Local.cpp revision a18c5748989d0b2889d076a2951be17ce61d4f69
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/Analysis/Dominators.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/Analysis/MemoryBuiltins.h"
22#include "llvm/Analysis/ProfileInfo.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/DIBuilder.h"
25#include "llvm/DebugInfo.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/GlobalAlias.h"
30#include "llvm/IR/GlobalVariable.h"
31#include "llvm/IR/IRBuilder.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/IR/MDBuilder.h"
36#include "llvm/IR/Metadata.h"
37#include "llvm/IR/Operator.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/GetElementPtrTypeIterator.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/Support/ValueHandle.h"
43#include "llvm/Support/raw_ostream.h"
44using namespace llvm;
45
46//===----------------------------------------------------------------------===//
47//  Local constant propagation.
48//
49
50/// ConstantFoldTerminator - If a terminator instruction is predicated on a
51/// constant value, convert it into an unconditional branch to the constant
52/// destination.  This is a nontrivial operation because the successors of this
53/// basic block must have their PHI nodes updated.
54/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
55/// conditions and indirectbr addresses this might make dead if
56/// DeleteDeadConditions is true.
57bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
58                                  const TargetLibraryInfo *TLI) {
59  TerminatorInst *T = BB->getTerminator();
60  IRBuilder<> Builder(T);
61
62  // Branch - See if we are conditional jumping on constant
63  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
64    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
65    BasicBlock *Dest1 = BI->getSuccessor(0);
66    BasicBlock *Dest2 = BI->getSuccessor(1);
67
68    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
69      // Are we branching on constant?
70      // YES.  Change to unconditional branch...
71      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
72      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
73
74      //cerr << "Function: " << T->getParent()->getParent()
75      //     << "\nRemoving branch from " << T->getParent()
76      //     << "\n\nTo: " << OldDest << endl;
77
78      // Let the basic block know that we are letting go of it.  Based on this,
79      // it will adjust it's PHI nodes.
80      OldDest->removePredecessor(BB);
81
82      // Replace the conditional branch with an unconditional one.
83      Builder.CreateBr(Destination);
84      BI->eraseFromParent();
85      return true;
86    }
87
88    if (Dest2 == Dest1) {       // Conditional branch to same location?
89      // This branch matches something like this:
90      //     br bool %cond, label %Dest, label %Dest
91      // and changes it into:  br label %Dest
92
93      // Let the basic block know that we are letting go of one copy of it.
94      assert(BI->getParent() && "Terminator not inserted in block!");
95      Dest1->removePredecessor(BI->getParent());
96
97      // Replace the conditional branch with an unconditional one.
98      Builder.CreateBr(Dest1);
99      Value *Cond = BI->getCondition();
100      BI->eraseFromParent();
101      if (DeleteDeadConditions)
102        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
103      return true;
104    }
105    return false;
106  }
107
108  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
109    // If we are switching on a constant, we can convert the switch into a
110    // single branch instruction!
111    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
112    BasicBlock *TheOnlyDest = SI->getDefaultDest();
113    BasicBlock *DefaultDest = TheOnlyDest;
114
115    // Figure out which case it goes to.
116    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
117         i != e; ++i) {
118      // Found case matching a constant operand?
119      if (i.getCaseValue() == CI) {
120        TheOnlyDest = i.getCaseSuccessor();
121        break;
122      }
123
124      // Check to see if this branch is going to the same place as the default
125      // dest.  If so, eliminate it as an explicit compare.
126      if (i.getCaseSuccessor() == DefaultDest) {
127        MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
128        // MD should have 2 + NumCases operands.
129        if (MD && MD->getNumOperands() == 2 + SI->getNumCases()) {
130          // Collect branch weights into a vector.
131          SmallVector<uint32_t, 8> Weights;
132          for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
133               ++MD_i) {
134            ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
135            assert(CI);
136            Weights.push_back(CI->getValue().getZExtValue());
137          }
138          // Merge weight of this case to the default weight.
139          unsigned idx = i.getCaseIndex();
140          Weights[0] += Weights[idx+1];
141          // Remove weight for this case.
142          std::swap(Weights[idx+1], Weights.back());
143          Weights.pop_back();
144          SI->setMetadata(LLVMContext::MD_prof,
145                          MDBuilder(BB->getContext()).
146                          createBranchWeights(Weights));
147        }
148        // Remove this entry.
149        DefaultDest->removePredecessor(SI->getParent());
150        SI->removeCase(i);
151        --i; --e;
152        continue;
153      }
154
155      // Otherwise, check to see if the switch only branches to one destination.
156      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
157      // destinations.
158      if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0;
159    }
160
161    if (CI && !TheOnlyDest) {
162      // Branching on a constant, but not any of the cases, go to the default
163      // successor.
164      TheOnlyDest = SI->getDefaultDest();
165    }
166
167    // If we found a single destination that we can fold the switch into, do so
168    // now.
169    if (TheOnlyDest) {
170      // Insert the new branch.
171      Builder.CreateBr(TheOnlyDest);
172      BasicBlock *BB = SI->getParent();
173
174      // Remove entries from PHI nodes which we no longer branch to...
175      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
176        // Found case matching a constant operand?
177        BasicBlock *Succ = SI->getSuccessor(i);
178        if (Succ == TheOnlyDest)
179          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
180        else
181          Succ->removePredecessor(BB);
182      }
183
184      // Delete the old switch.
185      Value *Cond = SI->getCondition();
186      SI->eraseFromParent();
187      if (DeleteDeadConditions)
188        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
189      return true;
190    }
191
192    if (SI->getNumCases() == 1) {
193      // Otherwise, we can fold this switch into a conditional branch
194      // instruction if it has only one non-default destination.
195      SwitchInst::CaseIt FirstCase = SI->case_begin();
196      IntegersSubset& Case = FirstCase.getCaseValueEx();
197      if (Case.isSingleNumber()) {
198        // FIXME: Currently work with ConstantInt based numbers.
199        Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
200             Case.getSingleNumber(0).toConstantInt(),
201            "cond");
202
203        // Insert the new branch.
204        BranchInst *NewBr = Builder.CreateCondBr(Cond,
205                                FirstCase.getCaseSuccessor(),
206                                SI->getDefaultDest());
207        MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
208        if (MD && MD->getNumOperands() == 3) {
209          ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2));
210          ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1));
211          assert(SICase && SIDef);
212          // The TrueWeight should be the weight for the single case of SI.
213          NewBr->setMetadata(LLVMContext::MD_prof,
214                 MDBuilder(BB->getContext()).
215                 createBranchWeights(SICase->getValue().getZExtValue(),
216                                     SIDef->getValue().getZExtValue()));
217        }
218
219        // Delete the old switch.
220        SI->eraseFromParent();
221        return true;
222      }
223    }
224    return false;
225  }
226
227  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
228    // indirectbr blockaddress(@F, @BB) -> br label @BB
229    if (BlockAddress *BA =
230          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
231      BasicBlock *TheOnlyDest = BA->getBasicBlock();
232      // Insert the new branch.
233      Builder.CreateBr(TheOnlyDest);
234
235      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
236        if (IBI->getDestination(i) == TheOnlyDest)
237          TheOnlyDest = 0;
238        else
239          IBI->getDestination(i)->removePredecessor(IBI->getParent());
240      }
241      Value *Address = IBI->getAddress();
242      IBI->eraseFromParent();
243      if (DeleteDeadConditions)
244        RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
245
246      // If we didn't find our destination in the IBI successor list, then we
247      // have undefined behavior.  Replace the unconditional branch with an
248      // 'unreachable' instruction.
249      if (TheOnlyDest) {
250        BB->getTerminator()->eraseFromParent();
251        new UnreachableInst(BB->getContext(), BB);
252      }
253
254      return true;
255    }
256  }
257
258  return false;
259}
260
261
262//===----------------------------------------------------------------------===//
263//  Local dead code elimination.
264//
265
266/// isInstructionTriviallyDead - Return true if the result produced by the
267/// instruction is not used, and the instruction has no side effects.
268///
269bool llvm::isInstructionTriviallyDead(Instruction *I,
270                                      const TargetLibraryInfo *TLI) {
271  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
272
273  // We don't want the landingpad instruction removed by anything this general.
274  if (isa<LandingPadInst>(I))
275    return false;
276
277  // We don't want debug info removed by anything this general, unless
278  // debug info is empty.
279  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
280    if (DDI->getAddress())
281      return false;
282    return true;
283  }
284  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
285    if (DVI->getValue())
286      return false;
287    return true;
288  }
289
290  if (!I->mayHaveSideEffects()) return true;
291
292  // Special case intrinsics that "may have side effects" but can be deleted
293  // when dead.
294  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
295    // Safe to delete llvm.stacksave if dead.
296    if (II->getIntrinsicID() == Intrinsic::stacksave)
297      return true;
298
299    // Lifetime intrinsics are dead when their right-hand is undef.
300    if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
301        II->getIntrinsicID() == Intrinsic::lifetime_end)
302      return isa<UndefValue>(II->getArgOperand(1));
303  }
304
305  if (isAllocLikeFn(I, TLI)) return true;
306
307  if (CallInst *CI = isFreeCall(I, TLI))
308    if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
309      return C->isNullValue() || isa<UndefValue>(C);
310
311  return false;
312}
313
314/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
315/// trivially dead instruction, delete it.  If that makes any of its operands
316/// trivially dead, delete them too, recursively.  Return true if any
317/// instructions were deleted.
318bool
319llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
320                                                 const TargetLibraryInfo *TLI) {
321  Instruction *I = dyn_cast<Instruction>(V);
322  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
323    return false;
324
325  SmallVector<Instruction*, 16> DeadInsts;
326  DeadInsts.push_back(I);
327
328  do {
329    I = DeadInsts.pop_back_val();
330
331    // Null out all of the instruction's operands to see if any operand becomes
332    // dead as we go.
333    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
334      Value *OpV = I->getOperand(i);
335      I->setOperand(i, 0);
336
337      if (!OpV->use_empty()) continue;
338
339      // If the operand is an instruction that became dead as we nulled out the
340      // operand, and if it is 'trivially' dead, delete it in a future loop
341      // iteration.
342      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
343        if (isInstructionTriviallyDead(OpI, TLI))
344          DeadInsts.push_back(OpI);
345    }
346
347    I->eraseFromParent();
348  } while (!DeadInsts.empty());
349
350  return true;
351}
352
353/// areAllUsesEqual - Check whether the uses of a value are all the same.
354/// This is similar to Instruction::hasOneUse() except this will also return
355/// true when there are no uses or multiple uses that all refer to the same
356/// value.
357static bool areAllUsesEqual(Instruction *I) {
358  Value::use_iterator UI = I->use_begin();
359  Value::use_iterator UE = I->use_end();
360  if (UI == UE)
361    return true;
362
363  User *TheUse = *UI;
364  for (++UI; UI != UE; ++UI) {
365    if (*UI != TheUse)
366      return false;
367  }
368  return true;
369}
370
371/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
372/// dead PHI node, due to being a def-use chain of single-use nodes that
373/// either forms a cycle or is terminated by a trivially dead instruction,
374/// delete it.  If that makes any of its operands trivially dead, delete them
375/// too, recursively.  Return true if a change was made.
376bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
377                                        const TargetLibraryInfo *TLI) {
378  SmallPtrSet<Instruction*, 4> Visited;
379  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
380       I = cast<Instruction>(*I->use_begin())) {
381    if (I->use_empty())
382      return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
383
384    // If we find an instruction more than once, we're on a cycle that
385    // won't prove fruitful.
386    if (!Visited.insert(I)) {
387      // Break the cycle and delete the instruction and its operands.
388      I->replaceAllUsesWith(UndefValue::get(I->getType()));
389      (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
390      return true;
391    }
392  }
393  return false;
394}
395
396/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
397/// simplify any instructions in it and recursively delete dead instructions.
398///
399/// This returns true if it changed the code, note that it can delete
400/// instructions in other blocks as well in this block.
401bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD,
402                                       const TargetLibraryInfo *TLI) {
403  bool MadeChange = false;
404
405#ifndef NDEBUG
406  // In debug builds, ensure that the terminator of the block is never replaced
407  // or deleted by these simplifications. The idea of simplification is that it
408  // cannot introduce new instructions, and there is no way to replace the
409  // terminator of a block without introducing a new instruction.
410  AssertingVH<Instruction> TerminatorVH(--BB->end());
411#endif
412
413  for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
414    assert(!BI->isTerminator());
415    Instruction *Inst = BI++;
416
417    WeakVH BIHandle(BI);
418    if (recursivelySimplifyInstruction(Inst, TD)) {
419      MadeChange = true;
420      if (BIHandle != BI)
421        BI = BB->begin();
422      continue;
423    }
424
425    MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
426    if (BIHandle != BI)
427      BI = BB->begin();
428  }
429  return MadeChange;
430}
431
432//===----------------------------------------------------------------------===//
433//  Control Flow Graph Restructuring.
434//
435
436
437/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
438/// method is called when we're about to delete Pred as a predecessor of BB.  If
439/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
440///
441/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
442/// nodes that collapse into identity values.  For example, if we have:
443///   x = phi(1, 0, 0, 0)
444///   y = and x, z
445///
446/// .. and delete the predecessor corresponding to the '1', this will attempt to
447/// recursively fold the and to 0.
448void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
449                                        DataLayout *TD) {
450  // This only adjusts blocks with PHI nodes.
451  if (!isa<PHINode>(BB->begin()))
452    return;
453
454  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
455  // them down.  This will leave us with single entry phi nodes and other phis
456  // that can be removed.
457  BB->removePredecessor(Pred, true);
458
459  WeakVH PhiIt = &BB->front();
460  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
461    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
462    Value *OldPhiIt = PhiIt;
463
464    if (!recursivelySimplifyInstruction(PN, TD))
465      continue;
466
467    // If recursive simplification ended up deleting the next PHI node we would
468    // iterate to, then our iterator is invalid, restart scanning from the top
469    // of the block.
470    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
471  }
472}
473
474
475/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
476/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
477/// between them, moving the instructions in the predecessor into DestBB and
478/// deleting the predecessor block.
479///
480void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
481  // If BB has single-entry PHI nodes, fold them.
482  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
483    Value *NewVal = PN->getIncomingValue(0);
484    // Replace self referencing PHI with undef, it must be dead.
485    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
486    PN->replaceAllUsesWith(NewVal);
487    PN->eraseFromParent();
488  }
489
490  BasicBlock *PredBB = DestBB->getSinglePredecessor();
491  assert(PredBB && "Block doesn't have a single predecessor!");
492
493  // Zap anything that took the address of DestBB.  Not doing this will give the
494  // address an invalid value.
495  if (DestBB->hasAddressTaken()) {
496    BlockAddress *BA = BlockAddress::get(DestBB);
497    Constant *Replacement =
498      ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
499    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
500                                                     BA->getType()));
501    BA->destroyConstant();
502  }
503
504  // Anything that branched to PredBB now branches to DestBB.
505  PredBB->replaceAllUsesWith(DestBB);
506
507  // Splice all the instructions from PredBB to DestBB.
508  PredBB->getTerminator()->eraseFromParent();
509  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
510
511  if (P) {
512    DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
513    if (DT) {
514      BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
515      DT->changeImmediateDominator(DestBB, PredBBIDom);
516      DT->eraseNode(PredBB);
517    }
518    ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
519    if (PI) {
520      PI->replaceAllUses(PredBB, DestBB);
521      PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
522    }
523  }
524  // Nuke BB.
525  PredBB->eraseFromParent();
526}
527
528/// CanMergeValues - Return true if we can choose one of these values to use
529/// in place of the other. Note that we will always choose the non-undef
530/// value to keep.
531static bool CanMergeValues(Value *First, Value *Second) {
532  return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
533}
534
535/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
536/// almost-empty BB ending in an unconditional branch to Succ, into succ.
537///
538/// Assumption: Succ is the single successor for BB.
539///
540static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
541  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
542
543  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
544        << Succ->getName() << "\n");
545  // Shortcut, if there is only a single predecessor it must be BB and merging
546  // is always safe
547  if (Succ->getSinglePredecessor()) return true;
548
549  // Make a list of the predecessors of BB
550  SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
551
552  // Look at all the phi nodes in Succ, to see if they present a conflict when
553  // merging these blocks
554  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
555    PHINode *PN = cast<PHINode>(I);
556
557    // If the incoming value from BB is again a PHINode in
558    // BB which has the same incoming value for *PI as PN does, we can
559    // merge the phi nodes and then the blocks can still be merged
560    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
561    if (BBPN && BBPN->getParent() == BB) {
562      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
563        BasicBlock *IBB = PN->getIncomingBlock(PI);
564        if (BBPreds.count(IBB) &&
565            !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
566                            PN->getIncomingValue(PI))) {
567          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
568                << Succ->getName() << " is conflicting with "
569                << BBPN->getName() << " with regard to common predecessor "
570                << IBB->getName() << "\n");
571          return false;
572        }
573      }
574    } else {
575      Value* Val = PN->getIncomingValueForBlock(BB);
576      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
577        // See if the incoming value for the common predecessor is equal to the
578        // one for BB, in which case this phi node will not prevent the merging
579        // of the block.
580        BasicBlock *IBB = PN->getIncomingBlock(PI);
581        if (BBPreds.count(IBB) &&
582            !CanMergeValues(Val, PN->getIncomingValue(PI))) {
583          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
584                << Succ->getName() << " is conflicting with regard to common "
585                << "predecessor " << IBB->getName() << "\n");
586          return false;
587        }
588      }
589    }
590  }
591
592  return true;
593}
594
595typedef SmallVector<BasicBlock *, 16> PredBlockVector;
596typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
597
598/// \brief Determines the value to use as the phi node input for a block.
599///
600/// Select between \p OldVal any value that we know flows from \p BB
601/// to a particular phi on the basis of which one (if either) is not
602/// undef. Update IncomingValues based on the selected value.
603///
604/// \param OldVal The value we are considering selecting.
605/// \param BB The block that the value flows in from.
606/// \param IncomingValues A map from block-to-value for other phi inputs
607/// that we have examined.
608///
609/// \returns the selected value.
610static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
611                                          IncomingValueMap &IncomingValues) {
612  if (!isa<UndefValue>(OldVal)) {
613    assert((!IncomingValues.count(BB) ||
614            IncomingValues.find(BB)->second == OldVal) &&
615           "Expected OldVal to match incoming value from BB!");
616
617    IncomingValues.insert(std::make_pair(BB, OldVal));
618    return OldVal;
619  }
620
621  IncomingValueMap::const_iterator It = IncomingValues.find(BB);
622  if (It != IncomingValues.end()) return It->second;
623
624  return OldVal;
625}
626
627/// \brief Create a map from block to value for the operands of a
628/// given phi.
629///
630/// Create a map from block to value for each non-undef value flowing
631/// into \p PN.
632///
633/// \param PN The phi we are collecting the map for.
634/// \param IncomingValues [out] The map from block to value for this phi.
635static void gatherIncomingValuesToPhi(PHINode *PN,
636                                      IncomingValueMap &IncomingValues) {
637  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
638    BasicBlock *BB = PN->getIncomingBlock(i);
639    Value *V = PN->getIncomingValue(i);
640
641    if (!isa<UndefValue>(V))
642      IncomingValues.insert(std::make_pair(BB, V));
643  }
644}
645
646/// \brief Replace the incoming undef values to a phi with the values
647/// from a block-to-value map.
648///
649/// \param PN The phi we are replacing the undefs in.
650/// \param IncomingValues A map from block to value.
651static void replaceUndefValuesInPhi(PHINode *PN,
652                                    const IncomingValueMap &IncomingValues) {
653  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
654    Value *V = PN->getIncomingValue(i);
655
656    if (!isa<UndefValue>(V)) continue;
657
658    BasicBlock *BB = PN->getIncomingBlock(i);
659    IncomingValueMap::const_iterator It = IncomingValues.find(BB);
660    if (It == IncomingValues.end()) continue;
661
662    PN->setIncomingValue(i, It->second);
663  }
664}
665
666/// \brief Replace a value flowing from a block to a phi with
667/// potentially multiple instances of that value flowing from the
668/// block's predecessors to the phi.
669///
670/// \param BB The block with the value flowing into the phi.
671/// \param BBPreds The predecessors of BB.
672/// \param PN The phi that we are updating.
673static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
674                                                const PredBlockVector &BBPreds,
675                                                PHINode *PN) {
676  Value *OldVal = PN->removeIncomingValue(BB, false);
677  assert(OldVal && "No entry in PHI for Pred BB!");
678
679  IncomingValueMap IncomingValues;
680
681  // We are merging two blocks - BB, and the block containing PN - and
682  // as a result we need to redirect edges from the predecessors of BB
683  // to go to the block containing PN, and update PN
684  // accordingly. Since we allow merging blocks in the case where the
685  // predecessor and successor blocks both share some predecessors,
686  // and where some of those common predecessors might have undef
687  // values flowing into PN, we want to rewrite those values to be
688  // consistent with the non-undef values.
689
690  gatherIncomingValuesToPhi(PN, IncomingValues);
691
692  // If this incoming value is one of the PHI nodes in BB, the new entries
693  // in the PHI node are the entries from the old PHI.
694  if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
695    PHINode *OldValPN = cast<PHINode>(OldVal);
696    for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
697      // Note that, since we are merging phi nodes and BB and Succ might
698      // have common predecessors, we could end up with a phi node with
699      // identical incoming branches. This will be cleaned up later (and
700      // will trigger asserts if we try to clean it up now, without also
701      // simplifying the corresponding conditional branch).
702      BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
703      Value *PredVal = OldValPN->getIncomingValue(i);
704      Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
705                                                    IncomingValues);
706
707      // And add a new incoming value for this predecessor for the
708      // newly retargeted branch.
709      PN->addIncoming(Selected, PredBB);
710    }
711  } else {
712    for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
713      // Update existing incoming values in PN for this
714      // predecessor of BB.
715      BasicBlock *PredBB = BBPreds[i];
716      Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
717                                                    IncomingValues);
718
719      // And add a new incoming value for this predecessor for the
720      // newly retargeted branch.
721      PN->addIncoming(Selected, PredBB);
722    }
723  }
724
725  replaceUndefValuesInPhi(PN, IncomingValues);
726}
727
728/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
729/// unconditional branch, and contains no instructions other than PHI nodes,
730/// potential side-effect free intrinsics and the branch.  If possible,
731/// eliminate BB by rewriting all the predecessors to branch to the successor
732/// block and return true.  If we can't transform, return false.
733bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
734  assert(BB != &BB->getParent()->getEntryBlock() &&
735         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
736
737  // We can't eliminate infinite loops.
738  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
739  if (BB == Succ) return false;
740
741  // Check to see if merging these blocks would cause conflicts for any of the
742  // phi nodes in BB or Succ. If not, we can safely merge.
743  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
744
745  // Check for cases where Succ has multiple predecessors and a PHI node in BB
746  // has uses which will not disappear when the PHI nodes are merged.  It is
747  // possible to handle such cases, but difficult: it requires checking whether
748  // BB dominates Succ, which is non-trivial to calculate in the case where
749  // Succ has multiple predecessors.  Also, it requires checking whether
750  // constructing the necessary self-referential PHI node doesn't introduce any
751  // conflicts; this isn't too difficult, but the previous code for doing this
752  // was incorrect.
753  //
754  // Note that if this check finds a live use, BB dominates Succ, so BB is
755  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
756  // folding the branch isn't profitable in that case anyway.
757  if (!Succ->getSinglePredecessor()) {
758    BasicBlock::iterator BBI = BB->begin();
759    while (isa<PHINode>(*BBI)) {
760      for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
761           UI != E; ++UI) {
762        if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
763          if (PN->getIncomingBlock(UI) != BB)
764            return false;
765        } else {
766          return false;
767        }
768      }
769      ++BBI;
770    }
771  }
772
773  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
774
775  if (isa<PHINode>(Succ->begin())) {
776    // If there is more than one pred of succ, and there are PHI nodes in
777    // the successor, then we need to add incoming edges for the PHI nodes
778    //
779    const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
780
781    // Loop over all of the PHI nodes in the successor of BB.
782    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
783      PHINode *PN = cast<PHINode>(I);
784
785      redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
786    }
787  }
788
789  if (Succ->getSinglePredecessor()) {
790    // BB is the only predecessor of Succ, so Succ will end up with exactly
791    // the same predecessors BB had.
792
793    // Copy over any phi, debug or lifetime instruction.
794    BB->getTerminator()->eraseFromParent();
795    Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
796  } else {
797    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
798      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
799      assert(PN->use_empty() && "There shouldn't be any uses here!");
800      PN->eraseFromParent();
801    }
802  }
803
804  // Everything that jumped to BB now goes to Succ.
805  BB->replaceAllUsesWith(Succ);
806  if (!Succ->hasName()) Succ->takeName(BB);
807  BB->eraseFromParent();              // Delete the old basic block.
808  return true;
809}
810
811/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
812/// nodes in this block. This doesn't try to be clever about PHI nodes
813/// which differ only in the order of the incoming values, but instcombine
814/// orders them so it usually won't matter.
815///
816bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
817  bool Changed = false;
818
819  // This implementation doesn't currently consider undef operands
820  // specially. Theoretically, two phis which are identical except for
821  // one having an undef where the other doesn't could be collapsed.
822
823  // Map from PHI hash values to PHI nodes. If multiple PHIs have
824  // the same hash value, the element is the first PHI in the
825  // linked list in CollisionMap.
826  DenseMap<uintptr_t, PHINode *> HashMap;
827
828  // Maintain linked lists of PHI nodes with common hash values.
829  DenseMap<PHINode *, PHINode *> CollisionMap;
830
831  // Examine each PHI.
832  for (BasicBlock::iterator I = BB->begin();
833       PHINode *PN = dyn_cast<PHINode>(I++); ) {
834    // Compute a hash value on the operands. Instcombine will likely have sorted
835    // them, which helps expose duplicates, but we have to check all the
836    // operands to be safe in case instcombine hasn't run.
837    uintptr_t Hash = 0;
838    // This hash algorithm is quite weak as hash functions go, but it seems
839    // to do a good enough job for this particular purpose, and is very quick.
840    for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
841      Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
842      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
843    }
844    for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
845         I != E; ++I) {
846      Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
847      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
848    }
849    // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
850    Hash >>= 1;
851    // If we've never seen this hash value before, it's a unique PHI.
852    std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
853      HashMap.insert(std::make_pair(Hash, PN));
854    if (Pair.second) continue;
855    // Otherwise it's either a duplicate or a hash collision.
856    for (PHINode *OtherPN = Pair.first->second; ; ) {
857      if (OtherPN->isIdenticalTo(PN)) {
858        // A duplicate. Replace this PHI with its duplicate.
859        PN->replaceAllUsesWith(OtherPN);
860        PN->eraseFromParent();
861        Changed = true;
862        break;
863      }
864      // A non-duplicate hash collision.
865      DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
866      if (I == CollisionMap.end()) {
867        // Set this PHI to be the head of the linked list of colliding PHIs.
868        PHINode *Old = Pair.first->second;
869        Pair.first->second = PN;
870        CollisionMap[PN] = Old;
871        break;
872      }
873      // Proceed to the next PHI in the list.
874      OtherPN = I->second;
875    }
876  }
877
878  return Changed;
879}
880
881/// enforceKnownAlignment - If the specified pointer points to an object that
882/// we control, modify the object's alignment to PrefAlign. This isn't
883/// often possible though. If alignment is important, a more reliable approach
884/// is to simply align all global variables and allocation instructions to
885/// their preferred alignment from the beginning.
886///
887static unsigned enforceKnownAlignment(Value *V, unsigned Align,
888                                      unsigned PrefAlign, const DataLayout *TD) {
889  V = V->stripPointerCasts();
890
891  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
892    // If the preferred alignment is greater than the natural stack alignment
893    // then don't round up. This avoids dynamic stack realignment.
894    if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
895      return Align;
896    // If there is a requested alignment and if this is an alloca, round up.
897    if (AI->getAlignment() >= PrefAlign)
898      return AI->getAlignment();
899    AI->setAlignment(PrefAlign);
900    return PrefAlign;
901  }
902
903  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
904    // If there is a large requested alignment and we can, bump up the alignment
905    // of the global.
906    if (GV->isDeclaration()) return Align;
907    // If the memory we set aside for the global may not be the memory used by
908    // the final program then it is impossible for us to reliably enforce the
909    // preferred alignment.
910    if (GV->isWeakForLinker()) return Align;
911
912    if (GV->getAlignment() >= PrefAlign)
913      return GV->getAlignment();
914    // We can only increase the alignment of the global if it has no alignment
915    // specified or if it is not assigned a section.  If it is assigned a
916    // section, the global could be densely packed with other objects in the
917    // section, increasing the alignment could cause padding issues.
918    if (!GV->hasSection() || GV->getAlignment() == 0)
919      GV->setAlignment(PrefAlign);
920    return GV->getAlignment();
921  }
922
923  return Align;
924}
925
926/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
927/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
928/// and it is more than the alignment of the ultimate object, see if we can
929/// increase the alignment of the ultimate object, making this check succeed.
930unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
931                                          const DataLayout *TD) {
932  assert(V->getType()->isPointerTy() &&
933         "getOrEnforceKnownAlignment expects a pointer!");
934  unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
935  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
936  ComputeMaskedBits(V, KnownZero, KnownOne, TD);
937  unsigned TrailZ = KnownZero.countTrailingOnes();
938
939  // Avoid trouble with rediculously large TrailZ values, such as
940  // those computed from a null pointer.
941  TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
942
943  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
944
945  // LLVM doesn't support alignments larger than this currently.
946  Align = std::min(Align, +Value::MaximumAlignment);
947
948  if (PrefAlign > Align)
949    Align = enforceKnownAlignment(V, Align, PrefAlign, TD);
950
951  // We don't need to make any adjustment.
952  return Align;
953}
954
955///===---------------------------------------------------------------------===//
956///  Dbg Intrinsic utilities
957///
958
959/// See if there is a dbg.value intrinsic for DIVar before I.
960static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) {
961  // Since we can't guarantee that the original dbg.declare instrinsic
962  // is removed by LowerDbgDeclare(), we need to make sure that we are
963  // not inserting the same dbg.value intrinsic over and over.
964  llvm::BasicBlock::InstListType::iterator PrevI(I);
965  if (PrevI != I->getParent()->getInstList().begin()) {
966    --PrevI;
967    if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
968      if (DVI->getValue() == I->getOperand(0) &&
969          DVI->getOffset() == 0 &&
970          DVI->getVariable() == DIVar)
971        return true;
972  }
973  return false;
974}
975
976/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
977/// that has an associated llvm.dbg.decl intrinsic.
978bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
979                                           StoreInst *SI, DIBuilder &Builder) {
980  DIVariable DIVar(DDI->getVariable());
981  assert((!DIVar || DIVar.isVariable()) &&
982         "Variable in DbgDeclareInst should be either null or a DIVariable.");
983  if (!DIVar)
984    return false;
985
986  if (LdStHasDebugValue(DIVar, SI))
987    return true;
988
989  Instruction *DbgVal = NULL;
990  // If an argument is zero extended then use argument directly. The ZExt
991  // may be zapped by an optimization pass in future.
992  Argument *ExtendedArg = NULL;
993  if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
994    ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
995  if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
996    ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
997  if (ExtendedArg)
998    DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
999  else
1000    DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
1001
1002  // Propagate any debug metadata from the store onto the dbg.value.
1003  DebugLoc SIDL = SI->getDebugLoc();
1004  if (!SIDL.isUnknown())
1005    DbgVal->setDebugLoc(SIDL);
1006  // Otherwise propagate debug metadata from dbg.declare.
1007  else
1008    DbgVal->setDebugLoc(DDI->getDebugLoc());
1009  return true;
1010}
1011
1012/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1013/// that has an associated llvm.dbg.decl intrinsic.
1014bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1015                                           LoadInst *LI, DIBuilder &Builder) {
1016  DIVariable DIVar(DDI->getVariable());
1017  assert((!DIVar || DIVar.isVariable()) &&
1018         "Variable in DbgDeclareInst should be either null or a DIVariable.");
1019  if (!DIVar)
1020    return false;
1021
1022  if (LdStHasDebugValue(DIVar, LI))
1023    return true;
1024
1025  Instruction *DbgVal =
1026    Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
1027                                    DIVar, LI);
1028
1029  // Propagate any debug metadata from the store onto the dbg.value.
1030  DebugLoc LIDL = LI->getDebugLoc();
1031  if (!LIDL.isUnknown())
1032    DbgVal->setDebugLoc(LIDL);
1033  // Otherwise propagate debug metadata from dbg.declare.
1034  else
1035    DbgVal->setDebugLoc(DDI->getDebugLoc());
1036  return true;
1037}
1038
1039/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1040/// of llvm.dbg.value intrinsics.
1041bool llvm::LowerDbgDeclare(Function &F) {
1042  DIBuilder DIB(*F.getParent());
1043  SmallVector<DbgDeclareInst *, 4> Dbgs;
1044  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
1045    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
1046      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
1047        Dbgs.push_back(DDI);
1048    }
1049  if (Dbgs.empty())
1050    return false;
1051
1052  for (SmallVectorImpl<DbgDeclareInst *>::iterator I = Dbgs.begin(),
1053         E = Dbgs.end(); I != E; ++I) {
1054    DbgDeclareInst *DDI = *I;
1055    if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
1056      // We only remove the dbg.declare intrinsic if all uses are
1057      // converted to dbg.value intrinsics.
1058      bool RemoveDDI = true;
1059      for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1060           UI != E; ++UI)
1061        if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
1062          ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1063        else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1064          ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1065        else
1066          RemoveDDI = false;
1067      if (RemoveDDI)
1068        DDI->eraseFromParent();
1069    }
1070  }
1071  return true;
1072}
1073
1074/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
1075/// alloca 'V', if any.
1076DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
1077  if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
1078    for (Value::use_iterator UI = DebugNode->use_begin(),
1079         E = DebugNode->use_end(); UI != E; ++UI)
1080      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1081        return DDI;
1082
1083  return 0;
1084}
1085
1086bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1087                                      DIBuilder &Builder) {
1088  DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
1089  if (!DDI)
1090    return false;
1091  DIVariable DIVar(DDI->getVariable());
1092  assert((!DIVar || DIVar.isVariable()) &&
1093         "Variable in DbgDeclareInst should be either null or a DIVariable.");
1094  if (!DIVar)
1095    return false;
1096
1097  // Create a copy of the original DIDescriptor for user variable, appending
1098  // "deref" operation to a list of address elements, as new llvm.dbg.declare
1099  // will take a value storing address of the memory for variable, not
1100  // alloca itself.
1101  Type *Int64Ty = Type::getInt64Ty(AI->getContext());
1102  SmallVector<Value*, 4> NewDIVarAddress;
1103  if (DIVar.hasComplexAddress()) {
1104    for (unsigned i = 0, n = DIVar.getNumAddrElements(); i < n; ++i) {
1105      NewDIVarAddress.push_back(
1106          ConstantInt::get(Int64Ty, DIVar.getAddrElement(i)));
1107    }
1108  }
1109  NewDIVarAddress.push_back(ConstantInt::get(Int64Ty, DIBuilder::OpDeref));
1110  DIVariable NewDIVar = Builder.createComplexVariable(
1111      DIVar.getTag(), DIVar.getContext(), DIVar.getName(),
1112      DIVar.getFile(), DIVar.getLineNumber(), DIVar.getType(),
1113      NewDIVarAddress, DIVar.getArgNumber());
1114
1115  // Insert llvm.dbg.declare in the same basic block as the original alloca,
1116  // and remove old llvm.dbg.declare.
1117  BasicBlock *BB = AI->getParent();
1118  Builder.insertDeclare(NewAllocaAddress, NewDIVar, BB);
1119  DDI->eraseFromParent();
1120  return true;
1121}
1122
1123bool llvm::removeUnreachableBlocks(Function &F) {
1124  SmallPtrSet<BasicBlock*, 16> Reachable;
1125  SmallVector<BasicBlock*, 128> Worklist;
1126  Worklist.push_back(&F.getEntryBlock());
1127  Reachable.insert(&F.getEntryBlock());
1128  do {
1129    BasicBlock *BB = Worklist.pop_back_val();
1130    for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1131      if (Reachable.insert(*SI))
1132        Worklist.push_back(*SI);
1133  } while (!Worklist.empty());
1134
1135  if (Reachable.size() == F.size())
1136    return false;
1137
1138  assert(Reachable.size() < F.size());
1139  for (Function::iterator I = llvm::next(F.begin()), E = F.end(); I != E; ++I) {
1140    if (Reachable.count(I))
1141      continue;
1142
1143    for (succ_iterator SI = succ_begin(I), SE = succ_end(I); SI != SE; ++SI)
1144      if (Reachable.count(*SI))
1145        (*SI)->removePredecessor(I);
1146    I->dropAllReferences();
1147  }
1148
1149  for (Function::iterator I = llvm::next(F.begin()), E=F.end(); I != E;)
1150    if (!Reachable.count(I))
1151      I = F.getBasicBlockList().erase(I);
1152    else
1153      ++I;
1154
1155  return true;
1156}
1157