1/* $OpenBSD: key.c,v 1.97 2011/05/17 07:13:31 djm Exp $ */
2/*
3 * read_bignum():
4 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
5 *
6 * As far as I am concerned, the code I have written for this software
7 * can be used freely for any purpose.  Any derived versions of this
8 * software must be clearly marked as such, and if the derived work is
9 * incompatible with the protocol description in the RFC file, it must be
10 * called by a name other than "ssh" or "Secure Shell".
11 *
12 *
13 * Copyright (c) 2000, 2001 Markus Friedl.  All rights reserved.
14 * Copyright (c) 2008 Alexander von Gernler.  All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
26 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
27 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
28 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
30 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37#include "includes.h"
38
39#include <sys/param.h>
40#include <sys/types.h>
41
42#include <openssl/evp.h>
43#include <openbsd-compat/openssl-compat.h>
44
45#include <stdarg.h>
46#include <stdio.h>
47#include <string.h>
48
49#include "xmalloc.h"
50#include "key.h"
51#include "rsa.h"
52#include "uuencode.h"
53#include "buffer.h"
54#include "log.h"
55#include "misc.h"
56#include "ssh2.h"
57
58static struct KeyCert *
59cert_new(void)
60{
61	struct KeyCert *cert;
62
63	cert = xcalloc(1, sizeof(*cert));
64	buffer_init(&cert->certblob);
65	buffer_init(&cert->critical);
66	buffer_init(&cert->extensions);
67	cert->key_id = NULL;
68	cert->principals = NULL;
69	cert->signature_key = NULL;
70	return cert;
71}
72
73Key *
74key_new(int type)
75{
76	Key *k;
77	RSA *rsa;
78	DSA *dsa;
79	k = xcalloc(1, sizeof(*k));
80	k->type = type;
81	k->ecdsa = NULL;
82	k->ecdsa_nid = -1;
83	k->dsa = NULL;
84	k->rsa = NULL;
85	k->cert = NULL;
86	switch (k->type) {
87	case KEY_RSA1:
88	case KEY_RSA:
89	case KEY_RSA_CERT_V00:
90	case KEY_RSA_CERT:
91		if ((rsa = RSA_new()) == NULL)
92			fatal("key_new: RSA_new failed");
93		if ((rsa->n = BN_new()) == NULL)
94			fatal("key_new: BN_new failed");
95		if ((rsa->e = BN_new()) == NULL)
96			fatal("key_new: BN_new failed");
97		k->rsa = rsa;
98		break;
99	case KEY_DSA:
100	case KEY_DSA_CERT_V00:
101	case KEY_DSA_CERT:
102		if ((dsa = DSA_new()) == NULL)
103			fatal("key_new: DSA_new failed");
104		if ((dsa->p = BN_new()) == NULL)
105			fatal("key_new: BN_new failed");
106		if ((dsa->q = BN_new()) == NULL)
107			fatal("key_new: BN_new failed");
108		if ((dsa->g = BN_new()) == NULL)
109			fatal("key_new: BN_new failed");
110		if ((dsa->pub_key = BN_new()) == NULL)
111			fatal("key_new: BN_new failed");
112		k->dsa = dsa;
113		break;
114#ifdef OPENSSL_HAS_ECC
115	case KEY_ECDSA:
116	case KEY_ECDSA_CERT:
117		/* Cannot do anything until we know the group */
118		break;
119#endif
120	case KEY_UNSPEC:
121		break;
122	default:
123		fatal("key_new: bad key type %d", k->type);
124		break;
125	}
126
127	if (key_is_cert(k))
128		k->cert = cert_new();
129
130	return k;
131}
132
133void
134key_add_private(Key *k)
135{
136	switch (k->type) {
137	case KEY_RSA1:
138	case KEY_RSA:
139	case KEY_RSA_CERT_V00:
140	case KEY_RSA_CERT:
141		if ((k->rsa->d = BN_new()) == NULL)
142			fatal("key_new_private: BN_new failed");
143		if ((k->rsa->iqmp = BN_new()) == NULL)
144			fatal("key_new_private: BN_new failed");
145		if ((k->rsa->q = BN_new()) == NULL)
146			fatal("key_new_private: BN_new failed");
147		if ((k->rsa->p = BN_new()) == NULL)
148			fatal("key_new_private: BN_new failed");
149		if ((k->rsa->dmq1 = BN_new()) == NULL)
150			fatal("key_new_private: BN_new failed");
151		if ((k->rsa->dmp1 = BN_new()) == NULL)
152			fatal("key_new_private: BN_new failed");
153		break;
154	case KEY_DSA:
155	case KEY_DSA_CERT_V00:
156	case KEY_DSA_CERT:
157		if ((k->dsa->priv_key = BN_new()) == NULL)
158			fatal("key_new_private: BN_new failed");
159		break;
160	case KEY_ECDSA:
161	case KEY_ECDSA_CERT:
162		/* Cannot do anything until we know the group */
163		break;
164	case KEY_UNSPEC:
165		break;
166	default:
167		break;
168	}
169}
170
171Key *
172key_new_private(int type)
173{
174	Key *k = key_new(type);
175
176	key_add_private(k);
177	return k;
178}
179
180static void
181cert_free(struct KeyCert *cert)
182{
183	u_int i;
184
185	buffer_free(&cert->certblob);
186	buffer_free(&cert->critical);
187	buffer_free(&cert->extensions);
188	if (cert->key_id != NULL)
189		xfree(cert->key_id);
190	for (i = 0; i < cert->nprincipals; i++)
191		xfree(cert->principals[i]);
192	if (cert->principals != NULL)
193		xfree(cert->principals);
194	if (cert->signature_key != NULL)
195		key_free(cert->signature_key);
196}
197
198void
199key_free(Key *k)
200{
201	if (k == NULL)
202		fatal("key_free: key is NULL");
203	switch (k->type) {
204	case KEY_RSA1:
205	case KEY_RSA:
206	case KEY_RSA_CERT_V00:
207	case KEY_RSA_CERT:
208		if (k->rsa != NULL)
209			RSA_free(k->rsa);
210		k->rsa = NULL;
211		break;
212	case KEY_DSA:
213	case KEY_DSA_CERT_V00:
214	case KEY_DSA_CERT:
215		if (k->dsa != NULL)
216			DSA_free(k->dsa);
217		k->dsa = NULL;
218		break;
219#ifdef OPENSSL_HAS_ECC
220	case KEY_ECDSA:
221	case KEY_ECDSA_CERT:
222		if (k->ecdsa != NULL)
223			EC_KEY_free(k->ecdsa);
224		k->ecdsa = NULL;
225		break;
226#endif
227	case KEY_UNSPEC:
228		break;
229	default:
230		fatal("key_free: bad key type %d", k->type);
231		break;
232	}
233	if (key_is_cert(k)) {
234		if (k->cert != NULL)
235			cert_free(k->cert);
236		k->cert = NULL;
237	}
238
239	xfree(k);
240}
241
242static int
243cert_compare(struct KeyCert *a, struct KeyCert *b)
244{
245	if (a == NULL && b == NULL)
246		return 1;
247	if (a == NULL || b == NULL)
248		return 0;
249	if (buffer_len(&a->certblob) != buffer_len(&b->certblob))
250		return 0;
251	if (timingsafe_bcmp(buffer_ptr(&a->certblob), buffer_ptr(&b->certblob),
252	    buffer_len(&a->certblob)) != 0)
253		return 0;
254	return 1;
255}
256
257/*
258 * Compare public portions of key only, allowing comparisons between
259 * certificates and plain keys too.
260 */
261int
262key_equal_public(const Key *a, const Key *b)
263{
264#ifdef OPENSSL_HAS_ECC
265	BN_CTX *bnctx;
266#endif
267
268	if (a == NULL || b == NULL ||
269	    key_type_plain(a->type) != key_type_plain(b->type))
270		return 0;
271
272	switch (a->type) {
273	case KEY_RSA1:
274	case KEY_RSA_CERT_V00:
275	case KEY_RSA_CERT:
276	case KEY_RSA:
277		return a->rsa != NULL && b->rsa != NULL &&
278		    BN_cmp(a->rsa->e, b->rsa->e) == 0 &&
279		    BN_cmp(a->rsa->n, b->rsa->n) == 0;
280	case KEY_DSA_CERT_V00:
281	case KEY_DSA_CERT:
282	case KEY_DSA:
283		return a->dsa != NULL && b->dsa != NULL &&
284		    BN_cmp(a->dsa->p, b->dsa->p) == 0 &&
285		    BN_cmp(a->dsa->q, b->dsa->q) == 0 &&
286		    BN_cmp(a->dsa->g, b->dsa->g) == 0 &&
287		    BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0;
288#ifdef OPENSSL_HAS_ECC
289	case KEY_ECDSA_CERT:
290	case KEY_ECDSA:
291		if (a->ecdsa == NULL || b->ecdsa == NULL ||
292		    EC_KEY_get0_public_key(a->ecdsa) == NULL ||
293		    EC_KEY_get0_public_key(b->ecdsa) == NULL)
294			return 0;
295		if ((bnctx = BN_CTX_new()) == NULL)
296			fatal("%s: BN_CTX_new failed", __func__);
297		if (EC_GROUP_cmp(EC_KEY_get0_group(a->ecdsa),
298		    EC_KEY_get0_group(b->ecdsa), bnctx) != 0 ||
299		    EC_POINT_cmp(EC_KEY_get0_group(a->ecdsa),
300		    EC_KEY_get0_public_key(a->ecdsa),
301		    EC_KEY_get0_public_key(b->ecdsa), bnctx) != 0) {
302			BN_CTX_free(bnctx);
303			return 0;
304		}
305		BN_CTX_free(bnctx);
306		return 1;
307#endif /* OPENSSL_HAS_ECC */
308	default:
309		fatal("key_equal: bad key type %d", a->type);
310	}
311	/* NOTREACHED */
312}
313
314int
315key_equal(const Key *a, const Key *b)
316{
317	if (a == NULL || b == NULL || a->type != b->type)
318		return 0;
319	if (key_is_cert(a)) {
320		if (!cert_compare(a->cert, b->cert))
321			return 0;
322	}
323	return key_equal_public(a, b);
324}
325
326u_char*
327key_fingerprint_raw(Key *k, enum fp_type dgst_type, u_int *dgst_raw_length)
328{
329	const EVP_MD *md = NULL;
330	EVP_MD_CTX ctx;
331	u_char *blob = NULL;
332	u_char *retval = NULL;
333	u_int len = 0;
334	int nlen, elen, otype;
335
336	*dgst_raw_length = 0;
337
338	switch (dgst_type) {
339	case SSH_FP_MD5:
340		md = EVP_md5();
341		break;
342	case SSH_FP_SHA1:
343		md = EVP_sha1();
344		break;
345	default:
346		fatal("key_fingerprint_raw: bad digest type %d",
347		    dgst_type);
348	}
349	switch (k->type) {
350	case KEY_RSA1:
351		nlen = BN_num_bytes(k->rsa->n);
352		elen = BN_num_bytes(k->rsa->e);
353		len = nlen + elen;
354		blob = xmalloc(len);
355		BN_bn2bin(k->rsa->n, blob);
356		BN_bn2bin(k->rsa->e, blob + nlen);
357		break;
358	case KEY_DSA:
359	case KEY_ECDSA:
360	case KEY_RSA:
361		key_to_blob(k, &blob, &len);
362		break;
363	case KEY_DSA_CERT_V00:
364	case KEY_RSA_CERT_V00:
365	case KEY_DSA_CERT:
366	case KEY_ECDSA_CERT:
367	case KEY_RSA_CERT:
368		/* We want a fingerprint of the _key_ not of the cert */
369		otype = k->type;
370		k->type = key_type_plain(k->type);
371		key_to_blob(k, &blob, &len);
372		k->type = otype;
373		break;
374	case KEY_UNSPEC:
375		return retval;
376	default:
377		fatal("key_fingerprint_raw: bad key type %d", k->type);
378		break;
379	}
380	if (blob != NULL) {
381		retval = xmalloc(EVP_MAX_MD_SIZE);
382		EVP_DigestInit(&ctx, md);
383		EVP_DigestUpdate(&ctx, blob, len);
384		EVP_DigestFinal(&ctx, retval, dgst_raw_length);
385		memset(blob, 0, len);
386		xfree(blob);
387	} else {
388		fatal("key_fingerprint_raw: blob is null");
389	}
390	return retval;
391}
392
393static char *
394key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len)
395{
396	char *retval;
397	u_int i;
398
399	retval = xcalloc(1, dgst_raw_len * 3 + 1);
400	for (i = 0; i < dgst_raw_len; i++) {
401		char hex[4];
402		snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]);
403		strlcat(retval, hex, dgst_raw_len * 3 + 1);
404	}
405
406	/* Remove the trailing ':' character */
407	retval[(dgst_raw_len * 3) - 1] = '\0';
408	return retval;
409}
410
411static char *
412key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len)
413{
414	char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
415	char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
416	    'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
417	u_int i, j = 0, rounds, seed = 1;
418	char *retval;
419
420	rounds = (dgst_raw_len / 2) + 1;
421	retval = xcalloc((rounds * 6), sizeof(char));
422	retval[j++] = 'x';
423	for (i = 0; i < rounds; i++) {
424		u_int idx0, idx1, idx2, idx3, idx4;
425		if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) {
426			idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) +
427			    seed) % 6;
428			idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15;
429			idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) +
430			    (seed / 6)) % 6;
431			retval[j++] = vowels[idx0];
432			retval[j++] = consonants[idx1];
433			retval[j++] = vowels[idx2];
434			if ((i + 1) < rounds) {
435				idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15;
436				idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15;
437				retval[j++] = consonants[idx3];
438				retval[j++] = '-';
439				retval[j++] = consonants[idx4];
440				seed = ((seed * 5) +
441				    ((((u_int)(dgst_raw[2 * i])) * 7) +
442				    ((u_int)(dgst_raw[(2 * i) + 1])))) % 36;
443			}
444		} else {
445			idx0 = seed % 6;
446			idx1 = 16;
447			idx2 = seed / 6;
448			retval[j++] = vowels[idx0];
449			retval[j++] = consonants[idx1];
450			retval[j++] = vowels[idx2];
451		}
452	}
453	retval[j++] = 'x';
454	retval[j++] = '\0';
455	return retval;
456}
457
458/*
459 * Draw an ASCII-Art representing the fingerprint so human brain can
460 * profit from its built-in pattern recognition ability.
461 * This technique is called "random art" and can be found in some
462 * scientific publications like this original paper:
463 *
464 * "Hash Visualization: a New Technique to improve Real-World Security",
465 * Perrig A. and Song D., 1999, International Workshop on Cryptographic
466 * Techniques and E-Commerce (CrypTEC '99)
467 * sparrow.ece.cmu.edu/~adrian/projects/validation/validation.pdf
468 *
469 * The subject came up in a talk by Dan Kaminsky, too.
470 *
471 * If you see the picture is different, the key is different.
472 * If the picture looks the same, you still know nothing.
473 *
474 * The algorithm used here is a worm crawling over a discrete plane,
475 * leaving a trace (augmenting the field) everywhere it goes.
476 * Movement is taken from dgst_raw 2bit-wise.  Bumping into walls
477 * makes the respective movement vector be ignored for this turn.
478 * Graphs are not unambiguous, because circles in graphs can be
479 * walked in either direction.
480 */
481
482/*
483 * Field sizes for the random art.  Have to be odd, so the starting point
484 * can be in the exact middle of the picture, and FLDBASE should be >=8 .
485 * Else pictures would be too dense, and drawing the frame would
486 * fail, too, because the key type would not fit in anymore.
487 */
488#define	FLDBASE		8
489#define	FLDSIZE_Y	(FLDBASE + 1)
490#define	FLDSIZE_X	(FLDBASE * 2 + 1)
491static char *
492key_fingerprint_randomart(u_char *dgst_raw, u_int dgst_raw_len, const Key *k)
493{
494	/*
495	 * Chars to be used after each other every time the worm
496	 * intersects with itself.  Matter of taste.
497	 */
498	char	*augmentation_string = " .o+=*BOX@%&#/^SE";
499	char	*retval, *p;
500	u_char	 field[FLDSIZE_X][FLDSIZE_Y];
501	u_int	 i, b;
502	int	 x, y;
503	size_t	 len = strlen(augmentation_string) - 1;
504
505	retval = xcalloc(1, (FLDSIZE_X + 3) * (FLDSIZE_Y + 2));
506
507	/* initialize field */
508	memset(field, 0, FLDSIZE_X * FLDSIZE_Y * sizeof(char));
509	x = FLDSIZE_X / 2;
510	y = FLDSIZE_Y / 2;
511
512	/* process raw key */
513	for (i = 0; i < dgst_raw_len; i++) {
514		int input;
515		/* each byte conveys four 2-bit move commands */
516		input = dgst_raw[i];
517		for (b = 0; b < 4; b++) {
518			/* evaluate 2 bit, rest is shifted later */
519			x += (input & 0x1) ? 1 : -1;
520			y += (input & 0x2) ? 1 : -1;
521
522			/* assure we are still in bounds */
523			x = MAX(x, 0);
524			y = MAX(y, 0);
525			x = MIN(x, FLDSIZE_X - 1);
526			y = MIN(y, FLDSIZE_Y - 1);
527
528			/* augment the field */
529			if (field[x][y] < len - 2)
530				field[x][y]++;
531			input = input >> 2;
532		}
533	}
534
535	/* mark starting point and end point*/
536	field[FLDSIZE_X / 2][FLDSIZE_Y / 2] = len - 1;
537	field[x][y] = len;
538
539	/* fill in retval */
540	snprintf(retval, FLDSIZE_X, "+--[%4s %4u]", key_type(k), key_size(k));
541	p = strchr(retval, '\0');
542
543	/* output upper border */
544	for (i = p - retval - 1; i < FLDSIZE_X; i++)
545		*p++ = '-';
546	*p++ = '+';
547	*p++ = '\n';
548
549	/* output content */
550	for (y = 0; y < FLDSIZE_Y; y++) {
551		*p++ = '|';
552		for (x = 0; x < FLDSIZE_X; x++)
553			*p++ = augmentation_string[MIN(field[x][y], len)];
554		*p++ = '|';
555		*p++ = '\n';
556	}
557
558	/* output lower border */
559	*p++ = '+';
560	for (i = 0; i < FLDSIZE_X; i++)
561		*p++ = '-';
562	*p++ = '+';
563
564	return retval;
565}
566
567char *
568key_fingerprint(Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep)
569{
570	char *retval = NULL;
571	u_char *dgst_raw;
572	u_int dgst_raw_len;
573
574	dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len);
575	if (!dgst_raw)
576		fatal("key_fingerprint: null from key_fingerprint_raw()");
577	switch (dgst_rep) {
578	case SSH_FP_HEX:
579		retval = key_fingerprint_hex(dgst_raw, dgst_raw_len);
580		break;
581	case SSH_FP_BUBBLEBABBLE:
582		retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len);
583		break;
584	case SSH_FP_RANDOMART:
585		retval = key_fingerprint_randomart(dgst_raw, dgst_raw_len, k);
586		break;
587	default:
588		fatal("key_fingerprint: bad digest representation %d",
589		    dgst_rep);
590		break;
591	}
592	memset(dgst_raw, 0, dgst_raw_len);
593	xfree(dgst_raw);
594	return retval;
595}
596
597/*
598 * Reads a multiple-precision integer in decimal from the buffer, and advances
599 * the pointer.  The integer must already be initialized.  This function is
600 * permitted to modify the buffer.  This leaves *cpp to point just beyond the
601 * last processed (and maybe modified) character.  Note that this may modify
602 * the buffer containing the number.
603 */
604static int
605read_bignum(char **cpp, BIGNUM * value)
606{
607	char *cp = *cpp;
608	int old;
609
610	/* Skip any leading whitespace. */
611	for (; *cp == ' ' || *cp == '\t'; cp++)
612		;
613
614	/* Check that it begins with a decimal digit. */
615	if (*cp < '0' || *cp > '9')
616		return 0;
617
618	/* Save starting position. */
619	*cpp = cp;
620
621	/* Move forward until all decimal digits skipped. */
622	for (; *cp >= '0' && *cp <= '9'; cp++)
623		;
624
625	/* Save the old terminating character, and replace it by \0. */
626	old = *cp;
627	*cp = 0;
628
629	/* Parse the number. */
630	if (BN_dec2bn(&value, *cpp) == 0)
631		return 0;
632
633	/* Restore old terminating character. */
634	*cp = old;
635
636	/* Move beyond the number and return success. */
637	*cpp = cp;
638	return 1;
639}
640
641static int
642write_bignum(FILE *f, BIGNUM *num)
643{
644	char *buf = BN_bn2dec(num);
645	if (buf == NULL) {
646		error("write_bignum: BN_bn2dec() failed");
647		return 0;
648	}
649	fprintf(f, " %s", buf);
650	OPENSSL_free(buf);
651	return 1;
652}
653
654/* returns 1 ok, -1 error */
655int
656key_read(Key *ret, char **cpp)
657{
658	Key *k;
659	int success = -1;
660	char *cp, *space;
661	int len, n, type;
662	u_int bits;
663	u_char *blob;
664#ifdef OPENSSL_HAS_ECC
665	int curve_nid = -1;
666#endif
667
668	cp = *cpp;
669
670	switch (ret->type) {
671	case KEY_RSA1:
672		/* Get number of bits. */
673		if (*cp < '0' || *cp > '9')
674			return -1;	/* Bad bit count... */
675		for (bits = 0; *cp >= '0' && *cp <= '9'; cp++)
676			bits = 10 * bits + *cp - '0';
677		if (bits == 0)
678			return -1;
679		*cpp = cp;
680		/* Get public exponent, public modulus. */
681		if (!read_bignum(cpp, ret->rsa->e))
682			return -1;
683		if (!read_bignum(cpp, ret->rsa->n))
684			return -1;
685		/* validate the claimed number of bits */
686		if ((u_int)BN_num_bits(ret->rsa->n) != bits) {
687			verbose("key_read: claimed key size %d does not match "
688			   "actual %d", bits, BN_num_bits(ret->rsa->n));
689			return -1;
690		}
691		success = 1;
692		break;
693	case KEY_UNSPEC:
694	case KEY_RSA:
695	case KEY_DSA:
696	case KEY_ECDSA:
697	case KEY_DSA_CERT_V00:
698	case KEY_RSA_CERT_V00:
699	case KEY_DSA_CERT:
700	case KEY_ECDSA_CERT:
701	case KEY_RSA_CERT:
702		space = strchr(cp, ' ');
703		if (space == NULL) {
704			debug3("key_read: missing whitespace");
705			return -1;
706		}
707		*space = '\0';
708		type = key_type_from_name(cp);
709#ifdef OPENSSL_HAS_ECC
710		if (key_type_plain(type) == KEY_ECDSA &&
711		    (curve_nid = key_ecdsa_nid_from_name(cp)) == -1) {
712			debug("key_read: invalid curve");
713			return -1;
714		}
715#endif
716		*space = ' ';
717		if (type == KEY_UNSPEC) {
718			debug3("key_read: missing keytype");
719			return -1;
720		}
721		cp = space+1;
722		if (*cp == '\0') {
723			debug3("key_read: short string");
724			return -1;
725		}
726		if (ret->type == KEY_UNSPEC) {
727			ret->type = type;
728		} else if (ret->type != type) {
729			/* is a key, but different type */
730			debug3("key_read: type mismatch");
731			return -1;
732		}
733		len = 2*strlen(cp);
734		blob = xmalloc(len);
735		n = uudecode(cp, blob, len);
736		if (n < 0) {
737			error("key_read: uudecode %s failed", cp);
738			xfree(blob);
739			return -1;
740		}
741		k = key_from_blob(blob, (u_int)n);
742		xfree(blob);
743		if (k == NULL) {
744			error("key_read: key_from_blob %s failed", cp);
745			return -1;
746		}
747		if (k->type != type) {
748			error("key_read: type mismatch: encoding error");
749			key_free(k);
750			return -1;
751		}
752#ifdef OPENSSL_HAS_ECC
753		if (key_type_plain(type) == KEY_ECDSA &&
754		    curve_nid != k->ecdsa_nid) {
755			error("key_read: type mismatch: EC curve mismatch");
756			key_free(k);
757			return -1;
758		}
759#endif
760/*XXXX*/
761		if (key_is_cert(ret)) {
762			if (!key_is_cert(k)) {
763				error("key_read: loaded key is not a cert");
764				key_free(k);
765				return -1;
766			}
767			if (ret->cert != NULL)
768				cert_free(ret->cert);
769			ret->cert = k->cert;
770			k->cert = NULL;
771		}
772		if (key_type_plain(ret->type) == KEY_RSA) {
773			if (ret->rsa != NULL)
774				RSA_free(ret->rsa);
775			ret->rsa = k->rsa;
776			k->rsa = NULL;
777#ifdef DEBUG_PK
778			RSA_print_fp(stderr, ret->rsa, 8);
779#endif
780		}
781		if (key_type_plain(ret->type) == KEY_DSA) {
782			if (ret->dsa != NULL)
783				DSA_free(ret->dsa);
784			ret->dsa = k->dsa;
785			k->dsa = NULL;
786#ifdef DEBUG_PK
787			DSA_print_fp(stderr, ret->dsa, 8);
788#endif
789		}
790#ifdef OPENSSL_HAS_ECC
791		if (key_type_plain(ret->type) == KEY_ECDSA) {
792			if (ret->ecdsa != NULL)
793				EC_KEY_free(ret->ecdsa);
794			ret->ecdsa = k->ecdsa;
795			ret->ecdsa_nid = k->ecdsa_nid;
796			k->ecdsa = NULL;
797			k->ecdsa_nid = -1;
798#ifdef DEBUG_PK
799			key_dump_ec_key(ret->ecdsa);
800#endif
801		}
802#endif
803		success = 1;
804/*XXXX*/
805		key_free(k);
806		if (success != 1)
807			break;
808		/* advance cp: skip whitespace and data */
809		while (*cp == ' ' || *cp == '\t')
810			cp++;
811		while (*cp != '\0' && *cp != ' ' && *cp != '\t')
812			cp++;
813		*cpp = cp;
814		break;
815	default:
816		fatal("key_read: bad key type: %d", ret->type);
817		break;
818	}
819	return success;
820}
821
822int
823key_write(const Key *key, FILE *f)
824{
825	int n, success = 0;
826	u_int len, bits = 0;
827	u_char *blob;
828	char *uu;
829
830	if (key_is_cert(key)) {
831		if (key->cert == NULL) {
832			error("%s: no cert data", __func__);
833			return 0;
834		}
835		if (buffer_len(&key->cert->certblob) == 0) {
836			error("%s: no signed certificate blob", __func__);
837			return 0;
838		}
839	}
840
841	switch (key->type) {
842	case KEY_RSA1:
843		if (key->rsa == NULL)
844			return 0;
845		/* size of modulus 'n' */
846		bits = BN_num_bits(key->rsa->n);
847		fprintf(f, "%u", bits);
848		if (write_bignum(f, key->rsa->e) &&
849		    write_bignum(f, key->rsa->n))
850			return 1;
851		error("key_write: failed for RSA key");
852		return 0;
853	case KEY_DSA:
854	case KEY_DSA_CERT_V00:
855	case KEY_DSA_CERT:
856		if (key->dsa == NULL)
857			return 0;
858		break;
859#ifdef OPENSSL_HAS_ECC
860	case KEY_ECDSA:
861	case KEY_ECDSA_CERT:
862		if (key->ecdsa == NULL)
863			return 0;
864		break;
865#endif
866	case KEY_RSA:
867	case KEY_RSA_CERT_V00:
868	case KEY_RSA_CERT:
869		if (key->rsa == NULL)
870			return 0;
871		break;
872	default:
873		return 0;
874	}
875
876	key_to_blob(key, &blob, &len);
877	uu = xmalloc(2*len);
878	n = uuencode(blob, len, uu, 2*len);
879	if (n > 0) {
880		fprintf(f, "%s %s", key_ssh_name(key), uu);
881		success = 1;
882	}
883	xfree(blob);
884	xfree(uu);
885
886	return success;
887}
888
889const char *
890key_type(const Key *k)
891{
892	switch (k->type) {
893	case KEY_RSA1:
894		return "RSA1";
895	case KEY_RSA:
896		return "RSA";
897	case KEY_DSA:
898		return "DSA";
899#ifdef OPENSSL_HAS_ECC
900	case KEY_ECDSA:
901		return "ECDSA";
902#endif
903	case KEY_RSA_CERT_V00:
904		return "RSA-CERT-V00";
905	case KEY_DSA_CERT_V00:
906		return "DSA-CERT-V00";
907	case KEY_RSA_CERT:
908		return "RSA-CERT";
909	case KEY_DSA_CERT:
910		return "DSA-CERT";
911#ifdef OPENSSL_HAS_ECC
912	case KEY_ECDSA_CERT:
913		return "ECDSA-CERT";
914#endif
915	}
916	return "unknown";
917}
918
919const char *
920key_cert_type(const Key *k)
921{
922	switch (k->cert->type) {
923	case SSH2_CERT_TYPE_USER:
924		return "user";
925	case SSH2_CERT_TYPE_HOST:
926		return "host";
927	default:
928		return "unknown";
929	}
930}
931
932static const char *
933key_ssh_name_from_type_nid(int type, int nid)
934{
935	switch (type) {
936	case KEY_RSA:
937		return "ssh-rsa";
938	case KEY_DSA:
939		return "ssh-dss";
940	case KEY_RSA_CERT_V00:
941		return "ssh-rsa-cert-v00@openssh.com";
942	case KEY_DSA_CERT_V00:
943		return "ssh-dss-cert-v00@openssh.com";
944	case KEY_RSA_CERT:
945		return "ssh-rsa-cert-v01@openssh.com";
946	case KEY_DSA_CERT:
947		return "ssh-dss-cert-v01@openssh.com";
948#ifdef OPENSSL_HAS_ECC
949	case KEY_ECDSA:
950		switch (nid) {
951		case NID_X9_62_prime256v1:
952			return "ecdsa-sha2-nistp256";
953		case NID_secp384r1:
954			return "ecdsa-sha2-nistp384";
955		case NID_secp521r1:
956			return "ecdsa-sha2-nistp521";
957		default:
958			break;
959		}
960		break;
961	case KEY_ECDSA_CERT:
962		switch (nid) {
963		case NID_X9_62_prime256v1:
964			return "ecdsa-sha2-nistp256-cert-v01@openssh.com";
965		case NID_secp384r1:
966			return "ecdsa-sha2-nistp384-cert-v01@openssh.com";
967		case NID_secp521r1:
968			return "ecdsa-sha2-nistp521-cert-v01@openssh.com";
969		default:
970			break;
971		}
972		break;
973#endif /* OPENSSL_HAS_ECC */
974	}
975	return "ssh-unknown";
976}
977
978const char *
979key_ssh_name(const Key *k)
980{
981	return key_ssh_name_from_type_nid(k->type, k->ecdsa_nid);
982}
983
984const char *
985key_ssh_name_plain(const Key *k)
986{
987	return key_ssh_name_from_type_nid(key_type_plain(k->type),
988	    k->ecdsa_nid);
989}
990
991u_int
992key_size(const Key *k)
993{
994	switch (k->type) {
995	case KEY_RSA1:
996	case KEY_RSA:
997	case KEY_RSA_CERT_V00:
998	case KEY_RSA_CERT:
999		return BN_num_bits(k->rsa->n);
1000	case KEY_DSA:
1001	case KEY_DSA_CERT_V00:
1002	case KEY_DSA_CERT:
1003		return BN_num_bits(k->dsa->p);
1004#ifdef OPENSSL_HAS_ECC
1005	case KEY_ECDSA:
1006	case KEY_ECDSA_CERT:
1007		return key_curve_nid_to_bits(k->ecdsa_nid);
1008#endif
1009	}
1010	return 0;
1011}
1012
1013static RSA *
1014rsa_generate_private_key(u_int bits)
1015{
1016	RSA *private = RSA_new();
1017	BIGNUM *f4 = BN_new();
1018
1019	if (private == NULL)
1020		fatal("%s: RSA_new failed", __func__);
1021	if (f4 == NULL)
1022		fatal("%s: BN_new failed", __func__);
1023	if (!BN_set_word(f4, RSA_F4))
1024		fatal("%s: BN_new failed", __func__);
1025	if (!RSA_generate_key_ex(private, bits, f4, NULL))
1026		fatal("%s: key generation failed.", __func__);
1027	BN_free(f4);
1028	return private;
1029}
1030
1031static DSA*
1032dsa_generate_private_key(u_int bits)
1033{
1034	DSA *private = DSA_new();
1035
1036	if (private == NULL)
1037		fatal("%s: DSA_new failed", __func__);
1038	if (!DSA_generate_parameters_ex(private, bits, NULL, 0, NULL,
1039	    NULL, NULL))
1040		fatal("%s: DSA_generate_parameters failed", __func__);
1041	if (!DSA_generate_key(private))
1042		fatal("%s: DSA_generate_key failed.", __func__);
1043	return private;
1044}
1045
1046int
1047key_ecdsa_bits_to_nid(int bits)
1048{
1049	switch (bits) {
1050#ifdef OPENSSL_HAS_ECC
1051	case 256:
1052		return NID_X9_62_prime256v1;
1053	case 384:
1054		return NID_secp384r1;
1055	case 521:
1056		return NID_secp521r1;
1057#endif
1058	default:
1059		return -1;
1060	}
1061}
1062
1063#ifdef OPENSSL_HAS_ECC
1064int
1065key_ecdsa_key_to_nid(EC_KEY *k)
1066{
1067	EC_GROUP *eg;
1068	int nids[] = {
1069		NID_X9_62_prime256v1,
1070		NID_secp384r1,
1071		NID_secp521r1,
1072		-1
1073	};
1074	int nid;
1075	u_int i;
1076	BN_CTX *bnctx;
1077	const EC_GROUP *g = EC_KEY_get0_group(k);
1078
1079	/*
1080	 * The group may be stored in a ASN.1 encoded private key in one of two
1081	 * ways: as a "named group", which is reconstituted by ASN.1 object ID
1082	 * or explicit group parameters encoded into the key blob. Only the
1083	 * "named group" case sets the group NID for us, but we can figure
1084	 * it out for the other case by comparing against all the groups that
1085	 * are supported.
1086	 */
1087	if ((nid = EC_GROUP_get_curve_name(g)) > 0)
1088		return nid;
1089	if ((bnctx = BN_CTX_new()) == NULL)
1090		fatal("%s: BN_CTX_new() failed", __func__);
1091	for (i = 0; nids[i] != -1; i++) {
1092		if ((eg = EC_GROUP_new_by_curve_name(nids[i])) == NULL)
1093			fatal("%s: EC_GROUP_new_by_curve_name failed",
1094			    __func__);
1095		if (EC_GROUP_cmp(g, eg, bnctx) == 0)
1096			break;
1097		EC_GROUP_free(eg);
1098	}
1099	BN_CTX_free(bnctx);
1100	debug3("%s: nid = %d", __func__, nids[i]);
1101	if (nids[i] != -1) {
1102		/* Use the group with the NID attached */
1103		EC_GROUP_set_asn1_flag(eg, OPENSSL_EC_NAMED_CURVE);
1104		if (EC_KEY_set_group(k, eg) != 1)
1105			fatal("%s: EC_KEY_set_group", __func__);
1106	}
1107	return nids[i];
1108}
1109
1110static EC_KEY*
1111ecdsa_generate_private_key(u_int bits, int *nid)
1112{
1113	EC_KEY *private;
1114
1115	if ((*nid = key_ecdsa_bits_to_nid(bits)) == -1)
1116		fatal("%s: invalid key length", __func__);
1117	if ((private = EC_KEY_new_by_curve_name(*nid)) == NULL)
1118		fatal("%s: EC_KEY_new_by_curve_name failed", __func__);
1119	if (EC_KEY_generate_key(private) != 1)
1120		fatal("%s: EC_KEY_generate_key failed", __func__);
1121	EC_KEY_set_asn1_flag(private, OPENSSL_EC_NAMED_CURVE);
1122	return private;
1123}
1124#endif /* OPENSSL_HAS_ECC */
1125
1126Key *
1127key_generate(int type, u_int bits)
1128{
1129	Key *k = key_new(KEY_UNSPEC);
1130	switch (type) {
1131	case KEY_DSA:
1132		k->dsa = dsa_generate_private_key(bits);
1133		break;
1134#ifdef OPENSSL_HAS_ECC
1135	case KEY_ECDSA:
1136		k->ecdsa = ecdsa_generate_private_key(bits, &k->ecdsa_nid);
1137		break;
1138#endif
1139	case KEY_RSA:
1140	case KEY_RSA1:
1141		k->rsa = rsa_generate_private_key(bits);
1142		break;
1143	case KEY_RSA_CERT_V00:
1144	case KEY_DSA_CERT_V00:
1145	case KEY_RSA_CERT:
1146	case KEY_DSA_CERT:
1147		fatal("key_generate: cert keys cannot be generated directly");
1148	default:
1149		fatal("key_generate: unknown type %d", type);
1150	}
1151	k->type = type;
1152	return k;
1153}
1154
1155void
1156key_cert_copy(const Key *from_key, struct Key *to_key)
1157{
1158	u_int i;
1159	const struct KeyCert *from;
1160	struct KeyCert *to;
1161
1162	if (to_key->cert != NULL) {
1163		cert_free(to_key->cert);
1164		to_key->cert = NULL;
1165	}
1166
1167	if ((from = from_key->cert) == NULL)
1168		return;
1169
1170	to = to_key->cert = cert_new();
1171
1172	buffer_append(&to->certblob, buffer_ptr(&from->certblob),
1173	    buffer_len(&from->certblob));
1174
1175	buffer_append(&to->critical,
1176	    buffer_ptr(&from->critical), buffer_len(&from->critical));
1177	buffer_append(&to->extensions,
1178	    buffer_ptr(&from->extensions), buffer_len(&from->extensions));
1179
1180	to->serial = from->serial;
1181	to->type = from->type;
1182	to->key_id = from->key_id == NULL ? NULL : xstrdup(from->key_id);
1183	to->valid_after = from->valid_after;
1184	to->valid_before = from->valid_before;
1185	to->signature_key = from->signature_key == NULL ?
1186	    NULL : key_from_private(from->signature_key);
1187
1188	to->nprincipals = from->nprincipals;
1189	if (to->nprincipals > CERT_MAX_PRINCIPALS)
1190		fatal("%s: nprincipals (%u) > CERT_MAX_PRINCIPALS (%u)",
1191		    __func__, to->nprincipals, CERT_MAX_PRINCIPALS);
1192	if (to->nprincipals > 0) {
1193		to->principals = xcalloc(from->nprincipals,
1194		    sizeof(*to->principals));
1195		for (i = 0; i < to->nprincipals; i++)
1196			to->principals[i] = xstrdup(from->principals[i]);
1197	}
1198}
1199
1200Key *
1201key_from_private(const Key *k)
1202{
1203	Key *n = NULL;
1204	switch (k->type) {
1205	case KEY_DSA:
1206	case KEY_DSA_CERT_V00:
1207	case KEY_DSA_CERT:
1208		n = key_new(k->type);
1209		if ((BN_copy(n->dsa->p, k->dsa->p) == NULL) ||
1210		    (BN_copy(n->dsa->q, k->dsa->q) == NULL) ||
1211		    (BN_copy(n->dsa->g, k->dsa->g) == NULL) ||
1212		    (BN_copy(n->dsa->pub_key, k->dsa->pub_key) == NULL))
1213			fatal("key_from_private: BN_copy failed");
1214		break;
1215#ifdef OPENSSL_HAS_ECC
1216	case KEY_ECDSA:
1217	case KEY_ECDSA_CERT:
1218		n = key_new(k->type);
1219		n->ecdsa_nid = k->ecdsa_nid;
1220		if ((n->ecdsa = EC_KEY_new_by_curve_name(k->ecdsa_nid)) == NULL)
1221			fatal("%s: EC_KEY_new_by_curve_name failed", __func__);
1222		if (EC_KEY_set_public_key(n->ecdsa,
1223		    EC_KEY_get0_public_key(k->ecdsa)) != 1)
1224			fatal("%s: EC_KEY_set_public_key failed", __func__);
1225		break;
1226#endif
1227	case KEY_RSA:
1228	case KEY_RSA1:
1229	case KEY_RSA_CERT_V00:
1230	case KEY_RSA_CERT:
1231		n = key_new(k->type);
1232		if ((BN_copy(n->rsa->n, k->rsa->n) == NULL) ||
1233		    (BN_copy(n->rsa->e, k->rsa->e) == NULL))
1234			fatal("key_from_private: BN_copy failed");
1235		break;
1236	default:
1237		fatal("key_from_private: unknown type %d", k->type);
1238		break;
1239	}
1240	if (key_is_cert(k))
1241		key_cert_copy(k, n);
1242	return n;
1243}
1244
1245int
1246key_type_from_name(char *name)
1247{
1248	if (strcmp(name, "rsa1") == 0) {
1249		return KEY_RSA1;
1250	} else if (strcmp(name, "rsa") == 0) {
1251		return KEY_RSA;
1252	} else if (strcmp(name, "dsa") == 0) {
1253		return KEY_DSA;
1254	} else if (strcmp(name, "ssh-rsa") == 0) {
1255		return KEY_RSA;
1256	} else if (strcmp(name, "ssh-dss") == 0) {
1257		return KEY_DSA;
1258#ifdef OPENSSL_HAS_ECC
1259	} else if (strcmp(name, "ecdsa") == 0 ||
1260	    strcmp(name, "ecdsa-sha2-nistp256") == 0 ||
1261	    strcmp(name, "ecdsa-sha2-nistp384") == 0 ||
1262	    strcmp(name, "ecdsa-sha2-nistp521") == 0) {
1263		return KEY_ECDSA;
1264#endif
1265	} else if (strcmp(name, "ssh-rsa-cert-v00@openssh.com") == 0) {
1266		return KEY_RSA_CERT_V00;
1267	} else if (strcmp(name, "ssh-dss-cert-v00@openssh.com") == 0) {
1268		return KEY_DSA_CERT_V00;
1269	} else if (strcmp(name, "ssh-rsa-cert-v01@openssh.com") == 0) {
1270		return KEY_RSA_CERT;
1271	} else if (strcmp(name, "ssh-dss-cert-v01@openssh.com") == 0) {
1272		return KEY_DSA_CERT;
1273#ifdef OPENSSL_HAS_ECC
1274	} else if (strcmp(name, "ecdsa-sha2-nistp256-cert-v01@openssh.com") == 0 ||
1275	    strcmp(name, "ecdsa-sha2-nistp384-cert-v01@openssh.com") == 0 ||
1276	    strcmp(name, "ecdsa-sha2-nistp521-cert-v01@openssh.com") == 0) {
1277		return KEY_ECDSA_CERT;
1278#endif
1279	}
1280
1281	debug2("key_type_from_name: unknown key type '%s'", name);
1282	return KEY_UNSPEC;
1283}
1284
1285int
1286key_ecdsa_nid_from_name(const char *name)
1287{
1288#ifdef OPENSSL_HAS_ECC
1289	if (strcmp(name, "ecdsa-sha2-nistp256") == 0 ||
1290	    strcmp(name, "ecdsa-sha2-nistp256-cert-v01@openssh.com") == 0)
1291		return NID_X9_62_prime256v1;
1292	if (strcmp(name, "ecdsa-sha2-nistp384") == 0 ||
1293	    strcmp(name, "ecdsa-sha2-nistp384-cert-v01@openssh.com") == 0)
1294		return NID_secp384r1;
1295	if (strcmp(name, "ecdsa-sha2-nistp521") == 0 ||
1296	    strcmp(name, "ecdsa-sha2-nistp521-cert-v01@openssh.com") == 0)
1297		return NID_secp521r1;
1298#endif /* OPENSSL_HAS_ECC */
1299
1300	debug2("%s: unknown/non-ECDSA key type '%s'", __func__, name);
1301	return -1;
1302}
1303
1304int
1305key_names_valid2(const char *names)
1306{
1307	char *s, *cp, *p;
1308
1309	if (names == NULL || strcmp(names, "") == 0)
1310		return 0;
1311	s = cp = xstrdup(names);
1312	for ((p = strsep(&cp, ",")); p && *p != '\0';
1313	    (p = strsep(&cp, ","))) {
1314		switch (key_type_from_name(p)) {
1315		case KEY_RSA1:
1316		case KEY_UNSPEC:
1317			xfree(s);
1318			return 0;
1319		}
1320	}
1321	debug3("key names ok: [%s]", names);
1322	xfree(s);
1323	return 1;
1324}
1325
1326static int
1327cert_parse(Buffer *b, Key *key, const u_char *blob, u_int blen)
1328{
1329	u_char *principals, *critical, *exts, *sig_key, *sig;
1330	u_int signed_len, plen, clen, sklen, slen, kidlen, elen;
1331	Buffer tmp;
1332	char *principal;
1333	int ret = -1;
1334	int v00 = key->type == KEY_DSA_CERT_V00 ||
1335	    key->type == KEY_RSA_CERT_V00;
1336
1337	buffer_init(&tmp);
1338
1339	/* Copy the entire key blob for verification and later serialisation */
1340	buffer_append(&key->cert->certblob, blob, blen);
1341
1342	elen = 0; /* Not touched for v00 certs */
1343	principals = exts = critical = sig_key = sig = NULL;
1344	if ((!v00 && buffer_get_int64_ret(&key->cert->serial, b) != 0) ||
1345	    buffer_get_int_ret(&key->cert->type, b) != 0 ||
1346	    (key->cert->key_id = buffer_get_cstring_ret(b, &kidlen)) == NULL ||
1347	    (principals = buffer_get_string_ret(b, &plen)) == NULL ||
1348	    buffer_get_int64_ret(&key->cert->valid_after, b) != 0 ||
1349	    buffer_get_int64_ret(&key->cert->valid_before, b) != 0 ||
1350	    (critical = buffer_get_string_ret(b, &clen)) == NULL ||
1351	    (!v00 && (exts = buffer_get_string_ret(b, &elen)) == NULL) ||
1352	    (v00 && buffer_get_string_ptr_ret(b, NULL) == NULL) || /* nonce */
1353	    buffer_get_string_ptr_ret(b, NULL) == NULL || /* reserved */
1354	    (sig_key = buffer_get_string_ret(b, &sklen)) == NULL) {
1355		error("%s: parse error", __func__);
1356		goto out;
1357	}
1358
1359	if (kidlen != strlen(key->cert->key_id)) {
1360		error("%s: key ID contains \\0 character", __func__);
1361		goto out;
1362	}
1363
1364	/* Signature is left in the buffer so we can calculate this length */
1365	signed_len = buffer_len(&key->cert->certblob) - buffer_len(b);
1366
1367	if ((sig = buffer_get_string_ret(b, &slen)) == NULL) {
1368		error("%s: parse error", __func__);
1369		goto out;
1370	}
1371
1372	if (key->cert->type != SSH2_CERT_TYPE_USER &&
1373	    key->cert->type != SSH2_CERT_TYPE_HOST) {
1374		error("Unknown certificate type %u", key->cert->type);
1375		goto out;
1376	}
1377
1378	buffer_append(&tmp, principals, plen);
1379	while (buffer_len(&tmp) > 0) {
1380		if (key->cert->nprincipals >= CERT_MAX_PRINCIPALS) {
1381			error("%s: Too many principals", __func__);
1382			goto out;
1383		}
1384		if ((principal = buffer_get_cstring_ret(&tmp, &plen)) == NULL) {
1385			error("%s: Principals data invalid", __func__);
1386			goto out;
1387		}
1388		key->cert->principals = xrealloc(key->cert->principals,
1389		    key->cert->nprincipals + 1, sizeof(*key->cert->principals));
1390		key->cert->principals[key->cert->nprincipals++] = principal;
1391	}
1392
1393	buffer_clear(&tmp);
1394
1395	buffer_append(&key->cert->critical, critical, clen);
1396	buffer_append(&tmp, critical, clen);
1397	/* validate structure */
1398	while (buffer_len(&tmp) != 0) {
1399		if (buffer_get_string_ptr_ret(&tmp, NULL) == NULL ||
1400		    buffer_get_string_ptr_ret(&tmp, NULL) == NULL) {
1401			error("%s: critical option data invalid", __func__);
1402			goto out;
1403		}
1404	}
1405	buffer_clear(&tmp);
1406
1407	buffer_append(&key->cert->extensions, exts, elen);
1408	buffer_append(&tmp, exts, elen);
1409	/* validate structure */
1410	while (buffer_len(&tmp) != 0) {
1411		if (buffer_get_string_ptr_ret(&tmp, NULL) == NULL ||
1412		    buffer_get_string_ptr_ret(&tmp, NULL) == NULL) {
1413			error("%s: extension data invalid", __func__);
1414			goto out;
1415		}
1416	}
1417	buffer_clear(&tmp);
1418
1419	if ((key->cert->signature_key = key_from_blob(sig_key,
1420	    sklen)) == NULL) {
1421		error("%s: Signature key invalid", __func__);
1422		goto out;
1423	}
1424	if (key->cert->signature_key->type != KEY_RSA &&
1425	    key->cert->signature_key->type != KEY_DSA &&
1426	    key->cert->signature_key->type != KEY_ECDSA) {
1427		error("%s: Invalid signature key type %s (%d)", __func__,
1428		    key_type(key->cert->signature_key),
1429		    key->cert->signature_key->type);
1430		goto out;
1431	}
1432
1433	switch (key_verify(key->cert->signature_key, sig, slen,
1434	    buffer_ptr(&key->cert->certblob), signed_len)) {
1435	case 1:
1436		ret = 0;
1437		break; /* Good signature */
1438	case 0:
1439		error("%s: Invalid signature on certificate", __func__);
1440		goto out;
1441	case -1:
1442		error("%s: Certificate signature verification failed",
1443		    __func__);
1444		goto out;
1445	}
1446
1447 out:
1448	buffer_free(&tmp);
1449	if (principals != NULL)
1450		xfree(principals);
1451	if (critical != NULL)
1452		xfree(critical);
1453	if (exts != NULL)
1454		xfree(exts);
1455	if (sig_key != NULL)
1456		xfree(sig_key);
1457	if (sig != NULL)
1458		xfree(sig);
1459	return ret;
1460}
1461
1462Key *
1463key_from_blob(const u_char *blob, u_int blen)
1464{
1465	Buffer b;
1466	int rlen, type;
1467	char *ktype = NULL, *curve = NULL;
1468	Key *key = NULL;
1469#ifdef OPENSSL_HAS_ECC
1470	EC_POINT *q = NULL;
1471	int nid = -1;
1472#endif
1473
1474#ifdef DEBUG_PK
1475	dump_base64(stderr, blob, blen);
1476#endif
1477	buffer_init(&b);
1478	buffer_append(&b, blob, blen);
1479	if ((ktype = buffer_get_cstring_ret(&b, NULL)) == NULL) {
1480		error("key_from_blob: can't read key type");
1481		goto out;
1482	}
1483
1484	type = key_type_from_name(ktype);
1485#ifdef OPENSSL_HAS_ECC
1486	if (key_type_plain(type) == KEY_ECDSA)
1487		nid = key_ecdsa_nid_from_name(ktype);
1488#endif
1489
1490	switch (type) {
1491	case KEY_RSA_CERT:
1492		(void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1493		/* FALLTHROUGH */
1494	case KEY_RSA:
1495	case KEY_RSA_CERT_V00:
1496		key = key_new(type);
1497		if (buffer_get_bignum2_ret(&b, key->rsa->e) == -1 ||
1498		    buffer_get_bignum2_ret(&b, key->rsa->n) == -1) {
1499			error("key_from_blob: can't read rsa key");
1500 badkey:
1501			key_free(key);
1502			key = NULL;
1503			goto out;
1504		}
1505#ifdef DEBUG_PK
1506		RSA_print_fp(stderr, key->rsa, 8);
1507#endif
1508		break;
1509	case KEY_DSA_CERT:
1510		(void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1511		/* FALLTHROUGH */
1512	case KEY_DSA:
1513	case KEY_DSA_CERT_V00:
1514		key = key_new(type);
1515		if (buffer_get_bignum2_ret(&b, key->dsa->p) == -1 ||
1516		    buffer_get_bignum2_ret(&b, key->dsa->q) == -1 ||
1517		    buffer_get_bignum2_ret(&b, key->dsa->g) == -1 ||
1518		    buffer_get_bignum2_ret(&b, key->dsa->pub_key) == -1) {
1519			error("key_from_blob: can't read dsa key");
1520			goto badkey;
1521		}
1522#ifdef DEBUG_PK
1523		DSA_print_fp(stderr, key->dsa, 8);
1524#endif
1525		break;
1526#ifdef OPENSSL_HAS_ECC
1527	case KEY_ECDSA_CERT:
1528		(void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1529		/* FALLTHROUGH */
1530	case KEY_ECDSA:
1531		key = key_new(type);
1532		key->ecdsa_nid = nid;
1533		if ((curve = buffer_get_string_ret(&b, NULL)) == NULL) {
1534			error("key_from_blob: can't read ecdsa curve");
1535			goto badkey;
1536		}
1537		if (key->ecdsa_nid != key_curve_name_to_nid(curve)) {
1538			error("key_from_blob: ecdsa curve doesn't match type");
1539			goto badkey;
1540		}
1541		if (key->ecdsa != NULL)
1542			EC_KEY_free(key->ecdsa);
1543		if ((key->ecdsa = EC_KEY_new_by_curve_name(key->ecdsa_nid))
1544		    == NULL)
1545			fatal("key_from_blob: EC_KEY_new_by_curve_name failed");
1546		if ((q = EC_POINT_new(EC_KEY_get0_group(key->ecdsa))) == NULL)
1547			fatal("key_from_blob: EC_POINT_new failed");
1548		if (buffer_get_ecpoint_ret(&b, EC_KEY_get0_group(key->ecdsa),
1549		    q) == -1) {
1550			error("key_from_blob: can't read ecdsa key point");
1551			goto badkey;
1552		}
1553		if (key_ec_validate_public(EC_KEY_get0_group(key->ecdsa),
1554		    q) != 0)
1555			goto badkey;
1556		if (EC_KEY_set_public_key(key->ecdsa, q) != 1)
1557			fatal("key_from_blob: EC_KEY_set_public_key failed");
1558#ifdef DEBUG_PK
1559		key_dump_ec_point(EC_KEY_get0_group(key->ecdsa), q);
1560#endif
1561		break;
1562#endif /* OPENSSL_HAS_ECC */
1563	case KEY_UNSPEC:
1564		key = key_new(type);
1565		break;
1566	default:
1567		error("key_from_blob: cannot handle type %s", ktype);
1568		goto out;
1569	}
1570	if (key_is_cert(key) && cert_parse(&b, key, blob, blen) == -1) {
1571		error("key_from_blob: can't parse cert data");
1572		goto badkey;
1573	}
1574	rlen = buffer_len(&b);
1575	if (key != NULL && rlen != 0)
1576		error("key_from_blob: remaining bytes in key blob %d", rlen);
1577 out:
1578	if (ktype != NULL)
1579		xfree(ktype);
1580	if (curve != NULL)
1581		xfree(curve);
1582#ifdef OPENSSL_HAS_ECC
1583	if (q != NULL)
1584		EC_POINT_free(q);
1585#endif
1586	buffer_free(&b);
1587	return key;
1588}
1589
1590int
1591key_to_blob(const Key *key, u_char **blobp, u_int *lenp)
1592{
1593	Buffer b;
1594	int len;
1595
1596	if (key == NULL) {
1597		error("key_to_blob: key == NULL");
1598		return 0;
1599	}
1600	buffer_init(&b);
1601	switch (key->type) {
1602	case KEY_DSA_CERT_V00:
1603	case KEY_RSA_CERT_V00:
1604	case KEY_DSA_CERT:
1605	case KEY_ECDSA_CERT:
1606	case KEY_RSA_CERT:
1607		/* Use the existing blob */
1608		buffer_append(&b, buffer_ptr(&key->cert->certblob),
1609		    buffer_len(&key->cert->certblob));
1610		break;
1611	case KEY_DSA:
1612		buffer_put_cstring(&b, key_ssh_name(key));
1613		buffer_put_bignum2(&b, key->dsa->p);
1614		buffer_put_bignum2(&b, key->dsa->q);
1615		buffer_put_bignum2(&b, key->dsa->g);
1616		buffer_put_bignum2(&b, key->dsa->pub_key);
1617		break;
1618#ifdef OPENSSL_HAS_ECC
1619	case KEY_ECDSA:
1620		buffer_put_cstring(&b, key_ssh_name(key));
1621		buffer_put_cstring(&b, key_curve_nid_to_name(key->ecdsa_nid));
1622		buffer_put_ecpoint(&b, EC_KEY_get0_group(key->ecdsa),
1623		    EC_KEY_get0_public_key(key->ecdsa));
1624		break;
1625#endif
1626	case KEY_RSA:
1627		buffer_put_cstring(&b, key_ssh_name(key));
1628		buffer_put_bignum2(&b, key->rsa->e);
1629		buffer_put_bignum2(&b, key->rsa->n);
1630		break;
1631	default:
1632		error("key_to_blob: unsupported key type %d", key->type);
1633		buffer_free(&b);
1634		return 0;
1635	}
1636	len = buffer_len(&b);
1637	if (lenp != NULL)
1638		*lenp = len;
1639	if (blobp != NULL) {
1640		*blobp = xmalloc(len);
1641		memcpy(*blobp, buffer_ptr(&b), len);
1642	}
1643	memset(buffer_ptr(&b), 0, len);
1644	buffer_free(&b);
1645	return len;
1646}
1647
1648int
1649key_sign(
1650    const Key *key,
1651    u_char **sigp, u_int *lenp,
1652    const u_char *data, u_int datalen)
1653{
1654	switch (key->type) {
1655	case KEY_DSA_CERT_V00:
1656	case KEY_DSA_CERT:
1657	case KEY_DSA:
1658		return ssh_dss_sign(key, sigp, lenp, data, datalen);
1659#ifdef OPENSSL_HAS_ECC
1660	case KEY_ECDSA_CERT:
1661	case KEY_ECDSA:
1662		return ssh_ecdsa_sign(key, sigp, lenp, data, datalen);
1663#endif
1664	case KEY_RSA_CERT_V00:
1665	case KEY_RSA_CERT:
1666	case KEY_RSA:
1667		return ssh_rsa_sign(key, sigp, lenp, data, datalen);
1668	default:
1669		error("key_sign: invalid key type %d", key->type);
1670		return -1;
1671	}
1672}
1673
1674/*
1675 * key_verify returns 1 for a correct signature, 0 for an incorrect signature
1676 * and -1 on error.
1677 */
1678int
1679key_verify(
1680    const Key *key,
1681    const u_char *signature, u_int signaturelen,
1682    const u_char *data, u_int datalen)
1683{
1684	if (signaturelen == 0)
1685		return -1;
1686
1687	switch (key->type) {
1688	case KEY_DSA_CERT_V00:
1689	case KEY_DSA_CERT:
1690	case KEY_DSA:
1691		return ssh_dss_verify(key, signature, signaturelen, data, datalen);
1692#ifdef OPENSSL_HAS_ECC
1693	case KEY_ECDSA_CERT:
1694	case KEY_ECDSA:
1695		return ssh_ecdsa_verify(key, signature, signaturelen, data, datalen);
1696#endif
1697	case KEY_RSA_CERT_V00:
1698	case KEY_RSA_CERT:
1699	case KEY_RSA:
1700		return ssh_rsa_verify(key, signature, signaturelen, data, datalen);
1701	default:
1702		error("key_verify: invalid key type %d", key->type);
1703		return -1;
1704	}
1705}
1706
1707/* Converts a private to a public key */
1708Key *
1709key_demote(const Key *k)
1710{
1711	Key *pk;
1712
1713	pk = xcalloc(1, sizeof(*pk));
1714	pk->type = k->type;
1715	pk->flags = k->flags;
1716	pk->ecdsa_nid = k->ecdsa_nid;
1717	pk->dsa = NULL;
1718	pk->ecdsa = NULL;
1719	pk->rsa = NULL;
1720
1721	switch (k->type) {
1722	case KEY_RSA_CERT_V00:
1723	case KEY_RSA_CERT:
1724		key_cert_copy(k, pk);
1725		/* FALLTHROUGH */
1726	case KEY_RSA1:
1727	case KEY_RSA:
1728		if ((pk->rsa = RSA_new()) == NULL)
1729			fatal("key_demote: RSA_new failed");
1730		if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL)
1731			fatal("key_demote: BN_dup failed");
1732		if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL)
1733			fatal("key_demote: BN_dup failed");
1734		break;
1735	case KEY_DSA_CERT_V00:
1736	case KEY_DSA_CERT:
1737		key_cert_copy(k, pk);
1738		/* FALLTHROUGH */
1739	case KEY_DSA:
1740		if ((pk->dsa = DSA_new()) == NULL)
1741			fatal("key_demote: DSA_new failed");
1742		if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL)
1743			fatal("key_demote: BN_dup failed");
1744		if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL)
1745			fatal("key_demote: BN_dup failed");
1746		if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL)
1747			fatal("key_demote: BN_dup failed");
1748		if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL)
1749			fatal("key_demote: BN_dup failed");
1750		break;
1751#ifdef OPENSSL_HAS_ECC
1752	case KEY_ECDSA_CERT:
1753		key_cert_copy(k, pk);
1754		/* FALLTHROUGH */
1755	case KEY_ECDSA:
1756		if ((pk->ecdsa = EC_KEY_new_by_curve_name(pk->ecdsa_nid)) == NULL)
1757			fatal("key_demote: EC_KEY_new_by_curve_name failed");
1758		if (EC_KEY_set_public_key(pk->ecdsa,
1759		    EC_KEY_get0_public_key(k->ecdsa)) != 1)
1760			fatal("key_demote: EC_KEY_set_public_key failed");
1761		break;
1762#endif
1763	default:
1764		fatal("key_free: bad key type %d", k->type);
1765		break;
1766	}
1767
1768	return (pk);
1769}
1770
1771int
1772key_is_cert(const Key *k)
1773{
1774	if (k == NULL)
1775		return 0;
1776	switch (k->type) {
1777	case KEY_RSA_CERT_V00:
1778	case KEY_DSA_CERT_V00:
1779	case KEY_RSA_CERT:
1780	case KEY_DSA_CERT:
1781	case KEY_ECDSA_CERT:
1782		return 1;
1783	default:
1784		return 0;
1785	}
1786}
1787
1788/* Return the cert-less equivalent to a certified key type */
1789int
1790key_type_plain(int type)
1791{
1792	switch (type) {
1793	case KEY_RSA_CERT_V00:
1794	case KEY_RSA_CERT:
1795		return KEY_RSA;
1796	case KEY_DSA_CERT_V00:
1797	case KEY_DSA_CERT:
1798		return KEY_DSA;
1799	case KEY_ECDSA_CERT:
1800		return KEY_ECDSA;
1801	default:
1802		return type;
1803	}
1804}
1805
1806/* Convert a KEY_RSA or KEY_DSA to their _CERT equivalent */
1807int
1808key_to_certified(Key *k, int legacy)
1809{
1810	switch (k->type) {
1811	case KEY_RSA:
1812		k->cert = cert_new();
1813		k->type = legacy ? KEY_RSA_CERT_V00 : KEY_RSA_CERT;
1814		return 0;
1815	case KEY_DSA:
1816		k->cert = cert_new();
1817		k->type = legacy ? KEY_DSA_CERT_V00 : KEY_DSA_CERT;
1818		return 0;
1819	case KEY_ECDSA:
1820		if (legacy)
1821			fatal("%s: legacy ECDSA certificates are not supported",
1822			    __func__);
1823		k->cert = cert_new();
1824		k->type = KEY_ECDSA_CERT;
1825		return 0;
1826	default:
1827		error("%s: key has incorrect type %s", __func__, key_type(k));
1828		return -1;
1829	}
1830}
1831
1832/* Convert a KEY_RSA_CERT or KEY_DSA_CERT to their raw key equivalent */
1833int
1834key_drop_cert(Key *k)
1835{
1836	switch (k->type) {
1837	case KEY_RSA_CERT_V00:
1838	case KEY_RSA_CERT:
1839		cert_free(k->cert);
1840		k->type = KEY_RSA;
1841		return 0;
1842	case KEY_DSA_CERT_V00:
1843	case KEY_DSA_CERT:
1844		cert_free(k->cert);
1845		k->type = KEY_DSA;
1846		return 0;
1847	case KEY_ECDSA_CERT:
1848		cert_free(k->cert);
1849		k->type = KEY_ECDSA;
1850		return 0;
1851	default:
1852		error("%s: key has incorrect type %s", __func__, key_type(k));
1853		return -1;
1854	}
1855}
1856
1857/*
1858 * Sign a KEY_RSA_CERT, KEY_DSA_CERT or KEY_ECDSA_CERT, (re-)generating
1859 * the signed certblob
1860 */
1861int
1862key_certify(Key *k, Key *ca)
1863{
1864	Buffer principals;
1865	u_char *ca_blob, *sig_blob, nonce[32];
1866	u_int i, ca_len, sig_len;
1867
1868	if (k->cert == NULL) {
1869		error("%s: key lacks cert info", __func__);
1870		return -1;
1871	}
1872
1873	if (!key_is_cert(k)) {
1874		error("%s: certificate has unknown type %d", __func__,
1875		    k->cert->type);
1876		return -1;
1877	}
1878
1879	if (ca->type != KEY_RSA && ca->type != KEY_DSA &&
1880	    ca->type != KEY_ECDSA) {
1881		error("%s: CA key has unsupported type %s", __func__,
1882		    key_type(ca));
1883		return -1;
1884	}
1885
1886	key_to_blob(ca, &ca_blob, &ca_len);
1887
1888	buffer_clear(&k->cert->certblob);
1889	buffer_put_cstring(&k->cert->certblob, key_ssh_name(k));
1890
1891	/* -v01 certs put nonce first */
1892	arc4random_buf(&nonce, sizeof(nonce));
1893	if (!key_cert_is_legacy(k))
1894		buffer_put_string(&k->cert->certblob, nonce, sizeof(nonce));
1895
1896	switch (k->type) {
1897	case KEY_DSA_CERT_V00:
1898	case KEY_DSA_CERT:
1899		buffer_put_bignum2(&k->cert->certblob, k->dsa->p);
1900		buffer_put_bignum2(&k->cert->certblob, k->dsa->q);
1901		buffer_put_bignum2(&k->cert->certblob, k->dsa->g);
1902		buffer_put_bignum2(&k->cert->certblob, k->dsa->pub_key);
1903		break;
1904#ifdef OPENSSL_HAS_ECC
1905	case KEY_ECDSA_CERT:
1906		buffer_put_cstring(&k->cert->certblob,
1907		    key_curve_nid_to_name(k->ecdsa_nid));
1908		buffer_put_ecpoint(&k->cert->certblob,
1909		    EC_KEY_get0_group(k->ecdsa),
1910		    EC_KEY_get0_public_key(k->ecdsa));
1911		break;
1912#endif
1913	case KEY_RSA_CERT_V00:
1914	case KEY_RSA_CERT:
1915		buffer_put_bignum2(&k->cert->certblob, k->rsa->e);
1916		buffer_put_bignum2(&k->cert->certblob, k->rsa->n);
1917		break;
1918	default:
1919		error("%s: key has incorrect type %s", __func__, key_type(k));
1920		buffer_clear(&k->cert->certblob);
1921		xfree(ca_blob);
1922		return -1;
1923	}
1924
1925	/* -v01 certs have a serial number next */
1926	if (!key_cert_is_legacy(k))
1927		buffer_put_int64(&k->cert->certblob, k->cert->serial);
1928
1929	buffer_put_int(&k->cert->certblob, k->cert->type);
1930	buffer_put_cstring(&k->cert->certblob, k->cert->key_id);
1931
1932	buffer_init(&principals);
1933	for (i = 0; i < k->cert->nprincipals; i++)
1934		buffer_put_cstring(&principals, k->cert->principals[i]);
1935	buffer_put_string(&k->cert->certblob, buffer_ptr(&principals),
1936	    buffer_len(&principals));
1937	buffer_free(&principals);
1938
1939	buffer_put_int64(&k->cert->certblob, k->cert->valid_after);
1940	buffer_put_int64(&k->cert->certblob, k->cert->valid_before);
1941	buffer_put_string(&k->cert->certblob,
1942	    buffer_ptr(&k->cert->critical), buffer_len(&k->cert->critical));
1943
1944	/* -v01 certs have non-critical options here */
1945	if (!key_cert_is_legacy(k)) {
1946		buffer_put_string(&k->cert->certblob,
1947		    buffer_ptr(&k->cert->extensions),
1948		    buffer_len(&k->cert->extensions));
1949	}
1950
1951	/* -v00 certs put the nonce at the end */
1952	if (key_cert_is_legacy(k))
1953		buffer_put_string(&k->cert->certblob, nonce, sizeof(nonce));
1954
1955	buffer_put_string(&k->cert->certblob, NULL, 0); /* reserved */
1956	buffer_put_string(&k->cert->certblob, ca_blob, ca_len);
1957	xfree(ca_blob);
1958
1959	/* Sign the whole mess */
1960	if (key_sign(ca, &sig_blob, &sig_len, buffer_ptr(&k->cert->certblob),
1961	    buffer_len(&k->cert->certblob)) != 0) {
1962		error("%s: signature operation failed", __func__);
1963		buffer_clear(&k->cert->certblob);
1964		return -1;
1965	}
1966	/* Append signature and we are done */
1967	buffer_put_string(&k->cert->certblob, sig_blob, sig_len);
1968	xfree(sig_blob);
1969
1970	return 0;
1971}
1972
1973int
1974key_cert_check_authority(const Key *k, int want_host, int require_principal,
1975    const char *name, const char **reason)
1976{
1977	u_int i, principal_matches;
1978	time_t now = time(NULL);
1979
1980	if (want_host) {
1981		if (k->cert->type != SSH2_CERT_TYPE_HOST) {
1982			*reason = "Certificate invalid: not a host certificate";
1983			return -1;
1984		}
1985	} else {
1986		if (k->cert->type != SSH2_CERT_TYPE_USER) {
1987			*reason = "Certificate invalid: not a user certificate";
1988			return -1;
1989		}
1990	}
1991	if (now < 0) {
1992		error("%s: system clock lies before epoch", __func__);
1993		*reason = "Certificate invalid: not yet valid";
1994		return -1;
1995	}
1996	if ((u_int64_t)now < k->cert->valid_after) {
1997		*reason = "Certificate invalid: not yet valid";
1998		return -1;
1999	}
2000	if ((u_int64_t)now >= k->cert->valid_before) {
2001		*reason = "Certificate invalid: expired";
2002		return -1;
2003	}
2004	if (k->cert->nprincipals == 0) {
2005		if (require_principal) {
2006			*reason = "Certificate lacks principal list";
2007			return -1;
2008		}
2009	} else if (name != NULL) {
2010		principal_matches = 0;
2011		for (i = 0; i < k->cert->nprincipals; i++) {
2012			if (strcmp(name, k->cert->principals[i]) == 0) {
2013				principal_matches = 1;
2014				break;
2015			}
2016		}
2017		if (!principal_matches) {
2018			*reason = "Certificate invalid: name is not a listed "
2019			    "principal";
2020			return -1;
2021		}
2022	}
2023	return 0;
2024}
2025
2026int
2027key_cert_is_legacy(Key *k)
2028{
2029	switch (k->type) {
2030	case KEY_DSA_CERT_V00:
2031	case KEY_RSA_CERT_V00:
2032		return 1;
2033	default:
2034		return 0;
2035	}
2036}
2037
2038/* XXX: these are really begging for a table-driven approach */
2039int
2040key_curve_name_to_nid(const char *name)
2041{
2042#ifdef OPENSSL_HAS_ECC
2043	if (strcmp(name, "nistp256") == 0)
2044		return NID_X9_62_prime256v1;
2045	else if (strcmp(name, "nistp384") == 0)
2046		return NID_secp384r1;
2047	else if (strcmp(name, "nistp521") == 0)
2048		return NID_secp521r1;
2049#endif
2050
2051	debug("%s: unsupported EC curve name \"%.100s\"", __func__, name);
2052	return -1;
2053}
2054
2055u_int
2056key_curve_nid_to_bits(int nid)
2057{
2058	switch (nid) {
2059#ifdef OPENSSL_HAS_ECC
2060	case NID_X9_62_prime256v1:
2061		return 256;
2062	case NID_secp384r1:
2063		return 384;
2064	case NID_secp521r1:
2065		return 521;
2066#endif
2067	default:
2068		error("%s: unsupported EC curve nid %d", __func__, nid);
2069		return 0;
2070	}
2071}
2072
2073const char *
2074key_curve_nid_to_name(int nid)
2075{
2076#ifdef OPENSSL_HAS_ECC
2077	if (nid == NID_X9_62_prime256v1)
2078		return "nistp256";
2079	else if (nid == NID_secp384r1)
2080		return "nistp384";
2081	else if (nid == NID_secp521r1)
2082		return "nistp521";
2083#endif
2084	error("%s: unsupported EC curve nid %d", __func__, nid);
2085	return NULL;
2086}
2087
2088#ifdef OPENSSL_HAS_ECC
2089const EVP_MD *
2090key_ec_nid_to_evpmd(int nid)
2091{
2092	int kbits = key_curve_nid_to_bits(nid);
2093
2094	if (kbits == 0)
2095		fatal("%s: invalid nid %d", __func__, nid);
2096	/* RFC5656 section 6.2.1 */
2097	if (kbits <= 256)
2098		return EVP_sha256();
2099	else if (kbits <= 384)
2100		return EVP_sha384();
2101	else
2102		return EVP_sha512();
2103}
2104
2105int
2106key_ec_validate_public(const EC_GROUP *group, const EC_POINT *public)
2107{
2108	BN_CTX *bnctx;
2109	EC_POINT *nq = NULL;
2110	BIGNUM *order, *x, *y, *tmp;
2111	int ret = -1;
2112
2113	if ((bnctx = BN_CTX_new()) == NULL)
2114		fatal("%s: BN_CTX_new failed", __func__);
2115	BN_CTX_start(bnctx);
2116
2117	/*
2118	 * We shouldn't ever hit this case because bignum_get_ecpoint()
2119	 * refuses to load GF2m points.
2120	 */
2121	if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) !=
2122	    NID_X9_62_prime_field) {
2123		error("%s: group is not a prime field", __func__);
2124		goto out;
2125	}
2126
2127	/* Q != infinity */
2128	if (EC_POINT_is_at_infinity(group, public)) {
2129		error("%s: received degenerate public key (infinity)",
2130		    __func__);
2131		goto out;
2132	}
2133
2134	if ((x = BN_CTX_get(bnctx)) == NULL ||
2135	    (y = BN_CTX_get(bnctx)) == NULL ||
2136	    (order = BN_CTX_get(bnctx)) == NULL ||
2137	    (tmp = BN_CTX_get(bnctx)) == NULL)
2138		fatal("%s: BN_CTX_get failed", __func__);
2139
2140	/* log2(x) > log2(order)/2, log2(y) > log2(order)/2 */
2141	if (EC_GROUP_get_order(group, order, bnctx) != 1)
2142		fatal("%s: EC_GROUP_get_order failed", __func__);
2143	if (EC_POINT_get_affine_coordinates_GFp(group, public,
2144	    x, y, bnctx) != 1)
2145		fatal("%s: EC_POINT_get_affine_coordinates_GFp", __func__);
2146	if (BN_num_bits(x) <= BN_num_bits(order) / 2) {
2147		error("%s: public key x coordinate too small: "
2148		    "bits(x) = %d, bits(order)/2 = %d", __func__,
2149		    BN_num_bits(x), BN_num_bits(order) / 2);
2150		goto out;
2151	}
2152	if (BN_num_bits(y) <= BN_num_bits(order) / 2) {
2153		error("%s: public key y coordinate too small: "
2154		    "bits(y) = %d, bits(order)/2 = %d", __func__,
2155		    BN_num_bits(x), BN_num_bits(order) / 2);
2156		goto out;
2157	}
2158
2159	/* nQ == infinity (n == order of subgroup) */
2160	if ((nq = EC_POINT_new(group)) == NULL)
2161		fatal("%s: BN_CTX_tmp failed", __func__);
2162	if (EC_POINT_mul(group, nq, NULL, public, order, bnctx) != 1)
2163		fatal("%s: EC_GROUP_mul failed", __func__);
2164	if (EC_POINT_is_at_infinity(group, nq) != 1) {
2165		error("%s: received degenerate public key (nQ != infinity)",
2166		    __func__);
2167		goto out;
2168	}
2169
2170	/* x < order - 1, y < order - 1 */
2171	if (!BN_sub(tmp, order, BN_value_one()))
2172		fatal("%s: BN_sub failed", __func__);
2173	if (BN_cmp(x, tmp) >= 0) {
2174		error("%s: public key x coordinate >= group order - 1",
2175		    __func__);
2176		goto out;
2177	}
2178	if (BN_cmp(y, tmp) >= 0) {
2179		error("%s: public key y coordinate >= group order - 1",
2180		    __func__);
2181		goto out;
2182	}
2183	ret = 0;
2184 out:
2185	BN_CTX_free(bnctx);
2186	EC_POINT_free(nq);
2187	return ret;
2188}
2189
2190int
2191key_ec_validate_private(const EC_KEY *key)
2192{
2193	BN_CTX *bnctx;
2194	BIGNUM *order, *tmp;
2195	int ret = -1;
2196
2197	if ((bnctx = BN_CTX_new()) == NULL)
2198		fatal("%s: BN_CTX_new failed", __func__);
2199	BN_CTX_start(bnctx);
2200
2201	if ((order = BN_CTX_get(bnctx)) == NULL ||
2202	    (tmp = BN_CTX_get(bnctx)) == NULL)
2203		fatal("%s: BN_CTX_get failed", __func__);
2204
2205	/* log2(private) > log2(order)/2 */
2206	if (EC_GROUP_get_order(EC_KEY_get0_group(key), order, bnctx) != 1)
2207		fatal("%s: EC_GROUP_get_order failed", __func__);
2208	if (BN_num_bits(EC_KEY_get0_private_key(key)) <=
2209	    BN_num_bits(order) / 2) {
2210		error("%s: private key too small: "
2211		    "bits(y) = %d, bits(order)/2 = %d", __func__,
2212		    BN_num_bits(EC_KEY_get0_private_key(key)),
2213		    BN_num_bits(order) / 2);
2214		goto out;
2215	}
2216
2217	/* private < order - 1 */
2218	if (!BN_sub(tmp, order, BN_value_one()))
2219		fatal("%s: BN_sub failed", __func__);
2220	if (BN_cmp(EC_KEY_get0_private_key(key), tmp) >= 0) {
2221		error("%s: private key >= group order - 1", __func__);
2222		goto out;
2223	}
2224	ret = 0;
2225 out:
2226	BN_CTX_free(bnctx);
2227	return ret;
2228}
2229
2230#if defined(DEBUG_KEXECDH) || defined(DEBUG_PK)
2231void
2232key_dump_ec_point(const EC_GROUP *group, const EC_POINT *point)
2233{
2234	BIGNUM *x, *y;
2235	BN_CTX *bnctx;
2236
2237	if (point == NULL) {
2238		fputs("point=(NULL)\n", stderr);
2239		return;
2240	}
2241	if ((bnctx = BN_CTX_new()) == NULL)
2242		fatal("%s: BN_CTX_new failed", __func__);
2243	BN_CTX_start(bnctx);
2244	if ((x = BN_CTX_get(bnctx)) == NULL || (y = BN_CTX_get(bnctx)) == NULL)
2245		fatal("%s: BN_CTX_get failed", __func__);
2246	if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) !=
2247	    NID_X9_62_prime_field)
2248		fatal("%s: group is not a prime field", __func__);
2249	if (EC_POINT_get_affine_coordinates_GFp(group, point, x, y, bnctx) != 1)
2250		fatal("%s: EC_POINT_get_affine_coordinates_GFp", __func__);
2251	fputs("x=", stderr);
2252	BN_print_fp(stderr, x);
2253	fputs("\ny=", stderr);
2254	BN_print_fp(stderr, y);
2255	fputs("\n", stderr);
2256	BN_CTX_free(bnctx);
2257}
2258
2259void
2260key_dump_ec_key(const EC_KEY *key)
2261{
2262	const BIGNUM *exponent;
2263
2264	key_dump_ec_point(EC_KEY_get0_group(key), EC_KEY_get0_public_key(key));
2265	fputs("exponent=", stderr);
2266	if ((exponent = EC_KEY_get0_private_key(key)) == NULL)
2267		fputs("(NULL)", stderr);
2268	else
2269		BN_print_fp(stderr, EC_KEY_get0_private_key(key));
2270	fputs("\n", stderr);
2271}
2272#endif /* defined(DEBUG_KEXECDH) || defined(DEBUG_PK) */
2273#endif /* OPENSSL_HAS_ECC */
2274