InlineFunction.cpp revision 6e69442416c23c3c56a335120662557d6bed2fae
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/Attributes.h"
23#include "llvm/Analysis/CallGraph.h"
24#include "llvm/Analysis/DebugInfo.h"
25#include "llvm/Analysis/InstructionSimplify.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Transforms/Utils/Local.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/IRBuilder.h"
32using namespace llvm;
33
34bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
35  return InlineFunction(CallSite(CI), IFI);
36}
37bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
38  return InlineFunction(CallSite(II), IFI);
39}
40
41namespace {
42  /// A class for recording information about inlining through an invoke.
43  class InvokeInliningInfo {
44    BasicBlock *OuterUnwindDest;
45    EHSelectorInst *OuterSelector;
46    BasicBlock *InnerUnwindDest;
47    PHINode *InnerExceptionPHI;
48    PHINode *InnerSelectorPHI;
49    SmallVector<Value*, 8> UnwindDestPHIValues;
50
51    // FIXME: New EH - These will replace the analogous ones above.
52    BasicBlock *OuterResumeDest; //< Destination of the invoke's unwind.
53    BasicBlock *InnerResumeDest; //< Destination for the callee's resume.
54    LandingPadInst *CallerLPad;  //< LandingPadInst associated with the invoke.
55    PHINode *InnerEHValuesPHI;   //< PHI for EH values from landingpad insts.
56
57  public:
58    InvokeInliningInfo(InvokeInst *II)
59      : OuterUnwindDest(II->getUnwindDest()), OuterSelector(0),
60        InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0),
61        OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0),
62        CallerLPad(0), InnerEHValuesPHI(0) {
63      // If there are PHI nodes in the unwind destination block, we need to keep
64      // track of which values came into them from the invoke before removing
65      // the edge from this block.
66      llvm::BasicBlock *InvokeBB = II->getParent();
67      BasicBlock::iterator I = OuterUnwindDest->begin();
68      for (; isa<PHINode>(I); ++I) {
69        // Save the value to use for this edge.
70        PHINode *PHI = cast<PHINode>(I);
71        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
72      }
73
74      CallerLPad = cast<LandingPadInst>(I);
75    }
76
77    /// The outer unwind destination is the target of unwind edges
78    /// introduced for calls within the inlined function.
79    BasicBlock *getOuterUnwindDest() const {
80      return OuterUnwindDest;
81    }
82
83    BasicBlock *getInnerUnwindDest();
84
85    LandingPadInst *getLandingPadInst() const { return CallerLPad; }
86
87    /// forwardResume - Forward the 'resume' instruction to the caller's landing
88    /// pad block. When the landing pad block has only one predecessor, this is
89    /// a simple branch. When there is more than one predecessor, we need to
90    /// split the landing pad block after the landingpad instruction and jump
91    /// to there.
92    void forwardResume(ResumeInst *RI);
93
94    /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
95    /// destination block for the given basic block, using the values for the
96    /// original invoke's source block.
97    void addIncomingPHIValuesFor(BasicBlock *BB) const {
98      addIncomingPHIValuesForInto(BB, OuterUnwindDest);
99    }
100
101    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
102      BasicBlock::iterator I = dest->begin();
103      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
104        PHINode *phi = cast<PHINode>(I);
105        phi->addIncoming(UnwindDestPHIValues[i], src);
106      }
107    }
108  };
109}
110
111/// getInnerUnwindDest - Get or create a target for the branch from ResumeInsts.
112BasicBlock *InvokeInliningInfo::getInnerUnwindDest() {
113  if (InnerResumeDest) return InnerResumeDest;
114
115  // Split the landing pad.
116  BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
117  InnerResumeDest =
118    OuterResumeDest->splitBasicBlock(SplitPoint,
119                                     OuterResumeDest->getName() + ".body");
120
121  // The number of incoming edges we expect to the inner landing pad.
122  const unsigned PHICapacity = 2;
123
124  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
125  BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
126  BasicBlock::iterator I = OuterResumeDest->begin();
127  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
128    PHINode *OuterPHI = cast<PHINode>(I);
129    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
130                                        OuterPHI->getName() + ".lpad-body",
131                                        InsertPoint);
132    OuterPHI->replaceAllUsesWith(InnerPHI);
133    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
134  }
135
136  // Create a PHI for the exception values.
137  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
138                                     "eh.lpad-body", InsertPoint);
139  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
140  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
141
142  // All done.
143  return InnerResumeDest;
144}
145
146/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
147/// block. When the landing pad block has only one predecessor, this is a simple
148/// branch. When there is more than one predecessor, we need to split the
149/// landing pad block after the landingpad instruction and jump to there.
150void InvokeInliningInfo::forwardResume(ResumeInst *RI) {
151  BasicBlock *Dest = getInnerUnwindDest();
152  BasicBlock *Src = RI->getParent();
153
154  BranchInst::Create(Dest, Src);
155
156  // Update the PHIs in the destination. They were inserted in an order which
157  // makes this work.
158  addIncomingPHIValuesForInto(Src, Dest);
159
160  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
161  RI->eraseFromParent();
162}
163
164/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
165/// an invoke, we have to turn all of the calls that can throw into
166/// invokes.  This function analyze BB to see if there are any calls, and if so,
167/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
168/// nodes in that block with the values specified in InvokeDestPHIValues.
169///
170/// Returns true to indicate that the next block should be skipped.
171static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
172                                                   InvokeInliningInfo &Invoke) {
173  LandingPadInst *LPI = Invoke.getLandingPadInst();
174
175  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
176    Instruction *I = BBI++;
177
178    if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
179      unsigned NumClauses = LPI->getNumClauses();
180      L->reserveClauses(NumClauses);
181      for (unsigned i = 0; i != NumClauses; ++i)
182        L->addClause(LPI->getClause(i));
183    }
184
185    // We only need to check for function calls: inlined invoke
186    // instructions require no special handling.
187    CallInst *CI = dyn_cast<CallInst>(I);
188
189    // If this call cannot unwind, don't convert it to an invoke.
190    if (!CI || CI->doesNotThrow())
191      continue;
192
193    // Convert this function call into an invoke instruction.  First, split the
194    // basic block.
195    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
196
197    // Delete the unconditional branch inserted by splitBasicBlock
198    BB->getInstList().pop_back();
199
200    // Create the new invoke instruction.
201    ImmutableCallSite CS(CI);
202    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
203    InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
204                                        Invoke.getOuterUnwindDest(),
205                                        InvokeArgs, CI->getName(), BB);
206    II->setCallingConv(CI->getCallingConv());
207    II->setAttributes(CI->getAttributes());
208
209    // Make sure that anything using the call now uses the invoke!  This also
210    // updates the CallGraph if present, because it uses a WeakVH.
211    CI->replaceAllUsesWith(II);
212
213    // Delete the original call
214    Split->getInstList().pop_front();
215
216    // Update any PHI nodes in the exceptional block to indicate that there is
217    // now a new entry in them.
218    Invoke.addIncomingPHIValuesFor(BB);
219    return false;
220  }
221
222  return false;
223}
224
225/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
226/// in the body of the inlined function into invokes and turn unwind
227/// instructions into branches to the invoke unwind dest.
228///
229/// II is the invoke instruction being inlined.  FirstNewBlock is the first
230/// block of the inlined code (the last block is the end of the function),
231/// and InlineCodeInfo is information about the code that got inlined.
232static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
233                                ClonedCodeInfo &InlinedCodeInfo) {
234  BasicBlock *InvokeDest = II->getUnwindDest();
235
236  Function *Caller = FirstNewBlock->getParent();
237
238  // The inlined code is currently at the end of the function, scan from the
239  // start of the inlined code to its end, checking for stuff we need to
240  // rewrite.  If the code doesn't have calls or unwinds, we know there is
241  // nothing to rewrite.
242  if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
243    // Now that everything is happy, we have one final detail.  The PHI nodes in
244    // the exception destination block still have entries due to the original
245    // invoke instruction.  Eliminate these entries (which might even delete the
246    // PHI node) now.
247    InvokeDest->removePredecessor(II->getParent());
248    return;
249  }
250
251  InvokeInliningInfo Invoke(II);
252
253  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
254    if (InlinedCodeInfo.ContainsCalls)
255      if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
256        // Honor a request to skip the next block.  We don't need to
257        // consider UnwindInsts in this case either.
258        ++BB;
259        continue;
260      }
261
262    if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
263      // An UnwindInst requires special handling when it gets inlined into an
264      // invoke site.  Once this happens, we know that the unwind would cause
265      // a control transfer to the invoke exception destination, so we can
266      // transform it into a direct branch to the exception destination.
267      BranchInst::Create(InvokeDest, UI);
268
269      // Delete the unwind instruction!
270      UI->eraseFromParent();
271
272      // Update any PHI nodes in the exceptional block to indicate that
273      // there is now a new entry in them.
274      Invoke.addIncomingPHIValuesFor(BB);
275    }
276
277    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
278      Invoke.forwardResume(RI);
279  }
280
281  // Now that everything is happy, we have one final detail.  The PHI nodes in
282  // the exception destination block still have entries due to the original
283  // invoke instruction.  Eliminate these entries (which might even delete the
284  // PHI node) now.
285  InvokeDest->removePredecessor(II->getParent());
286}
287
288/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
289/// into the caller, update the specified callgraph to reflect the changes we
290/// made.  Note that it's possible that not all code was copied over, so only
291/// some edges of the callgraph may remain.
292static void UpdateCallGraphAfterInlining(CallSite CS,
293                                         Function::iterator FirstNewBlock,
294                                         ValueToValueMapTy &VMap,
295                                         InlineFunctionInfo &IFI) {
296  CallGraph &CG = *IFI.CG;
297  const Function *Caller = CS.getInstruction()->getParent()->getParent();
298  const Function *Callee = CS.getCalledFunction();
299  CallGraphNode *CalleeNode = CG[Callee];
300  CallGraphNode *CallerNode = CG[Caller];
301
302  // Since we inlined some uninlined call sites in the callee into the caller,
303  // add edges from the caller to all of the callees of the callee.
304  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
305
306  // Consider the case where CalleeNode == CallerNode.
307  CallGraphNode::CalledFunctionsVector CallCache;
308  if (CalleeNode == CallerNode) {
309    CallCache.assign(I, E);
310    I = CallCache.begin();
311    E = CallCache.end();
312  }
313
314  for (; I != E; ++I) {
315    const Value *OrigCall = I->first;
316
317    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
318    // Only copy the edge if the call was inlined!
319    if (VMI == VMap.end() || VMI->second == 0)
320      continue;
321
322    // If the call was inlined, but then constant folded, there is no edge to
323    // add.  Check for this case.
324    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
325    if (NewCall == 0) continue;
326
327    // Remember that this call site got inlined for the client of
328    // InlineFunction.
329    IFI.InlinedCalls.push_back(NewCall);
330
331    // It's possible that inlining the callsite will cause it to go from an
332    // indirect to a direct call by resolving a function pointer.  If this
333    // happens, set the callee of the new call site to a more precise
334    // destination.  This can also happen if the call graph node of the caller
335    // was just unnecessarily imprecise.
336    if (I->second->getFunction() == 0)
337      if (Function *F = CallSite(NewCall).getCalledFunction()) {
338        // Indirect call site resolved to direct call.
339        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
340
341        continue;
342      }
343
344    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
345  }
346
347  // Update the call graph by deleting the edge from Callee to Caller.  We must
348  // do this after the loop above in case Caller and Callee are the same.
349  CallerNode->removeCallEdgeFor(CS);
350}
351
352/// HandleByValArgument - When inlining a call site that has a byval argument,
353/// we have to make the implicit memcpy explicit by adding it.
354static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
355                                  const Function *CalledFunc,
356                                  InlineFunctionInfo &IFI,
357                                  unsigned ByValAlignment) {
358  Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
359
360  // If the called function is readonly, then it could not mutate the caller's
361  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
362  // temporary.
363  if (CalledFunc->onlyReadsMemory()) {
364    // If the byval argument has a specified alignment that is greater than the
365    // passed in pointer, then we either have to round up the input pointer or
366    // give up on this transformation.
367    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
368      return Arg;
369
370    // If the pointer is already known to be sufficiently aligned, or if we can
371    // round it up to a larger alignment, then we don't need a temporary.
372    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
373                                   IFI.TD) >= ByValAlignment)
374      return Arg;
375
376    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
377    // for code quality, but rarely happens and is required for correctness.
378  }
379
380  LLVMContext &Context = Arg->getContext();
381
382  Type *VoidPtrTy = Type::getInt8PtrTy(Context);
383
384  // Create the alloca.  If we have TargetData, use nice alignment.
385  unsigned Align = 1;
386  if (IFI.TD)
387    Align = IFI.TD->getPrefTypeAlignment(AggTy);
388
389  // If the byval had an alignment specified, we *must* use at least that
390  // alignment, as it is required by the byval argument (and uses of the
391  // pointer inside the callee).
392  Align = std::max(Align, ByValAlignment);
393
394  Function *Caller = TheCall->getParent()->getParent();
395
396  Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
397                                    &*Caller->begin()->begin());
398  // Emit a memcpy.
399  Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
400  Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
401                                                 Intrinsic::memcpy,
402                                                 Tys);
403  Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
404  Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
405
406  Value *Size;
407  if (IFI.TD == 0)
408    Size = ConstantExpr::getSizeOf(AggTy);
409  else
410    Size = ConstantInt::get(Type::getInt64Ty(Context),
411                            IFI.TD->getTypeStoreSize(AggTy));
412
413  // Always generate a memcpy of alignment 1 here because we don't know
414  // the alignment of the src pointer.  Other optimizations can infer
415  // better alignment.
416  Value *CallArgs[] = {
417    DestCast, SrcCast, Size,
418    ConstantInt::get(Type::getInt32Ty(Context), 1),
419    ConstantInt::getFalse(Context) // isVolatile
420  };
421  IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
422
423  // Uses of the argument in the function should use our new alloca
424  // instead.
425  return NewAlloca;
426}
427
428// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
429// intrinsic.
430static bool isUsedByLifetimeMarker(Value *V) {
431  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
432       ++UI) {
433    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
434      switch (II->getIntrinsicID()) {
435      default: break;
436      case Intrinsic::lifetime_start:
437      case Intrinsic::lifetime_end:
438        return true;
439      }
440    }
441  }
442  return false;
443}
444
445// hasLifetimeMarkers - Check whether the given alloca already has
446// lifetime.start or lifetime.end intrinsics.
447static bool hasLifetimeMarkers(AllocaInst *AI) {
448  Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
449  if (AI->getType() == Int8PtrTy)
450    return isUsedByLifetimeMarker(AI);
451
452  // Do a scan to find all the casts to i8*.
453  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
454       ++I) {
455    if (I->getType() != Int8PtrTy) continue;
456    if (I->stripPointerCasts() != AI) continue;
457    if (isUsedByLifetimeMarker(*I))
458      return true;
459  }
460  return false;
461}
462
463/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively
464/// update InlinedAtEntry of a DebugLoc.
465static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
466                                    const DebugLoc &InlinedAtDL,
467                                    LLVMContext &Ctx) {
468  if (MDNode *IA = DL.getInlinedAt(Ctx)) {
469    DebugLoc NewInlinedAtDL
470      = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
471    return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
472                         NewInlinedAtDL.getAsMDNode(Ctx));
473  }
474
475  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
476                       InlinedAtDL.getAsMDNode(Ctx));
477}
478
479/// fixupLineNumbers - Update inlined instructions' line numbers to
480/// to encode location where these instructions are inlined.
481static void fixupLineNumbers(Function *Fn, Function::iterator FI,
482                              Instruction *TheCall) {
483  DebugLoc TheCallDL = TheCall->getDebugLoc();
484  if (TheCallDL.isUnknown())
485    return;
486
487  for (; FI != Fn->end(); ++FI) {
488    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
489         BI != BE; ++BI) {
490      DebugLoc DL = BI->getDebugLoc();
491      if (!DL.isUnknown()) {
492        BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
493        if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
494          LLVMContext &Ctx = BI->getContext();
495          MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
496          DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
497                                                   InlinedAt, Ctx));
498        }
499      }
500    }
501  }
502}
503
504/// InlineFunction - This function inlines the called function into the basic
505/// block of the caller.  This returns false if it is not possible to inline
506/// this call.  The program is still in a well defined state if this occurs
507/// though.
508///
509/// Note that this only does one level of inlining.  For example, if the
510/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
511/// exists in the instruction stream.  Similarly this will inline a recursive
512/// function by one level.
513bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
514  Instruction *TheCall = CS.getInstruction();
515  LLVMContext &Context = TheCall->getContext();
516  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
517         "Instruction not in function!");
518
519  // If IFI has any state in it, zap it before we fill it in.
520  IFI.reset();
521
522  const Function *CalledFunc = CS.getCalledFunction();
523  if (CalledFunc == 0 ||          // Can't inline external function or indirect
524      CalledFunc->isDeclaration() || // call, or call to a vararg function!
525      CalledFunc->getFunctionType()->isVarArg()) return false;
526
527  // If the call to the callee is not a tail call, we must clear the 'tail'
528  // flags on any calls that we inline.
529  bool MustClearTailCallFlags =
530    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
531
532  // If the call to the callee cannot throw, set the 'nounwind' flag on any
533  // calls that we inline.
534  bool MarkNoUnwind = CS.doesNotThrow();
535
536  BasicBlock *OrigBB = TheCall->getParent();
537  Function *Caller = OrigBB->getParent();
538
539  // GC poses two hazards to inlining, which only occur when the callee has GC:
540  //  1. If the caller has no GC, then the callee's GC must be propagated to the
541  //     caller.
542  //  2. If the caller has a differing GC, it is invalid to inline.
543  if (CalledFunc->hasGC()) {
544    if (!Caller->hasGC())
545      Caller->setGC(CalledFunc->getGC());
546    else if (CalledFunc->getGC() != Caller->getGC())
547      return false;
548  }
549
550  // Get the personality function from the callee if it contains a landing pad.
551  Value *CalleePersonality = 0;
552  for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
553       I != E; ++I)
554    if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
555      const BasicBlock *BB = II->getUnwindDest();
556      const LandingPadInst *LP = BB->getLandingPadInst();
557      CalleePersonality = LP->getPersonalityFn();
558      break;
559    }
560
561  // Find the personality function used by the landing pads of the caller. If it
562  // exists, then check to see that it matches the personality function used in
563  // the callee.
564  if (CalleePersonality) {
565    for (Function::const_iterator I = Caller->begin(), E = Caller->end();
566         I != E; ++I)
567      if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
568        const BasicBlock *BB = II->getUnwindDest();
569        const LandingPadInst *LP = BB->getLandingPadInst();
570
571        // If the personality functions match, then we can perform the
572        // inlining. Otherwise, we can't inline.
573        // TODO: This isn't 100% true. Some personality functions are proper
574        //       supersets of others and can be used in place of the other.
575        if (LP->getPersonalityFn() != CalleePersonality)
576          return false;
577
578        break;
579      }
580  }
581
582  // Get an iterator to the last basic block in the function, which will have
583  // the new function inlined after it.
584  Function::iterator LastBlock = &Caller->back();
585
586  // Make sure to capture all of the return instructions from the cloned
587  // function.
588  SmallVector<ReturnInst*, 8> Returns;
589  ClonedCodeInfo InlinedFunctionInfo;
590  Function::iterator FirstNewBlock;
591
592  { // Scope to destroy VMap after cloning.
593    ValueToValueMapTy VMap;
594
595    assert(CalledFunc->arg_size() == CS.arg_size() &&
596           "No varargs calls can be inlined!");
597
598    // Calculate the vector of arguments to pass into the function cloner, which
599    // matches up the formal to the actual argument values.
600    CallSite::arg_iterator AI = CS.arg_begin();
601    unsigned ArgNo = 0;
602    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
603         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
604      Value *ActualArg = *AI;
605
606      // When byval arguments actually inlined, we need to make the copy implied
607      // by them explicit.  However, we don't do this if the callee is readonly
608      // or readnone, because the copy would be unneeded: the callee doesn't
609      // modify the struct.
610      if (CS.isByValArgument(ArgNo)) {
611        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
612                                        CalledFunc->getParamAlignment(ArgNo+1));
613
614        // Calls that we inline may use the new alloca, so we need to clear
615        // their 'tail' flags if HandleByValArgument introduced a new alloca and
616        // the callee has calls.
617        MustClearTailCallFlags |= ActualArg != *AI;
618      }
619
620      VMap[I] = ActualArg;
621    }
622
623    // We want the inliner to prune the code as it copies.  We would LOVE to
624    // have no dead or constant instructions leftover after inlining occurs
625    // (which can happen, e.g., because an argument was constant), but we'll be
626    // happy with whatever the cloner can do.
627    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
628                              /*ModuleLevelChanges=*/false, Returns, ".i",
629                              &InlinedFunctionInfo, IFI.TD, TheCall);
630
631    // Remember the first block that is newly cloned over.
632    FirstNewBlock = LastBlock; ++FirstNewBlock;
633
634    // Update the callgraph if requested.
635    if (IFI.CG)
636      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
637
638    // Update inlined instructions' line number information.
639    fixupLineNumbers(Caller, FirstNewBlock, TheCall);
640  }
641
642  // If there are any alloca instructions in the block that used to be the entry
643  // block for the callee, move them to the entry block of the caller.  First
644  // calculate which instruction they should be inserted before.  We insert the
645  // instructions at the end of the current alloca list.
646  {
647    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
648    for (BasicBlock::iterator I = FirstNewBlock->begin(),
649         E = FirstNewBlock->end(); I != E; ) {
650      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
651      if (AI == 0) continue;
652
653      // If the alloca is now dead, remove it.  This often occurs due to code
654      // specialization.
655      if (AI->use_empty()) {
656        AI->eraseFromParent();
657        continue;
658      }
659
660      if (!isa<Constant>(AI->getArraySize()))
661        continue;
662
663      // Keep track of the static allocas that we inline into the caller.
664      IFI.StaticAllocas.push_back(AI);
665
666      // Scan for the block of allocas that we can move over, and move them
667      // all at once.
668      while (isa<AllocaInst>(I) &&
669             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
670        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
671        ++I;
672      }
673
674      // Transfer all of the allocas over in a block.  Using splice means
675      // that the instructions aren't removed from the symbol table, then
676      // reinserted.
677      Caller->getEntryBlock().getInstList().splice(InsertPoint,
678                                                   FirstNewBlock->getInstList(),
679                                                   AI, I);
680    }
681  }
682
683  // Leave lifetime markers for the static alloca's, scoping them to the
684  // function we just inlined.
685  if (!IFI.StaticAllocas.empty()) {
686    IRBuilder<> builder(FirstNewBlock->begin());
687    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
688      AllocaInst *AI = IFI.StaticAllocas[ai];
689
690      // If the alloca is already scoped to something smaller than the whole
691      // function then there's no need to add redundant, less accurate markers.
692      if (hasLifetimeMarkers(AI))
693        continue;
694
695      builder.CreateLifetimeStart(AI);
696      for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
697        IRBuilder<> builder(Returns[ri]);
698        builder.CreateLifetimeEnd(AI);
699      }
700    }
701  }
702
703  // If the inlined code contained dynamic alloca instructions, wrap the inlined
704  // code with llvm.stacksave/llvm.stackrestore intrinsics.
705  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
706    Module *M = Caller->getParent();
707    // Get the two intrinsics we care about.
708    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
709    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
710
711    // Insert the llvm.stacksave.
712    CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
713      .CreateCall(StackSave, "savedstack");
714
715    // Insert a call to llvm.stackrestore before any return instructions in the
716    // inlined function.
717    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
718      IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
719    }
720
721    // Count the number of StackRestore calls we insert.
722    unsigned NumStackRestores = Returns.size();
723
724    // If we are inlining an invoke instruction, insert restores before each
725    // unwind.  These unwinds will be rewritten into branches later.
726    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
727      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
728           BB != E; ++BB)
729        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
730          IRBuilder<>(UI).CreateCall(StackRestore, SavedPtr);
731          ++NumStackRestores;
732        }
733    }
734  }
735
736  // If we are inlining tail call instruction through a call site that isn't
737  // marked 'tail', we must remove the tail marker for any calls in the inlined
738  // code.  Also, calls inlined through a 'nounwind' call site should be marked
739  // 'nounwind'.
740  if (InlinedFunctionInfo.ContainsCalls &&
741      (MustClearTailCallFlags || MarkNoUnwind)) {
742    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
743         BB != E; ++BB)
744      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
745        if (CallInst *CI = dyn_cast<CallInst>(I)) {
746          if (MustClearTailCallFlags)
747            CI->setTailCall(false);
748          if (MarkNoUnwind)
749            CI->setDoesNotThrow();
750        }
751  }
752
753  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
754  // instructions are unreachable.
755  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
756    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
757         BB != E; ++BB) {
758      TerminatorInst *Term = BB->getTerminator();
759      if (isa<UnwindInst>(Term)) {
760        new UnreachableInst(Context, Term);
761        BB->getInstList().erase(Term);
762      }
763    }
764
765  // If we are inlining for an invoke instruction, we must make sure to rewrite
766  // any inlined 'unwind' instructions into branches to the invoke exception
767  // destination, and call instructions into invoke instructions.
768  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
769    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
770
771  // If we cloned in _exactly one_ basic block, and if that block ends in a
772  // return instruction, we splice the body of the inlined callee directly into
773  // the calling basic block.
774  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
775    // Move all of the instructions right before the call.
776    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
777                                 FirstNewBlock->begin(), FirstNewBlock->end());
778    // Remove the cloned basic block.
779    Caller->getBasicBlockList().pop_back();
780
781    // If the call site was an invoke instruction, add a branch to the normal
782    // destination.
783    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
784      BranchInst::Create(II->getNormalDest(), TheCall);
785
786    // If the return instruction returned a value, replace uses of the call with
787    // uses of the returned value.
788    if (!TheCall->use_empty()) {
789      ReturnInst *R = Returns[0];
790      if (TheCall == R->getReturnValue())
791        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
792      else
793        TheCall->replaceAllUsesWith(R->getReturnValue());
794    }
795    // Since we are now done with the Call/Invoke, we can delete it.
796    TheCall->eraseFromParent();
797
798    // Since we are now done with the return instruction, delete it also.
799    Returns[0]->eraseFromParent();
800
801    // We are now done with the inlining.
802    return true;
803  }
804
805  // Otherwise, we have the normal case, of more than one block to inline or
806  // multiple return sites.
807
808  // We want to clone the entire callee function into the hole between the
809  // "starter" and "ender" blocks.  How we accomplish this depends on whether
810  // this is an invoke instruction or a call instruction.
811  BasicBlock *AfterCallBB;
812  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
813
814    // Add an unconditional branch to make this look like the CallInst case...
815    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
816
817    // Split the basic block.  This guarantees that no PHI nodes will have to be
818    // updated due to new incoming edges, and make the invoke case more
819    // symmetric to the call case.
820    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
821                                          CalledFunc->getName()+".exit");
822
823  } else {  // It's a call
824    // If this is a call instruction, we need to split the basic block that
825    // the call lives in.
826    //
827    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
828                                          CalledFunc->getName()+".exit");
829  }
830
831  // Change the branch that used to go to AfterCallBB to branch to the first
832  // basic block of the inlined function.
833  //
834  TerminatorInst *Br = OrigBB->getTerminator();
835  assert(Br && Br->getOpcode() == Instruction::Br &&
836         "splitBasicBlock broken!");
837  Br->setOperand(0, FirstNewBlock);
838
839
840  // Now that the function is correct, make it a little bit nicer.  In
841  // particular, move the basic blocks inserted from the end of the function
842  // into the space made by splitting the source basic block.
843  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
844                                     FirstNewBlock, Caller->end());
845
846  // Handle all of the return instructions that we just cloned in, and eliminate
847  // any users of the original call/invoke instruction.
848  Type *RTy = CalledFunc->getReturnType();
849
850  PHINode *PHI = 0;
851  if (Returns.size() > 1) {
852    // The PHI node should go at the front of the new basic block to merge all
853    // possible incoming values.
854    if (!TheCall->use_empty()) {
855      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
856                            AfterCallBB->begin());
857      // Anything that used the result of the function call should now use the
858      // PHI node as their operand.
859      TheCall->replaceAllUsesWith(PHI);
860    }
861
862    // Loop over all of the return instructions adding entries to the PHI node
863    // as appropriate.
864    if (PHI) {
865      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
866        ReturnInst *RI = Returns[i];
867        assert(RI->getReturnValue()->getType() == PHI->getType() &&
868               "Ret value not consistent in function!");
869        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
870      }
871    }
872
873
874    // Add a branch to the merge points and remove return instructions.
875    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
876      ReturnInst *RI = Returns[i];
877      BranchInst::Create(AfterCallBB, RI);
878      RI->eraseFromParent();
879    }
880  } else if (!Returns.empty()) {
881    // Otherwise, if there is exactly one return value, just replace anything
882    // using the return value of the call with the computed value.
883    if (!TheCall->use_empty()) {
884      if (TheCall == Returns[0]->getReturnValue())
885        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
886      else
887        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
888    }
889
890    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
891    BasicBlock *ReturnBB = Returns[0]->getParent();
892    ReturnBB->replaceAllUsesWith(AfterCallBB);
893
894    // Splice the code from the return block into the block that it will return
895    // to, which contains the code that was after the call.
896    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
897                                      ReturnBB->getInstList());
898
899    // Delete the return instruction now and empty ReturnBB now.
900    Returns[0]->eraseFromParent();
901    ReturnBB->eraseFromParent();
902  } else if (!TheCall->use_empty()) {
903    // No returns, but something is using the return value of the call.  Just
904    // nuke the result.
905    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
906  }
907
908  // Since we are now done with the Call/Invoke, we can delete it.
909  TheCall->eraseFromParent();
910
911  // We should always be able to fold the entry block of the function into the
912  // single predecessor of the block...
913  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
914  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
915
916  // Splice the code entry block into calling block, right before the
917  // unconditional branch.
918  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
919  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
920
921  // Remove the unconditional branch.
922  OrigBB->getInstList().erase(Br);
923
924  // Now we can remove the CalleeEntry block, which is now empty.
925  Caller->getBasicBlockList().erase(CalleeEntry);
926
927  // If we inserted a phi node, check to see if it has a single value (e.g. all
928  // the entries are the same or undef).  If so, remove the PHI so it doesn't
929  // block other optimizations.
930  if (PHI) {
931    if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
932      PHI->replaceAllUsesWith(V);
933      PHI->eraseFromParent();
934    }
935  }
936
937  return true;
938}
939