Local.cpp revision 3822ff5c71478c7c90a50ca57045fb676fcb5005
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Instructions.h"
19#include "llvm/Intrinsics.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/Support/MathExtras.h"
23#include <cerrno>
24#include <cmath>
25using namespace llvm;
26
27//===----------------------------------------------------------------------===//
28//  Local constant propagation...
29//
30
31/// doConstantPropagation - If an instruction references constants, try to fold
32/// them together...
33///
34bool llvm::doConstantPropagation(BasicBlock::iterator &II) {
35  if (Constant *C = ConstantFoldInstruction(II)) {
36    // Replaces all of the uses of a variable with uses of the constant.
37    II->replaceAllUsesWith(C);
38
39    // Remove the instruction from the basic block...
40    II = II->getParent()->getInstList().erase(II);
41    return true;
42  }
43
44  return false;
45}
46
47/// ConstantFoldInstruction - Attempt to constant fold the specified
48/// instruction.  If successful, the constant result is returned, if not, null
49/// is returned.  Note that this function can only fail when attempting to fold
50/// instructions like loads and stores, which have no constant expression form.
51///
52Constant *llvm::ConstantFoldInstruction(Instruction *I) {
53  if (PHINode *PN = dyn_cast<PHINode>(I)) {
54    if (PN->getNumIncomingValues() == 0)
55      return Constant::getNullValue(PN->getType());
56
57    Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
58    if (Result == 0) return 0;
59
60    // Handle PHI nodes specially here...
61    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
62      if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
63        return 0;   // Not all the same incoming constants...
64
65    // If we reach here, all incoming values are the same constant.
66    return Result;
67  }
68
69  Constant *Op0 = 0, *Op1 = 0;
70  switch (I->getNumOperands()) {
71  default:
72  case 2:
73    Op1 = dyn_cast<Constant>(I->getOperand(1));
74    if (Op1 == 0) return 0;        // Not a constant?, can't fold
75  case 1:
76    Op0 = dyn_cast<Constant>(I->getOperand(0));
77    if (Op0 == 0) return 0;        // Not a constant?, can't fold
78    break;
79  case 0: return 0;
80  }
81
82  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I)) {
83    if (Constant *Op0 = dyn_cast<Constant>(I->getOperand(0)))
84      if (Constant *Op1 = dyn_cast<Constant>(I->getOperand(1)))
85        return ConstantExpr::get(I->getOpcode(), Op0, Op1);
86    return 0;  // Operands not constants.
87  }
88
89  // Scan the operand list, checking to see if the are all constants, if so,
90  // hand off to ConstantFoldInstOperands.
91  std::vector<Constant*> Ops;
92  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
93    if (Constant *Op = dyn_cast<Constant>(I->getOperand(i)))
94      Ops.push_back(Op);
95    else
96      return 0;  // All operands not constant!
97
98  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops);
99}
100
101/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
102/// specified opcode and operands.  If successful, the constant result is
103/// returned, if not, null is returned.  Note that this function can fail when
104/// attempting to fold instructions like loads and stores, which have no
105/// constant expression form.
106///
107Constant *llvm::ConstantFoldInstOperands(unsigned Opc, const Type *DestTy,
108                                         const std::vector<Constant*> &Ops) {
109  if (Opc >= Instruction::BinaryOpsBegin && Opc < Instruction::BinaryOpsEnd)
110    return ConstantExpr::get(Opc, Ops[0], Ops[1]);
111
112  switch (Opc) {
113  default: return 0;
114  case Instruction::Call:
115    if (Function *F = dyn_cast<Function>(Ops[0])) {
116      if (canConstantFoldCallTo(F)) {
117        std::vector<Constant*> Args(Ops.begin()+1, Ops.end());
118        return ConstantFoldCall(F, Args);
119      }
120    }
121    return 0;
122  case Instruction::Shl:
123  case Instruction::LShr:
124  case Instruction::AShr:
125    return ConstantExpr::get(Opc, Ops[0], Ops[1]);
126  case Instruction::Cast:
127    return ConstantExpr::getCast(Ops[0], DestTy);
128  case Instruction::Select:
129    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
130  case Instruction::ExtractElement:
131    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
132  case Instruction::InsertElement:
133    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
134  case Instruction::ShuffleVector:
135    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
136  case Instruction::GetElementPtr:
137    return ConstantExpr::getGetElementPtr(Ops[0],
138                                          std::vector<Constant*>(Ops.begin()+1,
139                                                                 Ops.end()));
140  }
141}
142
143// ConstantFoldTerminator - If a terminator instruction is predicated on a
144// constant value, convert it into an unconditional branch to the constant
145// destination.
146//
147bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
148  TerminatorInst *T = BB->getTerminator();
149
150  // Branch - See if we are conditional jumping on constant
151  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
152    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
153    BasicBlock *Dest1 = cast<BasicBlock>(BI->getOperand(0));
154    BasicBlock *Dest2 = cast<BasicBlock>(BI->getOperand(1));
155
156    if (ConstantBool *Cond = dyn_cast<ConstantBool>(BI->getCondition())) {
157      // Are we branching on constant?
158      // YES.  Change to unconditional branch...
159      BasicBlock *Destination = Cond->getValue() ? Dest1 : Dest2;
160      BasicBlock *OldDest     = Cond->getValue() ? Dest2 : Dest1;
161
162      //cerr << "Function: " << T->getParent()->getParent()
163      //     << "\nRemoving branch from " << T->getParent()
164      //     << "\n\nTo: " << OldDest << endl;
165
166      // Let the basic block know that we are letting go of it.  Based on this,
167      // it will adjust it's PHI nodes.
168      assert(BI->getParent() && "Terminator not inserted in block!");
169      OldDest->removePredecessor(BI->getParent());
170
171      // Set the unconditional destination, and change the insn to be an
172      // unconditional branch.
173      BI->setUnconditionalDest(Destination);
174      return true;
175    } else if (Dest2 == Dest1) {       // Conditional branch to same location?
176      // This branch matches something like this:
177      //     br bool %cond, label %Dest, label %Dest
178      // and changes it into:  br label %Dest
179
180      // Let the basic block know that we are letting go of one copy of it.
181      assert(BI->getParent() && "Terminator not inserted in block!");
182      Dest1->removePredecessor(BI->getParent());
183
184      // Change a conditional branch to unconditional.
185      BI->setUnconditionalDest(Dest1);
186      return true;
187    }
188  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
189    // If we are switching on a constant, we can convert the switch into a
190    // single branch instruction!
191    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
192    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
193    BasicBlock *DefaultDest = TheOnlyDest;
194    assert(TheOnlyDest == SI->getDefaultDest() &&
195           "Default destination is not successor #0?");
196
197    // Figure out which case it goes to...
198    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
199      // Found case matching a constant operand?
200      if (SI->getSuccessorValue(i) == CI) {
201        TheOnlyDest = SI->getSuccessor(i);
202        break;
203      }
204
205      // Check to see if this branch is going to the same place as the default
206      // dest.  If so, eliminate it as an explicit compare.
207      if (SI->getSuccessor(i) == DefaultDest) {
208        // Remove this entry...
209        DefaultDest->removePredecessor(SI->getParent());
210        SI->removeCase(i);
211        --i; --e;  // Don't skip an entry...
212        continue;
213      }
214
215      // Otherwise, check to see if the switch only branches to one destination.
216      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
217      // destinations.
218      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
219    }
220
221    if (CI && !TheOnlyDest) {
222      // Branching on a constant, but not any of the cases, go to the default
223      // successor.
224      TheOnlyDest = SI->getDefaultDest();
225    }
226
227    // If we found a single destination that we can fold the switch into, do so
228    // now.
229    if (TheOnlyDest) {
230      // Insert the new branch..
231      new BranchInst(TheOnlyDest, SI);
232      BasicBlock *BB = SI->getParent();
233
234      // Remove entries from PHI nodes which we no longer branch to...
235      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
236        // Found case matching a constant operand?
237        BasicBlock *Succ = SI->getSuccessor(i);
238        if (Succ == TheOnlyDest)
239          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
240        else
241          Succ->removePredecessor(BB);
242      }
243
244      // Delete the old switch...
245      BB->getInstList().erase(SI);
246      return true;
247    } else if (SI->getNumSuccessors() == 2) {
248      // Otherwise, we can fold this switch into a conditional branch
249      // instruction if it has only one non-default destination.
250      Value *Cond = new SetCondInst(Instruction::SetEQ, SI->getCondition(),
251                                    SI->getSuccessorValue(1), "cond", SI);
252      // Insert the new branch...
253      new BranchInst(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
254
255      // Delete the old switch...
256      SI->getParent()->getInstList().erase(SI);
257      return true;
258    }
259  }
260  return false;
261}
262
263/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
264/// getelementptr constantexpr, return the constant value being addressed by the
265/// constant expression, or null if something is funny and we can't decide.
266Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
267                                                       ConstantExpr *CE) {
268  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
269    return 0;  // Do not allow stepping over the value!
270
271  // Loop over all of the operands, tracking down which value we are
272  // addressing...
273  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
274  for (++I; I != E; ++I)
275    if (const StructType *STy = dyn_cast<StructType>(*I)) {
276      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
277      assert(CU->getZExtValue() < STy->getNumElements() &&
278             "Struct index out of range!");
279      unsigned El = (unsigned)CU->getZExtValue();
280      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
281        C = CS->getOperand(El);
282      } else if (isa<ConstantAggregateZero>(C)) {
283        C = Constant::getNullValue(STy->getElementType(El));
284      } else if (isa<UndefValue>(C)) {
285        C = UndefValue::get(STy->getElementType(El));
286      } else {
287        return 0;
288      }
289    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
290      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
291        if (CI->getZExtValue() >= ATy->getNumElements())
292         return 0;
293        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
294          C = CA->getOperand(CI->getZExtValue());
295        else if (isa<ConstantAggregateZero>(C))
296          C = Constant::getNullValue(ATy->getElementType());
297        else if (isa<UndefValue>(C))
298          C = UndefValue::get(ATy->getElementType());
299        else
300          return 0;
301      } else if (const PackedType *PTy = dyn_cast<PackedType>(*I)) {
302        if (CI->getZExtValue() >= PTy->getNumElements())
303          return 0;
304        if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C))
305          C = CP->getOperand(CI->getZExtValue());
306        else if (isa<ConstantAggregateZero>(C))
307          C = Constant::getNullValue(PTy->getElementType());
308        else if (isa<UndefValue>(C))
309          C = UndefValue::get(PTy->getElementType());
310        else
311          return 0;
312      } else {
313        return 0;
314      }
315    } else {
316      return 0;
317    }
318  return C;
319}
320
321
322//===----------------------------------------------------------------------===//
323//  Local dead code elimination...
324//
325
326bool llvm::isInstructionTriviallyDead(Instruction *I) {
327  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
328
329  if (!I->mayWriteToMemory()) return true;
330
331  if (CallInst *CI = dyn_cast<CallInst>(I))
332    if (Function *F = CI->getCalledFunction()) {
333      unsigned IntrinsicID = F->getIntrinsicID();
334#define GET_SIDE_EFFECT_INFO
335#include "llvm/Intrinsics.gen"
336#undef GET_SIDE_EFFECT_INFO
337    }
338  return false;
339}
340
341// dceInstruction - Inspect the instruction at *BBI and figure out if it's
342// [trivially] dead.  If so, remove the instruction and update the iterator
343// to point to the instruction that immediately succeeded the original
344// instruction.
345//
346bool llvm::dceInstruction(BasicBlock::iterator &BBI) {
347  // Look for un"used" definitions...
348  if (isInstructionTriviallyDead(BBI)) {
349    BBI = BBI->getParent()->getInstList().erase(BBI);   // Bye bye
350    return true;
351  }
352  return false;
353}
354