Local.cpp revision b99462117ebd4be41788346246d7935fc90a11ee
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Analysis/DebugInfo.h"
26#include "llvm/Analysis/DIBuilder.h"
27#include "llvm/Analysis/Dominators.h"
28#include "llvm/Analysis/ConstantFolding.h"
29#include "llvm/Analysis/InstructionSimplify.h"
30#include "llvm/Analysis/ProfileInfo.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Support/CFG.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/ValueHandle.h"
38#include "llvm/Support/raw_ostream.h"
39using namespace llvm;
40
41//===----------------------------------------------------------------------===//
42//  Local constant propagation.
43//
44
45// ConstantFoldTerminator - If a terminator instruction is predicated on a
46// constant value, convert it into an unconditional branch to the constant
47// destination.
48//
49bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
50  TerminatorInst *T = BB->getTerminator();
51
52  // Branch - See if we are conditional jumping on constant
53  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
54    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
55    BasicBlock *Dest1 = BI->getSuccessor(0);
56    BasicBlock *Dest2 = BI->getSuccessor(1);
57
58    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
59      // Are we branching on constant?
60      // YES.  Change to unconditional branch...
61      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
62      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
63
64      //cerr << "Function: " << T->getParent()->getParent()
65      //     << "\nRemoving branch from " << T->getParent()
66      //     << "\n\nTo: " << OldDest << endl;
67
68      // Let the basic block know that we are letting go of it.  Based on this,
69      // it will adjust it's PHI nodes.
70      assert(BI->getParent() && "Terminator not inserted in block!");
71      OldDest->removePredecessor(BI->getParent());
72
73      // Replace the conditional branch with an unconditional one.
74      BranchInst::Create(Destination, BI);
75      BI->eraseFromParent();
76      return true;
77    }
78
79    if (Dest2 == Dest1) {       // Conditional branch to same location?
80      // This branch matches something like this:
81      //     br bool %cond, label %Dest, label %Dest
82      // and changes it into:  br label %Dest
83
84      // Let the basic block know that we are letting go of one copy of it.
85      assert(BI->getParent() && "Terminator not inserted in block!");
86      Dest1->removePredecessor(BI->getParent());
87
88      // Replace the conditional branch with an unconditional one.
89      BranchInst::Create(Dest1, BI);
90      BI->eraseFromParent();
91      return true;
92    }
93    return false;
94  }
95
96  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
97    // If we are switching on a constant, we can convert the switch into a
98    // single branch instruction!
99    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
100    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
101    BasicBlock *DefaultDest = TheOnlyDest;
102    assert(TheOnlyDest == SI->getDefaultDest() &&
103           "Default destination is not successor #0?");
104
105    // Figure out which case it goes to.
106    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
107      // Found case matching a constant operand?
108      if (SI->getSuccessorValue(i) == CI) {
109        TheOnlyDest = SI->getSuccessor(i);
110        break;
111      }
112
113      // Check to see if this branch is going to the same place as the default
114      // dest.  If so, eliminate it as an explicit compare.
115      if (SI->getSuccessor(i) == DefaultDest) {
116        // Remove this entry.
117        DefaultDest->removePredecessor(SI->getParent());
118        SI->removeCase(i);
119        --i; --e;  // Don't skip an entry...
120        continue;
121      }
122
123      // Otherwise, check to see if the switch only branches to one destination.
124      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
125      // destinations.
126      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
127    }
128
129    if (CI && !TheOnlyDest) {
130      // Branching on a constant, but not any of the cases, go to the default
131      // successor.
132      TheOnlyDest = SI->getDefaultDest();
133    }
134
135    // If we found a single destination that we can fold the switch into, do so
136    // now.
137    if (TheOnlyDest) {
138      // Insert the new branch.
139      BranchInst::Create(TheOnlyDest, SI);
140      BasicBlock *BB = SI->getParent();
141
142      // Remove entries from PHI nodes which we no longer branch to...
143      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
144        // Found case matching a constant operand?
145        BasicBlock *Succ = SI->getSuccessor(i);
146        if (Succ == TheOnlyDest)
147          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
148        else
149          Succ->removePredecessor(BB);
150      }
151
152      // Delete the old switch.
153      BB->getInstList().erase(SI);
154      return true;
155    }
156
157    if (SI->getNumSuccessors() == 2) {
158      // Otherwise, we can fold this switch into a conditional branch
159      // instruction if it has only one non-default destination.
160      Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
161                                 SI->getSuccessorValue(1), "cond");
162      // Insert the new branch.
163      BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
164
165      // Delete the old switch.
166      SI->eraseFromParent();
167      return true;
168    }
169    return false;
170  }
171
172  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
173    // indirectbr blockaddress(@F, @BB) -> br label @BB
174    if (BlockAddress *BA =
175          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
176      BasicBlock *TheOnlyDest = BA->getBasicBlock();
177      // Insert the new branch.
178      BranchInst::Create(TheOnlyDest, IBI);
179
180      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
181        if (IBI->getDestination(i) == TheOnlyDest)
182          TheOnlyDest = 0;
183        else
184          IBI->getDestination(i)->removePredecessor(IBI->getParent());
185      }
186      IBI->eraseFromParent();
187
188      // If we didn't find our destination in the IBI successor list, then we
189      // have undefined behavior.  Replace the unconditional branch with an
190      // 'unreachable' instruction.
191      if (TheOnlyDest) {
192        BB->getTerminator()->eraseFromParent();
193        new UnreachableInst(BB->getContext(), BB);
194      }
195
196      return true;
197    }
198  }
199
200  return false;
201}
202
203
204//===----------------------------------------------------------------------===//
205//  Local dead code elimination.
206//
207
208/// isInstructionTriviallyDead - Return true if the result produced by the
209/// instruction is not used, and the instruction has no side effects.
210///
211bool llvm::isInstructionTriviallyDead(Instruction *I) {
212  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
213
214  // We don't want debug info removed by anything this general, unless
215  // debug info is empty.
216  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
217    if (DDI->getAddress())
218      return false;
219    return true;
220  }
221  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
222    if (DVI->getValue())
223      return false;
224    return true;
225  }
226
227  if (!I->mayHaveSideEffects()) return true;
228
229  // Special case intrinsics that "may have side effects" but can be deleted
230  // when dead.
231  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
232    // Safe to delete llvm.stacksave if dead.
233    if (II->getIntrinsicID() == Intrinsic::stacksave)
234      return true;
235  return false;
236}
237
238/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
239/// trivially dead instruction, delete it.  If that makes any of its operands
240/// trivially dead, delete them too, recursively.  Return true if any
241/// instructions were deleted.
242bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
243  Instruction *I = dyn_cast<Instruction>(V);
244  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
245    return false;
246
247  SmallVector<Instruction*, 16> DeadInsts;
248  DeadInsts.push_back(I);
249
250  do {
251    I = DeadInsts.pop_back_val();
252
253    // Null out all of the instruction's operands to see if any operand becomes
254    // dead as we go.
255    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
256      Value *OpV = I->getOperand(i);
257      I->setOperand(i, 0);
258
259      if (!OpV->use_empty()) continue;
260
261      // If the operand is an instruction that became dead as we nulled out the
262      // operand, and if it is 'trivially' dead, delete it in a future loop
263      // iteration.
264      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
265        if (isInstructionTriviallyDead(OpI))
266          DeadInsts.push_back(OpI);
267    }
268
269    I->eraseFromParent();
270  } while (!DeadInsts.empty());
271
272  return true;
273}
274
275/// areAllUsesEqual - Check whether the uses of a value are all the same.
276/// This is similar to Instruction::hasOneUse() except this will also return
277/// true when there are no uses or multiple uses that all refer to the same
278/// value.
279static bool areAllUsesEqual(Instruction *I) {
280  Value::use_iterator UI = I->use_begin();
281  Value::use_iterator UE = I->use_end();
282  if (UI == UE)
283    return true;
284
285  User *TheUse = *UI;
286  for (++UI; UI != UE; ++UI) {
287    if (*UI != TheUse)
288      return false;
289  }
290  return true;
291}
292
293/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
294/// dead PHI node, due to being a def-use chain of single-use nodes that
295/// either forms a cycle or is terminated by a trivially dead instruction,
296/// delete it.  If that makes any of its operands trivially dead, delete them
297/// too, recursively.  Return true if a change was made.
298bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
299  SmallPtrSet<Instruction*, 4> Visited;
300  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
301       I = cast<Instruction>(*I->use_begin())) {
302    if (I->use_empty())
303      return RecursivelyDeleteTriviallyDeadInstructions(I);
304
305    // If we find an instruction more than once, we're on a cycle that
306    // won't prove fruitful.
307    if (!Visited.insert(I)) {
308      // Break the cycle and delete the instruction and its operands.
309      I->replaceAllUsesWith(UndefValue::get(I->getType()));
310      (void)RecursivelyDeleteTriviallyDeadInstructions(I);
311      return true;
312    }
313  }
314  return false;
315}
316
317/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
318/// simplify any instructions in it and recursively delete dead instructions.
319///
320/// This returns true if it changed the code, note that it can delete
321/// instructions in other blocks as well in this block.
322bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
323  bool MadeChange = false;
324  for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
325    Instruction *Inst = BI++;
326
327    if (Value *V = SimplifyInstruction(Inst, TD)) {
328      WeakVH BIHandle(BI);
329      ReplaceAndSimplifyAllUses(Inst, V, TD);
330      MadeChange = true;
331      if (BIHandle != BI)
332        BI = BB->begin();
333      continue;
334    }
335
336    MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
337  }
338  return MadeChange;
339}
340
341//===----------------------------------------------------------------------===//
342//  Control Flow Graph Restructuring.
343//
344
345
346/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
347/// method is called when we're about to delete Pred as a predecessor of BB.  If
348/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
349///
350/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
351/// nodes that collapse into identity values.  For example, if we have:
352///   x = phi(1, 0, 0, 0)
353///   y = and x, z
354///
355/// .. and delete the predecessor corresponding to the '1', this will attempt to
356/// recursively fold the and to 0.
357void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
358                                        TargetData *TD) {
359  // This only adjusts blocks with PHI nodes.
360  if (!isa<PHINode>(BB->begin()))
361    return;
362
363  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
364  // them down.  This will leave us with single entry phi nodes and other phis
365  // that can be removed.
366  BB->removePredecessor(Pred, true);
367
368  WeakVH PhiIt = &BB->front();
369  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
370    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
371
372    Value *PNV = SimplifyInstruction(PN, TD);
373    if (PNV == 0) continue;
374
375    // If we're able to simplify the phi to a single value, substitute the new
376    // value into all of its uses.
377    assert(PNV != PN && "SimplifyInstruction broken!");
378
379    Value *OldPhiIt = PhiIt;
380    ReplaceAndSimplifyAllUses(PN, PNV, TD);
381
382    // If recursive simplification ended up deleting the next PHI node we would
383    // iterate to, then our iterator is invalid, restart scanning from the top
384    // of the block.
385    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
386  }
387}
388
389
390/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
391/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
392/// between them, moving the instructions in the predecessor into DestBB and
393/// deleting the predecessor block.
394///
395void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
396  // If BB has single-entry PHI nodes, fold them.
397  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
398    Value *NewVal = PN->getIncomingValue(0);
399    // Replace self referencing PHI with undef, it must be dead.
400    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
401    PN->replaceAllUsesWith(NewVal);
402    PN->eraseFromParent();
403  }
404
405  BasicBlock *PredBB = DestBB->getSinglePredecessor();
406  assert(PredBB && "Block doesn't have a single predecessor!");
407
408  // Splice all the instructions from PredBB to DestBB.
409  PredBB->getTerminator()->eraseFromParent();
410  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
411
412  // Zap anything that took the address of DestBB.  Not doing this will give the
413  // address an invalid value.
414  if (DestBB->hasAddressTaken()) {
415    BlockAddress *BA = BlockAddress::get(DestBB);
416    Constant *Replacement =
417      ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
418    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
419                                                     BA->getType()));
420    BA->destroyConstant();
421  }
422
423  // Anything that branched to PredBB now branches to DestBB.
424  PredBB->replaceAllUsesWith(DestBB);
425
426  if (P) {
427    DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
428    if (DT) {
429      BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
430      DT->changeImmediateDominator(DestBB, PredBBIDom);
431      DT->eraseNode(PredBB);
432    }
433    ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
434    if (PI) {
435      PI->replaceAllUses(PredBB, DestBB);
436      PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
437    }
438  }
439  // Nuke BB.
440  PredBB->eraseFromParent();
441}
442
443/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
444/// almost-empty BB ending in an unconditional branch to Succ, into succ.
445///
446/// Assumption: Succ is the single successor for BB.
447///
448static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
449  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
450
451  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
452        << Succ->getName() << "\n");
453  // Shortcut, if there is only a single predecessor it must be BB and merging
454  // is always safe
455  if (Succ->getSinglePredecessor()) return true;
456
457  // Make a list of the predecessors of BB
458  typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
459  BlockSet BBPreds(pred_begin(BB), pred_end(BB));
460
461  // Use that list to make another list of common predecessors of BB and Succ
462  BlockSet CommonPreds;
463  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
464       PI != PE; ++PI) {
465    BasicBlock *P = *PI;
466    if (BBPreds.count(P))
467      CommonPreds.insert(P);
468  }
469
470  // Shortcut, if there are no common predecessors, merging is always safe
471  if (CommonPreds.empty())
472    return true;
473
474  // Look at all the phi nodes in Succ, to see if they present a conflict when
475  // merging these blocks
476  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
477    PHINode *PN = cast<PHINode>(I);
478
479    // If the incoming value from BB is again a PHINode in
480    // BB which has the same incoming value for *PI as PN does, we can
481    // merge the phi nodes and then the blocks can still be merged
482    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
483    if (BBPN && BBPN->getParent() == BB) {
484      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
485            PI != PE; PI++) {
486        if (BBPN->getIncomingValueForBlock(*PI)
487              != PN->getIncomingValueForBlock(*PI)) {
488          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
489                << Succ->getName() << " is conflicting with "
490                << BBPN->getName() << " with regard to common predecessor "
491                << (*PI)->getName() << "\n");
492          return false;
493        }
494      }
495    } else {
496      Value* Val = PN->getIncomingValueForBlock(BB);
497      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
498            PI != PE; PI++) {
499        // See if the incoming value for the common predecessor is equal to the
500        // one for BB, in which case this phi node will not prevent the merging
501        // of the block.
502        if (Val != PN->getIncomingValueForBlock(*PI)) {
503          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
504                << Succ->getName() << " is conflicting with regard to common "
505                << "predecessor " << (*PI)->getName() << "\n");
506          return false;
507        }
508      }
509    }
510  }
511
512  return true;
513}
514
515/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
516/// unconditional branch, and contains no instructions other than PHI nodes,
517/// potential debug intrinsics and the branch.  If possible, eliminate BB by
518/// rewriting all the predecessors to branch to the successor block and return
519/// true.  If we can't transform, return false.
520bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
521  assert(BB != &BB->getParent()->getEntryBlock() &&
522         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
523
524  // We can't eliminate infinite loops.
525  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
526  if (BB == Succ) return false;
527
528  // Check to see if merging these blocks would cause conflicts for any of the
529  // phi nodes in BB or Succ. If not, we can safely merge.
530  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
531
532  // Check for cases where Succ has multiple predecessors and a PHI node in BB
533  // has uses which will not disappear when the PHI nodes are merged.  It is
534  // possible to handle such cases, but difficult: it requires checking whether
535  // BB dominates Succ, which is non-trivial to calculate in the case where
536  // Succ has multiple predecessors.  Also, it requires checking whether
537  // constructing the necessary self-referential PHI node doesn't intoduce any
538  // conflicts; this isn't too difficult, but the previous code for doing this
539  // was incorrect.
540  //
541  // Note that if this check finds a live use, BB dominates Succ, so BB is
542  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
543  // folding the branch isn't profitable in that case anyway.
544  if (!Succ->getSinglePredecessor()) {
545    BasicBlock::iterator BBI = BB->begin();
546    while (isa<PHINode>(*BBI)) {
547      for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
548           UI != E; ++UI) {
549        if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
550          if (PN->getIncomingBlock(UI) != BB)
551            return false;
552        } else {
553          return false;
554        }
555      }
556      ++BBI;
557    }
558  }
559
560  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
561
562  if (isa<PHINode>(Succ->begin())) {
563    // If there is more than one pred of succ, and there are PHI nodes in
564    // the successor, then we need to add incoming edges for the PHI nodes
565    //
566    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
567
568    // Loop over all of the PHI nodes in the successor of BB.
569    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
570      PHINode *PN = cast<PHINode>(I);
571      Value *OldVal = PN->removeIncomingValue(BB, false);
572      assert(OldVal && "No entry in PHI for Pred BB!");
573
574      // If this incoming value is one of the PHI nodes in BB, the new entries
575      // in the PHI node are the entries from the old PHI.
576      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
577        PHINode *OldValPN = cast<PHINode>(OldVal);
578        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
579          // Note that, since we are merging phi nodes and BB and Succ might
580          // have common predecessors, we could end up with a phi node with
581          // identical incoming branches. This will be cleaned up later (and
582          // will trigger asserts if we try to clean it up now, without also
583          // simplifying the corresponding conditional branch).
584          PN->addIncoming(OldValPN->getIncomingValue(i),
585                          OldValPN->getIncomingBlock(i));
586      } else {
587        // Add an incoming value for each of the new incoming values.
588        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
589          PN->addIncoming(OldVal, BBPreds[i]);
590      }
591    }
592  }
593
594  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
595    if (Succ->getSinglePredecessor()) {
596      // BB is the only predecessor of Succ, so Succ will end up with exactly
597      // the same predecessors BB had.
598      Succ->getInstList().splice(Succ->begin(),
599                                 BB->getInstList(), BB->begin());
600    } else {
601      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
602      assert(PN->use_empty() && "There shouldn't be any uses here!");
603      PN->eraseFromParent();
604    }
605  }
606
607  // Everything that jumped to BB now goes to Succ.
608  BB->replaceAllUsesWith(Succ);
609  if (!Succ->hasName()) Succ->takeName(BB);
610  BB->eraseFromParent();              // Delete the old basic block.
611  return true;
612}
613
614/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
615/// nodes in this block. This doesn't try to be clever about PHI nodes
616/// which differ only in the order of the incoming values, but instcombine
617/// orders them so it usually won't matter.
618///
619bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
620  bool Changed = false;
621
622  // This implementation doesn't currently consider undef operands
623  // specially. Theroetically, two phis which are identical except for
624  // one having an undef where the other doesn't could be collapsed.
625
626  // Map from PHI hash values to PHI nodes. If multiple PHIs have
627  // the same hash value, the element is the first PHI in the
628  // linked list in CollisionMap.
629  DenseMap<uintptr_t, PHINode *> HashMap;
630
631  // Maintain linked lists of PHI nodes with common hash values.
632  DenseMap<PHINode *, PHINode *> CollisionMap;
633
634  // Examine each PHI.
635  for (BasicBlock::iterator I = BB->begin();
636       PHINode *PN = dyn_cast<PHINode>(I++); ) {
637    // Compute a hash value on the operands. Instcombine will likely have sorted
638    // them, which helps expose duplicates, but we have to check all the
639    // operands to be safe in case instcombine hasn't run.
640    uintptr_t Hash = 0;
641    for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
642      // This hash algorithm is quite weak as hash functions go, but it seems
643      // to do a good enough job for this particular purpose, and is very quick.
644      Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
645      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
646    }
647    // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
648    Hash >>= 1;
649    // If we've never seen this hash value before, it's a unique PHI.
650    std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
651      HashMap.insert(std::make_pair(Hash, PN));
652    if (Pair.second) continue;
653    // Otherwise it's either a duplicate or a hash collision.
654    for (PHINode *OtherPN = Pair.first->second; ; ) {
655      if (OtherPN->isIdenticalTo(PN)) {
656        // A duplicate. Replace this PHI with its duplicate.
657        PN->replaceAllUsesWith(OtherPN);
658        PN->eraseFromParent();
659        Changed = true;
660        break;
661      }
662      // A non-duplicate hash collision.
663      DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
664      if (I == CollisionMap.end()) {
665        // Set this PHI to be the head of the linked list of colliding PHIs.
666        PHINode *Old = Pair.first->second;
667        Pair.first->second = PN;
668        CollisionMap[PN] = Old;
669        break;
670      }
671      // Procede to the next PHI in the list.
672      OtherPN = I->second;
673    }
674  }
675
676  return Changed;
677}
678
679/// enforceKnownAlignment - If the specified pointer points to an object that
680/// we control, modify the object's alignment to PrefAlign. This isn't
681/// often possible though. If alignment is important, a more reliable approach
682/// is to simply align all global variables and allocation instructions to
683/// their preferred alignment from the beginning.
684///
685static unsigned enforceKnownAlignment(Value *V, unsigned Align,
686                                      unsigned PrefAlign) {
687
688  User *U = dyn_cast<User>(V);
689  if (!U) return Align;
690
691  switch (Operator::getOpcode(U)) {
692  default: break;
693  case Instruction::BitCast:
694    return enforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
695  case Instruction::GetElementPtr: {
696    // If all indexes are zero, it is just the alignment of the base pointer.
697    bool AllZeroOperands = true;
698    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
699      if (!isa<Constant>(*i) ||
700          !cast<Constant>(*i)->isNullValue()) {
701        AllZeroOperands = false;
702        break;
703      }
704
705    if (AllZeroOperands) {
706      // Treat this like a bitcast.
707      return enforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
708    }
709    return Align;
710  }
711  case Instruction::Alloca: {
712    AllocaInst *AI = cast<AllocaInst>(V);
713    // If there is a requested alignment and if this is an alloca, round up.
714    if (AI->getAlignment() >= PrefAlign)
715      return AI->getAlignment();
716    AI->setAlignment(PrefAlign);
717    return PrefAlign;
718  }
719  }
720
721  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
722    // If there is a large requested alignment and we can, bump up the alignment
723    // of the global.
724    if (GV->isDeclaration()) return Align;
725
726    if (GV->getAlignment() >= PrefAlign)
727      return GV->getAlignment();
728    // We can only increase the alignment of the global if it has no alignment
729    // specified or if it is not assigned a section.  If it is assigned a
730    // section, the global could be densely packed with other objects in the
731    // section, increasing the alignment could cause padding issues.
732    if (!GV->hasSection() || GV->getAlignment() == 0)
733      GV->setAlignment(PrefAlign);
734    return GV->getAlignment();
735  }
736
737  return Align;
738}
739
740/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
741/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
742/// and it is more than the alignment of the ultimate object, see if we can
743/// increase the alignment of the ultimate object, making this check succeed.
744unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
745                                          const TargetData *TD) {
746  assert(V->getType()->isPointerTy() &&
747         "getOrEnforceKnownAlignment expects a pointer!");
748  unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
749  APInt Mask = APInt::getAllOnesValue(BitWidth);
750  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
751  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
752  unsigned TrailZ = KnownZero.countTrailingOnes();
753
754  // Avoid trouble with rediculously large TrailZ values, such as
755  // those computed from a null pointer.
756  TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
757
758  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
759
760  // LLVM doesn't support alignments larger than this currently.
761  Align = std::min(Align, +Value::MaximumAlignment);
762
763  if (PrefAlign > Align)
764    Align = enforceKnownAlignment(V, Align, PrefAlign);
765
766  // We don't need to make any adjustment.
767  return Align;
768}
769
770///===---------------------------------------------------------------------===//
771///  Dbg Intrinsic utilities
772///
773
774/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
775/// that has an associated llvm.dbg.decl intrinsic.
776bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
777                                           StoreInst *SI, DIBuilder &Builder) {
778  DIVariable DIVar(DDI->getVariable());
779  if (!DIVar.Verify())
780    return false;
781
782  Instruction *DbgVal =
783    Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0,
784                                    DIVar, SI);
785
786  // Propagate any debug metadata from the store onto the dbg.value.
787  DebugLoc SIDL = SI->getDebugLoc();
788  if (!SIDL.isUnknown())
789    DbgVal->setDebugLoc(SIDL);
790  // Otherwise propagate debug metadata from dbg.declare.
791  else
792    DbgVal->setDebugLoc(DDI->getDebugLoc());
793  return true;
794}
795
796/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
797/// that has an associated llvm.dbg.decl intrinsic.
798bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
799                                           LoadInst *LI, DIBuilder &Builder) {
800  DIVariable DIVar(DDI->getVariable());
801  if (!DIVar.Verify())
802    return false;
803
804  Instruction *DbgVal =
805    Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
806                                    DIVar, LI);
807
808  // Propagate any debug metadata from the store onto the dbg.value.
809  DebugLoc LIDL = LI->getDebugLoc();
810  if (!LIDL.isUnknown())
811    DbgVal->setDebugLoc(LIDL);
812  // Otherwise propagate debug metadata from dbg.declare.
813  else
814    DbgVal->setDebugLoc(DDI->getDebugLoc());
815  return true;
816}
817
818/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
819/// of llvm.dbg.value intrinsics.
820bool llvm::LowerDbgDeclare(Function &F) {
821  DIBuilder DIB(*F.getParent());
822  SmallVector<DbgDeclareInst *, 4> Dbgs;
823  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
824    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
825      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
826        Dbgs.push_back(DDI);
827    }
828  if (Dbgs.empty())
829    return false;
830
831  for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
832         E = Dbgs.end(); I != E; ++I) {
833    DbgDeclareInst *DDI = *I;
834    if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
835      for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
836           UI != E; ++UI)
837        if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
838          ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
839        else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
840          ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
841    }
842    DDI->eraseFromParent();
843  }
844  return true;
845}
846