simulator-arm.h revision 5913587db4c6bab03d97bfe44b06289fd6d7270d
1// Copyright 2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28
29// Declares a Simulator for ARM instructions if we are not generating a native
30// ARM binary. This Simulator allows us to run and debug ARM code generation on
31// regular desktop machines.
32// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
33// which will start execution in the Simulator or forwards to the real entry
34// on a ARM HW platform.
35
36#ifndef V8_ARM_SIMULATOR_ARM_H_
37#define V8_ARM_SIMULATOR_ARM_H_
38
39#include "allocation.h"
40
41#if !defined(USE_SIMULATOR)
42// Running without a simulator on a native arm platform.
43
44namespace v8 {
45namespace internal {
46
47// When running without a simulator we call the entry directly.
48#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
49  (entry(p0, p1, p2, p3, p4))
50
51// Call the generated regexp code directly. The entry function pointer should
52// expect seven int/pointer sized arguments and return an int.
53#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6) \
54  (entry(p0, p1, p2, p3, p4, p5, p6))
55
56#define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
57  (reinterpret_cast<TryCatch*>(try_catch_address))
58
59// The stack limit beyond which we will throw stack overflow errors in
60// generated code. Because generated code on arm uses the C stack, we
61// just use the C stack limit.
62class SimulatorStack : public v8::internal::AllStatic {
63 public:
64  static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
65    return c_limit;
66  }
67
68  static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
69    return try_catch_address;
70  }
71
72  static inline void UnregisterCTryCatch() { }
73};
74
75} }  // namespace v8::internal
76
77#else  // !defined(USE_SIMULATOR)
78// Running with a simulator.
79
80#include "constants-arm.h"
81#include "hashmap.h"
82
83namespace assembler {
84namespace arm {
85
86class CachePage {
87 public:
88  static const int LINE_VALID = 0;
89  static const int LINE_INVALID = 1;
90
91  static const int kPageShift = 12;
92  static const int kPageSize = 1 << kPageShift;
93  static const int kPageMask = kPageSize - 1;
94  static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
95  static const int kLineLength = 1 << kLineShift;
96  static const int kLineMask = kLineLength - 1;
97
98  CachePage() {
99    memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
100  }
101
102  char* ValidityByte(int offset) {
103    return &validity_map_[offset >> kLineShift];
104  }
105
106  char* CachedData(int offset) {
107    return &data_[offset];
108  }
109
110 private:
111  char data_[kPageSize];   // The cached data.
112  static const int kValidityMapSize = kPageSize >> kLineShift;
113  char validity_map_[kValidityMapSize];  // One byte per line.
114};
115
116
117class Simulator {
118 public:
119  friend class Debugger;
120  enum Register {
121    no_reg = -1,
122    r0 = 0, r1, r2, r3, r4, r5, r6, r7,
123    r8, r9, r10, r11, r12, r13, r14, r15,
124    num_registers,
125    sp = 13,
126    lr = 14,
127    pc = 15,
128    s0 = 0, s1, s2, s3, s4, s5, s6, s7,
129    s8, s9, s10, s11, s12, s13, s14, s15,
130    s16, s17, s18, s19, s20, s21, s22, s23,
131    s24, s25, s26, s27, s28, s29, s30, s31,
132    num_s_registers = 32,
133    d0 = 0, d1, d2, d3, d4, d5, d6, d7,
134    d8, d9, d10, d11, d12, d13, d14, d15,
135    num_d_registers = 16
136  };
137
138  Simulator();
139  ~Simulator();
140
141  // The currently executing Simulator instance. Potentially there can be one
142  // for each native thread.
143  static Simulator* current();
144
145  // Accessors for register state. Reading the pc value adheres to the ARM
146  // architecture specification and is off by a 8 from the currently executing
147  // instruction.
148  void set_register(int reg, int32_t value);
149  int32_t get_register(int reg) const;
150  void set_dw_register(int dreg, const int* dbl);
151
152  // Support for VFP.
153  void set_s_register(int reg, unsigned int value);
154  unsigned int get_s_register(int reg) const;
155  void set_d_register_from_double(int dreg, const double& dbl);
156  double get_double_from_d_register(int dreg);
157  void set_s_register_from_float(int sreg, const float dbl);
158  float get_float_from_s_register(int sreg);
159  void set_s_register_from_sinteger(int reg, const int value);
160  int get_sinteger_from_s_register(int reg);
161
162  // Special case of set_register and get_register to access the raw PC value.
163  void set_pc(int32_t value);
164  int32_t get_pc() const;
165
166  // Accessor to the internal simulator stack area.
167  uintptr_t StackLimit() const;
168
169  // Executes ARM instructions until the PC reaches end_sim_pc.
170  void Execute();
171
172  // Call on program start.
173  static void Initialize();
174
175  // V8 generally calls into generated JS code with 5 parameters and into
176  // generated RegExp code with 7 parameters. This is a convenience function,
177  // which sets up the simulator state and grabs the result on return.
178  int32_t Call(byte* entry, int argument_count, ...);
179
180  // Push an address onto the JS stack.
181  uintptr_t PushAddress(uintptr_t address);
182
183  // Pop an address from the JS stack.
184  uintptr_t PopAddress();
185
186  // ICache checking.
187  static void FlushICache(void* start, size_t size);
188
189 private:
190  enum special_values {
191    // Known bad pc value to ensure that the simulator does not execute
192    // without being properly setup.
193    bad_lr = -1,
194    // A pc value used to signal the simulator to stop execution.  Generally
195    // the lr is set to this value on transition from native C code to
196    // simulated execution, so that the simulator can "return" to the native
197    // C code.
198    end_sim_pc = -2
199  };
200
201  // Unsupported instructions use Format to print an error and stop execution.
202  void Format(Instr* instr, const char* format);
203
204  // Checks if the current instruction should be executed based on its
205  // condition bits.
206  bool ConditionallyExecute(Instr* instr);
207
208  // Helper functions to set the conditional flags in the architecture state.
209  void SetNZFlags(int32_t val);
210  void SetCFlag(bool val);
211  void SetVFlag(bool val);
212  bool CarryFrom(int32_t left, int32_t right);
213  bool BorrowFrom(int32_t left, int32_t right);
214  bool OverflowFrom(int32_t alu_out,
215                    int32_t left,
216                    int32_t right,
217                    bool addition);
218
219  // Support for VFP.
220  void Compute_FPSCR_Flags(double val1, double val2);
221  void Copy_FPSCR_to_APSR();
222
223  // Helper functions to decode common "addressing" modes
224  int32_t GetShiftRm(Instr* instr, bool* carry_out);
225  int32_t GetImm(Instr* instr, bool* carry_out);
226  void HandleRList(Instr* instr, bool load);
227  void SoftwareInterrupt(Instr* instr);
228
229  // Read and write memory.
230  inline uint8_t ReadBU(int32_t addr);
231  inline int8_t ReadB(int32_t addr);
232  inline void WriteB(int32_t addr, uint8_t value);
233  inline void WriteB(int32_t addr, int8_t value);
234
235  inline uint16_t ReadHU(int32_t addr, Instr* instr);
236  inline int16_t ReadH(int32_t addr, Instr* instr);
237  // Note: Overloaded on the sign of the value.
238  inline void WriteH(int32_t addr, uint16_t value, Instr* instr);
239  inline void WriteH(int32_t addr, int16_t value, Instr* instr);
240
241  inline int ReadW(int32_t addr, Instr* instr);
242  inline void WriteW(int32_t addr, int value, Instr* instr);
243
244  int32_t* ReadDW(int32_t addr);
245  void WriteDW(int32_t addr, int32_t value1, int32_t value2);
246
247  // Executing is handled based on the instruction type.
248  void DecodeType01(Instr* instr);  // both type 0 and type 1 rolled into one
249  void DecodeType2(Instr* instr);
250  void DecodeType3(Instr* instr);
251  void DecodeType4(Instr* instr);
252  void DecodeType5(Instr* instr);
253  void DecodeType6(Instr* instr);
254  void DecodeType7(Instr* instr);
255  void DecodeUnconditional(Instr* instr);
256
257  // Support for VFP.
258  void DecodeTypeVFP(Instr* instr);
259  void DecodeType6CoprocessorIns(Instr* instr);
260
261  void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instr* instr);
262  void DecodeVCMP(Instr* instr);
263  void DecodeVCVTBetweenDoubleAndSingle(Instr* instr);
264  void DecodeVCVTBetweenFloatingPointAndInteger(Instr* instr);
265
266  // Executes one instruction.
267  void InstructionDecode(Instr* instr);
268
269  // ICache.
270  static void CheckICache(Instr* instr);
271  static void FlushOnePage(intptr_t start, int size);
272  static CachePage* GetCachePage(void* page);
273
274  // Runtime call support.
275  static void* RedirectExternalReference(void* external_function,
276                                         bool fp_return);
277
278  // For use in calls that take two double values, constructed from r0, r1, r2
279  // and r3.
280  void GetFpArgs(double* x, double* y);
281  void SetFpResult(const double& result);
282  void TrashCallerSaveRegisters();
283
284  // Architecture state.
285  // Saturating instructions require a Q flag to indicate saturation.
286  // There is currently no way to read the CPSR directly, and thus read the Q
287  // flag, so this is left unimplemented.
288  int32_t registers_[16];
289  bool n_flag_;
290  bool z_flag_;
291  bool c_flag_;
292  bool v_flag_;
293
294  // VFP architecture state.
295  unsigned int vfp_register[num_s_registers];
296  bool n_flag_FPSCR_;
297  bool z_flag_FPSCR_;
298  bool c_flag_FPSCR_;
299  bool v_flag_FPSCR_;
300
301  // VFP FP exception flags architecture state.
302  bool inv_op_vfp_flag_;
303  bool div_zero_vfp_flag_;
304  bool overflow_vfp_flag_;
305  bool underflow_vfp_flag_;
306  bool inexact_vfp_flag_;
307
308  // Simulator support.
309  char* stack_;
310  bool pc_modified_;
311  int icount_;
312  static bool initialized_;
313
314  // Icache simulation
315  static v8::internal::HashMap* i_cache_;
316
317  // Registered breakpoints.
318  Instr* break_pc_;
319  instr_t break_instr_;
320};
321
322} }  // namespace assembler::arm
323
324
325namespace v8 {
326namespace internal {
327
328// When running with the simulator transition into simulated execution at this
329// point.
330#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
331  reinterpret_cast<Object*>(assembler::arm::Simulator::current()->Call( \
332      FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
333
334#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6) \
335  assembler::arm::Simulator::current()->Call( \
336      FUNCTION_ADDR(entry), 7, p0, p1, p2, p3, p4, p5, p6)
337
338#define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
339  try_catch_address == \
340      NULL ? NULL : *(reinterpret_cast<TryCatch**>(try_catch_address))
341
342
343// The simulator has its own stack. Thus it has a different stack limit from
344// the C-based native code.  Setting the c_limit to indicate a very small
345// stack cause stack overflow errors, since the simulator ignores the input.
346// This is unlikely to be an issue in practice, though it might cause testing
347// trouble down the line.
348class SimulatorStack : public v8::internal::AllStatic {
349 public:
350  static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
351    return assembler::arm::Simulator::current()->StackLimit();
352  }
353
354  static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
355    assembler::arm::Simulator* sim = assembler::arm::Simulator::current();
356    return sim->PushAddress(try_catch_address);
357  }
358
359  static inline void UnregisterCTryCatch() {
360    assembler::arm::Simulator::current()->PopAddress();
361  }
362};
363
364} }  // namespace v8::internal
365
366#endif  // !defined(USE_SIMULATOR)
367#endif  // V8_ARM_SIMULATOR_ARM_H_
368