InlineFunction.cpp revision 43ad6b3e0d6ada51e9b23aab3e061187f1f5710c
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/Analysis/CallGraph.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/Support/CallSite.h"
24using namespace llvm;
25
26bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
27  return InlineFunction(CallSite(CI), CG, TD);
28}
29bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
30  return InlineFunction(CallSite(II), CG, TD);
31}
32
33/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
34/// in the body of the inlined function into invokes and turn unwind
35/// instructions into branches to the invoke unwind dest.
36///
37/// II is the invoke instruction begin inlined.  FirstNewBlock is the first
38/// block of the inlined code (the last block is the end of the function),
39/// and InlineCodeInfo is information about the code that got inlined.
40static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
41                                ClonedCodeInfo &InlinedCodeInfo) {
42  BasicBlock *InvokeDest = II->getUnwindDest();
43  std::vector<Value*> InvokeDestPHIValues;
44
45  // If there are PHI nodes in the unwind destination block, we need to
46  // keep track of which values came into them from this invoke, then remove
47  // the entry for this block.
48  BasicBlock *InvokeBlock = II->getParent();
49  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
50    PHINode *PN = cast<PHINode>(I);
51    // Save the value to use for this edge.
52    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
53  }
54
55  Function *Caller = FirstNewBlock->getParent();
56
57  // The inlined code is currently at the end of the function, scan from the
58  // start of the inlined code to its end, checking for stuff we need to
59  // rewrite.
60  if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
61    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
62         BB != E; ++BB) {
63      if (InlinedCodeInfo.ContainsCalls) {
64        for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
65          Instruction *I = BBI++;
66
67          // We only need to check for function calls: inlined invoke
68          // instructions require no special handling.
69          if (!isa<CallInst>(I)) continue;
70          CallInst *CI = cast<CallInst>(I);
71
72          // If this call cannot unwind or is an inline asm, don't
73          // convert it to an invoke.
74          if (CI->isNoUnwind() || isa<InlineAsm>(CI->getCalledValue()))
75            continue;
76
77          // Convert this function call into an invoke instruction.
78          // First, split the basic block.
79          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
80
81          // Next, create the new invoke instruction, inserting it at the end
82          // of the old basic block.
83          SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
84          InvokeInst *II =
85            new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
86                           InvokeArgs.begin(), InvokeArgs.end(),
87                           CI->getName(), BB->getTerminator());
88          II->setCallingConv(CI->getCallingConv());
89          II->setParamAttrs(CI->getParamAttrs());
90
91          // Make sure that anything using the call now uses the invoke!
92          CI->replaceAllUsesWith(II);
93
94          // Delete the unconditional branch inserted by splitBasicBlock
95          BB->getInstList().pop_back();
96          Split->getInstList().pop_front();  // Delete the original call
97
98          // Update any PHI nodes in the exceptional block to indicate that
99          // there is now a new entry in them.
100          unsigned i = 0;
101          for (BasicBlock::iterator I = InvokeDest->begin();
102               isa<PHINode>(I); ++I, ++i) {
103            PHINode *PN = cast<PHINode>(I);
104            PN->addIncoming(InvokeDestPHIValues[i], BB);
105          }
106
107          // This basic block is now complete, start scanning the next one.
108          break;
109        }
110      }
111
112      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
113        // An UnwindInst requires special handling when it gets inlined into an
114        // invoke site.  Once this happens, we know that the unwind would cause
115        // a control transfer to the invoke exception destination, so we can
116        // transform it into a direct branch to the exception destination.
117        new BranchInst(InvokeDest, UI);
118
119        // Delete the unwind instruction!
120        UI->getParent()->getInstList().pop_back();
121
122        // Update any PHI nodes in the exceptional block to indicate that
123        // there is now a new entry in them.
124        unsigned i = 0;
125        for (BasicBlock::iterator I = InvokeDest->begin();
126             isa<PHINode>(I); ++I, ++i) {
127          PHINode *PN = cast<PHINode>(I);
128          PN->addIncoming(InvokeDestPHIValues[i], BB);
129        }
130      }
131    }
132  }
133
134  // Now that everything is happy, we have one final detail.  The PHI nodes in
135  // the exception destination block still have entries due to the original
136  // invoke instruction.  Eliminate these entries (which might even delete the
137  // PHI node) now.
138  InvokeDest->removePredecessor(II->getParent());
139}
140
141/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
142/// into the caller, update the specified callgraph to reflect the changes we
143/// made.  Note that it's possible that not all code was copied over, so only
144/// some edges of the callgraph will be remain.
145static void UpdateCallGraphAfterInlining(const Function *Caller,
146                                         const Function *Callee,
147                                         Function::iterator FirstNewBlock,
148                                       DenseMap<const Value*, Value*> &ValueMap,
149                                         CallGraph &CG) {
150  // Update the call graph by deleting the edge from Callee to Caller
151  CallGraphNode *CalleeNode = CG[Callee];
152  CallGraphNode *CallerNode = CG[Caller];
153  CallerNode->removeCallEdgeTo(CalleeNode);
154
155  // Since we inlined some uninlined call sites in the callee into the caller,
156  // add edges from the caller to all of the callees of the callee.
157  for (CallGraphNode::iterator I = CalleeNode->begin(),
158       E = CalleeNode->end(); I != E; ++I) {
159    const Instruction *OrigCall = I->first.getInstruction();
160
161    DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
162    // Only copy the edge if the call was inlined!
163    if (VMI != ValueMap.end() && VMI->second) {
164      // If the call was inlined, but then constant folded, there is no edge to
165      // add.  Check for this case.
166      if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
167        CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
168    }
169  }
170}
171
172
173// InlineFunction - This function inlines the called function into the basic
174// block of the caller.  This returns false if it is not possible to inline this
175// call.  The program is still in a well defined state if this occurs though.
176//
177// Note that this only does one level of inlining.  For example, if the
178// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
179// exists in the instruction stream.  Similiarly this will inline a recursive
180// function by one level.
181//
182bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
183  Instruction *TheCall = CS.getInstruction();
184  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
185         "Instruction not in function!");
186
187  const Function *CalledFunc = CS.getCalledFunction();
188  if (CalledFunc == 0 ||          // Can't inline external function or indirect
189      CalledFunc->isDeclaration() || // call, or call to a vararg function!
190      CalledFunc->getFunctionType()->isVarArg()) return false;
191
192
193  // If the call to the callee is a non-tail call, we must clear the 'tail'
194  // flags on any calls that we inline.
195  bool MustClearTailCallFlags =
196    isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall();
197
198  BasicBlock *OrigBB = TheCall->getParent();
199  Function *Caller = OrigBB->getParent();
200
201  // Get an iterator to the last basic block in the function, which will have
202  // the new function inlined after it.
203  //
204  Function::iterator LastBlock = &Caller->back();
205
206  // Make sure to capture all of the return instructions from the cloned
207  // function.
208  std::vector<ReturnInst*> Returns;
209  ClonedCodeInfo InlinedFunctionInfo;
210  Function::iterator FirstNewBlock;
211
212  { // Scope to destroy ValueMap after cloning.
213    DenseMap<const Value*, Value*> ValueMap;
214
215    // Calculate the vector of arguments to pass into the function cloner, which
216    // matches up the formal to the actual argument values.
217    assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) ==
218           std::distance(CS.arg_begin(), CS.arg_end()) &&
219           "No varargs calls can be inlined!");
220    CallSite::arg_iterator AI = CS.arg_begin();
221    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
222           E = CalledFunc->arg_end(); I != E; ++I, ++AI)
223      ValueMap[I] = *AI;
224
225    // We want the inliner to prune the code as it copies.  We would LOVE to
226    // have no dead or constant instructions leftover after inlining occurs
227    // (which can happen, e.g., because an argument was constant), but we'll be
228    // happy with whatever the cloner can do.
229    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
230                              &InlinedFunctionInfo, TD);
231
232    // Remember the first block that is newly cloned over.
233    FirstNewBlock = LastBlock; ++FirstNewBlock;
234
235    // Update the callgraph if requested.
236    if (CG)
237      UpdateCallGraphAfterInlining(Caller, CalledFunc, FirstNewBlock, ValueMap,
238                                   *CG);
239  }
240
241  // If there are any alloca instructions in the block that used to be the entry
242  // block for the callee, move them to the entry block of the caller.  First
243  // calculate which instruction they should be inserted before.  We insert the
244  // instructions at the end of the current alloca list.
245  //
246  {
247    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
248    for (BasicBlock::iterator I = FirstNewBlock->begin(),
249           E = FirstNewBlock->end(); I != E; )
250      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
251        // If the alloca is now dead, remove it.  This often occurs due to code
252        // specialization.
253        if (AI->use_empty()) {
254          AI->eraseFromParent();
255          continue;
256        }
257
258        if (isa<Constant>(AI->getArraySize())) {
259          // Scan for the block of allocas that we can move over, and move them
260          // all at once.
261          while (isa<AllocaInst>(I) &&
262                 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
263            ++I;
264
265          // Transfer all of the allocas over in a block.  Using splice means
266          // that the instructions aren't removed from the symbol table, then
267          // reinserted.
268          Caller->getEntryBlock().getInstList().splice(
269              InsertPoint,
270              FirstNewBlock->getInstList(),
271              AI, I);
272        }
273      }
274  }
275
276  // If the inlined code contained dynamic alloca instructions, wrap the inlined
277  // code with llvm.stacksave/llvm.stackrestore intrinsics.
278  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
279    Module *M = Caller->getParent();
280    const Type *BytePtr = PointerType::getUnqual(Type::Int8Ty);
281    // Get the two intrinsics we care about.
282    Constant *StackSave, *StackRestore;
283    StackSave    = M->getOrInsertFunction("llvm.stacksave", BytePtr, NULL);
284    StackRestore = M->getOrInsertFunction("llvm.stackrestore", Type::VoidTy,
285                                          BytePtr, NULL);
286
287    // If we are preserving the callgraph, add edges to the stacksave/restore
288    // functions for the calls we insert.
289    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
290    if (CG) {
291      // We know that StackSave/StackRestore are Function*'s, because they are
292      // intrinsics which must have the right types.
293      StackSaveCGN    = CG->getOrInsertFunction(cast<Function>(StackSave));
294      StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
295      CallerNode = (*CG)[Caller];
296    }
297
298    // Insert the llvm.stacksave.
299    CallInst *SavedPtr = new CallInst(StackSave, "savedstack",
300                                      FirstNewBlock->begin());
301    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
302
303    // Insert a call to llvm.stackrestore before any return instructions in the
304    // inlined function.
305    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
306      CallInst *CI = new CallInst(StackRestore, SavedPtr, "", Returns[i]);
307      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
308    }
309
310    // Count the number of StackRestore calls we insert.
311    unsigned NumStackRestores = Returns.size();
312
313    // If we are inlining an invoke instruction, insert restores before each
314    // unwind.  These unwinds will be rewritten into branches later.
315    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
316      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
317           BB != E; ++BB)
318        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
319          new CallInst(StackRestore, SavedPtr, "", UI);
320          ++NumStackRestores;
321        }
322    }
323  }
324
325  // If we are inlining tail call instruction through a call site that isn't
326  // marked 'tail', we must remove the tail marker for any calls in the inlined
327  // code.
328  if (MustClearTailCallFlags && InlinedFunctionInfo.ContainsCalls) {
329    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
330         BB != E; ++BB)
331      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
332        if (CallInst *CI = dyn_cast<CallInst>(I))
333          CI->setTailCall(false);
334  }
335
336  // If we are inlining for an invoke instruction, we must make sure to rewrite
337  // any inlined 'unwind' instructions into branches to the invoke exception
338  // destination, and call instructions into invoke instructions.
339  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
340    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
341
342  // If we cloned in _exactly one_ basic block, and if that block ends in a
343  // return instruction, we splice the body of the inlined callee directly into
344  // the calling basic block.
345  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
346    // Move all of the instructions right before the call.
347    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
348                                 FirstNewBlock->begin(), FirstNewBlock->end());
349    // Remove the cloned basic block.
350    Caller->getBasicBlockList().pop_back();
351
352    // If the call site was an invoke instruction, add a branch to the normal
353    // destination.
354    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
355      new BranchInst(II->getNormalDest(), TheCall);
356
357    // If the return instruction returned a value, replace uses of the call with
358    // uses of the returned value.
359    if (!TheCall->use_empty())
360      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
361
362    // Since we are now done with the Call/Invoke, we can delete it.
363    TheCall->getParent()->getInstList().erase(TheCall);
364
365    // Since we are now done with the return instruction, delete it also.
366    Returns[0]->getParent()->getInstList().erase(Returns[0]);
367
368    // We are now done with the inlining.
369    return true;
370  }
371
372  // Otherwise, we have the normal case, of more than one block to inline or
373  // multiple return sites.
374
375  // We want to clone the entire callee function into the hole between the
376  // "starter" and "ender" blocks.  How we accomplish this depends on whether
377  // this is an invoke instruction or a call instruction.
378  BasicBlock *AfterCallBB;
379  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
380
381    // Add an unconditional branch to make this look like the CallInst case...
382    BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
383
384    // Split the basic block.  This guarantees that no PHI nodes will have to be
385    // updated due to new incoming edges, and make the invoke case more
386    // symmetric to the call case.
387    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
388                                          CalledFunc->getName()+".exit");
389
390  } else {  // It's a call
391    // If this is a call instruction, we need to split the basic block that
392    // the call lives in.
393    //
394    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
395                                          CalledFunc->getName()+".exit");
396  }
397
398  // Change the branch that used to go to AfterCallBB to branch to the first
399  // basic block of the inlined function.
400  //
401  TerminatorInst *Br = OrigBB->getTerminator();
402  assert(Br && Br->getOpcode() == Instruction::Br &&
403         "splitBasicBlock broken!");
404  Br->setOperand(0, FirstNewBlock);
405
406
407  // Now that the function is correct, make it a little bit nicer.  In
408  // particular, move the basic blocks inserted from the end of the function
409  // into the space made by splitting the source basic block.
410  //
411  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
412                                     FirstNewBlock, Caller->end());
413
414  // Handle all of the return instructions that we just cloned in, and eliminate
415  // any users of the original call/invoke instruction.
416  if (Returns.size() > 1) {
417    // The PHI node should go at the front of the new basic block to merge all
418    // possible incoming values.
419    //
420    PHINode *PHI = 0;
421    if (!TheCall->use_empty()) {
422      PHI = new PHINode(CalledFunc->getReturnType(),
423                        TheCall->getName(), AfterCallBB->begin());
424
425      // Anything that used the result of the function call should now use the
426      // PHI node as their operand.
427      //
428      TheCall->replaceAllUsesWith(PHI);
429    }
430
431    // Loop over all of the return instructions, turning them into unconditional
432    // branches to the merge point now, and adding entries to the PHI node as
433    // appropriate.
434    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
435      ReturnInst *RI = Returns[i];
436
437      if (PHI) {
438        assert(RI->getReturnValue() && "Ret should have value!");
439        assert(RI->getReturnValue()->getType() == PHI->getType() &&
440               "Ret value not consistent in function!");
441        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
442      }
443
444      // Add a branch to the merge point where the PHI node lives if it exists.
445      new BranchInst(AfterCallBB, RI);
446
447      // Delete the return instruction now
448      RI->getParent()->getInstList().erase(RI);
449    }
450
451  } else if (!Returns.empty()) {
452    // Otherwise, if there is exactly one return value, just replace anything
453    // using the return value of the call with the computed value.
454    if (!TheCall->use_empty())
455      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
456
457    // Splice the code from the return block into the block that it will return
458    // to, which contains the code that was after the call.
459    BasicBlock *ReturnBB = Returns[0]->getParent();
460    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
461                                      ReturnBB->getInstList());
462
463    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
464    ReturnBB->replaceAllUsesWith(AfterCallBB);
465
466    // Delete the return instruction now and empty ReturnBB now.
467    Returns[0]->eraseFromParent();
468    ReturnBB->eraseFromParent();
469  } else if (!TheCall->use_empty()) {
470    // No returns, but something is using the return value of the call.  Just
471    // nuke the result.
472    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
473  }
474
475  // Since we are now done with the Call/Invoke, we can delete it.
476  TheCall->eraseFromParent();
477
478  // We should always be able to fold the entry block of the function into the
479  // single predecessor of the block...
480  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
481  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
482
483  // Splice the code entry block into calling block, right before the
484  // unconditional branch.
485  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
486  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
487
488  // Remove the unconditional branch.
489  OrigBB->getInstList().erase(Br);
490
491  // Now we can remove the CalleeEntry block, which is now empty.
492  Caller->getBasicBlockList().erase(CalleeEntry);
493
494  return true;
495}
496