assembler-arm.cc revision 3100271588b61cbc1dc472a3f2f105d2eed8497f
1// Copyright (c) 1994-2006 Sun Microsystems Inc. 2// All Rights Reserved. 3// 4// Redistribution and use in source and binary forms, with or without 5// modification, are permitted provided that the following conditions 6// are met: 7// 8// - Redistributions of source code must retain the above copyright notice, 9// this list of conditions and the following disclaimer. 10// 11// - Redistribution in binary form must reproduce the above copyright 12// notice, this list of conditions and the following disclaimer in the 13// documentation and/or other materials provided with the 14// distribution. 15// 16// - Neither the name of Sun Microsystems or the names of contributors may 17// be used to endorse or promote products derived from this software without 18// specific prior written permission. 19// 20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 26// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 27// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 29// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 31// OF THE POSSIBILITY OF SUCH DAMAGE. 32 33// The original source code covered by the above license above has been 34// modified significantly by Google Inc. 35// Copyright 2010 the V8 project authors. All rights reserved. 36 37#include "v8.h" 38 39#include "arm/assembler-arm-inl.h" 40#include "serialize.h" 41 42namespace v8 { 43namespace internal { 44 45// Safe default is no features. 46unsigned CpuFeatures::supported_ = 0; 47unsigned CpuFeatures::enabled_ = 0; 48unsigned CpuFeatures::found_by_runtime_probing_ = 0; 49 50void CpuFeatures::Probe() { 51 // If the compiler is allowed to use vfp then we can use vfp too in our 52 // code generation. 53#if !defined(__arm__) 54 // For the simulator=arm build, use VFP when FLAG_enable_vfp3 is enabled. 55 if (FLAG_enable_vfp3) { 56 supported_ |= 1u << VFP3; 57 } 58 // For the simulator=arm build, use ARMv7 when FLAG_enable_armv7 is enabled 59 if (FLAG_enable_armv7) { 60 supported_ |= 1u << ARMv7; 61 } 62#else 63 if (Serializer::enabled()) { 64 supported_ |= 1u << VFP3; 65 //supported_ |= OS::CpuFeaturesImpliedByPlatform(); 66 return; // No features if we might serialize. 67 } 68 69 if (OS::ArmCpuHasFeature(VFP3)) { 70 // This implementation also sets the VFP flags if 71 // runtime detection of VFP returns true. 72 supported_ |= 1u << VFP3; 73 found_by_runtime_probing_ |= 1u << VFP3; 74 } 75 76 if (OS::ArmCpuHasFeature(ARMv7)) { 77 supported_ |= 1u << ARMv7; 78 found_by_runtime_probing_ |= 1u << ARMv7; 79 } 80#endif 81} 82 83 84// ----------------------------------------------------------------------------- 85// Implementation of Register and CRegister 86 87Register no_reg = { -1 }; 88 89Register r0 = { 0 }; 90Register r1 = { 1 }; 91Register r2 = { 2 }; 92Register r3 = { 3 }; 93Register r4 = { 4 }; 94Register r5 = { 5 }; 95Register r6 = { 6 }; 96Register r7 = { 7 }; 97Register r8 = { 8 }; // Used as context register. 98Register r9 = { 9 }; 99Register r10 = { 10 }; // Used as roots register. 100Register fp = { 11 }; 101Register ip = { 12 }; 102Register sp = { 13 }; 103Register lr = { 14 }; 104Register pc = { 15 }; 105 106 107CRegister no_creg = { -1 }; 108 109CRegister cr0 = { 0 }; 110CRegister cr1 = { 1 }; 111CRegister cr2 = { 2 }; 112CRegister cr3 = { 3 }; 113CRegister cr4 = { 4 }; 114CRegister cr5 = { 5 }; 115CRegister cr6 = { 6 }; 116CRegister cr7 = { 7 }; 117CRegister cr8 = { 8 }; 118CRegister cr9 = { 9 }; 119CRegister cr10 = { 10 }; 120CRegister cr11 = { 11 }; 121CRegister cr12 = { 12 }; 122CRegister cr13 = { 13 }; 123CRegister cr14 = { 14 }; 124CRegister cr15 = { 15 }; 125 126// Support for the VFP registers s0 to s31 (d0 to d15). 127// Note that "sN:sM" is the same as "dN/2". 128SwVfpRegister s0 = { 0 }; 129SwVfpRegister s1 = { 1 }; 130SwVfpRegister s2 = { 2 }; 131SwVfpRegister s3 = { 3 }; 132SwVfpRegister s4 = { 4 }; 133SwVfpRegister s5 = { 5 }; 134SwVfpRegister s6 = { 6 }; 135SwVfpRegister s7 = { 7 }; 136SwVfpRegister s8 = { 8 }; 137SwVfpRegister s9 = { 9 }; 138SwVfpRegister s10 = { 10 }; 139SwVfpRegister s11 = { 11 }; 140SwVfpRegister s12 = { 12 }; 141SwVfpRegister s13 = { 13 }; 142SwVfpRegister s14 = { 14 }; 143SwVfpRegister s15 = { 15 }; 144SwVfpRegister s16 = { 16 }; 145SwVfpRegister s17 = { 17 }; 146SwVfpRegister s18 = { 18 }; 147SwVfpRegister s19 = { 19 }; 148SwVfpRegister s20 = { 20 }; 149SwVfpRegister s21 = { 21 }; 150SwVfpRegister s22 = { 22 }; 151SwVfpRegister s23 = { 23 }; 152SwVfpRegister s24 = { 24 }; 153SwVfpRegister s25 = { 25 }; 154SwVfpRegister s26 = { 26 }; 155SwVfpRegister s27 = { 27 }; 156SwVfpRegister s28 = { 28 }; 157SwVfpRegister s29 = { 29 }; 158SwVfpRegister s30 = { 30 }; 159SwVfpRegister s31 = { 31 }; 160 161DwVfpRegister d0 = { 0 }; 162DwVfpRegister d1 = { 1 }; 163DwVfpRegister d2 = { 2 }; 164DwVfpRegister d3 = { 3 }; 165DwVfpRegister d4 = { 4 }; 166DwVfpRegister d5 = { 5 }; 167DwVfpRegister d6 = { 6 }; 168DwVfpRegister d7 = { 7 }; 169DwVfpRegister d8 = { 8 }; 170DwVfpRegister d9 = { 9 }; 171DwVfpRegister d10 = { 10 }; 172DwVfpRegister d11 = { 11 }; 173DwVfpRegister d12 = { 12 }; 174DwVfpRegister d13 = { 13 }; 175DwVfpRegister d14 = { 14 }; 176DwVfpRegister d15 = { 15 }; 177 178// ----------------------------------------------------------------------------- 179// Implementation of RelocInfo 180 181const int RelocInfo::kApplyMask = 0; 182 183 184void RelocInfo::PatchCode(byte* instructions, int instruction_count) { 185 // Patch the code at the current address with the supplied instructions. 186 Instr* pc = reinterpret_cast<Instr*>(pc_); 187 Instr* instr = reinterpret_cast<Instr*>(instructions); 188 for (int i = 0; i < instruction_count; i++) { 189 *(pc + i) = *(instr + i); 190 } 191 192 // Indicate that code has changed. 193 CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize); 194} 195 196 197// Patch the code at the current PC with a call to the target address. 198// Additional guard instructions can be added if required. 199void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { 200 // Patch the code at the current address with a call to the target. 201 UNIMPLEMENTED(); 202} 203 204 205// ----------------------------------------------------------------------------- 206// Implementation of Operand and MemOperand 207// See assembler-arm-inl.h for inlined constructors 208 209Operand::Operand(Handle<Object> handle) { 210 rm_ = no_reg; 211 // Verify all Objects referred by code are NOT in new space. 212 Object* obj = *handle; 213 ASSERT(!Heap::InNewSpace(obj)); 214 if (obj->IsHeapObject()) { 215 imm32_ = reinterpret_cast<intptr_t>(handle.location()); 216 rmode_ = RelocInfo::EMBEDDED_OBJECT; 217 } else { 218 // no relocation needed 219 imm32_ = reinterpret_cast<intptr_t>(obj); 220 rmode_ = RelocInfo::NONE; 221 } 222} 223 224 225Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) { 226 ASSERT(is_uint5(shift_imm)); 227 ASSERT(shift_op != ROR || shift_imm != 0); // use RRX if you mean it 228 rm_ = rm; 229 rs_ = no_reg; 230 shift_op_ = shift_op; 231 shift_imm_ = shift_imm & 31; 232 if (shift_op == RRX) { 233 // encoded as ROR with shift_imm == 0 234 ASSERT(shift_imm == 0); 235 shift_op_ = ROR; 236 shift_imm_ = 0; 237 } 238} 239 240 241Operand::Operand(Register rm, ShiftOp shift_op, Register rs) { 242 ASSERT(shift_op != RRX); 243 rm_ = rm; 244 rs_ = no_reg; 245 shift_op_ = shift_op; 246 rs_ = rs; 247} 248 249 250MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) { 251 rn_ = rn; 252 rm_ = no_reg; 253 offset_ = offset; 254 am_ = am; 255} 256 257MemOperand::MemOperand(Register rn, Register rm, AddrMode am) { 258 rn_ = rn; 259 rm_ = rm; 260 shift_op_ = LSL; 261 shift_imm_ = 0; 262 am_ = am; 263} 264 265 266MemOperand::MemOperand(Register rn, Register rm, 267 ShiftOp shift_op, int shift_imm, AddrMode am) { 268 ASSERT(is_uint5(shift_imm)); 269 rn_ = rn; 270 rm_ = rm; 271 shift_op_ = shift_op; 272 shift_imm_ = shift_imm & 31; 273 am_ = am; 274} 275 276 277// ----------------------------------------------------------------------------- 278// Implementation of Assembler. 279 280// Instruction encoding bits. 281enum { 282 H = 1 << 5, // halfword (or byte) 283 S6 = 1 << 6, // signed (or unsigned) 284 L = 1 << 20, // load (or store) 285 S = 1 << 20, // set condition code (or leave unchanged) 286 W = 1 << 21, // writeback base register (or leave unchanged) 287 A = 1 << 21, // accumulate in multiply instruction (or not) 288 B = 1 << 22, // unsigned byte (or word) 289 N = 1 << 22, // long (or short) 290 U = 1 << 23, // positive (or negative) offset/index 291 P = 1 << 24, // offset/pre-indexed addressing (or post-indexed addressing) 292 I = 1 << 25, // immediate shifter operand (or not) 293 294 B4 = 1 << 4, 295 B5 = 1 << 5, 296 B6 = 1 << 6, 297 B7 = 1 << 7, 298 B8 = 1 << 8, 299 B9 = 1 << 9, 300 B12 = 1 << 12, 301 B16 = 1 << 16, 302 B18 = 1 << 18, 303 B19 = 1 << 19, 304 B20 = 1 << 20, 305 B21 = 1 << 21, 306 B22 = 1 << 22, 307 B23 = 1 << 23, 308 B24 = 1 << 24, 309 B25 = 1 << 25, 310 B26 = 1 << 26, 311 B27 = 1 << 27, 312 313 // Instruction bit masks. 314 RdMask = 15 << 12, // in str instruction 315 CondMask = 15 << 28, 316 CoprocessorMask = 15 << 8, 317 OpCodeMask = 15 << 21, // in data-processing instructions 318 Imm24Mask = (1 << 24) - 1, 319 Off12Mask = (1 << 12) - 1, 320 // Reserved condition. 321 nv = 15 << 28 322}; 323 324 325// add(sp, sp, 4) instruction (aka Pop()) 326static const Instr kPopInstruction = 327 al | 4 * B21 | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12; 328// str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r)) 329// register r is not encoded. 330static const Instr kPushRegPattern = 331 al | B26 | 4 | NegPreIndex | sp.code() * B16; 332// ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r)) 333// register r is not encoded. 334static const Instr kPopRegPattern = 335 al | B26 | L | 4 | PostIndex | sp.code() * B16; 336// mov lr, pc 337const Instr kMovLrPc = al | 13*B21 | pc.code() | lr.code() * B12; 338// ldr pc, [pc, #XXX] 339const Instr kLdrPCPattern = al | B26 | L | pc.code() * B16; 340 341// Spare buffer. 342static const int kMinimalBufferSize = 4*KB; 343static byte* spare_buffer_ = NULL; 344 345Assembler::Assembler(void* buffer, int buffer_size) { 346 if (buffer == NULL) { 347 // Do our own buffer management. 348 if (buffer_size <= kMinimalBufferSize) { 349 buffer_size = kMinimalBufferSize; 350 351 if (spare_buffer_ != NULL) { 352 buffer = spare_buffer_; 353 spare_buffer_ = NULL; 354 } 355 } 356 if (buffer == NULL) { 357 buffer_ = NewArray<byte>(buffer_size); 358 } else { 359 buffer_ = static_cast<byte*>(buffer); 360 } 361 buffer_size_ = buffer_size; 362 own_buffer_ = true; 363 364 } else { 365 // Use externally provided buffer instead. 366 ASSERT(buffer_size > 0); 367 buffer_ = static_cast<byte*>(buffer); 368 buffer_size_ = buffer_size; 369 own_buffer_ = false; 370 } 371 372 // Setup buffer pointers. 373 ASSERT(buffer_ != NULL); 374 pc_ = buffer_; 375 reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); 376 num_prinfo_ = 0; 377 next_buffer_check_ = 0; 378 no_const_pool_before_ = 0; 379 last_const_pool_end_ = 0; 380 last_bound_pos_ = 0; 381 current_statement_position_ = RelocInfo::kNoPosition; 382 current_position_ = RelocInfo::kNoPosition; 383 written_statement_position_ = current_statement_position_; 384 written_position_ = current_position_; 385} 386 387 388Assembler::~Assembler() { 389 if (own_buffer_) { 390 if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { 391 spare_buffer_ = buffer_; 392 } else { 393 DeleteArray(buffer_); 394 } 395 } 396} 397 398 399void Assembler::GetCode(CodeDesc* desc) { 400 // Emit constant pool if necessary. 401 CheckConstPool(true, false); 402 ASSERT(num_prinfo_ == 0); 403 404 // Setup code descriptor. 405 desc->buffer = buffer_; 406 desc->buffer_size = buffer_size_; 407 desc->instr_size = pc_offset(); 408 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); 409} 410 411 412void Assembler::Align(int m) { 413 ASSERT(m >= 4 && IsPowerOf2(m)); 414 while ((pc_offset() & (m - 1)) != 0) { 415 nop(); 416 } 417} 418 419 420// Labels refer to positions in the (to be) generated code. 421// There are bound, linked, and unused labels. 422// 423// Bound labels refer to known positions in the already 424// generated code. pos() is the position the label refers to. 425// 426// Linked labels refer to unknown positions in the code 427// to be generated; pos() is the position of the last 428// instruction using the label. 429 430 431// The link chain is terminated by a negative code position (must be aligned) 432const int kEndOfChain = -4; 433 434 435int Assembler::target_at(int pos) { 436 Instr instr = instr_at(pos); 437 if ((instr & ~Imm24Mask) == 0) { 438 // Emitted label constant, not part of a branch. 439 return instr - (Code::kHeaderSize - kHeapObjectTag); 440 } 441 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24 442 int imm26 = ((instr & Imm24Mask) << 8) >> 6; 443 if ((instr & CondMask) == nv && (instr & B24) != 0) 444 // blx uses bit 24 to encode bit 2 of imm26 445 imm26 += 2; 446 447 return pos + kPcLoadDelta + imm26; 448} 449 450 451void Assembler::target_at_put(int pos, int target_pos) { 452 Instr instr = instr_at(pos); 453 if ((instr & ~Imm24Mask) == 0) { 454 ASSERT(target_pos == kEndOfChain || target_pos >= 0); 455 // Emitted label constant, not part of a branch. 456 // Make label relative to Code* of generated Code object. 457 instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); 458 return; 459 } 460 int imm26 = target_pos - (pos + kPcLoadDelta); 461 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24 462 if ((instr & CondMask) == nv) { 463 // blx uses bit 24 to encode bit 2 of imm26 464 ASSERT((imm26 & 1) == 0); 465 instr = (instr & ~(B24 | Imm24Mask)) | ((imm26 & 2) >> 1)*B24; 466 } else { 467 ASSERT((imm26 & 3) == 0); 468 instr &= ~Imm24Mask; 469 } 470 int imm24 = imm26 >> 2; 471 ASSERT(is_int24(imm24)); 472 instr_at_put(pos, instr | (imm24 & Imm24Mask)); 473} 474 475 476void Assembler::print(Label* L) { 477 if (L->is_unused()) { 478 PrintF("unused label\n"); 479 } else if (L->is_bound()) { 480 PrintF("bound label to %d\n", L->pos()); 481 } else if (L->is_linked()) { 482 Label l = *L; 483 PrintF("unbound label"); 484 while (l.is_linked()) { 485 PrintF("@ %d ", l.pos()); 486 Instr instr = instr_at(l.pos()); 487 if ((instr & ~Imm24Mask) == 0) { 488 PrintF("value\n"); 489 } else { 490 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx 491 int cond = instr & CondMask; 492 const char* b; 493 const char* c; 494 if (cond == nv) { 495 b = "blx"; 496 c = ""; 497 } else { 498 if ((instr & B24) != 0) 499 b = "bl"; 500 else 501 b = "b"; 502 503 switch (cond) { 504 case eq: c = "eq"; break; 505 case ne: c = "ne"; break; 506 case hs: c = "hs"; break; 507 case lo: c = "lo"; break; 508 case mi: c = "mi"; break; 509 case pl: c = "pl"; break; 510 case vs: c = "vs"; break; 511 case vc: c = "vc"; break; 512 case hi: c = "hi"; break; 513 case ls: c = "ls"; break; 514 case ge: c = "ge"; break; 515 case lt: c = "lt"; break; 516 case gt: c = "gt"; break; 517 case le: c = "le"; break; 518 case al: c = ""; break; 519 default: 520 c = ""; 521 UNREACHABLE(); 522 } 523 } 524 PrintF("%s%s\n", b, c); 525 } 526 next(&l); 527 } 528 } else { 529 PrintF("label in inconsistent state (pos = %d)\n", L->pos_); 530 } 531} 532 533 534void Assembler::bind_to(Label* L, int pos) { 535 ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position 536 while (L->is_linked()) { 537 int fixup_pos = L->pos(); 538 next(L); // call next before overwriting link with target at fixup_pos 539 target_at_put(fixup_pos, pos); 540 } 541 L->bind_to(pos); 542 543 // Keep track of the last bound label so we don't eliminate any instructions 544 // before a bound label. 545 if (pos > last_bound_pos_) 546 last_bound_pos_ = pos; 547} 548 549 550void Assembler::link_to(Label* L, Label* appendix) { 551 if (appendix->is_linked()) { 552 if (L->is_linked()) { 553 // Append appendix to L's list. 554 int fixup_pos; 555 int link = L->pos(); 556 do { 557 fixup_pos = link; 558 link = target_at(fixup_pos); 559 } while (link > 0); 560 ASSERT(link == kEndOfChain); 561 target_at_put(fixup_pos, appendix->pos()); 562 } else { 563 // L is empty, simply use appendix. 564 *L = *appendix; 565 } 566 } 567 appendix->Unuse(); // appendix should not be used anymore 568} 569 570 571void Assembler::bind(Label* L) { 572 ASSERT(!L->is_bound()); // label can only be bound once 573 bind_to(L, pc_offset()); 574} 575 576 577void Assembler::next(Label* L) { 578 ASSERT(L->is_linked()); 579 int link = target_at(L->pos()); 580 if (link > 0) { 581 L->link_to(link); 582 } else { 583 ASSERT(link == kEndOfChain); 584 L->Unuse(); 585 } 586} 587 588 589// Low-level code emission routines depending on the addressing mode. 590static bool fits_shifter(uint32_t imm32, 591 uint32_t* rotate_imm, 592 uint32_t* immed_8, 593 Instr* instr) { 594 // imm32 must be unsigned. 595 for (int rot = 0; rot < 16; rot++) { 596 uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot)); 597 if ((imm8 <= 0xff)) { 598 *rotate_imm = rot; 599 *immed_8 = imm8; 600 return true; 601 } 602 } 603 // If the opcode is mov or mvn and if ~imm32 fits, change the opcode. 604 if (instr != NULL && (*instr & 0xd*B21) == 0xd*B21) { 605 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) { 606 *instr ^= 0x2*B21; 607 return true; 608 } 609 } 610 return false; 611} 612 613 614// We have to use the temporary register for things that can be relocated even 615// if they can be encoded in the ARM's 12 bits of immediate-offset instruction 616// space. There is no guarantee that the relocated location can be similarly 617// encoded. 618static bool MustUseIp(RelocInfo::Mode rmode) { 619 if (rmode == RelocInfo::EXTERNAL_REFERENCE) { 620#ifdef DEBUG 621 if (!Serializer::enabled()) { 622 Serializer::TooLateToEnableNow(); 623 } 624#endif 625 return Serializer::enabled(); 626 } else if (rmode == RelocInfo::NONE) { 627 return false; 628 } 629 return true; 630} 631 632 633void Assembler::addrmod1(Instr instr, 634 Register rn, 635 Register rd, 636 const Operand& x) { 637 CheckBuffer(); 638 ASSERT((instr & ~(CondMask | OpCodeMask | S)) == 0); 639 if (!x.rm_.is_valid()) { 640 // Immediate. 641 uint32_t rotate_imm; 642 uint32_t immed_8; 643 if (MustUseIp(x.rmode_) || 644 !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) { 645 // The immediate operand cannot be encoded as a shifter operand, so load 646 // it first to register ip and change the original instruction to use ip. 647 // However, if the original instruction is a 'mov rd, x' (not setting the 648 // condition code), then replace it with a 'ldr rd, [pc]'. 649 RecordRelocInfo(x.rmode_, x.imm32_); 650 CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed 651 Condition cond = static_cast<Condition>(instr & CondMask); 652 if ((instr & ~CondMask) == 13*B21) { // mov, S not set 653 ldr(rd, MemOperand(pc, 0), cond); 654 } else { 655 ldr(ip, MemOperand(pc, 0), cond); 656 addrmod1(instr, rn, rd, Operand(ip)); 657 } 658 return; 659 } 660 instr |= I | rotate_imm*B8 | immed_8; 661 } else if (!x.rs_.is_valid()) { 662 // Immediate shift. 663 instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); 664 } else { 665 // Register shift. 666 ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc)); 667 instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code(); 668 } 669 emit(instr | rn.code()*B16 | rd.code()*B12); 670 if (rn.is(pc) || x.rm_.is(pc)) 671 // Block constant pool emission for one instruction after reading pc. 672 BlockConstPoolBefore(pc_offset() + kInstrSize); 673} 674 675 676void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) { 677 ASSERT((instr & ~(CondMask | B | L)) == B26); 678 int am = x.am_; 679 if (!x.rm_.is_valid()) { 680 // Immediate offset. 681 int offset_12 = x.offset_; 682 if (offset_12 < 0) { 683 offset_12 = -offset_12; 684 am ^= U; 685 } 686 if (!is_uint12(offset_12)) { 687 // Immediate offset cannot be encoded, load it first to register ip 688 // rn (and rd in a load) should never be ip, or will be trashed. 689 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); 690 mov(ip, Operand(x.offset_), LeaveCC, 691 static_cast<Condition>(instr & CondMask)); 692 addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_)); 693 return; 694 } 695 ASSERT(offset_12 >= 0); // no masking needed 696 instr |= offset_12; 697 } else { 698 // Register offset (shift_imm_ and shift_op_ are 0) or scaled 699 // register offset the constructors make sure than both shift_imm_ 700 // and shift_op_ are initialized. 701 ASSERT(!x.rm_.is(pc)); 702 instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); 703 } 704 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback 705 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); 706} 707 708 709void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) { 710 ASSERT((instr & ~(CondMask | L | S6 | H)) == (B4 | B7)); 711 ASSERT(x.rn_.is_valid()); 712 int am = x.am_; 713 if (!x.rm_.is_valid()) { 714 // Immediate offset. 715 int offset_8 = x.offset_; 716 if (offset_8 < 0) { 717 offset_8 = -offset_8; 718 am ^= U; 719 } 720 if (!is_uint8(offset_8)) { 721 // Immediate offset cannot be encoded, load it first to register ip 722 // rn (and rd in a load) should never be ip, or will be trashed. 723 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); 724 mov(ip, Operand(x.offset_), LeaveCC, 725 static_cast<Condition>(instr & CondMask)); 726 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); 727 return; 728 } 729 ASSERT(offset_8 >= 0); // no masking needed 730 instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf); 731 } else if (x.shift_imm_ != 0) { 732 // Scaled register offset not supported, load index first 733 // rn (and rd in a load) should never be ip, or will be trashed. 734 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); 735 mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC, 736 static_cast<Condition>(instr & CondMask)); 737 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); 738 return; 739 } else { 740 // Register offset. 741 ASSERT((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback 742 instr |= x.rm_.code(); 743 } 744 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback 745 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); 746} 747 748 749void Assembler::addrmod4(Instr instr, Register rn, RegList rl) { 750 ASSERT((instr & ~(CondMask | P | U | W | L)) == B27); 751 ASSERT(rl != 0); 752 ASSERT(!rn.is(pc)); 753 emit(instr | rn.code()*B16 | rl); 754} 755 756 757void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) { 758 // Unindexed addressing is not encoded by this function. 759 ASSERT_EQ((B27 | B26), 760 (instr & ~(CondMask | CoprocessorMask | P | U | N | W | L))); 761 ASSERT(x.rn_.is_valid() && !x.rm_.is_valid()); 762 int am = x.am_; 763 int offset_8 = x.offset_; 764 ASSERT((offset_8 & 3) == 0); // offset must be an aligned word offset 765 offset_8 >>= 2; 766 if (offset_8 < 0) { 767 offset_8 = -offset_8; 768 am ^= U; 769 } 770 ASSERT(is_uint8(offset_8)); // unsigned word offset must fit in a byte 771 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback 772 773 // Post-indexed addressing requires W == 1; different than in addrmod2/3. 774 if ((am & P) == 0) 775 am |= W; 776 777 ASSERT(offset_8 >= 0); // no masking needed 778 emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8); 779} 780 781 782int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { 783 int target_pos; 784 if (L->is_bound()) { 785 target_pos = L->pos(); 786 } else { 787 if (L->is_linked()) { 788 target_pos = L->pos(); // L's link 789 } else { 790 target_pos = kEndOfChain; 791 } 792 L->link_to(pc_offset()); 793 } 794 795 // Block the emission of the constant pool, since the branch instruction must 796 // be emitted at the pc offset recorded by the label. 797 BlockConstPoolBefore(pc_offset() + kInstrSize); 798 return target_pos - (pc_offset() + kPcLoadDelta); 799} 800 801 802void Assembler::label_at_put(Label* L, int at_offset) { 803 int target_pos; 804 if (L->is_bound()) { 805 target_pos = L->pos(); 806 } else { 807 if (L->is_linked()) { 808 target_pos = L->pos(); // L's link 809 } else { 810 target_pos = kEndOfChain; 811 } 812 L->link_to(at_offset); 813 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); 814 } 815} 816 817 818// Branch instructions. 819void Assembler::b(int branch_offset, Condition cond) { 820 ASSERT((branch_offset & 3) == 0); 821 int imm24 = branch_offset >> 2; 822 ASSERT(is_int24(imm24)); 823 emit(cond | B27 | B25 | (imm24 & Imm24Mask)); 824 825 if (cond == al) 826 // Dead code is a good location to emit the constant pool. 827 CheckConstPool(false, false); 828} 829 830 831void Assembler::bl(int branch_offset, Condition cond) { 832 ASSERT((branch_offset & 3) == 0); 833 int imm24 = branch_offset >> 2; 834 ASSERT(is_int24(imm24)); 835 emit(cond | B27 | B25 | B24 | (imm24 & Imm24Mask)); 836} 837 838 839void Assembler::blx(int branch_offset) { // v5 and above 840 WriteRecordedPositions(); 841 ASSERT((branch_offset & 1) == 0); 842 int h = ((branch_offset & 2) >> 1)*B24; 843 int imm24 = branch_offset >> 2; 844 ASSERT(is_int24(imm24)); 845 emit(15 << 28 | B27 | B25 | h | (imm24 & Imm24Mask)); 846} 847 848 849void Assembler::blx(Register target, Condition cond) { // v5 and above 850 WriteRecordedPositions(); 851 ASSERT(!target.is(pc)); 852 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | 3*B4 | target.code()); 853} 854 855 856void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t 857 WriteRecordedPositions(); 858 ASSERT(!target.is(pc)); // use of pc is actually allowed, but discouraged 859 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | B4 | target.code()); 860} 861 862 863// Data-processing instructions. 864 865// UBFX <Rd>,<Rn>,#<lsb>,#<width - 1> 866// Instruction details available in ARM DDI 0406A, A8-464. 867// cond(31-28) | 01111(27-23)| 1(22) | 1(21) | widthm1(20-16) | 868// Rd(15-12) | lsb(11-7) | 101(6-4) | Rn(3-0) 869void Assembler::ubfx(Register dst, Register src1, const Operand& src2, 870 const Operand& src3, Condition cond) { 871 ASSERT(!src2.rm_.is_valid() && !src3.rm_.is_valid()); 872 ASSERT(static_cast<uint32_t>(src2.imm32_) <= 0x1f); 873 ASSERT(static_cast<uint32_t>(src3.imm32_) <= 0x1f); 874 emit(cond | 0x3F*B21 | src3.imm32_*B16 | 875 dst.code()*B12 | src2.imm32_*B7 | 0x5*B4 | src1.code()); 876} 877 878 879void Assembler::and_(Register dst, Register src1, const Operand& src2, 880 SBit s, Condition cond) { 881 addrmod1(cond | 0*B21 | s, src1, dst, src2); 882} 883 884 885void Assembler::eor(Register dst, Register src1, const Operand& src2, 886 SBit s, Condition cond) { 887 addrmod1(cond | 1*B21 | s, src1, dst, src2); 888} 889 890 891void Assembler::sub(Register dst, Register src1, const Operand& src2, 892 SBit s, Condition cond) { 893 addrmod1(cond | 2*B21 | s, src1, dst, src2); 894} 895 896 897void Assembler::rsb(Register dst, Register src1, const Operand& src2, 898 SBit s, Condition cond) { 899 addrmod1(cond | 3*B21 | s, src1, dst, src2); 900} 901 902 903void Assembler::add(Register dst, Register src1, const Operand& src2, 904 SBit s, Condition cond) { 905 addrmod1(cond | 4*B21 | s, src1, dst, src2); 906 907 // Eliminate pattern: push(r), pop() 908 // str(src, MemOperand(sp, 4, NegPreIndex), al); 909 // add(sp, sp, Operand(kPointerSize)); 910 // Both instructions can be eliminated. 911 int pattern_size = 2 * kInstrSize; 912 if (FLAG_push_pop_elimination && 913 last_bound_pos_ <= (pc_offset() - pattern_size) && 914 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && 915 // Pattern. 916 instr_at(pc_ - 1 * kInstrSize) == kPopInstruction && 917 (instr_at(pc_ - 2 * kInstrSize) & ~RdMask) == kPushRegPattern) { 918 pc_ -= 2 * kInstrSize; 919 if (FLAG_print_push_pop_elimination) { 920 PrintF("%x push(reg)/pop() eliminated\n", pc_offset()); 921 } 922 } 923} 924 925 926void Assembler::adc(Register dst, Register src1, const Operand& src2, 927 SBit s, Condition cond) { 928 addrmod1(cond | 5*B21 | s, src1, dst, src2); 929} 930 931 932void Assembler::sbc(Register dst, Register src1, const Operand& src2, 933 SBit s, Condition cond) { 934 addrmod1(cond | 6*B21 | s, src1, dst, src2); 935} 936 937 938void Assembler::rsc(Register dst, Register src1, const Operand& src2, 939 SBit s, Condition cond) { 940 addrmod1(cond | 7*B21 | s, src1, dst, src2); 941} 942 943 944void Assembler::tst(Register src1, const Operand& src2, Condition cond) { 945 addrmod1(cond | 8*B21 | S, src1, r0, src2); 946} 947 948 949void Assembler::teq(Register src1, const Operand& src2, Condition cond) { 950 addrmod1(cond | 9*B21 | S, src1, r0, src2); 951} 952 953 954void Assembler::cmp(Register src1, const Operand& src2, Condition cond) { 955 addrmod1(cond | 10*B21 | S, src1, r0, src2); 956} 957 958 959void Assembler::cmn(Register src1, const Operand& src2, Condition cond) { 960 addrmod1(cond | 11*B21 | S, src1, r0, src2); 961} 962 963 964void Assembler::orr(Register dst, Register src1, const Operand& src2, 965 SBit s, Condition cond) { 966 addrmod1(cond | 12*B21 | s, src1, dst, src2); 967} 968 969 970void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) { 971 if (dst.is(pc)) { 972 WriteRecordedPositions(); 973 } 974 addrmod1(cond | 13*B21 | s, r0, dst, src); 975} 976 977 978void Assembler::bic(Register dst, Register src1, const Operand& src2, 979 SBit s, Condition cond) { 980 addrmod1(cond | 14*B21 | s, src1, dst, src2); 981} 982 983 984void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) { 985 addrmod1(cond | 15*B21 | s, r0, dst, src); 986} 987 988 989// Multiply instructions. 990void Assembler::mla(Register dst, Register src1, Register src2, Register srcA, 991 SBit s, Condition cond) { 992 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc)); 993 emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 | 994 src2.code()*B8 | B7 | B4 | src1.code()); 995} 996 997 998void Assembler::mul(Register dst, Register src1, Register src2, 999 SBit s, Condition cond) { 1000 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc)); 1001 // dst goes in bits 16-19 for this instruction! 1002 emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code()); 1003} 1004 1005 1006void Assembler::smlal(Register dstL, 1007 Register dstH, 1008 Register src1, 1009 Register src2, 1010 SBit s, 1011 Condition cond) { 1012 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); 1013 ASSERT(!dstL.is(dstH)); 1014 emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 | 1015 src2.code()*B8 | B7 | B4 | src1.code()); 1016} 1017 1018 1019void Assembler::smull(Register dstL, 1020 Register dstH, 1021 Register src1, 1022 Register src2, 1023 SBit s, 1024 Condition cond) { 1025 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); 1026 ASSERT(!dstL.is(dstH)); 1027 emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 | 1028 src2.code()*B8 | B7 | B4 | src1.code()); 1029} 1030 1031 1032void Assembler::umlal(Register dstL, 1033 Register dstH, 1034 Register src1, 1035 Register src2, 1036 SBit s, 1037 Condition cond) { 1038 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); 1039 ASSERT(!dstL.is(dstH)); 1040 emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 | 1041 src2.code()*B8 | B7 | B4 | src1.code()); 1042} 1043 1044 1045void Assembler::umull(Register dstL, 1046 Register dstH, 1047 Register src1, 1048 Register src2, 1049 SBit s, 1050 Condition cond) { 1051 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); 1052 ASSERT(!dstL.is(dstH)); 1053 emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 | 1054 src2.code()*B8 | B7 | B4 | src1.code()); 1055} 1056 1057 1058// Miscellaneous arithmetic instructions. 1059void Assembler::clz(Register dst, Register src, Condition cond) { 1060 // v5 and above. 1061 ASSERT(!dst.is(pc) && !src.is(pc)); 1062 emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 | 1063 15*B8 | B4 | src.code()); 1064} 1065 1066 1067// Status register access instructions. 1068void Assembler::mrs(Register dst, SRegister s, Condition cond) { 1069 ASSERT(!dst.is(pc)); 1070 emit(cond | B24 | s | 15*B16 | dst.code()*B12); 1071} 1072 1073 1074void Assembler::msr(SRegisterFieldMask fields, const Operand& src, 1075 Condition cond) { 1076 ASSERT(fields >= B16 && fields < B20); // at least one field set 1077 Instr instr; 1078 if (!src.rm_.is_valid()) { 1079 // Immediate. 1080 uint32_t rotate_imm; 1081 uint32_t immed_8; 1082 if (MustUseIp(src.rmode_) || 1083 !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) { 1084 // Immediate operand cannot be encoded, load it first to register ip. 1085 RecordRelocInfo(src.rmode_, src.imm32_); 1086 ldr(ip, MemOperand(pc, 0), cond); 1087 msr(fields, Operand(ip), cond); 1088 return; 1089 } 1090 instr = I | rotate_imm*B8 | immed_8; 1091 } else { 1092 ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed 1093 instr = src.rm_.code(); 1094 } 1095 emit(cond | instr | B24 | B21 | fields | 15*B12); 1096} 1097 1098 1099// Load/Store instructions. 1100void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) { 1101 if (dst.is(pc)) { 1102 WriteRecordedPositions(); 1103 } 1104 addrmod2(cond | B26 | L, dst, src); 1105 1106 // Eliminate pattern: push(r), pop(r) 1107 // str(r, MemOperand(sp, 4, NegPreIndex), al) 1108 // ldr(r, MemOperand(sp, 4, PostIndex), al) 1109 // Both instructions can be eliminated. 1110 int pattern_size = 2 * kInstrSize; 1111 if (FLAG_push_pop_elimination && 1112 last_bound_pos_ <= (pc_offset() - pattern_size) && 1113 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && 1114 // Pattern. 1115 instr_at(pc_ - 1 * kInstrSize) == (kPopRegPattern | dst.code() * B12) && 1116 instr_at(pc_ - 2 * kInstrSize) == (kPushRegPattern | dst.code() * B12)) { 1117 pc_ -= 2 * kInstrSize; 1118 if (FLAG_print_push_pop_elimination) { 1119 PrintF("%x push/pop (same reg) eliminated\n", pc_offset()); 1120 } 1121 } 1122} 1123 1124 1125void Assembler::str(Register src, const MemOperand& dst, Condition cond) { 1126 addrmod2(cond | B26, src, dst); 1127 1128 // Eliminate pattern: pop(), push(r) 1129 // add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al 1130 // -> str r, [sp, 0], al 1131 int pattern_size = 2 * kInstrSize; 1132 if (FLAG_push_pop_elimination && 1133 last_bound_pos_ <= (pc_offset() - pattern_size) && 1134 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && 1135 // Pattern. 1136 instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) && 1137 instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) { 1138 pc_ -= 2 * kInstrSize; 1139 emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12); 1140 if (FLAG_print_push_pop_elimination) { 1141 PrintF("%x pop()/push(reg) eliminated\n", pc_offset()); 1142 } 1143 } 1144} 1145 1146 1147void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) { 1148 addrmod2(cond | B26 | B | L, dst, src); 1149} 1150 1151 1152void Assembler::strb(Register src, const MemOperand& dst, Condition cond) { 1153 addrmod2(cond | B26 | B, src, dst); 1154} 1155 1156 1157void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) { 1158 addrmod3(cond | L | B7 | H | B4, dst, src); 1159} 1160 1161 1162void Assembler::strh(Register src, const MemOperand& dst, Condition cond) { 1163 addrmod3(cond | B7 | H | B4, src, dst); 1164} 1165 1166 1167void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) { 1168 addrmod3(cond | L | B7 | S6 | B4, dst, src); 1169} 1170 1171 1172void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) { 1173 addrmod3(cond | L | B7 | S6 | H | B4, dst, src); 1174} 1175 1176 1177// Load/Store multiple instructions. 1178void Assembler::ldm(BlockAddrMode am, 1179 Register base, 1180 RegList dst, 1181 Condition cond) { 1182 // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable. 1183 ASSERT(base.is(sp) || (dst & sp.bit()) == 0); 1184 1185 addrmod4(cond | B27 | am | L, base, dst); 1186 1187 // Emit the constant pool after a function return implemented by ldm ..{..pc}. 1188 if (cond == al && (dst & pc.bit()) != 0) { 1189 // There is a slight chance that the ldm instruction was actually a call, 1190 // in which case it would be wrong to return into the constant pool; we 1191 // recognize this case by checking if the emission of the pool was blocked 1192 // at the pc of the ldm instruction by a mov lr, pc instruction; if this is 1193 // the case, we emit a jump over the pool. 1194 CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize); 1195 } 1196} 1197 1198 1199void Assembler::stm(BlockAddrMode am, 1200 Register base, 1201 RegList src, 1202 Condition cond) { 1203 addrmod4(cond | B27 | am, base, src); 1204} 1205 1206 1207// Semaphore instructions. 1208void Assembler::swp(Register dst, Register src, Register base, Condition cond) { 1209 ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc)); 1210 ASSERT(!dst.is(base) && !src.is(base)); 1211 emit(cond | P | base.code()*B16 | dst.code()*B12 | 1212 B7 | B4 | src.code()); 1213} 1214 1215 1216void Assembler::swpb(Register dst, 1217 Register src, 1218 Register base, 1219 Condition cond) { 1220 ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc)); 1221 ASSERT(!dst.is(base) && !src.is(base)); 1222 emit(cond | P | B | base.code()*B16 | dst.code()*B12 | 1223 B7 | B4 | src.code()); 1224} 1225 1226 1227// Exception-generating instructions and debugging support. 1228void Assembler::stop(const char* msg) { 1229#if !defined(__arm__) 1230 // The simulator handles these special instructions and stops execution. 1231 emit(15 << 28 | ((intptr_t) msg)); 1232#else 1233 // Just issue a simple break instruction for now. Alternatively we could use 1234 // the swi(0x9f0001) instruction on Linux. 1235 bkpt(0); 1236#endif 1237} 1238 1239 1240void Assembler::bkpt(uint32_t imm16) { // v5 and above 1241 ASSERT(is_uint16(imm16)); 1242 emit(al | B24 | B21 | (imm16 >> 4)*B8 | 7*B4 | (imm16 & 0xf)); 1243} 1244 1245 1246void Assembler::swi(uint32_t imm24, Condition cond) { 1247 ASSERT(is_uint24(imm24)); 1248 emit(cond | 15*B24 | imm24); 1249} 1250 1251 1252// Coprocessor instructions. 1253void Assembler::cdp(Coprocessor coproc, 1254 int opcode_1, 1255 CRegister crd, 1256 CRegister crn, 1257 CRegister crm, 1258 int opcode_2, 1259 Condition cond) { 1260 ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2)); 1261 emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 | 1262 crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code()); 1263} 1264 1265 1266void Assembler::cdp2(Coprocessor coproc, 1267 int opcode_1, 1268 CRegister crd, 1269 CRegister crn, 1270 CRegister crm, 1271 int opcode_2) { // v5 and above 1272 cdp(coproc, opcode_1, crd, crn, crm, opcode_2, static_cast<Condition>(nv)); 1273} 1274 1275 1276void Assembler::mcr(Coprocessor coproc, 1277 int opcode_1, 1278 Register rd, 1279 CRegister crn, 1280 CRegister crm, 1281 int opcode_2, 1282 Condition cond) { 1283 ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2)); 1284 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 | 1285 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code()); 1286} 1287 1288 1289void Assembler::mcr2(Coprocessor coproc, 1290 int opcode_1, 1291 Register rd, 1292 CRegister crn, 1293 CRegister crm, 1294 int opcode_2) { // v5 and above 1295 mcr(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv)); 1296} 1297 1298 1299void Assembler::mrc(Coprocessor coproc, 1300 int opcode_1, 1301 Register rd, 1302 CRegister crn, 1303 CRegister crm, 1304 int opcode_2, 1305 Condition cond) { 1306 ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2)); 1307 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 | 1308 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code()); 1309} 1310 1311 1312void Assembler::mrc2(Coprocessor coproc, 1313 int opcode_1, 1314 Register rd, 1315 CRegister crn, 1316 CRegister crm, 1317 int opcode_2) { // v5 and above 1318 mrc(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv)); 1319} 1320 1321 1322void Assembler::ldc(Coprocessor coproc, 1323 CRegister crd, 1324 const MemOperand& src, 1325 LFlag l, 1326 Condition cond) { 1327 addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src); 1328} 1329 1330 1331void Assembler::ldc(Coprocessor coproc, 1332 CRegister crd, 1333 Register rn, 1334 int option, 1335 LFlag l, 1336 Condition cond) { 1337 // Unindexed addressing. 1338 ASSERT(is_uint8(option)); 1339 emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 | 1340 coproc*B8 | (option & 255)); 1341} 1342 1343 1344void Assembler::ldc2(Coprocessor coproc, 1345 CRegister crd, 1346 const MemOperand& src, 1347 LFlag l) { // v5 and above 1348 ldc(coproc, crd, src, l, static_cast<Condition>(nv)); 1349} 1350 1351 1352void Assembler::ldc2(Coprocessor coproc, 1353 CRegister crd, 1354 Register rn, 1355 int option, 1356 LFlag l) { // v5 and above 1357 ldc(coproc, crd, rn, option, l, static_cast<Condition>(nv)); 1358} 1359 1360 1361void Assembler::stc(Coprocessor coproc, 1362 CRegister crd, 1363 const MemOperand& dst, 1364 LFlag l, 1365 Condition cond) { 1366 addrmod5(cond | B27 | B26 | l | coproc*B8, crd, dst); 1367} 1368 1369 1370void Assembler::stc(Coprocessor coproc, 1371 CRegister crd, 1372 Register rn, 1373 int option, 1374 LFlag l, 1375 Condition cond) { 1376 // Unindexed addressing. 1377 ASSERT(is_uint8(option)); 1378 emit(cond | B27 | B26 | U | l | rn.code()*B16 | crd.code()*B12 | 1379 coproc*B8 | (option & 255)); 1380} 1381 1382 1383void Assembler::stc2(Coprocessor 1384 coproc, CRegister crd, 1385 const MemOperand& dst, 1386 LFlag l) { // v5 and above 1387 stc(coproc, crd, dst, l, static_cast<Condition>(nv)); 1388} 1389 1390 1391void Assembler::stc2(Coprocessor coproc, 1392 CRegister crd, 1393 Register rn, 1394 int option, 1395 LFlag l) { // v5 and above 1396 stc(coproc, crd, rn, option, l, static_cast<Condition>(nv)); 1397} 1398 1399 1400// Support for VFP. 1401void Assembler::vldr(const DwVfpRegister dst, 1402 const Register base, 1403 int offset, 1404 const Condition cond) { 1405 // Ddst = MEM(Rbase + offset). 1406 // Instruction details available in ARM DDI 0406A, A8-628. 1407 // cond(31-28) | 1101(27-24)| 1001(23-20) | Rbase(19-16) | 1408 // Vdst(15-12) | 1011(11-8) | offset 1409 ASSERT(CpuFeatures::IsEnabled(VFP3)); 1410 ASSERT(offset % 4 == 0); 1411 emit(cond | 0xD9*B20 | base.code()*B16 | dst.code()*B12 | 1412 0xB*B8 | ((offset / 4) & 255)); 1413} 1414 1415 1416void Assembler::vstr(const DwVfpRegister src, 1417 const Register base, 1418 int offset, 1419 const Condition cond) { 1420 // MEM(Rbase + offset) = Dsrc. 1421 // Instruction details available in ARM DDI 0406A, A8-786. 1422 // cond(31-28) | 1101(27-24)| 1000(23-20) | | Rbase(19-16) | 1423 // Vsrc(15-12) | 1011(11-8) | (offset/4) 1424 ASSERT(CpuFeatures::IsEnabled(VFP3)); 1425 ASSERT(offset % 4 == 0); 1426 emit(cond | 0xD8*B20 | base.code()*B16 | src.code()*B12 | 1427 0xB*B8 | ((offset / 4) & 255)); 1428} 1429 1430 1431void Assembler::vmov(const DwVfpRegister dst, 1432 const Register src1, 1433 const Register src2, 1434 const Condition cond) { 1435 // Dm = <Rt,Rt2>. 1436 // Instruction details available in ARM DDI 0406A, A8-646. 1437 // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) | 1438 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm 1439 ASSERT(CpuFeatures::IsEnabled(VFP3)); 1440 ASSERT(!src1.is(pc) && !src2.is(pc)); 1441 emit(cond | 0xC*B24 | B22 | src2.code()*B16 | 1442 src1.code()*B12 | 0xB*B8 | B4 | dst.code()); 1443} 1444 1445 1446void Assembler::vmov(const Register dst1, 1447 const Register dst2, 1448 const DwVfpRegister src, 1449 const Condition cond) { 1450 // <Rt,Rt2> = Dm. 1451 // Instruction details available in ARM DDI 0406A, A8-646. 1452 // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) | 1453 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm 1454 ASSERT(CpuFeatures::IsEnabled(VFP3)); 1455 ASSERT(!dst1.is(pc) && !dst2.is(pc)); 1456 emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 | 1457 dst1.code()*B12 | 0xB*B8 | B4 | src.code()); 1458} 1459 1460 1461void Assembler::vmov(const SwVfpRegister dst, 1462 const Register src, 1463 const Condition cond) { 1464 // Sn = Rt. 1465 // Instruction details available in ARM DDI 0406A, A8-642. 1466 // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) | 1467 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0) 1468 ASSERT(CpuFeatures::IsEnabled(VFP3)); 1469 ASSERT(!src.is(pc)); 1470 emit(cond | 0xE*B24 | (dst.code() >> 1)*B16 | 1471 src.code()*B12 | 0xA*B8 | (0x1 & dst.code())*B7 | B4); 1472} 1473 1474 1475void Assembler::vmov(const Register dst, 1476 const SwVfpRegister src, 1477 const Condition cond) { 1478 // Rt = Sn. 1479 // Instruction details available in ARM DDI 0406A, A8-642. 1480 // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) | 1481 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0) 1482 ASSERT(CpuFeatures::IsEnabled(VFP3)); 1483 ASSERT(!dst.is(pc)); 1484 emit(cond | 0xE*B24 | B20 | (src.code() >> 1)*B16 | 1485 dst.code()*B12 | 0xA*B8 | (0x1 & src.code())*B7 | B4); 1486} 1487 1488 1489void Assembler::vcvt(const DwVfpRegister dst, 1490 const SwVfpRegister src, 1491 const Condition cond) { 1492 // Dd = Sm (integer in Sm converted to IEEE 64-bit doubles in Dd). 1493 // Instruction details available in ARM DDI 0406A, A8-576. 1494 // cond(31-28) | 11101(27-23)| D=?(22) | 11(21-20) | 1(19) | opc2=000(18-16) | 1495 // Vd(15-12) | 101(11-9) | sz(8)=1 | op(7)=1 | 1(6) | M=?(5) | 0(4) | Vm(3-0) 1496 ASSERT(CpuFeatures::IsEnabled(VFP3)); 1497 emit(cond | 0xE*B24 | B23 | 0x3*B20 | B19 | 1498 dst.code()*B12 | 0x5*B9 | B8 | B7 | B6 | 1499 (0x1 & src.code())*B5 | (src.code() >> 1)); 1500} 1501 1502 1503void Assembler::vcvt(const SwVfpRegister dst, 1504 const DwVfpRegister src, 1505 const Condition cond) { 1506 // Sd = Dm (IEEE 64-bit doubles in Dm converted to 32 bit integer in Sd). 1507 // Instruction details available in ARM DDI 0406A, A8-576. 1508 // cond(31-28) | 11101(27-23)| D=?(22) | 11(21-20) | 1(19) | opc2=101(18-16)| 1509 // Vd(15-12) | 101(11-9) | sz(8)=1 | op(7)=? | 1(6) | M=?(5) | 0(4) | Vm(3-0) 1510 ASSERT(CpuFeatures::IsEnabled(VFP3)); 1511 emit(cond | 0xE*B24 | B23 |(0x1 & dst.code())*B22 | 1512 0x3*B20 | B19 | 0x5*B16 | (dst.code() >> 1)*B12 | 1513 0x5*B9 | B8 | B7 | B6 | src.code()); 1514} 1515 1516 1517void Assembler::vadd(const DwVfpRegister dst, 1518 const DwVfpRegister src1, 1519 const DwVfpRegister src2, 1520 const Condition cond) { 1521 // Dd = vadd(Dn, Dm) double precision floating point addition. 1522 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. 1523 // Instruction details available in ARM DDI 0406A, A8-536. 1524 // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) | 1525 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0) 1526 ASSERT(CpuFeatures::IsEnabled(VFP3)); 1527 emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 | 1528 dst.code()*B12 | 0x5*B9 | B8 | src2.code()); 1529} 1530 1531 1532void Assembler::vsub(const DwVfpRegister dst, 1533 const DwVfpRegister src1, 1534 const DwVfpRegister src2, 1535 const Condition cond) { 1536 // Dd = vsub(Dn, Dm) double precision floating point subtraction. 1537 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. 1538 // Instruction details available in ARM DDI 0406A, A8-784. 1539 // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) | 1540 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 1(6) | M=?(5) | 0(4) | Vm(3-0) 1541 ASSERT(CpuFeatures::IsEnabled(VFP3)); 1542 emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 | 1543 dst.code()*B12 | 0x5*B9 | B8 | B6 | src2.code()); 1544} 1545 1546 1547void Assembler::vmul(const DwVfpRegister dst, 1548 const DwVfpRegister src1, 1549 const DwVfpRegister src2, 1550 const Condition cond) { 1551 // Dd = vmul(Dn, Dm) double precision floating point multiplication. 1552 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. 1553 // Instruction details available in ARM DDI 0406A, A8-784. 1554 // cond(31-28) | 11100(27-23)| D=?(22) | 10(21-20) | Vn(19-16) | 1555 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0) 1556 ASSERT(CpuFeatures::IsEnabled(VFP3)); 1557 emit(cond | 0xE*B24 | 0x2*B20 | src1.code()*B16 | 1558 dst.code()*B12 | 0x5*B9 | B8 | src2.code()); 1559} 1560 1561 1562void Assembler::vdiv(const DwVfpRegister dst, 1563 const DwVfpRegister src1, 1564 const DwVfpRegister src2, 1565 const Condition cond) { 1566 // Dd = vdiv(Dn, Dm) double precision floating point division. 1567 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. 1568 // Instruction details available in ARM DDI 0406A, A8-584. 1569 // cond(31-28) | 11101(27-23)| D=?(22) | 00(21-20) | Vn(19-16) | 1570 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=? | 0(6) | M=?(5) | 0(4) | Vm(3-0) 1571 ASSERT(CpuFeatures::IsEnabled(VFP3)); 1572 emit(cond | 0xE*B24 | B23 | src1.code()*B16 | 1573 dst.code()*B12 | 0x5*B9 | B8 | src2.code()); 1574} 1575 1576 1577void Assembler::vcmp(const DwVfpRegister src1, 1578 const DwVfpRegister src2, 1579 const SBit s, 1580 const Condition cond) { 1581 // vcmp(Dd, Dm) double precision floating point comparison. 1582 // Instruction details available in ARM DDI 0406A, A8-570. 1583 // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0100 (19-16) | 1584 // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=? | 1(6) | M(5)=? | 0(4) | Vm(3-0) 1585 ASSERT(CpuFeatures::IsEnabled(VFP3)); 1586 emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 | 1587 src1.code()*B12 | 0x5*B9 | B8 | B6 | src2.code()); 1588} 1589 1590 1591void Assembler::vmrs(Register dst, Condition cond) { 1592 // Instruction details available in ARM DDI 0406A, A8-652. 1593 // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) | 1594 // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0) 1595 ASSERT(CpuFeatures::IsEnabled(VFP3)); 1596 emit(cond | 0xE*B24 | 0xF*B20 | B16 | 1597 dst.code()*B12 | 0xA*B8 | B4); 1598} 1599 1600 1601// Pseudo instructions. 1602void Assembler::lea(Register dst, 1603 const MemOperand& x, 1604 SBit s, 1605 Condition cond) { 1606 int am = x.am_; 1607 if (!x.rm_.is_valid()) { 1608 // Immediate offset. 1609 if ((am & P) == 0) // post indexing 1610 mov(dst, Operand(x.rn_), s, cond); 1611 else if ((am & U) == 0) // negative indexing 1612 sub(dst, x.rn_, Operand(x.offset_), s, cond); 1613 else 1614 add(dst, x.rn_, Operand(x.offset_), s, cond); 1615 } else { 1616 // Register offset (shift_imm_ and shift_op_ are 0) or scaled 1617 // register offset the constructors make sure than both shift_imm_ 1618 // and shift_op_ are initialized. 1619 ASSERT(!x.rm_.is(pc)); 1620 if ((am & P) == 0) // post indexing 1621 mov(dst, Operand(x.rn_), s, cond); 1622 else if ((am & U) == 0) // negative indexing 1623 sub(dst, x.rn_, Operand(x.rm_, x.shift_op_, x.shift_imm_), s, cond); 1624 else 1625 add(dst, x.rn_, Operand(x.rm_, x.shift_op_, x.shift_imm_), s, cond); 1626 } 1627} 1628 1629 1630bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) { 1631 uint32_t dummy1; 1632 uint32_t dummy2; 1633 return fits_shifter(imm32, &dummy1, &dummy2, NULL); 1634} 1635 1636 1637void Assembler::BlockConstPoolFor(int instructions) { 1638 BlockConstPoolBefore(pc_offset() + instructions * kInstrSize); 1639} 1640 1641 1642// Debugging. 1643void Assembler::RecordJSReturn() { 1644 WriteRecordedPositions(); 1645 CheckBuffer(); 1646 RecordRelocInfo(RelocInfo::JS_RETURN); 1647} 1648 1649 1650void Assembler::RecordComment(const char* msg) { 1651 if (FLAG_debug_code) { 1652 CheckBuffer(); 1653 RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); 1654 } 1655} 1656 1657 1658void Assembler::RecordPosition(int pos) { 1659 if (pos == RelocInfo::kNoPosition) return; 1660 ASSERT(pos >= 0); 1661 current_position_ = pos; 1662} 1663 1664 1665void Assembler::RecordStatementPosition(int pos) { 1666 if (pos == RelocInfo::kNoPosition) return; 1667 ASSERT(pos >= 0); 1668 current_statement_position_ = pos; 1669} 1670 1671 1672void Assembler::WriteRecordedPositions() { 1673 // Write the statement position if it is different from what was written last 1674 // time. 1675 if (current_statement_position_ != written_statement_position_) { 1676 CheckBuffer(); 1677 RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_); 1678 written_statement_position_ = current_statement_position_; 1679 } 1680 1681 // Write the position if it is different from what was written last time and 1682 // also different from the written statement position. 1683 if (current_position_ != written_position_ && 1684 current_position_ != written_statement_position_) { 1685 CheckBuffer(); 1686 RecordRelocInfo(RelocInfo::POSITION, current_position_); 1687 written_position_ = current_position_; 1688 } 1689} 1690 1691 1692void Assembler::GrowBuffer() { 1693 if (!own_buffer_) FATAL("external code buffer is too small"); 1694 1695 // Compute new buffer size. 1696 CodeDesc desc; // the new buffer 1697 if (buffer_size_ < 4*KB) { 1698 desc.buffer_size = 4*KB; 1699 } else if (buffer_size_ < 1*MB) { 1700 desc.buffer_size = 2*buffer_size_; 1701 } else { 1702 desc.buffer_size = buffer_size_ + 1*MB; 1703 } 1704 CHECK_GT(desc.buffer_size, 0); // no overflow 1705 1706 // Setup new buffer. 1707 desc.buffer = NewArray<byte>(desc.buffer_size); 1708 1709 desc.instr_size = pc_offset(); 1710 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); 1711 1712 // Copy the data. 1713 int pc_delta = desc.buffer - buffer_; 1714 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); 1715 memmove(desc.buffer, buffer_, desc.instr_size); 1716 memmove(reloc_info_writer.pos() + rc_delta, 1717 reloc_info_writer.pos(), desc.reloc_size); 1718 1719 // Switch buffers. 1720 DeleteArray(buffer_); 1721 buffer_ = desc.buffer; 1722 buffer_size_ = desc.buffer_size; 1723 pc_ += pc_delta; 1724 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, 1725 reloc_info_writer.last_pc() + pc_delta); 1726 1727 // None of our relocation types are pc relative pointing outside the code 1728 // buffer nor pc absolute pointing inside the code buffer, so there is no need 1729 // to relocate any emitted relocation entries. 1730 1731 // Relocate pending relocation entries. 1732 for (int i = 0; i < num_prinfo_; i++) { 1733 RelocInfo& rinfo = prinfo_[i]; 1734 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && 1735 rinfo.rmode() != RelocInfo::POSITION); 1736 if (rinfo.rmode() != RelocInfo::JS_RETURN) { 1737 rinfo.set_pc(rinfo.pc() + pc_delta); 1738 } 1739 } 1740} 1741 1742 1743void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { 1744 RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants 1745 if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) { 1746 // Adjust code for new modes. 1747 ASSERT(RelocInfo::IsJSReturn(rmode) 1748 || RelocInfo::IsComment(rmode) 1749 || RelocInfo::IsPosition(rmode)); 1750 // These modes do not need an entry in the constant pool. 1751 } else { 1752 ASSERT(num_prinfo_ < kMaxNumPRInfo); 1753 prinfo_[num_prinfo_++] = rinfo; 1754 // Make sure the constant pool is not emitted in place of the next 1755 // instruction for which we just recorded relocation info. 1756 BlockConstPoolBefore(pc_offset() + kInstrSize); 1757 } 1758 if (rinfo.rmode() != RelocInfo::NONE) { 1759 // Don't record external references unless the heap will be serialized. 1760 if (rmode == RelocInfo::EXTERNAL_REFERENCE) { 1761#ifdef DEBUG 1762 if (!Serializer::enabled()) { 1763 Serializer::TooLateToEnableNow(); 1764 } 1765#endif 1766 if (!Serializer::enabled() && !FLAG_debug_code) { 1767 return; 1768 } 1769 } 1770 ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here 1771 reloc_info_writer.Write(&rinfo); 1772 } 1773} 1774 1775 1776void Assembler::CheckConstPool(bool force_emit, bool require_jump) { 1777 // Calculate the offset of the next check. It will be overwritten 1778 // when a const pool is generated or when const pools are being 1779 // blocked for a specific range. 1780 next_buffer_check_ = pc_offset() + kCheckConstInterval; 1781 1782 // There is nothing to do if there are no pending relocation info entries. 1783 if (num_prinfo_ == 0) return; 1784 1785 // We emit a constant pool at regular intervals of about kDistBetweenPools 1786 // or when requested by parameter force_emit (e.g. after each function). 1787 // We prefer not to emit a jump unless the max distance is reached or if we 1788 // are running low on slots, which can happen if a lot of constants are being 1789 // emitted (e.g. --debug-code and many static references). 1790 int dist = pc_offset() - last_const_pool_end_; 1791 if (!force_emit && dist < kMaxDistBetweenPools && 1792 (require_jump || dist < kDistBetweenPools) && 1793 // TODO(1236125): Cleanup the "magic" number below. We know that 1794 // the code generation will test every kCheckConstIntervalInst. 1795 // Thus we are safe as long as we generate less than 7 constant 1796 // entries per instruction. 1797 (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) { 1798 return; 1799 } 1800 1801 // If we did not return by now, we need to emit the constant pool soon. 1802 1803 // However, some small sequences of instructions must not be broken up by the 1804 // insertion of a constant pool; such sequences are protected by setting 1805 // no_const_pool_before_, which is checked here. Also, recursive calls to 1806 // CheckConstPool are blocked by no_const_pool_before_. 1807 if (pc_offset() < no_const_pool_before_) { 1808 // Emission is currently blocked; make sure we try again as soon as 1809 // possible. 1810 next_buffer_check_ = no_const_pool_before_; 1811 1812 // Something is wrong if emission is forced and blocked at the same time. 1813 ASSERT(!force_emit); 1814 return; 1815 } 1816 1817 int jump_instr = require_jump ? kInstrSize : 0; 1818 1819 // Check that the code buffer is large enough before emitting the constant 1820 // pool and relocation information (include the jump over the pool and the 1821 // constant pool marker). 1822 int max_needed_space = 1823 jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize); 1824 while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer(); 1825 1826 // Block recursive calls to CheckConstPool. 1827 BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize + 1828 num_prinfo_*kInstrSize); 1829 // Don't bother to check for the emit calls below. 1830 next_buffer_check_ = no_const_pool_before_; 1831 1832 // Emit jump over constant pool if necessary. 1833 Label after_pool; 1834 if (require_jump) b(&after_pool); 1835 1836 RecordComment("[ Constant Pool"); 1837 1838 // Put down constant pool marker "Undefined instruction" as specified by 1839 // A3.1 Instruction set encoding. 1840 emit(0x03000000 | num_prinfo_); 1841 1842 // Emit constant pool entries. 1843 for (int i = 0; i < num_prinfo_; i++) { 1844 RelocInfo& rinfo = prinfo_[i]; 1845 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && 1846 rinfo.rmode() != RelocInfo::POSITION && 1847 rinfo.rmode() != RelocInfo::STATEMENT_POSITION); 1848 Instr instr = instr_at(rinfo.pc()); 1849 1850 // Instruction to patch must be a ldr/str [pc, #offset]. 1851 // P and U set, B and W clear, Rn == pc, offset12 still 0. 1852 ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | Off12Mask)) == 1853 (2*B25 | P | U | pc.code()*B16)); 1854 int delta = pc_ - rinfo.pc() - 8; 1855 ASSERT(delta >= -4); // instr could be ldr pc, [pc, #-4] followed by targ32 1856 if (delta < 0) { 1857 instr &= ~U; 1858 delta = -delta; 1859 } 1860 ASSERT(is_uint12(delta)); 1861 instr_at_put(rinfo.pc(), instr + delta); 1862 emit(rinfo.data()); 1863 } 1864 num_prinfo_ = 0; 1865 last_const_pool_end_ = pc_offset(); 1866 1867 RecordComment("]"); 1868 1869 if (after_pool.is_linked()) { 1870 bind(&after_pool); 1871 } 1872 1873 // Since a constant pool was just emitted, move the check offset forward by 1874 // the standard interval. 1875 next_buffer_check_ = pc_offset() + kCheckConstInterval; 1876} 1877 1878 1879} } // namespace v8::internal 1880