InlineFunction.cpp revision b1dbcd886a4b5597a839f299054b78b33fb2d6df
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/ParameterAttributes.h"
22#include "llvm/Analysis/CallGraph.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/CallSite.h"
27using namespace llvm;
28
29bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
30  return InlineFunction(CallSite(CI), CG, TD);
31}
32bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
33  return InlineFunction(CallSite(II), CG, TD);
34}
35
36/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
37/// in the body of the inlined function into invokes and turn unwind
38/// instructions into branches to the invoke unwind dest.
39///
40/// II is the invoke instruction begin inlined.  FirstNewBlock is the first
41/// block of the inlined code (the last block is the end of the function),
42/// and InlineCodeInfo is information about the code that got inlined.
43static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
44                                ClonedCodeInfo &InlinedCodeInfo) {
45  BasicBlock *InvokeDest = II->getUnwindDest();
46  std::vector<Value*> InvokeDestPHIValues;
47
48  // If there are PHI nodes in the unwind destination block, we need to
49  // keep track of which values came into them from this invoke, then remove
50  // the entry for this block.
51  BasicBlock *InvokeBlock = II->getParent();
52  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
53    PHINode *PN = cast<PHINode>(I);
54    // Save the value to use for this edge.
55    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
56  }
57
58  Function *Caller = FirstNewBlock->getParent();
59
60  // The inlined code is currently at the end of the function, scan from the
61  // start of the inlined code to its end, checking for stuff we need to
62  // rewrite.
63  if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
64    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
65         BB != E; ++BB) {
66      if (InlinedCodeInfo.ContainsCalls) {
67        for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
68          Instruction *I = BBI++;
69
70          // We only need to check for function calls: inlined invoke
71          // instructions require no special handling.
72          if (!isa<CallInst>(I)) continue;
73          CallInst *CI = cast<CallInst>(I);
74
75          // If this call cannot unwind, don't convert it to an invoke.
76          if (CI->doesNotThrow())
77            continue;
78
79          // Convert this function call into an invoke instruction.
80          // First, split the basic block.
81          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
82
83          // Next, create the new invoke instruction, inserting it at the end
84          // of the old basic block.
85          SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
86          InvokeInst *II =
87            InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
88                               InvokeArgs.begin(), InvokeArgs.end(),
89                               CI->getName(), BB->getTerminator());
90          II->setCallingConv(CI->getCallingConv());
91          II->setParamAttrs(CI->getParamAttrs());
92
93          // Make sure that anything using the call now uses the invoke!
94          CI->replaceAllUsesWith(II);
95
96          // Delete the unconditional branch inserted by splitBasicBlock
97          BB->getInstList().pop_back();
98          Split->getInstList().pop_front();  // Delete the original call
99
100          // Update any PHI nodes in the exceptional block to indicate that
101          // there is now a new entry in them.
102          unsigned i = 0;
103          for (BasicBlock::iterator I = InvokeDest->begin();
104               isa<PHINode>(I); ++I, ++i) {
105            PHINode *PN = cast<PHINode>(I);
106            PN->addIncoming(InvokeDestPHIValues[i], BB);
107          }
108
109          // This basic block is now complete, start scanning the next one.
110          break;
111        }
112      }
113
114      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
115        // An UnwindInst requires special handling when it gets inlined into an
116        // invoke site.  Once this happens, we know that the unwind would cause
117        // a control transfer to the invoke exception destination, so we can
118        // transform it into a direct branch to the exception destination.
119        BranchInst::Create(InvokeDest, UI);
120
121        // Delete the unwind instruction!
122        UI->getParent()->getInstList().pop_back();
123
124        // Update any PHI nodes in the exceptional block to indicate that
125        // there is now a new entry in them.
126        unsigned i = 0;
127        for (BasicBlock::iterator I = InvokeDest->begin();
128             isa<PHINode>(I); ++I, ++i) {
129          PHINode *PN = cast<PHINode>(I);
130          PN->addIncoming(InvokeDestPHIValues[i], BB);
131        }
132      }
133    }
134  }
135
136  // Now that everything is happy, we have one final detail.  The PHI nodes in
137  // the exception destination block still have entries due to the original
138  // invoke instruction.  Eliminate these entries (which might even delete the
139  // PHI node) now.
140  InvokeDest->removePredecessor(II->getParent());
141}
142
143/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
144/// into the caller, update the specified callgraph to reflect the changes we
145/// made.  Note that it's possible that not all code was copied over, so only
146/// some edges of the callgraph will be remain.
147static void UpdateCallGraphAfterInlining(const Function *Caller,
148                                         const Function *Callee,
149                                         Function::iterator FirstNewBlock,
150                                       DenseMap<const Value*, Value*> &ValueMap,
151                                         CallGraph &CG) {
152  // Update the call graph by deleting the edge from Callee to Caller
153  CallGraphNode *CalleeNode = CG[Callee];
154  CallGraphNode *CallerNode = CG[Caller];
155  CallerNode->removeCallEdgeTo(CalleeNode);
156
157  // Since we inlined some uninlined call sites in the callee into the caller,
158  // add edges from the caller to all of the callees of the callee.
159  for (CallGraphNode::iterator I = CalleeNode->begin(),
160       E = CalleeNode->end(); I != E; ++I) {
161    const Instruction *OrigCall = I->first.getInstruction();
162
163    DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
164    // Only copy the edge if the call was inlined!
165    if (VMI != ValueMap.end() && VMI->second) {
166      // If the call was inlined, but then constant folded, there is no edge to
167      // add.  Check for this case.
168      if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
169        CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
170    }
171  }
172}
173
174
175// InlineFunction - This function inlines the called function into the basic
176// block of the caller.  This returns false if it is not possible to inline this
177// call.  The program is still in a well defined state if this occurs though.
178//
179// Note that this only does one level of inlining.  For example, if the
180// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
181// exists in the instruction stream.  Similiarly this will inline a recursive
182// function by one level.
183//
184bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
185  Instruction *TheCall = CS.getInstruction();
186  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
187         "Instruction not in function!");
188
189  const Function *CalledFunc = CS.getCalledFunction();
190  if (CalledFunc == 0 ||          // Can't inline external function or indirect
191      CalledFunc->isDeclaration() || // call, or call to a vararg function!
192      CalledFunc->getFunctionType()->isVarArg()) return false;
193
194
195  // If the call to the callee is a non-tail call, we must clear the 'tail'
196  // flags on any calls that we inline.
197  bool MustClearTailCallFlags =
198    isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall();
199
200  // If the call to the callee cannot throw, set the 'nounwind' flag on any
201  // calls that we inline.
202  bool MarkNoUnwind = CS.doesNotThrow();
203
204  BasicBlock *OrigBB = TheCall->getParent();
205  Function *Caller = OrigBB->getParent();
206
207  // GC poses two hazards to inlining, which only occur when the callee has GC:
208  //  1. If the caller has no GC, then the callee's GC must be propagated to the
209  //     caller.
210  //  2. If the caller has a differing GC, it is invalid to inline.
211  if (CalledFunc->hasCollector()) {
212    if (!Caller->hasCollector())
213      Caller->setCollector(CalledFunc->getCollector());
214    else if (CalledFunc->getCollector() != Caller->getCollector())
215      return false;
216  }
217
218  // Get an iterator to the last basic block in the function, which will have
219  // the new function inlined after it.
220  //
221  Function::iterator LastBlock = &Caller->back();
222
223  // Make sure to capture all of the return instructions from the cloned
224  // function.
225  std::vector<ReturnInst*> Returns;
226  ClonedCodeInfo InlinedFunctionInfo;
227  Function::iterator FirstNewBlock;
228
229  { // Scope to destroy ValueMap after cloning.
230    DenseMap<const Value*, Value*> ValueMap;
231
232    assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) ==
233           std::distance(CS.arg_begin(), CS.arg_end()) &&
234           "No varargs calls can be inlined!");
235
236    // Calculate the vector of arguments to pass into the function cloner, which
237    // matches up the formal to the actual argument values.
238    CallSite::arg_iterator AI = CS.arg_begin();
239    unsigned ArgNo = 0;
240    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
241         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
242      Value *ActualArg = *AI;
243
244      // When byval arguments actually inlined, we need to make the copy implied
245      // by them explicit.  However, we don't do this if the callee is readonly
246      // or readnone, because the copy would be unneeded: the callee doesn't
247      // modify the struct.
248      if (CalledFunc->paramHasAttr(ArgNo+1, ParamAttr::ByVal) &&
249          !CalledFunc->onlyReadsMemory()) {
250        const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
251        const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty);
252
253        // Create the alloca.  If we have TargetData, use nice alignment.
254        unsigned Align = 1;
255        if (TD) Align = TD->getPrefTypeAlignment(AggTy);
256        Value *NewAlloca = new AllocaInst(AggTy, 0, Align, I->getName(),
257                                          Caller->begin()->begin());
258        // Emit a memcpy.
259        Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
260                                                       Intrinsic::memcpy_i64);
261        Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
262        Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
263
264        Value *Size;
265        if (TD == 0)
266          Size = ConstantExpr::getSizeOf(AggTy);
267        else
268          Size = ConstantInt::get(Type::Int64Ty, TD->getTypeStoreSize(AggTy));
269
270        // Always generate a memcpy of alignment 1 here because we don't know
271        // the alignment of the src pointer.  Other optimizations can infer
272        // better alignment.
273        Value *CallArgs[] = {
274          DestCast, SrcCast, Size, ConstantInt::get(Type::Int32Ty, 1)
275        };
276        CallInst *TheMemCpy =
277          CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);
278
279        // If we have a call graph, update it.
280        if (CG) {
281          CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
282          CallGraphNode *CallerNode = (*CG)[Caller];
283          CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
284        }
285
286        // Uses of the argument in the function should use our new alloca
287        // instead.
288        ActualArg = NewAlloca;
289      }
290
291      ValueMap[I] = ActualArg;
292    }
293
294    // We want the inliner to prune the code as it copies.  We would LOVE to
295    // have no dead or constant instructions leftover after inlining occurs
296    // (which can happen, e.g., because an argument was constant), but we'll be
297    // happy with whatever the cloner can do.
298    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
299                              &InlinedFunctionInfo, TD);
300
301    // Remember the first block that is newly cloned over.
302    FirstNewBlock = LastBlock; ++FirstNewBlock;
303
304    // Update the callgraph if requested.
305    if (CG)
306      UpdateCallGraphAfterInlining(Caller, CalledFunc, FirstNewBlock, ValueMap,
307                                   *CG);
308  }
309
310  // If there are any alloca instructions in the block that used to be the entry
311  // block for the callee, move them to the entry block of the caller.  First
312  // calculate which instruction they should be inserted before.  We insert the
313  // instructions at the end of the current alloca list.
314  //
315  {
316    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
317    for (BasicBlock::iterator I = FirstNewBlock->begin(),
318           E = FirstNewBlock->end(); I != E; )
319      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
320        // If the alloca is now dead, remove it.  This often occurs due to code
321        // specialization.
322        if (AI->use_empty()) {
323          AI->eraseFromParent();
324          continue;
325        }
326
327        if (isa<Constant>(AI->getArraySize())) {
328          // Scan for the block of allocas that we can move over, and move them
329          // all at once.
330          while (isa<AllocaInst>(I) &&
331                 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
332            ++I;
333
334          // Transfer all of the allocas over in a block.  Using splice means
335          // that the instructions aren't removed from the symbol table, then
336          // reinserted.
337          Caller->getEntryBlock().getInstList().splice(
338              InsertPoint,
339              FirstNewBlock->getInstList(),
340              AI, I);
341        }
342      }
343  }
344
345  // If the inlined code contained dynamic alloca instructions, wrap the inlined
346  // code with llvm.stacksave/llvm.stackrestore intrinsics.
347  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
348    Module *M = Caller->getParent();
349    // Get the two intrinsics we care about.
350    Constant *StackSave, *StackRestore;
351    StackSave    = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
352    StackRestore = Intrinsic::getDeclaration(M, Intrinsic::stackrestore);
353
354    // If we are preserving the callgraph, add edges to the stacksave/restore
355    // functions for the calls we insert.
356    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
357    if (CG) {
358      // We know that StackSave/StackRestore are Function*'s, because they are
359      // intrinsics which must have the right types.
360      StackSaveCGN    = CG->getOrInsertFunction(cast<Function>(StackSave));
361      StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
362      CallerNode = (*CG)[Caller];
363    }
364
365    // Insert the llvm.stacksave.
366    CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
367                                          FirstNewBlock->begin());
368    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
369
370    // Insert a call to llvm.stackrestore before any return instructions in the
371    // inlined function.
372    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
373      CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
374      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
375    }
376
377    // Count the number of StackRestore calls we insert.
378    unsigned NumStackRestores = Returns.size();
379
380    // If we are inlining an invoke instruction, insert restores before each
381    // unwind.  These unwinds will be rewritten into branches later.
382    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
383      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
384           BB != E; ++BB)
385        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
386          CallInst::Create(StackRestore, SavedPtr, "", UI);
387          ++NumStackRestores;
388        }
389    }
390  }
391
392  // If we are inlining tail call instruction through a call site that isn't
393  // marked 'tail', we must remove the tail marker for any calls in the inlined
394  // code.  Also, calls inlined through a 'nounwind' call site should be marked
395  // 'nounwind'.
396  if (InlinedFunctionInfo.ContainsCalls &&
397      (MustClearTailCallFlags || MarkNoUnwind)) {
398    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
399         BB != E; ++BB)
400      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
401        if (CallInst *CI = dyn_cast<CallInst>(I)) {
402          if (MustClearTailCallFlags)
403            CI->setTailCall(false);
404          if (MarkNoUnwind)
405            CI->setDoesNotThrow();
406        }
407  }
408
409  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
410  // instructions are unreachable.
411  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
412    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
413         BB != E; ++BB) {
414      TerminatorInst *Term = BB->getTerminator();
415      if (isa<UnwindInst>(Term)) {
416        new UnreachableInst(Term);
417        BB->getInstList().erase(Term);
418      }
419    }
420
421  // If we are inlining for an invoke instruction, we must make sure to rewrite
422  // any inlined 'unwind' instructions into branches to the invoke exception
423  // destination, and call instructions into invoke instructions.
424  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
425    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
426
427  // If we cloned in _exactly one_ basic block, and if that block ends in a
428  // return instruction, we splice the body of the inlined callee directly into
429  // the calling basic block.
430  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
431    // Move all of the instructions right before the call.
432    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
433                                 FirstNewBlock->begin(), FirstNewBlock->end());
434    // Remove the cloned basic block.
435    Caller->getBasicBlockList().pop_back();
436
437    // If the call site was an invoke instruction, add a branch to the normal
438    // destination.
439    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
440      BranchInst::Create(II->getNormalDest(), TheCall);
441
442    // If the return instruction returned a value, replace uses of the call with
443    // uses of the returned value.
444    if (!TheCall->use_empty()) {
445      ReturnInst *R = Returns[0];
446      if (isa<StructType>(TheCall->getType())) {
447        // Multiple return values.
448        while (!TheCall->use_empty()) {
449          GetResultInst *GR = cast<GetResultInst>(TheCall->use_back());
450          Value *RV = R->getOperand(GR->getIndex());
451          GR->replaceAllUsesWith(RV);
452          GR->eraseFromParent();
453        }
454      } else
455        TheCall->replaceAllUsesWith(R->getReturnValue());
456    }
457    // Since we are now done with the Call/Invoke, we can delete it.
458    TheCall->getParent()->getInstList().erase(TheCall);
459
460    // Since we are now done with the return instruction, delete it also.
461    Returns[0]->getParent()->getInstList().erase(Returns[0]);
462
463    // We are now done with the inlining.
464    return true;
465  }
466
467  // Otherwise, we have the normal case, of more than one block to inline or
468  // multiple return sites.
469
470  // We want to clone the entire callee function into the hole between the
471  // "starter" and "ender" blocks.  How we accomplish this depends on whether
472  // this is an invoke instruction or a call instruction.
473  BasicBlock *AfterCallBB;
474  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
475
476    // Add an unconditional branch to make this look like the CallInst case...
477    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
478
479    // Split the basic block.  This guarantees that no PHI nodes will have to be
480    // updated due to new incoming edges, and make the invoke case more
481    // symmetric to the call case.
482    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
483                                          CalledFunc->getName()+".exit");
484
485  } else {  // It's a call
486    // If this is a call instruction, we need to split the basic block that
487    // the call lives in.
488    //
489    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
490                                          CalledFunc->getName()+".exit");
491  }
492
493  // Change the branch that used to go to AfterCallBB to branch to the first
494  // basic block of the inlined function.
495  //
496  TerminatorInst *Br = OrigBB->getTerminator();
497  assert(Br && Br->getOpcode() == Instruction::Br &&
498         "splitBasicBlock broken!");
499  Br->setOperand(0, FirstNewBlock);
500
501
502  // Now that the function is correct, make it a little bit nicer.  In
503  // particular, move the basic blocks inserted from the end of the function
504  // into the space made by splitting the source basic block.
505  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
506                                     FirstNewBlock, Caller->end());
507
508  // Handle all of the return instructions that we just cloned in, and eliminate
509  // any users of the original call/invoke instruction.
510  const Type *RTy = CalledFunc->getReturnType();
511  const StructType *STy = dyn_cast<StructType>(RTy);
512  if (Returns.size() > 1 || STy) {
513    // The PHI node should go at the front of the new basic block to merge all
514    // possible incoming values.
515    SmallVector<PHINode *, 4> PHIs;
516    if (!TheCall->use_empty()) {
517      if (STy) {
518        unsigned NumRetVals = STy->getNumElements();
519        // Create new phi nodes such that phi node number in the PHIs vector
520        // match corresponding return value operand number.
521        Instruction *InsertPt = AfterCallBB->begin();
522        for (unsigned i = 0; i < NumRetVals; ++i) {
523            PHINode *PHI = PHINode::Create(STy->getElementType(i),
524                                           TheCall->getName() + "." + utostr(i),
525                                           InsertPt);
526          PHIs.push_back(PHI);
527        }
528        // TheCall results are used by GetResult instructions.
529        while (!TheCall->use_empty()) {
530          GetResultInst *GR = cast<GetResultInst>(TheCall->use_back());
531          GR->replaceAllUsesWith(PHIs[GR->getIndex()]);
532          GR->eraseFromParent();
533        }
534      } else {
535        PHINode *PHI = PHINode::Create(RTy, TheCall->getName(),
536                                       AfterCallBB->begin());
537        PHIs.push_back(PHI);
538        // Anything that used the result of the function call should now use the
539        // PHI node as their operand.
540        TheCall->replaceAllUsesWith(PHI);
541      }
542    }
543
544    // Loop over all of the return instructions adding entries to the PHI node as
545    // appropriate.
546    if (!PHIs.empty()) {
547      // There is atleast one return value.
548      unsigned NumRetVals = 1;
549      if (STy)
550        NumRetVals = STy->getNumElements();
551      for (unsigned j = 0; j < NumRetVals; ++j) {
552        PHINode *PHI = PHIs[j];
553        // Each PHI node will receive one value from each return instruction.
554        for(unsigned i = 0, e = Returns.size(); i != e; ++i) {
555          ReturnInst *RI = Returns[i];
556          assert(RI->getReturnValue(j)->getType() == PHI->getType() &&
557                 "Ret value not consistent in function!");
558          PHI->addIncoming(RI->getReturnValue(j /*PHI number matches operand number*/),
559                           RI->getParent());
560        }
561      }
562    }
563
564    // Add a branch to the merge points and remove retrun instructions.
565    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
566      ReturnInst *RI = Returns[i];
567      BranchInst::Create(AfterCallBB, RI);
568      RI->eraseFromParent();
569    }
570  } else if (!Returns.empty()) {
571    // Otherwise, if there is exactly one return value, just replace anything
572    // using the return value of the call with the computed value.
573    if (!TheCall->use_empty())
574      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
575
576    // Splice the code from the return block into the block that it will return
577    // to, which contains the code that was after the call.
578    BasicBlock *ReturnBB = Returns[0]->getParent();
579    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
580                                      ReturnBB->getInstList());
581
582    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
583    ReturnBB->replaceAllUsesWith(AfterCallBB);
584
585    // Delete the return instruction now and empty ReturnBB now.
586    Returns[0]->eraseFromParent();
587    ReturnBB->eraseFromParent();
588  } else if (!TheCall->use_empty()) {
589    // No returns, but something is using the return value of the call.  Just
590    // nuke the result.
591    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
592  }
593
594  // Since we are now done with the Call/Invoke, we can delete it.
595  TheCall->eraseFromParent();
596
597  // We should always be able to fold the entry block of the function into the
598  // single predecessor of the block...
599  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
600  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
601
602  // Splice the code entry block into calling block, right before the
603  // unconditional branch.
604  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
605  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
606
607  // Remove the unconditional branch.
608  OrigBB->getInstList().erase(Br);
609
610  // Now we can remove the CalleeEntry block, which is now empty.
611  Caller->getBasicBlockList().erase(CalleeEntry);
612
613  return true;
614}
615