62         BB != E; ++BB) {
63      if (InlinedCodeInfo.ContainsCalls) {
64        for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
65          Instruction *I = BBI++;
66
67          // We only need to check for function calls: inlined invoke
68          // instructions require no special handling.
69          if (!isa<CallInst>(I)) continue;
70          CallInst *CI = cast<CallInst>(I);
71
72          // If this call cannot unwind, don't convert it to an invoke.
73          if (CI->doesNotThrow())
74            continue;
75
76          // Convert this function call into an invoke instruction.
77          // First, split the basic block.
78          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
79
80          // Next, create the new invoke instruction, inserting it at the end
81          // of the old basic block.
82          SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
83          InvokeInst *II =
84            new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
85                           InvokeArgs.begin(), InvokeArgs.end(),
86                           CI->getName(), BB->getTerminator());
87          II->setCallingConv(CI->getCallingConv());
88          II->setParamAttrs(CI->getParamAttrs());
89
90          // Make sure that anything using the call now uses the invoke!
91          CI->replaceAllUsesWith(II);
92
93          // Delete the unconditional branch inserted by splitBasicBlock
94          BB->getInstList().pop_back();
95          Split->getInstList().pop_front();  // Delete the original call
96
97          // Update any PHI nodes in the exceptional block to indicate that
98          // there is now a new entry in them.
99          unsigned i = 0;
100          for (BasicBlock::iterator I = InvokeDest->begin();
101               isa<PHINode>(I); ++I, ++i) {
102            PHINode *PN = cast<PHINode>(I);
103            PN->addIncoming(InvokeDestPHIValues[i], BB);
104          }
105
106          // This basic block is now complete, start scanning the next one.
107          break;
108        }
109      }
110
111      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
112        // An UnwindInst requires special handling when it gets inlined into an
113        // invoke site.  Once this happens, we know that the unwind would cause
114        // a control transfer to the invoke exception destination, so we can
115        // transform it into a direct branch to the exception destination.
116        new BranchInst(InvokeDest, UI);
117
118        // Delete the unwind instruction!
119        UI->getParent()->getInstList().pop_back();
120
121        // Update any PHI nodes in the exceptional block to indicate that
122        // there is now a new entry in them.
123        unsigned i = 0;
124        for (BasicBlock::iterator I = InvokeDest->begin();
125             isa<PHINode>(I); ++I, ++i) {
126          PHINode *PN = cast<PHINode>(I);
127          PN->addIncoming(InvokeDestPHIValues[i], BB);
128        }
129      }
130    }
131  }
132
133  // Now that everything is happy, we have one final detail.  The PHI nodes in
134  // the exception destination block still have entries due to the original
135  // invoke instruction.  Eliminate these entries (which might even delete the
136  // PHI node) now.
137  InvokeDest->removePredecessor(II->getParent());
138}
139
140/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
141/// into the caller, update the specified callgraph to reflect the changes we
142/// made.  Note that it's possible that not all code was copied over, so only
143/// some edges of the callgraph will be remain.
144static void UpdateCallGraphAfterInlining(const Function *Caller,
145                                         const Function *Callee,
146                                         Function::iterator FirstNewBlock,
147                                       DenseMap<const Value*, Value*> &ValueMap,
148                                         CallGraph &CG) {
149  // Update the call graph by deleting the edge from Callee to Caller
150  CallGraphNode *CalleeNode = CG[Callee];
151  CallGraphNode *CallerNode = CG[Caller];
152  CallerNode->removeCallEdgeTo(CalleeNode);
153
154  // Since we inlined some uninlined call sites in the callee into the caller,
155  // add edges from the caller to all of the callees of the callee.
156  for (CallGraphNode::iterator I = CalleeNode->begin(),
157       E = CalleeNode->end(); I != E; ++I) {
158    const Instruction *OrigCall = I->first.getInstruction();
159
160    DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
161    // Only copy the edge if the call was inlined!
162    if (VMI != ValueMap.end() && VMI->second) {
163      // If the call was inlined, but then constant folded, there is no edge to
164      // add.  Check for this case.
165      if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
166        CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
167    }
168  }
169}
170
171
172// InlineFunction - This function inlines the called function into the basic
173// block of the caller.  This returns false if it is not possible to inline this
174// call.  The program is still in a well defined state if this occurs though.
175//
176// Note that this only does one level of inlining.  For example, if the
177// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
178// exists in the instruction stream.  Similiarly this will inline a recursive
179// function by one level.
180//
181bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
182  Instruction *TheCall = CS.getInstruction();
183  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
184         "Instruction not in function!");
185
186  const Function *CalledFunc = CS.getCalledFunction();
187  if (CalledFunc == 0 ||          // Can't inline external function or indirect
188      CalledFunc->isDeclaration() || // call, or call to a vararg function!
189      CalledFunc->getFunctionType()->isVarArg()) return false;
190
191
192  // If the call to the callee is a non-tail call, we must clear the 'tail'
193  // flags on any calls that we inline.
194  bool MustClearTailCallFlags =
195    isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall();
196
197  // If the call to the callee cannot throw, set the 'nounwind' flag on any
198  // calls that we inline.
199  bool MarkNoUnwind = CS.doesNotThrow();
200
201  BasicBlock *OrigBB = TheCall->getParent();
202  Function *Caller = OrigBB->getParent();
203
204
205  // GC poses two hazards to inlining, which only occur when the callee has GC:
206  //  1. If the caller has no GC, then the callee's GC must be propagated to the
207  //     caller.
208  //  2. If the caller has a differing GC, it is invalid to inline.
209  if (CalledFunc->hasCollector()) {
210    if (!Caller->hasCollector())
211      Caller->setCollector(CalledFunc->getCollector());
212    else if (CalledFunc->getCollector() != Caller->getCollector())
213      return false;
214  }
215
216
217  // Get an iterator to the last basic block in the function, which will have
218  // the new function inlined after it.
219  //
220  Function::iterator LastBlock = &Caller->back();
221
222  // Make sure to capture all of the return instructions from the cloned
223  // function.
224  std::vector<ReturnInst*> Returns;
225  ClonedCodeInfo InlinedFunctionInfo;
226  Function::iterator FirstNewBlock;
227
228  { // Scope to destroy ValueMap after cloning.
229    DenseMap<const Value*, Value*> ValueMap;
230
231    // Calculate the vector of arguments to pass into the function cloner, which
232    // matches up the formal to the actual argument values.
233    assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) ==
234           std::distance(CS.arg_begin(), CS.arg_end()) &&
235           "No varargs calls can be inlined!");
236    CallSite::arg_iterator AI = CS.arg_begin();
237    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
238           E = CalledFunc->arg_end(); I != E; ++I, ++AI)
239      ValueMap[I] = *AI;
240
241    // We want the inliner to prune the code as it copies.  We would LOVE to
242    // have no dead or constant instructions leftover after inlining occurs
243    // (which can happen, e.g., because an argument was constant), but we'll be
244    // happy with whatever the cloner can do.
245    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
246                              &InlinedFunctionInfo, TD);
247
248    // Remember the first block that is newly cloned over.
249    FirstNewBlock = LastBlock; ++FirstNewBlock;
250
251    // Update the callgraph if requested.
252    if (CG)
253      UpdateCallGraphAfterInlining(Caller, CalledFunc, FirstNewBlock, ValueMap,
254                                   *CG);
255  }
256
257  // If there are any alloca instructions in the block that used to be the entry
258  // block for the callee, move them to the entry block of the caller.  First
259  // calculate which instruction they should be inserted before.  We insert the
260  // instructions at the end of the current alloca list.
261  //
262  {
263    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
264    for (BasicBlock::iterator I = FirstNewBlock->begin(),
265           E = FirstNewBlock->end(); I != E; )
266      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
267        // If the alloca is now dead, remove it.  This often occurs due to code
268        // specialization.
269        if (AI->use_empty()) {
270          AI->eraseFromParent();
271          continue;
272        }
273
274        if (isa<Constant>(AI->getArraySize())) {
275          // Scan for the block of allocas that we can move over, and move them
276          // all at once.
277          while (isa<AllocaInst>(I) &&
278                 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
279            ++I;
280
281          // Transfer all of the allocas over in a block.  Using splice means
282          // that the instructions aren't removed from the symbol table, then
283          // reinserted.
284          Caller->getEntryBlock().getInstList().splice(
285              InsertPoint,
286              FirstNewBlock->getInstList(),
287              AI, I);
288        }
289      }
290  }
291
292  // If the inlined code contained dynamic alloca instructions, wrap the inlined
293  // code with llvm.stacksave/llvm.stackrestore intrinsics.
294  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
295    Module *M = Caller->getParent();
296    const Type *BytePtr = PointerType::getUnqual(Type::Int8Ty);
297    // Get the two intrinsics we care about.
298    Constant *StackSave, *StackRestore;
299    StackSave    = M->getOrInsertFunction("llvm.stacksave", BytePtr, NULL);
300    StackRestore = M->getOrInsertFunction("llvm.stackrestore", Type::VoidTy,
301                                          BytePtr, NULL);
302
303    // If we are preserving the callgraph, add edges to the stacksave/restore
304    // functions for the calls we insert.
305    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
306    if (CG) {
307      // We know that StackSave/StackRestore are Function*'s, because they are
308      // intrinsics which must have the right types.
309      StackSaveCGN    = CG->getOrInsertFunction(cast<Function>(StackSave));
310      StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
311      CallerNode = (*CG)[Caller];
312    }
313
314    // Insert the llvm.stacksave.
315    CallInst *SavedPtr = new CallInst(StackSave, "savedstack",
316                                      FirstNewBlock->begin());
317    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
318
319    // Insert a call to llvm.stackrestore before any return instructions in the
320    // inlined function.
321    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
322      CallInst *CI = new CallInst(StackRestore, SavedPtr, "", Returns[i]);
323      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
324    }
325
326    // Count the number of StackRestore calls we insert.
327    unsigned NumStackRestores = Returns.size();
328
329    // If we are inlining an invoke instruction, insert restores before each
330    // unwind.  These unwinds will be rewritten into branches later.
331    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
332      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
333           BB != E; ++BB)
334        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
335          new CallInst(StackRestore, SavedPtr, "", UI);
336          ++NumStackRestores;
337        }
338    }
339  }
340
341  // If we are inlining tail call instruction through a call site that isn't
342  // marked 'tail', we must remove the tail marker for any calls in the inlined
343  // code.  Also, calls inlined through a 'nounwind' call site should be marked
344  // 'nounwind'.
345  if (InlinedFunctionInfo.ContainsCalls &&
346      (MustClearTailCallFlags || MarkNoUnwind)) {
347    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
348         BB != E; ++BB)
349      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
350        if (CallInst *CI = dyn_cast<CallInst>(I)) {
351          if (MustClearTailCallFlags)
352            CI->setTailCall(false);
353          if (MarkNoUnwind)
354            CI->setDoesNotThrow();
355        }
356  }
357
358  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
359  // instructions are unreachable.
360  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
361    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
362         BB != E; ++BB) {
363      TerminatorInst *Term = BB->getTerminator();
364      if (isa<UnwindInst>(Term)) {
365        new UnreachableInst(Term);
366        BB->getInstList().erase(Term);
367      }
368    }
369
370  // If we are inlining for an invoke instruction, we must make sure to rewrite
371  // any inlined 'unwind' instructions into branches to the invoke exception
372  // destination, and call instructions into invoke instructions.
373  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
374    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
375
376  // If we cloned in _exactly one_ basic block, and if that block ends in a
377  // return instruction, we splice the body of the inlined callee directly into
378  // the calling basic block.
379  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
380    // Move all of the instructions right before the call.
381    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
382                                 FirstNewBlock->begin(), FirstNewBlock->end());
383    // Remove the cloned basic block.
384    Caller->getBasicBlockList().pop_back();
385
386    // If the call site was an invoke instruction, add a branch to the normal
387    // destination.
388    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
389      new BranchInst(II->getNormalDest(), TheCall);
390
391    // If the return instruction returned a value, replace uses of the call with
392    // uses of the returned value.
393    if (!TheCall->use_empty())
394      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
395
396    // Since we are now done with the Call/Invoke, we can delete it.
397    TheCall->getParent()->getInstList().erase(TheCall);
398
399    // Since we are now done with the return instruction, delete it also.
400    Returns[0]->getParent()->getInstList().erase(Returns[0]);
401
402    // We are now done with the inlining.
403    return true;
404  }
405
406  // Otherwise, we have the normal case, of more than one block to inline or
407  // multiple return sites.
408
409  // We want to clone the entire callee function into the hole between the
410  // "starter" and "ender" blocks.  How we accomplish this depends on whether
411  // this is an invoke instruction or a call instruction.
412  BasicBlock *AfterCallBB;
413  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
414
415    // Add an unconditional branch to make this look like the CallInst case...
416    BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
417
418    // Split the basic block.  This guarantees that no PHI nodes will have to be
419    // updated due to new incoming edges, and make the invoke case more
420    // symmetric to the call case.
421    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
422                                          CalledFunc->getName()+".exit");
423
424  } else {  // It's a call
425    // If this is a call instruction, we need to split the basic block that
426    // the call lives in.
427    //
428    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
429                                          CalledFunc->getName()+".exit");
430  }
431
432  // Change the branch that used to go to AfterCallBB to branch to the first
433  // basic block of the inlined function.
434  //
435  TerminatorInst *Br = OrigBB->getTerminator();
436  assert(Br && Br->getOpcode() == Instruction::Br &&
437         "splitBasicBlock broken!");
438  Br->setOperand(0, FirstNewBlock);
439
440
441  // Now that the function is correct, make it a little bit nicer.  In
442  // particular, move the basic blocks inserted from the end of the function
443  // into the space made by splitting the source basic block.
444  //
445  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
446                                     FirstNewBlock, Caller->end());
447
448  // Handle all of the return instructions that we just cloned in, and eliminate
449  // any users of the original call/invoke instruction.
450  if (Returns.size() > 1) {
451    // The PHI node should go at the front of the new basic block to merge all
452    // possible incoming values.
453    //
454    PHINode *PHI = 0;
455    if (!TheCall->use_empty()) {
456      PHI = new PHINode(CalledFunc->getReturnType(),
457                        TheCall->getName(), AfterCallBB->begin());
458
459      // Anything that used the result of the function call should now use the
460      // PHI node as their operand.
461      //
462      TheCall->replaceAllUsesWith(PHI);
463    }
464
465    // Loop over all of the return instructions, turning them into unconditional
466    // branches to the merge point now, and adding entries to the PHI node as
467    // appropriate.
468    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
469      ReturnInst *RI = Returns[i];
470
471      if (PHI) {
472        assert(RI->getReturnValue() && "Ret should have value!");
473        assert(RI->getReturnValue()->getType() == PHI->getType() &&
474               "Ret value not consistent in function!");
475        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
476      }
477
478      // Add a branch to the merge point where the PHI node lives if it exists.
479      new BranchInst(AfterCallBB, RI);
480
481      // Delete the return instruction now
482      RI->getParent()->getInstList().erase(RI);
483    }
484
485  } else if (!Returns.empty()) {
486    // Otherwise, if there is exactly one return value, just replace anything
487    // using the return value of the call with the computed value.
488    if (!TheCall->use_empty())
489      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
490
491    // Splice the code from the return block into the block that it will return
492    // to, which contains the code that was after the call.
493    BasicBlock *ReturnBB = Returns[0]->getParent();
494    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
495                                      ReturnBB->getInstList());
496
497    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
498    ReturnBB->replaceAllUsesWith(AfterCallBB);
499
500    // Delete the return instruction now and empty ReturnBB now.
501    Returns[0]->eraseFromParent();
502    ReturnBB->eraseFromParent();
503  } else if (!TheCall->use_empty()) {
504    // No returns, but something is using the return value of the call.  Just
505    // nuke the result.
506    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
507  }
508
509  // Since we are now done with the Call/Invoke, we can delete it.
510  TheCall->eraseFromParent();
511
512  // We should always be able to fold the entry block of the function into the
513  // single predecessor of the block...
514  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
515  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
516
517  // Splice the code entry block into calling block, right before the
518  // unconditional branch.
519  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
520  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
521
522  // Remove the unconditional branch.
523  OrigBB->getInstList().erase(Br);
524
525  // Now we can remove the CalleeEntry block, which is now empty.
526  Caller->getBasicBlockList().erase(CalleeEntry);
527
528  return true;
529}
530