InlineFunction.cpp revision e8ce880f1a66dffcad7955868be5193e782c09ca
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13// The code in this file for handling inlines through invoke
14// instructions preserves semantics only under some assumptions about
15// the behavior of unwinders which correspond to gcc-style libUnwind
16// exception personality functions.  Eventually the IR will be
17// improved to make this unnecessary, but until then, this code is
18// marked [LIBUNWIND].
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Transforms/Utils/Cloning.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Module.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Attributes.h"
30#include "llvm/Analysis/CallGraph.h"
31#include "llvm/Analysis/DebugInfo.h"
32#include "llvm/Analysis/InstructionSimplify.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/Local.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringExtras.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/IRBuilder.h"
39using namespace llvm;
40
41bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
42  return InlineFunction(CallSite(CI), IFI);
43}
44bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
45  return InlineFunction(CallSite(II), IFI);
46}
47
48/// [LIBUNWIND] Look for an llvm.eh.exception call in the given block.
49static EHExceptionInst *findExceptionInBlock(BasicBlock *bb) {
50  for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i != e; i++) {
51    EHExceptionInst *exn = dyn_cast<EHExceptionInst>(i);
52    if (exn) return exn;
53  }
54
55  return 0;
56}
57
58/// [LIBUNWIND] Look for the 'best' llvm.eh.selector instruction for
59/// the given llvm.eh.exception call.
60static EHSelectorInst *findSelectorForException(EHExceptionInst *exn) {
61  BasicBlock *exnBlock = exn->getParent();
62
63  EHSelectorInst *outOfBlockSelector = 0;
64  for (Instruction::use_iterator
65         ui = exn->use_begin(), ue = exn->use_end(); ui != ue; ++ui) {
66    EHSelectorInst *sel = dyn_cast<EHSelectorInst>(*ui);
67    if (!sel) continue;
68
69    // Immediately accept an eh.selector in the same block as the
70    // excepton call.
71    if (sel->getParent() == exnBlock) return sel;
72
73    // Otherwise, use the first selector we see.
74    if (!outOfBlockSelector) outOfBlockSelector = sel;
75  }
76
77  return outOfBlockSelector;
78}
79
80/// [LIBUNWIND] Find the (possibly absent) call to @llvm.eh.selector
81/// in the given landing pad.  In principle, llvm.eh.exception is
82/// required to be in the landing pad; in practice, SplitCriticalEdge
83/// can break that invariant, and then inlining can break it further.
84/// There's a real need for a reliable solution here, but until that
85/// happens, we have some fragile workarounds here.
86static EHSelectorInst *findSelectorForLandingPad(BasicBlock *lpad) {
87  // Look for an exception call in the actual landing pad.
88  EHExceptionInst *exn = findExceptionInBlock(lpad);
89  if (exn) return findSelectorForException(exn);
90
91  // Okay, if that failed, look for one in an obvious successor.  If
92  // we find one, we'll fix the IR by moving things back to the
93  // landing pad.
94
95  bool dominates = true; // does the lpad dominate the exn call
96  BasicBlock *nonDominated = 0; // if not, the first non-dominated block
97  BasicBlock *lastDominated = 0; // and the block which branched to it
98
99  BasicBlock *exnBlock = lpad;
100
101  // We need to protect against lpads that lead into infinite loops.
102  SmallPtrSet<BasicBlock*,4> visited;
103  visited.insert(exnBlock);
104
105  do {
106    // We're not going to apply this hack to anything more complicated
107    // than a series of unconditional branches, so if the block
108    // doesn't terminate in an unconditional branch, just fail.  More
109    // complicated cases can arise when, say, sinking a call into a
110    // split unwind edge and then inlining it; but that can do almost
111    // *anything* to the CFG, including leaving the selector
112    // completely unreachable.  The only way to fix that properly is
113    // to (1) prohibit transforms which move the exception or selector
114    // values away from the landing pad, e.g. by producing them with
115    // instructions that are pinned to an edge like a phi, or
116    // producing them with not-really-instructions, and (2) making
117    // transforms which split edges deal with that.
118    BranchInst *branch = dyn_cast<BranchInst>(&exnBlock->back());
119    if (!branch || branch->isConditional()) return 0;
120
121    BasicBlock *successor = branch->getSuccessor(0);
122
123    // Fail if we found an infinite loop.
124    if (!visited.insert(successor)) return 0;
125
126    // If the successor isn't dominated by exnBlock:
127    if (!successor->getSinglePredecessor()) {
128      // We don't want to have to deal with threading the exception
129      // through multiple levels of phi, so give up if we've already
130      // followed a non-dominating edge.
131      if (!dominates) return 0;
132
133      // Otherwise, remember this as a non-dominating edge.
134      dominates = false;
135      nonDominated = successor;
136      lastDominated = exnBlock;
137    }
138
139    exnBlock = successor;
140
141    // Can we stop here?
142    exn = findExceptionInBlock(exnBlock);
143  } while (!exn);
144
145  // Look for a selector call for the exception we found.
146  EHSelectorInst *selector = findSelectorForException(exn);
147  if (!selector) return 0;
148
149  // The easy case is when the landing pad still dominates the
150  // exception call, in which case we can just move both calls back to
151  // the landing pad.
152  if (dominates) {
153    selector->moveBefore(lpad->getFirstNonPHI());
154    exn->moveBefore(selector);
155    return selector;
156  }
157
158  // Otherwise, we have to split at the first non-dominating block.
159  // The CFG looks basically like this:
160  //    lpad:
161  //      phis_0
162  //      insnsAndBranches_1
163  //      br label %nonDominated
164  //    nonDominated:
165  //      phis_2
166  //      insns_3
167  //      %exn = call i8* @llvm.eh.exception()
168  //      insnsAndBranches_4
169  //      %selector = call @llvm.eh.selector(i8* %exn, ...
170  // We need to turn this into:
171  //    lpad:
172  //      phis_0
173  //      %exn0 = call i8* @llvm.eh.exception()
174  //      %selector0 = call @llvm.eh.selector(i8* %exn0, ...
175  //      insnsAndBranches_1
176  //      br label %split // from lastDominated
177  //    nonDominated:
178  //      phis_2 (without edge from lastDominated)
179  //      %exn1 = call i8* @llvm.eh.exception()
180  //      %selector1 = call i8* @llvm.eh.selector(i8* %exn1, ...
181  //      br label %split
182  //    split:
183  //      phis_2 (edge from lastDominated, edge from split)
184  //      %exn = phi ...
185  //      %selector = phi ...
186  //      insns_3
187  //      insnsAndBranches_4
188
189  assert(nonDominated);
190  assert(lastDominated);
191
192  // First, make clones of the intrinsics to go in lpad.
193  EHExceptionInst *lpadExn = cast<EHExceptionInst>(exn->clone());
194  EHSelectorInst *lpadSelector = cast<EHSelectorInst>(selector->clone());
195  lpadSelector->setArgOperand(0, lpadExn);
196  lpadSelector->insertBefore(lpad->getFirstNonPHI());
197  lpadExn->insertBefore(lpadSelector);
198
199  // Split the non-dominated block.
200  BasicBlock *split =
201    nonDominated->splitBasicBlock(nonDominated->getFirstNonPHI(),
202                                  nonDominated->getName() + ".lpad-fix");
203
204  // Redirect the last dominated branch there.
205  cast<BranchInst>(lastDominated->back()).setSuccessor(0, split);
206
207  // Move the existing intrinsics to the end of the old block.
208  selector->moveBefore(&nonDominated->back());
209  exn->moveBefore(selector);
210
211  Instruction *splitIP = &split->front();
212
213  // For all the phis in nonDominated, make a new phi in split to join
214  // that phi with the edge from lastDominated.
215  for (BasicBlock::iterator
216         i = nonDominated->begin(), e = nonDominated->end(); i != e; ++i) {
217    PHINode *phi = dyn_cast<PHINode>(i);
218    if (!phi) break;
219
220    PHINode *splitPhi = PHINode::Create(phi->getType(), 2, phi->getName(),
221                                        splitIP);
222    phi->replaceAllUsesWith(splitPhi);
223    splitPhi->addIncoming(phi, nonDominated);
224    splitPhi->addIncoming(phi->removeIncomingValue(lastDominated),
225                          lastDominated);
226  }
227
228  // Make new phis for the exception and selector.
229  PHINode *exnPhi = PHINode::Create(exn->getType(), 2, "", splitIP);
230  exn->replaceAllUsesWith(exnPhi);
231  selector->setArgOperand(0, exn); // except for this use
232  exnPhi->addIncoming(exn, nonDominated);
233  exnPhi->addIncoming(lpadExn, lastDominated);
234
235  PHINode *selectorPhi = PHINode::Create(selector->getType(), 2, "", splitIP);
236  selector->replaceAllUsesWith(selectorPhi);
237  selectorPhi->addIncoming(selector, nonDominated);
238  selectorPhi->addIncoming(lpadSelector, lastDominated);
239
240  return lpadSelector;
241}
242
243namespace {
244  /// A class for recording information about inlining through an invoke.
245  class InvokeInliningInfo {
246    BasicBlock *OuterUnwindDest;
247    EHSelectorInst *OuterSelector;
248    BasicBlock *InnerUnwindDest;
249    PHINode *InnerExceptionPHI;
250    PHINode *InnerSelectorPHI;
251    SmallVector<Value*, 8> UnwindDestPHIValues;
252
253    PHINode *InnerEHValuesPHI;
254    LandingPadInst *CallerLPad;
255    BasicBlock *SplitLPad;
256
257  public:
258    InvokeInliningInfo(InvokeInst *II)
259      : OuterUnwindDest(II->getUnwindDest()), OuterSelector(0),
260        InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0),
261        InnerEHValuesPHI(0), CallerLPad(0), SplitLPad(0) {
262      // If there are PHI nodes in the unwind destination block, we
263      // need to keep track of which values came into them from the
264      // invoke before removing the edge from this block.
265      llvm::BasicBlock *invokeBB = II->getParent();
266      BasicBlock::iterator I = OuterUnwindDest->begin();
267      for (; isa<PHINode>(I); ++I) {
268        // Save the value to use for this edge.
269        PHINode *phi = cast<PHINode>(I);
270        UnwindDestPHIValues.push_back(phi->getIncomingValueForBlock(invokeBB));
271      }
272
273      // FIXME: With the new EH, this if/dyn_cast should be a 'cast'.
274      if (LandingPadInst *LPI = dyn_cast<LandingPadInst>(I))
275        CallerLPad = LPI;
276    }
277
278    /// The outer unwind destination is the target of unwind edges
279    /// introduced for calls within the inlined function.
280    BasicBlock *getOuterUnwindDest() const {
281      return OuterUnwindDest;
282    }
283
284    EHSelectorInst *getOuterSelector() {
285      if (!OuterSelector)
286        OuterSelector = findSelectorForLandingPad(OuterUnwindDest);
287      return OuterSelector;
288    }
289
290    BasicBlock *getInnerUnwindDest();
291
292    LandingPadInst *getLandingPadInst() const { return CallerLPad; }
293    BasicBlock *getSplitLandingPad() {
294      if (SplitLPad) return SplitLPad;
295      assert(CallerLPad && "Trying to split a block that isn't a landing pad!");
296      BasicBlock::iterator I = CallerLPad; ++I;
297      SplitLPad = CallerLPad->getParent()->splitBasicBlock(I, "split.lpad");
298      return SplitLPad;
299    }
300
301    bool forwardEHResume(CallInst *call, BasicBlock *src);
302
303    /// forwardResume - Forward the 'resume' instruction to the caller's landing
304    /// pad block. When the landing pad block has only one predecessor, this is
305    /// a simple branch. When there is more than one predecessor, we need to
306    /// split the landing pad block after the landingpad instruction and jump
307    /// to there.
308    void forwardResume(ResumeInst *RI);
309
310    /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
311    /// destination block for the given basic block, using the values for the
312    /// original invoke's source block.
313    void addIncomingPHIValuesFor(BasicBlock *BB) const {
314      addIncomingPHIValuesForInto(BB, OuterUnwindDest);
315    }
316    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
317      BasicBlock::iterator I = dest->begin();
318      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
319        PHINode *phi = cast<PHINode>(I);
320        phi->addIncoming(UnwindDestPHIValues[i], src);
321      }
322    }
323  };
324}
325
326/// Get or create a target for the branch out of rewritten calls to
327/// llvm.eh.resume.
328BasicBlock *InvokeInliningInfo::getInnerUnwindDest() {
329  if (InnerUnwindDest) return InnerUnwindDest;
330
331  // Find and hoist the llvm.eh.exception and llvm.eh.selector calls
332  // in the outer landing pad to immediately following the phis.
333  EHSelectorInst *selector = getOuterSelector();
334  if (!selector) return 0;
335
336  // The call to llvm.eh.exception *must* be in the landing pad.
337  Instruction *exn = cast<Instruction>(selector->getArgOperand(0));
338  assert(exn->getParent() == OuterUnwindDest);
339
340  // TODO: recognize when we've already done this, so that we don't
341  // get a linear number of these when inlining calls into lots of
342  // invokes with the same landing pad.
343
344  // Do the hoisting.
345  Instruction *splitPoint = exn->getParent()->getFirstNonPHI();
346  assert(splitPoint != selector && "selector-on-exception dominance broken!");
347  if (splitPoint == exn) {
348    selector->removeFromParent();
349    selector->insertAfter(exn);
350    splitPoint = selector->getNextNode();
351  } else {
352    exn->moveBefore(splitPoint);
353    selector->moveBefore(splitPoint);
354  }
355
356  // Split the landing pad.
357  InnerUnwindDest = OuterUnwindDest->splitBasicBlock(splitPoint,
358                                        OuterUnwindDest->getName() + ".body");
359
360  // The number of incoming edges we expect to the inner landing pad.
361  const unsigned phiCapacity = 2;
362
363  // Create corresponding new phis for all the phis in the outer landing pad.
364  BasicBlock::iterator insertPoint = InnerUnwindDest->begin();
365  BasicBlock::iterator I = OuterUnwindDest->begin();
366  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
367    PHINode *outerPhi = cast<PHINode>(I);
368    PHINode *innerPhi = PHINode::Create(outerPhi->getType(), phiCapacity,
369                                        outerPhi->getName() + ".lpad-body",
370                                        insertPoint);
371    outerPhi->replaceAllUsesWith(innerPhi);
372    innerPhi->addIncoming(outerPhi, OuterUnwindDest);
373  }
374
375  // Create a phi for the exception value...
376  InnerExceptionPHI = PHINode::Create(exn->getType(), phiCapacity,
377                                      "exn.lpad-body", insertPoint);
378  exn->replaceAllUsesWith(InnerExceptionPHI);
379  selector->setArgOperand(0, exn); // restore this use
380  InnerExceptionPHI->addIncoming(exn, OuterUnwindDest);
381
382  // ...and the selector.
383  InnerSelectorPHI = PHINode::Create(selector->getType(), phiCapacity,
384                                     "selector.lpad-body", insertPoint);
385  selector->replaceAllUsesWith(InnerSelectorPHI);
386  InnerSelectorPHI->addIncoming(selector, OuterUnwindDest);
387
388  // All done.
389  return InnerUnwindDest;
390}
391
392/// [LIBUNWIND] Try to forward the given call, which logically occurs
393/// at the end of the given block, as a branch to the inner unwind
394/// block.  Returns true if the call was forwarded.
395bool InvokeInliningInfo::forwardEHResume(CallInst *call, BasicBlock *src) {
396  // First, check whether this is a call to the intrinsic.
397  Function *fn = dyn_cast<Function>(call->getCalledValue());
398  if (!fn || fn->getName() != "llvm.eh.resume")
399    return false;
400
401  // At this point, we need to return true on all paths, because
402  // otherwise we'll construct an invoke of the intrinsic, which is
403  // not well-formed.
404
405  // Try to find or make an inner unwind dest, which will fail if we
406  // can't find a selector call for the outer unwind dest.
407  BasicBlock *dest = getInnerUnwindDest();
408  bool hasSelector = (dest != 0);
409
410  // If we failed, just use the outer unwind dest, dropping the
411  // exception and selector on the floor.
412  if (!hasSelector)
413    dest = OuterUnwindDest;
414
415  // Make a branch.
416  BranchInst::Create(dest, src);
417
418  // Update the phis in the destination.  They were inserted in an
419  // order which makes this work.
420  addIncomingPHIValuesForInto(src, dest);
421
422  if (hasSelector) {
423    InnerExceptionPHI->addIncoming(call->getArgOperand(0), src);
424    InnerSelectorPHI->addIncoming(call->getArgOperand(1), src);
425  }
426
427  return true;
428}
429
430/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
431/// block. When the landing pad block has only one predecessor, this is a simple
432/// branch. When there is more than one predecessor, we need to split the
433/// landing pad block after the landingpad instruction and jump to there.
434void InvokeInliningInfo::forwardResume(ResumeInst *RI) {
435  BasicBlock *LPadBB = CallerLPad->getParent();
436  Value *ResumeOp = RI->getOperand(0);
437
438  if (!LPadBB->getSinglePredecessor()) {
439    // There are multiple predecessors to this landing pad block. Split this
440    // landing pad block and jump to the new BB.
441    BasicBlock *SplitLPad = getSplitLandingPad();
442    BranchInst::Create(SplitLPad, RI->getParent());
443
444    if (CallerLPad->hasOneUse() && isa<PHINode>(CallerLPad->use_back())) {
445      PHINode *PN = cast<PHINode>(CallerLPad->use_back());
446      PN->addIncoming(ResumeOp, RI->getParent());
447    } else {
448      PHINode *PN = PHINode::Create(ResumeOp->getType(), 0, "lpad.phi",
449                                    &SplitLPad->front());
450      CallerLPad->replaceAllUsesWith(PN);
451      PN->addIncoming(ResumeOp, RI->getParent());
452      PN->addIncoming(CallerLPad, LPadBB);
453    }
454
455    RI->eraseFromParent();
456    return;
457  }
458
459  BranchInst::Create(LPadBB, RI->getParent());
460  CallerLPad->replaceAllUsesWith(ResumeOp);
461  CallerLPad->eraseFromParent();
462  RI->eraseFromParent();
463}
464
465/// [LIBUNWIND] Check whether this selector is "only cleanups":
466///   call i32 @llvm.eh.selector(blah, blah, i32 0)
467static bool isCleanupOnlySelector(EHSelectorInst *selector) {
468  if (selector->getNumArgOperands() != 3) return false;
469  ConstantInt *val = dyn_cast<ConstantInt>(selector->getArgOperand(2));
470  return (val && val->isZero());
471}
472
473/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
474/// an invoke, we have to turn all of the calls that can throw into
475/// invokes.  This function analyze BB to see if there are any calls, and if so,
476/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
477/// nodes in that block with the values specified in InvokeDestPHIValues.
478///
479/// Returns true to indicate that the next block should be skipped.
480static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
481                                                   InvokeInliningInfo &Invoke) {
482  LandingPadInst *LPI = Invoke.getLandingPadInst();
483
484  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
485    Instruction *I = BBI++;
486
487    if (LPI) // FIXME: This won't be NULL in the new EH.
488      if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
489        unsigned NumClauses = LPI->getNumClauses();
490        L->reserveClauses(NumClauses);
491        for (unsigned i = 0; i != NumClauses; ++i)
492          L->addClause(LPI->getClauseType(i), LPI->getClauseValue(i));
493      }
494
495    // We only need to check for function calls: inlined invoke
496    // instructions require no special handling.
497    CallInst *CI = dyn_cast<CallInst>(I);
498    if (CI == 0) continue;
499
500    // LIBUNWIND: merge selector instructions.
501    if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) {
502      EHSelectorInst *Outer = Invoke.getOuterSelector();
503      if (!Outer) continue;
504
505      bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner);
506      bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer);
507
508      // If both selectors contain only cleanups, we don't need to do
509      // anything.  TODO: this is really just a very specific instance
510      // of a much more general optimization.
511      if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue;
512
513      // Otherwise, we just append the outer selector to the inner selector.
514      SmallVector<Value*, 16> NewSelector;
515      for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i)
516        NewSelector.push_back(Inner->getArgOperand(i));
517      for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i)
518        NewSelector.push_back(Outer->getArgOperand(i));
519
520      CallInst *NewInner =
521        IRBuilder<>(Inner).CreateCall(Inner->getCalledValue(), NewSelector);
522      // No need to copy attributes, calling convention, etc.
523      NewInner->takeName(Inner);
524      Inner->replaceAllUsesWith(NewInner);
525      Inner->eraseFromParent();
526      continue;
527    }
528
529    // If this call cannot unwind, don't convert it to an invoke.
530    if (CI->doesNotThrow())
531      continue;
532
533    // Convert this function call into an invoke instruction.
534    // First, split the basic block.
535    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
536
537    // Delete the unconditional branch inserted by splitBasicBlock
538    BB->getInstList().pop_back();
539
540    // LIBUNWIND: If this is a call to @llvm.eh.resume, just branch
541    // directly to the new landing pad.
542    if (Invoke.forwardEHResume(CI, BB)) {
543      // TODO: 'Split' is now unreachable; clean it up.
544
545      // We want to leave the original call intact so that the call
546      // graph and other structures won't get misled.  We also have to
547      // avoid processing the next block, or we'll iterate here forever.
548      return true;
549    }
550
551    // Otherwise, create the new invoke instruction.
552    ImmutableCallSite CS(CI);
553    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
554    InvokeInst *II =
555      InvokeInst::Create(CI->getCalledValue(), Split,
556                         Invoke.getOuterUnwindDest(),
557                         InvokeArgs, CI->getName(), BB);
558    II->setCallingConv(CI->getCallingConv());
559    II->setAttributes(CI->getAttributes());
560
561    // Make sure that anything using the call now uses the invoke!  This also
562    // updates the CallGraph if present, because it uses a WeakVH.
563    CI->replaceAllUsesWith(II);
564
565    Split->getInstList().pop_front();  // Delete the original call
566
567    // Update any PHI nodes in the exceptional block to indicate that
568    // there is now a new entry in them.
569    Invoke.addIncomingPHIValuesFor(BB);
570    return false;
571  }
572
573  return false;
574}
575
576
577/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
578/// in the body of the inlined function into invokes and turn unwind
579/// instructions into branches to the invoke unwind dest.
580///
581/// II is the invoke instruction being inlined.  FirstNewBlock is the first
582/// block of the inlined code (the last block is the end of the function),
583/// and InlineCodeInfo is information about the code that got inlined.
584static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
585                                ClonedCodeInfo &InlinedCodeInfo) {
586  BasicBlock *InvokeDest = II->getUnwindDest();
587
588  Function *Caller = FirstNewBlock->getParent();
589
590  // The inlined code is currently at the end of the function, scan from the
591  // start of the inlined code to its end, checking for stuff we need to
592  // rewrite.  If the code doesn't have calls or unwinds, we know there is
593  // nothing to rewrite.
594  if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
595    // Now that everything is happy, we have one final detail.  The PHI nodes in
596    // the exception destination block still have entries due to the original
597    // invoke instruction.  Eliminate these entries (which might even delete the
598    // PHI node) now.
599    InvokeDest->removePredecessor(II->getParent());
600    return;
601  }
602
603  InvokeInliningInfo Invoke(II);
604
605  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
606    if (InlinedCodeInfo.ContainsCalls)
607      if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
608        // Honor a request to skip the next block.  We don't need to
609        // consider UnwindInsts in this case either.
610        ++BB;
611        continue;
612      }
613
614    if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
615      // An UnwindInst requires special handling when it gets inlined into an
616      // invoke site.  Once this happens, we know that the unwind would cause
617      // a control transfer to the invoke exception destination, so we can
618      // transform it into a direct branch to the exception destination.
619      BranchInst::Create(InvokeDest, UI);
620
621      // Delete the unwind instruction!
622      UI->eraseFromParent();
623
624      // Update any PHI nodes in the exceptional block to indicate that
625      // there is now a new entry in them.
626      Invoke.addIncomingPHIValuesFor(BB);
627    }
628
629    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
630      Invoke.forwardResume(RI);
631    }
632  }
633
634  // Now that everything is happy, we have one final detail.  The PHI nodes in
635  // the exception destination block still have entries due to the original
636  // invoke instruction.  Eliminate these entries (which might even delete the
637  // PHI node) now.
638  InvokeDest->removePredecessor(II->getParent());
639}
640
641/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
642/// into the caller, update the specified callgraph to reflect the changes we
643/// made.  Note that it's possible that not all code was copied over, so only
644/// some edges of the callgraph may remain.
645static void UpdateCallGraphAfterInlining(CallSite CS,
646                                         Function::iterator FirstNewBlock,
647                                         ValueToValueMapTy &VMap,
648                                         InlineFunctionInfo &IFI) {
649  CallGraph &CG = *IFI.CG;
650  const Function *Caller = CS.getInstruction()->getParent()->getParent();
651  const Function *Callee = CS.getCalledFunction();
652  CallGraphNode *CalleeNode = CG[Callee];
653  CallGraphNode *CallerNode = CG[Caller];
654
655  // Since we inlined some uninlined call sites in the callee into the caller,
656  // add edges from the caller to all of the callees of the callee.
657  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
658
659  // Consider the case where CalleeNode == CallerNode.
660  CallGraphNode::CalledFunctionsVector CallCache;
661  if (CalleeNode == CallerNode) {
662    CallCache.assign(I, E);
663    I = CallCache.begin();
664    E = CallCache.end();
665  }
666
667  for (; I != E; ++I) {
668    const Value *OrigCall = I->first;
669
670    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
671    // Only copy the edge if the call was inlined!
672    if (VMI == VMap.end() || VMI->second == 0)
673      continue;
674
675    // If the call was inlined, but then constant folded, there is no edge to
676    // add.  Check for this case.
677    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
678    if (NewCall == 0) continue;
679
680    // Remember that this call site got inlined for the client of
681    // InlineFunction.
682    IFI.InlinedCalls.push_back(NewCall);
683
684    // It's possible that inlining the callsite will cause it to go from an
685    // indirect to a direct call by resolving a function pointer.  If this
686    // happens, set the callee of the new call site to a more precise
687    // destination.  This can also happen if the call graph node of the caller
688    // was just unnecessarily imprecise.
689    if (I->second->getFunction() == 0)
690      if (Function *F = CallSite(NewCall).getCalledFunction()) {
691        // Indirect call site resolved to direct call.
692        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
693
694        continue;
695      }
696
697    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
698  }
699
700  // Update the call graph by deleting the edge from Callee to Caller.  We must
701  // do this after the loop above in case Caller and Callee are the same.
702  CallerNode->removeCallEdgeFor(CS);
703}
704
705/// HandleByValArgument - When inlining a call site that has a byval argument,
706/// we have to make the implicit memcpy explicit by adding it.
707static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
708                                  const Function *CalledFunc,
709                                  InlineFunctionInfo &IFI,
710                                  unsigned ByValAlignment) {
711  Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
712
713  // If the called function is readonly, then it could not mutate the caller's
714  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
715  // temporary.
716  if (CalledFunc->onlyReadsMemory()) {
717    // If the byval argument has a specified alignment that is greater than the
718    // passed in pointer, then we either have to round up the input pointer or
719    // give up on this transformation.
720    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
721      return Arg;
722
723    // If the pointer is already known to be sufficiently aligned, or if we can
724    // round it up to a larger alignment, then we don't need a temporary.
725    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
726                                   IFI.TD) >= ByValAlignment)
727      return Arg;
728
729    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
730    // for code quality, but rarely happens and is required for correctness.
731  }
732
733  LLVMContext &Context = Arg->getContext();
734
735  Type *VoidPtrTy = Type::getInt8PtrTy(Context);
736
737  // Create the alloca.  If we have TargetData, use nice alignment.
738  unsigned Align = 1;
739  if (IFI.TD)
740    Align = IFI.TD->getPrefTypeAlignment(AggTy);
741
742  // If the byval had an alignment specified, we *must* use at least that
743  // alignment, as it is required by the byval argument (and uses of the
744  // pointer inside the callee).
745  Align = std::max(Align, ByValAlignment);
746
747  Function *Caller = TheCall->getParent()->getParent();
748
749  Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
750                                    &*Caller->begin()->begin());
751  // Emit a memcpy.
752  Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
753  Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
754                                                 Intrinsic::memcpy,
755                                                 Tys);
756  Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
757  Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
758
759  Value *Size;
760  if (IFI.TD == 0)
761    Size = ConstantExpr::getSizeOf(AggTy);
762  else
763    Size = ConstantInt::get(Type::getInt64Ty(Context),
764                            IFI.TD->getTypeStoreSize(AggTy));
765
766  // Always generate a memcpy of alignment 1 here because we don't know
767  // the alignment of the src pointer.  Other optimizations can infer
768  // better alignment.
769  Value *CallArgs[] = {
770    DestCast, SrcCast, Size,
771    ConstantInt::get(Type::getInt32Ty(Context), 1),
772    ConstantInt::getFalse(Context) // isVolatile
773  };
774  IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
775
776  // Uses of the argument in the function should use our new alloca
777  // instead.
778  return NewAlloca;
779}
780
781// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
782// intrinsic.
783static bool isUsedByLifetimeMarker(Value *V) {
784  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
785       ++UI) {
786    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
787      switch (II->getIntrinsicID()) {
788      default: break;
789      case Intrinsic::lifetime_start:
790      case Intrinsic::lifetime_end:
791        return true;
792      }
793    }
794  }
795  return false;
796}
797
798// hasLifetimeMarkers - Check whether the given alloca already has
799// lifetime.start or lifetime.end intrinsics.
800static bool hasLifetimeMarkers(AllocaInst *AI) {
801  Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
802  if (AI->getType() == Int8PtrTy)
803    return isUsedByLifetimeMarker(AI);
804
805  // Do a scan to find all the casts to i8*.
806  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
807       ++I) {
808    if (I->getType() != Int8PtrTy) continue;
809    if (I->stripPointerCasts() != AI) continue;
810    if (isUsedByLifetimeMarker(*I))
811      return true;
812  }
813  return false;
814}
815
816/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively
817/// update InlinedAtEntry of a DebugLoc.
818static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
819                                    const DebugLoc &InlinedAtDL,
820                                    LLVMContext &Ctx) {
821  if (MDNode *IA = DL.getInlinedAt(Ctx)) {
822    DebugLoc NewInlinedAtDL
823      = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
824    return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
825                         NewInlinedAtDL.getAsMDNode(Ctx));
826  }
827
828  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
829                       InlinedAtDL.getAsMDNode(Ctx));
830}
831
832
833/// fixupLineNumbers - Update inlined instructions' line numbers to
834/// to encode location where these instructions are inlined.
835static void fixupLineNumbers(Function *Fn, Function::iterator FI,
836                              Instruction *TheCall) {
837  DebugLoc TheCallDL = TheCall->getDebugLoc();
838  if (TheCallDL.isUnknown())
839    return;
840
841  for (; FI != Fn->end(); ++FI) {
842    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
843         BI != BE; ++BI) {
844      DebugLoc DL = BI->getDebugLoc();
845      if (!DL.isUnknown()) {
846        BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
847        if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
848          LLVMContext &Ctx = BI->getContext();
849          MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
850          DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
851                                                   InlinedAt, Ctx));
852        }
853      }
854    }
855  }
856}
857
858// InlineFunction - This function inlines the called function into the basic
859// block of the caller.  This returns false if it is not possible to inline this
860// call.  The program is still in a well defined state if this occurs though.
861//
862// Note that this only does one level of inlining.  For example, if the
863// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
864// exists in the instruction stream.  Similarly this will inline a recursive
865// function by one level.
866//
867bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
868  Instruction *TheCall = CS.getInstruction();
869  LLVMContext &Context = TheCall->getContext();
870  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
871         "Instruction not in function!");
872
873  // If IFI has any state in it, zap it before we fill it in.
874  IFI.reset();
875
876  const Function *CalledFunc = CS.getCalledFunction();
877  if (CalledFunc == 0 ||          // Can't inline external function or indirect
878      CalledFunc->isDeclaration() || // call, or call to a vararg function!
879      CalledFunc->getFunctionType()->isVarArg()) return false;
880
881  // If the call to the callee is not a tail call, we must clear the 'tail'
882  // flags on any calls that we inline.
883  bool MustClearTailCallFlags =
884    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
885
886  // If the call to the callee cannot throw, set the 'nounwind' flag on any
887  // calls that we inline.
888  bool MarkNoUnwind = CS.doesNotThrow();
889
890  BasicBlock *OrigBB = TheCall->getParent();
891  Function *Caller = OrigBB->getParent();
892
893  // GC poses two hazards to inlining, which only occur when the callee has GC:
894  //  1. If the caller has no GC, then the callee's GC must be propagated to the
895  //     caller.
896  //  2. If the caller has a differing GC, it is invalid to inline.
897  if (CalledFunc->hasGC()) {
898    if (!Caller->hasGC())
899      Caller->setGC(CalledFunc->getGC());
900    else if (CalledFunc->getGC() != Caller->getGC())
901      return false;
902  }
903
904  // Find the personality function used by the landing pads of the caller. If it
905  // exists, then check to see that it matches the personality function used in
906  // the callee.
907  for (Function::const_iterator
908         I = Caller->begin(), E = Caller->end(); I != E; ++I)
909    if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
910      const BasicBlock *BB = II->getUnwindDest();
911      // FIXME: This 'isa' here should become go away once the new EH system is
912      // in place.
913      if (!isa<LandingPadInst>(BB->getFirstNonPHI()))
914        continue;
915      const LandingPadInst *LP = cast<LandingPadInst>(BB->getFirstNonPHI());
916      const Value *CallerPersFn = LP->getPersonalityFn();
917
918      // If the personality functions match, then we can perform the
919      // inlining. Otherwise, we can't inline.
920      // TODO: This isn't 100% true. Some personality functions are proper
921      //       supersets of others and can be used in place of the other.
922      for (Function::const_iterator
923             I = CalledFunc->begin(), E = CalledFunc->end(); I != E; ++I)
924        if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
925          const BasicBlock *BB = II->getUnwindDest();
926          // FIXME: This 'if/dyn_cast' here should become a normal 'cast' once
927          // the new EH system is in place.
928          if (const LandingPadInst *LP =
929              dyn_cast<LandingPadInst>(BB->getFirstNonPHI()))
930            if (CallerPersFn != LP->getPersonalityFn())
931              return false;
932          break;
933        }
934
935      break;
936    }
937
938  // Get an iterator to the last basic block in the function, which will have
939  // the new function inlined after it.
940  //
941  Function::iterator LastBlock = &Caller->back();
942
943  // Make sure to capture all of the return instructions from the cloned
944  // function.
945  SmallVector<ReturnInst*, 8> Returns;
946  ClonedCodeInfo InlinedFunctionInfo;
947  Function::iterator FirstNewBlock;
948
949  { // Scope to destroy VMap after cloning.
950    ValueToValueMapTy VMap;
951
952    assert(CalledFunc->arg_size() == CS.arg_size() &&
953           "No varargs calls can be inlined!");
954
955    // Calculate the vector of arguments to pass into the function cloner, which
956    // matches up the formal to the actual argument values.
957    CallSite::arg_iterator AI = CS.arg_begin();
958    unsigned ArgNo = 0;
959    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
960         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
961      Value *ActualArg = *AI;
962
963      // When byval arguments actually inlined, we need to make the copy implied
964      // by them explicit.  However, we don't do this if the callee is readonly
965      // or readnone, because the copy would be unneeded: the callee doesn't
966      // modify the struct.
967      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal)) {
968        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
969                                        CalledFunc->getParamAlignment(ArgNo+1));
970
971        // Calls that we inline may use the new alloca, so we need to clear
972        // their 'tail' flags if HandleByValArgument introduced a new alloca and
973        // the callee has calls.
974        MustClearTailCallFlags |= ActualArg != *AI;
975      }
976
977      VMap[I] = ActualArg;
978    }
979
980    // We want the inliner to prune the code as it copies.  We would LOVE to
981    // have no dead or constant instructions leftover after inlining occurs
982    // (which can happen, e.g., because an argument was constant), but we'll be
983    // happy with whatever the cloner can do.
984    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
985                              /*ModuleLevelChanges=*/false, Returns, ".i",
986                              &InlinedFunctionInfo, IFI.TD, TheCall);
987
988    // Remember the first block that is newly cloned over.
989    FirstNewBlock = LastBlock; ++FirstNewBlock;
990
991    // Update the callgraph if requested.
992    if (IFI.CG)
993      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
994
995    // Update inlined instructions' line number information.
996    fixupLineNumbers(Caller, FirstNewBlock, TheCall);
997  }
998
999  // If there are any alloca instructions in the block that used to be the entry
1000  // block for the callee, move them to the entry block of the caller.  First
1001  // calculate which instruction they should be inserted before.  We insert the
1002  // instructions at the end of the current alloca list.
1003  //
1004  {
1005    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1006    for (BasicBlock::iterator I = FirstNewBlock->begin(),
1007         E = FirstNewBlock->end(); I != E; ) {
1008      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1009      if (AI == 0) continue;
1010
1011      // If the alloca is now dead, remove it.  This often occurs due to code
1012      // specialization.
1013      if (AI->use_empty()) {
1014        AI->eraseFromParent();
1015        continue;
1016      }
1017
1018      if (!isa<Constant>(AI->getArraySize()))
1019        continue;
1020
1021      // Keep track of the static allocas that we inline into the caller.
1022      IFI.StaticAllocas.push_back(AI);
1023
1024      // Scan for the block of allocas that we can move over, and move them
1025      // all at once.
1026      while (isa<AllocaInst>(I) &&
1027             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
1028        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1029        ++I;
1030      }
1031
1032      // Transfer all of the allocas over in a block.  Using splice means
1033      // that the instructions aren't removed from the symbol table, then
1034      // reinserted.
1035      Caller->getEntryBlock().getInstList().splice(InsertPoint,
1036                                                   FirstNewBlock->getInstList(),
1037                                                   AI, I);
1038    }
1039  }
1040
1041  // Leave lifetime markers for the static alloca's, scoping them to the
1042  // function we just inlined.
1043  if (!IFI.StaticAllocas.empty()) {
1044    IRBuilder<> builder(FirstNewBlock->begin());
1045    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1046      AllocaInst *AI = IFI.StaticAllocas[ai];
1047
1048      // If the alloca is already scoped to something smaller than the whole
1049      // function then there's no need to add redundant, less accurate markers.
1050      if (hasLifetimeMarkers(AI))
1051        continue;
1052
1053      builder.CreateLifetimeStart(AI);
1054      for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
1055        IRBuilder<> builder(Returns[ri]);
1056        builder.CreateLifetimeEnd(AI);
1057      }
1058    }
1059  }
1060
1061  // If the inlined code contained dynamic alloca instructions, wrap the inlined
1062  // code with llvm.stacksave/llvm.stackrestore intrinsics.
1063  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
1064    Module *M = Caller->getParent();
1065    // Get the two intrinsics we care about.
1066    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
1067    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
1068
1069    // Insert the llvm.stacksave.
1070    CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
1071      .CreateCall(StackSave, "savedstack");
1072
1073    // Insert a call to llvm.stackrestore before any return instructions in the
1074    // inlined function.
1075    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1076      IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
1077    }
1078
1079    // Count the number of StackRestore calls we insert.
1080    unsigned NumStackRestores = Returns.size();
1081
1082    // If we are inlining an invoke instruction, insert restores before each
1083    // unwind.  These unwinds will be rewritten into branches later.
1084    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
1085      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
1086           BB != E; ++BB)
1087        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
1088          IRBuilder<>(UI).CreateCall(StackRestore, SavedPtr);
1089          ++NumStackRestores;
1090        }
1091    }
1092  }
1093
1094  // If we are inlining tail call instruction through a call site that isn't
1095  // marked 'tail', we must remove the tail marker for any calls in the inlined
1096  // code.  Also, calls inlined through a 'nounwind' call site should be marked
1097  // 'nounwind'.
1098  if (InlinedFunctionInfo.ContainsCalls &&
1099      (MustClearTailCallFlags || MarkNoUnwind)) {
1100    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
1101         BB != E; ++BB)
1102      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1103        if (CallInst *CI = dyn_cast<CallInst>(I)) {
1104          if (MustClearTailCallFlags)
1105            CI->setTailCall(false);
1106          if (MarkNoUnwind)
1107            CI->setDoesNotThrow();
1108        }
1109  }
1110
1111  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
1112  // instructions are unreachable.
1113  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
1114    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
1115         BB != E; ++BB) {
1116      TerminatorInst *Term = BB->getTerminator();
1117      if (isa<UnwindInst>(Term)) {
1118        new UnreachableInst(Context, Term);
1119        BB->getInstList().erase(Term);
1120      }
1121    }
1122
1123  // If we are inlining for an invoke instruction, we must make sure to rewrite
1124  // any inlined 'unwind' instructions into branches to the invoke exception
1125  // destination, and call instructions into invoke instructions.
1126  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
1127    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
1128
1129  // If we cloned in _exactly one_ basic block, and if that block ends in a
1130  // return instruction, we splice the body of the inlined callee directly into
1131  // the calling basic block.
1132  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
1133    // Move all of the instructions right before the call.
1134    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
1135                                 FirstNewBlock->begin(), FirstNewBlock->end());
1136    // Remove the cloned basic block.
1137    Caller->getBasicBlockList().pop_back();
1138
1139    // If the call site was an invoke instruction, add a branch to the normal
1140    // destination.
1141    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
1142      BranchInst::Create(II->getNormalDest(), TheCall);
1143
1144    // If the return instruction returned a value, replace uses of the call with
1145    // uses of the returned value.
1146    if (!TheCall->use_empty()) {
1147      ReturnInst *R = Returns[0];
1148      if (TheCall == R->getReturnValue())
1149        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1150      else
1151        TheCall->replaceAllUsesWith(R->getReturnValue());
1152    }
1153    // Since we are now done with the Call/Invoke, we can delete it.
1154    TheCall->eraseFromParent();
1155
1156    // Since we are now done with the return instruction, delete it also.
1157    Returns[0]->eraseFromParent();
1158
1159    // We are now done with the inlining.
1160    return true;
1161  }
1162
1163  // Otherwise, we have the normal case, of more than one block to inline or
1164  // multiple return sites.
1165
1166  // We want to clone the entire callee function into the hole between the
1167  // "starter" and "ender" blocks.  How we accomplish this depends on whether
1168  // this is an invoke instruction or a call instruction.
1169  BasicBlock *AfterCallBB;
1170  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1171
1172    // Add an unconditional branch to make this look like the CallInst case...
1173    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
1174
1175    // Split the basic block.  This guarantees that no PHI nodes will have to be
1176    // updated due to new incoming edges, and make the invoke case more
1177    // symmetric to the call case.
1178    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
1179                                          CalledFunc->getName()+".exit");
1180
1181  } else {  // It's a call
1182    // If this is a call instruction, we need to split the basic block that
1183    // the call lives in.
1184    //
1185    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
1186                                          CalledFunc->getName()+".exit");
1187  }
1188
1189  // Change the branch that used to go to AfterCallBB to branch to the first
1190  // basic block of the inlined function.
1191  //
1192  TerminatorInst *Br = OrigBB->getTerminator();
1193  assert(Br && Br->getOpcode() == Instruction::Br &&
1194         "splitBasicBlock broken!");
1195  Br->setOperand(0, FirstNewBlock);
1196
1197
1198  // Now that the function is correct, make it a little bit nicer.  In
1199  // particular, move the basic blocks inserted from the end of the function
1200  // into the space made by splitting the source basic block.
1201  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
1202                                     FirstNewBlock, Caller->end());
1203
1204  // Handle all of the return instructions that we just cloned in, and eliminate
1205  // any users of the original call/invoke instruction.
1206  Type *RTy = CalledFunc->getReturnType();
1207
1208  PHINode *PHI = 0;
1209  if (Returns.size() > 1) {
1210    // The PHI node should go at the front of the new basic block to merge all
1211    // possible incoming values.
1212    if (!TheCall->use_empty()) {
1213      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
1214                            AfterCallBB->begin());
1215      // Anything that used the result of the function call should now use the
1216      // PHI node as their operand.
1217      TheCall->replaceAllUsesWith(PHI);
1218    }
1219
1220    // Loop over all of the return instructions adding entries to the PHI node
1221    // as appropriate.
1222    if (PHI) {
1223      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1224        ReturnInst *RI = Returns[i];
1225        assert(RI->getReturnValue()->getType() == PHI->getType() &&
1226               "Ret value not consistent in function!");
1227        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
1228      }
1229    }
1230
1231
1232    // Add a branch to the merge points and remove return instructions.
1233    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1234      ReturnInst *RI = Returns[i];
1235      BranchInst::Create(AfterCallBB, RI);
1236      RI->eraseFromParent();
1237    }
1238  } else if (!Returns.empty()) {
1239    // Otherwise, if there is exactly one return value, just replace anything
1240    // using the return value of the call with the computed value.
1241    if (!TheCall->use_empty()) {
1242      if (TheCall == Returns[0]->getReturnValue())
1243        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1244      else
1245        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
1246    }
1247
1248    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
1249    BasicBlock *ReturnBB = Returns[0]->getParent();
1250    ReturnBB->replaceAllUsesWith(AfterCallBB);
1251
1252    // Splice the code from the return block into the block that it will return
1253    // to, which contains the code that was after the call.
1254    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
1255                                      ReturnBB->getInstList());
1256
1257    // Delete the return instruction now and empty ReturnBB now.
1258    Returns[0]->eraseFromParent();
1259    ReturnBB->eraseFromParent();
1260  } else if (!TheCall->use_empty()) {
1261    // No returns, but something is using the return value of the call.  Just
1262    // nuke the result.
1263    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1264  }
1265
1266  // Since we are now done with the Call/Invoke, we can delete it.
1267  TheCall->eraseFromParent();
1268
1269  // We should always be able to fold the entry block of the function into the
1270  // single predecessor of the block...
1271  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
1272  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
1273
1274  // Splice the code entry block into calling block, right before the
1275  // unconditional branch.
1276  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
1277  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
1278
1279  // Remove the unconditional branch.
1280  OrigBB->getInstList().erase(Br);
1281
1282  // Now we can remove the CalleeEntry block, which is now empty.
1283  Caller->getBasicBlockList().erase(CalleeEntry);
1284
1285  // If we inserted a phi node, check to see if it has a single value (e.g. all
1286  // the entries are the same or undef).  If so, remove the PHI so it doesn't
1287  // block other optimizations.
1288  if (PHI)
1289    if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
1290      PHI->replaceAllUsesWith(V);
1291      PHI->eraseFromParent();
1292    }
1293
1294  return true;
1295}
1296