InlineFunction.cpp revision d9ff8c83d137586d8c06f98bdf8adbf0d1fa79ca
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/Analysis/CallGraph.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/DebugInfo.h"
21#include "llvm/IR/Attributes.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/IRBuilder.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/IR/Intrinsics.h"
29#include "llvm/IR/Module.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Transforms/Utils/Local.h"
32using namespace llvm;
33
34bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
35                          bool InsertLifetime) {
36  return InlineFunction(CallSite(CI), IFI, InsertLifetime);
37}
38bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
39                          bool InsertLifetime) {
40  return InlineFunction(CallSite(II), IFI, InsertLifetime);
41}
42
43namespace {
44  /// A class for recording information about inlining through an invoke.
45  class InvokeInliningInfo {
46    BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
47    BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
48    LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
49    PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
50    SmallVector<Value*, 8> UnwindDestPHIValues;
51
52  public:
53    InvokeInliningInfo(InvokeInst *II)
54      : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0),
55        CallerLPad(0), InnerEHValuesPHI(0) {
56      // If there are PHI nodes in the unwind destination block, we need to keep
57      // track of which values came into them from the invoke before removing
58      // the edge from this block.
59      llvm::BasicBlock *InvokeBB = II->getParent();
60      BasicBlock::iterator I = OuterResumeDest->begin();
61      for (; isa<PHINode>(I); ++I) {
62        // Save the value to use for this edge.
63        PHINode *PHI = cast<PHINode>(I);
64        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
65      }
66
67      CallerLPad = cast<LandingPadInst>(I);
68    }
69
70    /// getOuterResumeDest - The outer unwind destination is the target of
71    /// unwind edges introduced for calls within the inlined function.
72    BasicBlock *getOuterResumeDest() const {
73      return OuterResumeDest;
74    }
75
76    BasicBlock *getInnerResumeDest();
77
78    LandingPadInst *getLandingPadInst() const { return CallerLPad; }
79
80    /// forwardResume - Forward the 'resume' instruction to the caller's landing
81    /// pad block. When the landing pad block has only one predecessor, this is
82    /// a simple branch. When there is more than one predecessor, we need to
83    /// split the landing pad block after the landingpad instruction and jump
84    /// to there.
85    void forwardResume(ResumeInst *RI, BasicBlock *FirstNewBlock);
86
87    /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
88    /// destination block for the given basic block, using the values for the
89    /// original invoke's source block.
90    void addIncomingPHIValuesFor(BasicBlock *BB) const {
91      addIncomingPHIValuesForInto(BB, OuterResumeDest);
92    }
93
94    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
95      BasicBlock::iterator I = dest->begin();
96      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
97        PHINode *phi = cast<PHINode>(I);
98        phi->addIncoming(UnwindDestPHIValues[i], src);
99      }
100    }
101  };
102}
103
104/// getInnerResumeDest - Get or create a target for the branch from ResumeInsts.
105BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
106  if (InnerResumeDest) return InnerResumeDest;
107
108  // Split the landing pad.
109  BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
110  InnerResumeDest =
111    OuterResumeDest->splitBasicBlock(SplitPoint,
112                                     OuterResumeDest->getName() + ".body");
113
114  // The number of incoming edges we expect to the inner landing pad.
115  const unsigned PHICapacity = 2;
116
117  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
118  BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
119  BasicBlock::iterator I = OuterResumeDest->begin();
120  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
121    PHINode *OuterPHI = cast<PHINode>(I);
122    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
123                                        OuterPHI->getName() + ".lpad-body",
124                                        InsertPoint);
125    OuterPHI->replaceAllUsesWith(InnerPHI);
126    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
127  }
128
129  // Create a PHI for the exception values.
130  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
131                                     "eh.lpad-body", InsertPoint);
132  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
133  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
134
135  // All done.
136  return InnerResumeDest;
137}
138
139/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
140/// block. When the landing pad block has only one predecessor, this is a simple
141/// branch. When there is more than one predecessor, we need to split the
142/// landing pad block after the landingpad instruction and jump to there.
143void InvokeInliningInfo::forwardResume(ResumeInst *RI,
144                                       BasicBlock *FirstNewBlock) {
145  BasicBlock *Dest = getInnerResumeDest();
146  LandingPadInst *OuterLPad = getLandingPadInst();
147  BasicBlock *Src = RI->getParent();
148
149  BranchInst::Create(Dest, Src);
150
151  // Update the PHIs in the destination. They were inserted in an order which
152  // makes this work.
153  addIncomingPHIValuesForInto(Src, Dest);
154
155  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
156  RI->eraseFromParent();
157
158  // Get all of the inlined landing pad instructions.
159  SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
160  Function *Caller = FirstNewBlock->getParent();
161  for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I)
162    if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
163      LandingPadInst *LPI = II->getLandingPadInst();
164      if (!LPI->hasCatchAll())
165        InlinedLPads.insert(LPI);
166    }
167
168  // Merge the catch clauses from the outer landing pad instruction into the
169  // inlined landing pad instructions.
170  for (SmallPtrSet<LandingPadInst*, 16>::iterator I = InlinedLPads.begin(),
171         E = InlinedLPads.end(); I != E; ++I) {
172    LandingPadInst *InlinedLPad = *I;
173    for (unsigned OuterIdx = 0, OuterNum = OuterLPad->getNumClauses();
174         OuterIdx != OuterNum; ++OuterIdx) {
175      bool hasClause = false;
176      if (OuterLPad->isFilter(OuterIdx)) continue;
177      Value *OuterClause = OuterLPad->getClause(OuterIdx);
178      for (unsigned Idx = 0, N = InlinedLPad->getNumClauses(); Idx != N; ++Idx)
179        if (OuterClause == InlinedLPad->getClause(Idx)) {
180          hasClause = true;
181          break;
182        }
183      if (!hasClause)
184        InlinedLPad->addClause(OuterClause);
185    }
186  }
187}
188
189/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
190/// an invoke, we have to turn all of the calls that can throw into
191/// invokes.  This function analyze BB to see if there are any calls, and if so,
192/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
193/// nodes in that block with the values specified in InvokeDestPHIValues.
194///
195/// Returns true to indicate that the next block should be skipped.
196static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
197                                                   InvokeInliningInfo &Invoke) {
198  LandingPadInst *LPI = Invoke.getLandingPadInst();
199
200  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
201    Instruction *I = BBI++;
202
203    if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
204      unsigned NumClauses = LPI->getNumClauses();
205      L->reserveClauses(NumClauses);
206      for (unsigned i = 0; i != NumClauses; ++i)
207        L->addClause(LPI->getClause(i));
208    }
209
210    // We only need to check for function calls: inlined invoke
211    // instructions require no special handling.
212    CallInst *CI = dyn_cast<CallInst>(I);
213
214    // If this call cannot unwind, don't convert it to an invoke.
215    if (!CI || CI->doesNotThrow())
216      continue;
217
218    // Convert this function call into an invoke instruction.  First, split the
219    // basic block.
220    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
221
222    // Delete the unconditional branch inserted by splitBasicBlock
223    BB->getInstList().pop_back();
224
225    // Create the new invoke instruction.
226    ImmutableCallSite CS(CI);
227    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
228    InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
229                                        Invoke.getOuterResumeDest(),
230                                        InvokeArgs, CI->getName(), BB);
231    II->setCallingConv(CI->getCallingConv());
232    II->setAttributes(CI->getAttributes());
233
234    // Make sure that anything using the call now uses the invoke!  This also
235    // updates the CallGraph if present, because it uses a WeakVH.
236    CI->replaceAllUsesWith(II);
237
238    // Delete the original call
239    Split->getInstList().pop_front();
240
241    // Update any PHI nodes in the exceptional block to indicate that there is
242    // now a new entry in them.
243    Invoke.addIncomingPHIValuesFor(BB);
244    return false;
245  }
246
247  return false;
248}
249
250/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
251/// in the body of the inlined function into invokes.
252///
253/// II is the invoke instruction being inlined.  FirstNewBlock is the first
254/// block of the inlined code (the last block is the end of the function),
255/// and InlineCodeInfo is information about the code that got inlined.
256static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
257                                ClonedCodeInfo &InlinedCodeInfo) {
258  BasicBlock *InvokeDest = II->getUnwindDest();
259
260  Function *Caller = FirstNewBlock->getParent();
261
262  // The inlined code is currently at the end of the function, scan from the
263  // start of the inlined code to its end, checking for stuff we need to
264  // rewrite.
265  InvokeInliningInfo Invoke(II);
266
267  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
268    if (InlinedCodeInfo.ContainsCalls)
269      if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
270        // Honor a request to skip the next block.
271        ++BB;
272        continue;
273      }
274
275    // Forward any resumes that are remaining here.
276    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
277      Invoke.forwardResume(RI, FirstNewBlock);
278  }
279
280  // Now that everything is happy, we have one final detail.  The PHI nodes in
281  // the exception destination block still have entries due to the original
282  // invoke instruction. Eliminate these entries (which might even delete the
283  // PHI node) now.
284  InvokeDest->removePredecessor(II->getParent());
285}
286
287/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
288/// into the caller, update the specified callgraph to reflect the changes we
289/// made.  Note that it's possible that not all code was copied over, so only
290/// some edges of the callgraph may remain.
291static void UpdateCallGraphAfterInlining(CallSite CS,
292                                         Function::iterator FirstNewBlock,
293                                         ValueToValueMapTy &VMap,
294                                         InlineFunctionInfo &IFI) {
295  CallGraph &CG = *IFI.CG;
296  const Function *Caller = CS.getInstruction()->getParent()->getParent();
297  const Function *Callee = CS.getCalledFunction();
298  CallGraphNode *CalleeNode = CG[Callee];
299  CallGraphNode *CallerNode = CG[Caller];
300
301  // Since we inlined some uninlined call sites in the callee into the caller,
302  // add edges from the caller to all of the callees of the callee.
303  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
304
305  // Consider the case where CalleeNode == CallerNode.
306  CallGraphNode::CalledFunctionsVector CallCache;
307  if (CalleeNode == CallerNode) {
308    CallCache.assign(I, E);
309    I = CallCache.begin();
310    E = CallCache.end();
311  }
312
313  for (; I != E; ++I) {
314    const Value *OrigCall = I->first;
315
316    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
317    // Only copy the edge if the call was inlined!
318    if (VMI == VMap.end() || VMI->second == 0)
319      continue;
320
321    // If the call was inlined, but then constant folded, there is no edge to
322    // add.  Check for this case.
323    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
324    if (NewCall == 0) continue;
325
326    // Remember that this call site got inlined for the client of
327    // InlineFunction.
328    IFI.InlinedCalls.push_back(NewCall);
329
330    // It's possible that inlining the callsite will cause it to go from an
331    // indirect to a direct call by resolving a function pointer.  If this
332    // happens, set the callee of the new call site to a more precise
333    // destination.  This can also happen if the call graph node of the caller
334    // was just unnecessarily imprecise.
335    if (I->second->getFunction() == 0)
336      if (Function *F = CallSite(NewCall).getCalledFunction()) {
337        // Indirect call site resolved to direct call.
338        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
339
340        continue;
341      }
342
343    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
344  }
345
346  // Update the call graph by deleting the edge from Callee to Caller.  We must
347  // do this after the loop above in case Caller and Callee are the same.
348  CallerNode->removeCallEdgeFor(CS);
349}
350
351/// HandleByValArgument - When inlining a call site that has a byval argument,
352/// we have to make the implicit memcpy explicit by adding it.
353static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
354                                  const Function *CalledFunc,
355                                  InlineFunctionInfo &IFI,
356                                  unsigned ByValAlignment) {
357  Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
358
359  // If the called function is readonly, then it could not mutate the caller's
360  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
361  // temporary.
362  if (CalledFunc->onlyReadsMemory()) {
363    // If the byval argument has a specified alignment that is greater than the
364    // passed in pointer, then we either have to round up the input pointer or
365    // give up on this transformation.
366    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
367      return Arg;
368
369    // If the pointer is already known to be sufficiently aligned, or if we can
370    // round it up to a larger alignment, then we don't need a temporary.
371    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
372                                   IFI.TD) >= ByValAlignment)
373      return Arg;
374
375    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
376    // for code quality, but rarely happens and is required for correctness.
377  }
378
379  LLVMContext &Context = Arg->getContext();
380
381  Type *VoidPtrTy = Type::getInt8PtrTy(Context);
382
383  // Create the alloca.  If we have DataLayout, use nice alignment.
384  unsigned Align = 1;
385  if (IFI.TD)
386    Align = IFI.TD->getPrefTypeAlignment(AggTy);
387
388  // If the byval had an alignment specified, we *must* use at least that
389  // alignment, as it is required by the byval argument (and uses of the
390  // pointer inside the callee).
391  Align = std::max(Align, ByValAlignment);
392
393  Function *Caller = TheCall->getParent()->getParent();
394
395  Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
396                                    &*Caller->begin()->begin());
397  // Emit a memcpy.
398  Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
399  Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
400                                                 Intrinsic::memcpy,
401                                                 Tys);
402  Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
403  Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
404
405  Value *Size;
406  if (IFI.TD == 0)
407    Size = ConstantExpr::getSizeOf(AggTy);
408  else
409    Size = ConstantInt::get(Type::getInt64Ty(Context),
410                            IFI.TD->getTypeStoreSize(AggTy));
411
412  // Always generate a memcpy of alignment 1 here because we don't know
413  // the alignment of the src pointer.  Other optimizations can infer
414  // better alignment.
415  Value *CallArgs[] = {
416    DestCast, SrcCast, Size,
417    ConstantInt::get(Type::getInt32Ty(Context), 1),
418    ConstantInt::getFalse(Context) // isVolatile
419  };
420  IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
421
422  // Uses of the argument in the function should use our new alloca
423  // instead.
424  return NewAlloca;
425}
426
427// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
428// intrinsic.
429static bool isUsedByLifetimeMarker(Value *V) {
430  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
431       ++UI) {
432    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
433      switch (II->getIntrinsicID()) {
434      default: break;
435      case Intrinsic::lifetime_start:
436      case Intrinsic::lifetime_end:
437        return true;
438      }
439    }
440  }
441  return false;
442}
443
444// hasLifetimeMarkers - Check whether the given alloca already has
445// lifetime.start or lifetime.end intrinsics.
446static bool hasLifetimeMarkers(AllocaInst *AI) {
447  Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
448  if (AI->getType() == Int8PtrTy)
449    return isUsedByLifetimeMarker(AI);
450
451  // Do a scan to find all the casts to i8*.
452  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
453       ++I) {
454    if (I->getType() != Int8PtrTy) continue;
455    if (I->stripPointerCasts() != AI) continue;
456    if (isUsedByLifetimeMarker(*I))
457      return true;
458  }
459  return false;
460}
461
462/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to
463/// recursively update InlinedAtEntry of a DebugLoc.
464static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
465                                    const DebugLoc &InlinedAtDL,
466                                    LLVMContext &Ctx) {
467  if (MDNode *IA = DL.getInlinedAt(Ctx)) {
468    DebugLoc NewInlinedAtDL
469      = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
470    return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
471                         NewInlinedAtDL.getAsMDNode(Ctx));
472  }
473
474  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
475                       InlinedAtDL.getAsMDNode(Ctx));
476}
477
478/// fixupLineNumbers - Update inlined instructions' line numbers to
479/// to encode location where these instructions are inlined.
480static void fixupLineNumbers(Function *Fn, Function::iterator FI,
481                             Instruction *TheCall) {
482  DebugLoc TheCallDL = TheCall->getDebugLoc();
483  if (TheCallDL.isUnknown())
484    return;
485
486  for (; FI != Fn->end(); ++FI) {
487    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
488         BI != BE; ++BI) {
489      DebugLoc DL = BI->getDebugLoc();
490      if (!DL.isUnknown()) {
491        BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
492        if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
493          LLVMContext &Ctx = BI->getContext();
494          MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
495          DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
496                                                   InlinedAt, Ctx));
497        }
498      }
499    }
500  }
501}
502
503/// InlineFunction - This function inlines the called function into the basic
504/// block of the caller.  This returns false if it is not possible to inline
505/// this call.  The program is still in a well defined state if this occurs
506/// though.
507///
508/// Note that this only does one level of inlining.  For example, if the
509/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
510/// exists in the instruction stream.  Similarly this will inline a recursive
511/// function by one level.
512bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
513                          bool InsertLifetime) {
514  Instruction *TheCall = CS.getInstruction();
515  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
516         "Instruction not in function!");
517
518  // If IFI has any state in it, zap it before we fill it in.
519  IFI.reset();
520
521  const Function *CalledFunc = CS.getCalledFunction();
522  if (CalledFunc == 0 ||          // Can't inline external function or indirect
523      CalledFunc->isDeclaration() || // call, or call to a vararg function!
524      CalledFunc->getFunctionType()->isVarArg()) return false;
525
526  // If the call to the callee is not a tail call, we must clear the 'tail'
527  // flags on any calls that we inline.
528  bool MustClearTailCallFlags =
529    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
530
531  // If the call to the callee cannot throw, set the 'nounwind' flag on any
532  // calls that we inline.
533  bool MarkNoUnwind = CS.doesNotThrow();
534
535  BasicBlock *OrigBB = TheCall->getParent();
536  Function *Caller = OrigBB->getParent();
537
538  // GC poses two hazards to inlining, which only occur when the callee has GC:
539  //  1. If the caller has no GC, then the callee's GC must be propagated to the
540  //     caller.
541  //  2. If the caller has a differing GC, it is invalid to inline.
542  if (CalledFunc->hasGC()) {
543    if (!Caller->hasGC())
544      Caller->setGC(CalledFunc->getGC());
545    else if (CalledFunc->getGC() != Caller->getGC())
546      return false;
547  }
548
549  // Get the personality function from the callee if it contains a landing pad.
550  Value *CalleePersonality = 0;
551  for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
552       I != E; ++I)
553    if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
554      const BasicBlock *BB = II->getUnwindDest();
555      const LandingPadInst *LP = BB->getLandingPadInst();
556      CalleePersonality = LP->getPersonalityFn();
557      break;
558    }
559
560  // Find the personality function used by the landing pads of the caller. If it
561  // exists, then check to see that it matches the personality function used in
562  // the callee.
563  if (CalleePersonality) {
564    for (Function::const_iterator I = Caller->begin(), E = Caller->end();
565         I != E; ++I)
566      if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
567        const BasicBlock *BB = II->getUnwindDest();
568        const LandingPadInst *LP = BB->getLandingPadInst();
569
570        // If the personality functions match, then we can perform the
571        // inlining. Otherwise, we can't inline.
572        // TODO: This isn't 100% true. Some personality functions are proper
573        //       supersets of others and can be used in place of the other.
574        if (LP->getPersonalityFn() != CalleePersonality)
575          return false;
576
577        break;
578      }
579  }
580
581  // Get an iterator to the last basic block in the function, which will have
582  // the new function inlined after it.
583  Function::iterator LastBlock = &Caller->back();
584
585  // Make sure to capture all of the return instructions from the cloned
586  // function.
587  SmallVector<ReturnInst*, 8> Returns;
588  ClonedCodeInfo InlinedFunctionInfo;
589  Function::iterator FirstNewBlock;
590
591  { // Scope to destroy VMap after cloning.
592    ValueToValueMapTy VMap;
593
594    assert(CalledFunc->arg_size() == CS.arg_size() &&
595           "No varargs calls can be inlined!");
596
597    // Calculate the vector of arguments to pass into the function cloner, which
598    // matches up the formal to the actual argument values.
599    CallSite::arg_iterator AI = CS.arg_begin();
600    unsigned ArgNo = 0;
601    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
602         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
603      Value *ActualArg = *AI;
604
605      // When byval arguments actually inlined, we need to make the copy implied
606      // by them explicit.  However, we don't do this if the callee is readonly
607      // or readnone, because the copy would be unneeded: the callee doesn't
608      // modify the struct.
609      if (CS.isByValArgument(ArgNo)) {
610        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
611                                        CalledFunc->getParamAlignment(ArgNo+1));
612
613        // Calls that we inline may use the new alloca, so we need to clear
614        // their 'tail' flags if HandleByValArgument introduced a new alloca and
615        // the callee has calls.
616        MustClearTailCallFlags |= ActualArg != *AI;
617      }
618
619      VMap[I] = ActualArg;
620    }
621
622    // We want the inliner to prune the code as it copies.  We would LOVE to
623    // have no dead or constant instructions leftover after inlining occurs
624    // (which can happen, e.g., because an argument was constant), but we'll be
625    // happy with whatever the cloner can do.
626    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
627                              /*ModuleLevelChanges=*/false, Returns, ".i",
628                              &InlinedFunctionInfo, IFI.TD, TheCall);
629
630    // Remember the first block that is newly cloned over.
631    FirstNewBlock = LastBlock; ++FirstNewBlock;
632
633    // Update the callgraph if requested.
634    if (IFI.CG)
635      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
636
637    // Update inlined instructions' line number information.
638    fixupLineNumbers(Caller, FirstNewBlock, TheCall);
639  }
640
641  // If there are any alloca instructions in the block that used to be the entry
642  // block for the callee, move them to the entry block of the caller.  First
643  // calculate which instruction they should be inserted before.  We insert the
644  // instructions at the end of the current alloca list.
645  {
646    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
647    for (BasicBlock::iterator I = FirstNewBlock->begin(),
648         E = FirstNewBlock->end(); I != E; ) {
649      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
650      if (AI == 0) continue;
651
652      // If the alloca is now dead, remove it.  This often occurs due to code
653      // specialization.
654      if (AI->use_empty()) {
655        AI->eraseFromParent();
656        continue;
657      }
658
659      if (!isa<Constant>(AI->getArraySize()))
660        continue;
661
662      // Keep track of the static allocas that we inline into the caller.
663      IFI.StaticAllocas.push_back(AI);
664
665      // Scan for the block of allocas that we can move over, and move them
666      // all at once.
667      while (isa<AllocaInst>(I) &&
668             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
669        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
670        ++I;
671      }
672
673      // Transfer all of the allocas over in a block.  Using splice means
674      // that the instructions aren't removed from the symbol table, then
675      // reinserted.
676      Caller->getEntryBlock().getInstList().splice(InsertPoint,
677                                                   FirstNewBlock->getInstList(),
678                                                   AI, I);
679    }
680  }
681
682  // Leave lifetime markers for the static alloca's, scoping them to the
683  // function we just inlined.
684  if (InsertLifetime && !IFI.StaticAllocas.empty()) {
685    IRBuilder<> builder(FirstNewBlock->begin());
686    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
687      AllocaInst *AI = IFI.StaticAllocas[ai];
688
689      // If the alloca is already scoped to something smaller than the whole
690      // function then there's no need to add redundant, less accurate markers.
691      if (hasLifetimeMarkers(AI))
692        continue;
693
694      // Try to determine the size of the allocation.
695      ConstantInt *AllocaSize = 0;
696      if (ConstantInt *AIArraySize =
697          dyn_cast<ConstantInt>(AI->getArraySize())) {
698        if (IFI.TD) {
699          Type *AllocaType = AI->getAllocatedType();
700          uint64_t AllocaTypeSize = IFI.TD->getTypeAllocSize(AllocaType);
701          uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
702          assert(AllocaArraySize > 0 && "array size of AllocaInst is zero");
703          // Check that array size doesn't saturate uint64_t and doesn't
704          // overflow when it's multiplied by type size.
705          if (AllocaArraySize != ~0ULL &&
706              UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
707            AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
708                                          AllocaArraySize * AllocaTypeSize);
709          }
710        }
711      }
712
713      builder.CreateLifetimeStart(AI, AllocaSize);
714      for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
715        IRBuilder<> builder(Returns[ri]);
716        builder.CreateLifetimeEnd(AI, AllocaSize);
717      }
718    }
719  }
720
721  // If the inlined code contained dynamic alloca instructions, wrap the inlined
722  // code with llvm.stacksave/llvm.stackrestore intrinsics.
723  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
724    Module *M = Caller->getParent();
725    // Get the two intrinsics we care about.
726    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
727    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
728
729    // Insert the llvm.stacksave.
730    CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
731      .CreateCall(StackSave, "savedstack");
732
733    // Insert a call to llvm.stackrestore before any return instructions in the
734    // inlined function.
735    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
736      IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
737    }
738  }
739
740  // If we are inlining tail call instruction through a call site that isn't
741  // marked 'tail', we must remove the tail marker for any calls in the inlined
742  // code.  Also, calls inlined through a 'nounwind' call site should be marked
743  // 'nounwind'.
744  if (InlinedFunctionInfo.ContainsCalls &&
745      (MustClearTailCallFlags || MarkNoUnwind)) {
746    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
747         BB != E; ++BB)
748      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
749        if (CallInst *CI = dyn_cast<CallInst>(I)) {
750          if (MustClearTailCallFlags)
751            CI->setTailCall(false);
752          if (MarkNoUnwind)
753            CI->setDoesNotThrow();
754        }
755  }
756
757  // If we are inlining for an invoke instruction, we must make sure to rewrite
758  // any call instructions into invoke instructions.
759  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
760    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
761
762  // If we cloned in _exactly one_ basic block, and if that block ends in a
763  // return instruction, we splice the body of the inlined callee directly into
764  // the calling basic block.
765  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
766    // Move all of the instructions right before the call.
767    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
768                                 FirstNewBlock->begin(), FirstNewBlock->end());
769    // Remove the cloned basic block.
770    Caller->getBasicBlockList().pop_back();
771
772    // If the call site was an invoke instruction, add a branch to the normal
773    // destination.
774    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
775      BranchInst::Create(II->getNormalDest(), TheCall);
776
777    // If the return instruction returned a value, replace uses of the call with
778    // uses of the returned value.
779    if (!TheCall->use_empty()) {
780      ReturnInst *R = Returns[0];
781      if (TheCall == R->getReturnValue())
782        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
783      else
784        TheCall->replaceAllUsesWith(R->getReturnValue());
785    }
786    // Since we are now done with the Call/Invoke, we can delete it.
787    TheCall->eraseFromParent();
788
789    // Since we are now done with the return instruction, delete it also.
790    Returns[0]->eraseFromParent();
791
792    // We are now done with the inlining.
793    return true;
794  }
795
796  // Otherwise, we have the normal case, of more than one block to inline or
797  // multiple return sites.
798
799  // We want to clone the entire callee function into the hole between the
800  // "starter" and "ender" blocks.  How we accomplish this depends on whether
801  // this is an invoke instruction or a call instruction.
802  BasicBlock *AfterCallBB;
803  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
804
805    // Add an unconditional branch to make this look like the CallInst case...
806    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
807
808    // Split the basic block.  This guarantees that no PHI nodes will have to be
809    // updated due to new incoming edges, and make the invoke case more
810    // symmetric to the call case.
811    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
812                                          CalledFunc->getName()+".exit");
813
814  } else {  // It's a call
815    // If this is a call instruction, we need to split the basic block that
816    // the call lives in.
817    //
818    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
819                                          CalledFunc->getName()+".exit");
820  }
821
822  // Change the branch that used to go to AfterCallBB to branch to the first
823  // basic block of the inlined function.
824  //
825  TerminatorInst *Br = OrigBB->getTerminator();
826  assert(Br && Br->getOpcode() == Instruction::Br &&
827         "splitBasicBlock broken!");
828  Br->setOperand(0, FirstNewBlock);
829
830
831  // Now that the function is correct, make it a little bit nicer.  In
832  // particular, move the basic blocks inserted from the end of the function
833  // into the space made by splitting the source basic block.
834  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
835                                     FirstNewBlock, Caller->end());
836
837  // Handle all of the return instructions that we just cloned in, and eliminate
838  // any users of the original call/invoke instruction.
839  Type *RTy = CalledFunc->getReturnType();
840
841  PHINode *PHI = 0;
842  if (Returns.size() > 1) {
843    // The PHI node should go at the front of the new basic block to merge all
844    // possible incoming values.
845    if (!TheCall->use_empty()) {
846      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
847                            AfterCallBB->begin());
848      // Anything that used the result of the function call should now use the
849      // PHI node as their operand.
850      TheCall->replaceAllUsesWith(PHI);
851    }
852
853    // Loop over all of the return instructions adding entries to the PHI node
854    // as appropriate.
855    if (PHI) {
856      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
857        ReturnInst *RI = Returns[i];
858        assert(RI->getReturnValue()->getType() == PHI->getType() &&
859               "Ret value not consistent in function!");
860        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
861      }
862    }
863
864
865    // Add a branch to the merge points and remove return instructions.
866    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
867      ReturnInst *RI = Returns[i];
868      BranchInst::Create(AfterCallBB, RI);
869      RI->eraseFromParent();
870    }
871  } else if (!Returns.empty()) {
872    // Otherwise, if there is exactly one return value, just replace anything
873    // using the return value of the call with the computed value.
874    if (!TheCall->use_empty()) {
875      if (TheCall == Returns[0]->getReturnValue())
876        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
877      else
878        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
879    }
880
881    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
882    BasicBlock *ReturnBB = Returns[0]->getParent();
883    ReturnBB->replaceAllUsesWith(AfterCallBB);
884
885    // Splice the code from the return block into the block that it will return
886    // to, which contains the code that was after the call.
887    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
888                                      ReturnBB->getInstList());
889
890    // Delete the return instruction now and empty ReturnBB now.
891    Returns[0]->eraseFromParent();
892    ReturnBB->eraseFromParent();
893  } else if (!TheCall->use_empty()) {
894    // No returns, but something is using the return value of the call.  Just
895    // nuke the result.
896    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
897  }
898
899  // Since we are now done with the Call/Invoke, we can delete it.
900  TheCall->eraseFromParent();
901
902  // We should always be able to fold the entry block of the function into the
903  // single predecessor of the block...
904  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
905  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
906
907  // Splice the code entry block into calling block, right before the
908  // unconditional branch.
909  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
910  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
911
912  // Remove the unconditional branch.
913  OrigBB->getInstList().erase(Br);
914
915  // Now we can remove the CalleeEntry block, which is now empty.
916  Caller->getBasicBlockList().erase(CalleeEntry);
917
918  // If we inserted a phi node, check to see if it has a single value (e.g. all
919  // the entries are the same or undef).  If so, remove the PHI so it doesn't
920  // block other optimizations.
921  if (PHI) {
922    if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
923      PHI->replaceAllUsesWith(V);
924      PHI->eraseFromParent();
925    }
926  }
927
928  return true;
929}
930