lithium-codegen-ia32.cc revision 69a99ed0b2b2ef69d393c371b03db3a98aaf880e
1// Copyright 2011 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_IA32)
31
32#include "ia32/lithium-codegen-ia32.h"
33#include "code-stubs.h"
34#include "deoptimizer.h"
35#include "stub-cache.h"
36
37namespace v8 {
38namespace internal {
39
40
41// When invoking builtins, we need to record the safepoint in the middle of
42// the invoke instruction sequence generated by the macro assembler.
43class SafepointGenerator : public CallWrapper {
44 public:
45  SafepointGenerator(LCodeGen* codegen,
46                     LPointerMap* pointers,
47                     int deoptimization_index)
48      : codegen_(codegen),
49        pointers_(pointers),
50        deoptimization_index_(deoptimization_index) {}
51  virtual ~SafepointGenerator() { }
52
53  virtual void BeforeCall(int call_size) const {}
54
55  virtual void AfterCall() const {
56    codegen_->RecordSafepoint(pointers_, deoptimization_index_);
57  }
58
59 private:
60  LCodeGen* codegen_;
61  LPointerMap* pointers_;
62  int deoptimization_index_;
63};
64
65
66#define __ masm()->
67
68bool LCodeGen::GenerateCode() {
69  HPhase phase("Code generation", chunk());
70  ASSERT(is_unused());
71  status_ = GENERATING;
72  CpuFeatures::Scope scope(SSE2);
73  return GeneratePrologue() &&
74      GenerateBody() &&
75      GenerateDeferredCode() &&
76      GenerateSafepointTable();
77}
78
79
80void LCodeGen::FinishCode(Handle<Code> code) {
81  ASSERT(is_done());
82  code->set_stack_slots(GetStackSlotCount());
83  code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
84  PopulateDeoptimizationData(code);
85  Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code);
86}
87
88
89void LCodeGen::Abort(const char* format, ...) {
90  if (FLAG_trace_bailout) {
91    SmartPointer<char> name(info()->shared_info()->DebugName()->ToCString());
92    PrintF("Aborting LCodeGen in @\"%s\": ", *name);
93    va_list arguments;
94    va_start(arguments, format);
95    OS::VPrint(format, arguments);
96    va_end(arguments);
97    PrintF("\n");
98  }
99  status_ = ABORTED;
100}
101
102
103void LCodeGen::Comment(const char* format, ...) {
104  if (!FLAG_code_comments) return;
105  char buffer[4 * KB];
106  StringBuilder builder(buffer, ARRAY_SIZE(buffer));
107  va_list arguments;
108  va_start(arguments, format);
109  builder.AddFormattedList(format, arguments);
110  va_end(arguments);
111
112  // Copy the string before recording it in the assembler to avoid
113  // issues when the stack allocated buffer goes out of scope.
114  size_t length = builder.position();
115  Vector<char> copy = Vector<char>::New(length + 1);
116  memcpy(copy.start(), builder.Finalize(), copy.length());
117  masm()->RecordComment(copy.start());
118}
119
120
121bool LCodeGen::GeneratePrologue() {
122  ASSERT(is_generating());
123
124#ifdef DEBUG
125  if (strlen(FLAG_stop_at) > 0 &&
126      info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
127    __ int3();
128  }
129#endif
130
131  // Strict mode functions and builtins need to replace the receiver
132  // with undefined when called as functions (without an explicit
133  // receiver object). ecx is zero for method calls and non-zero for
134  // function calls.
135  if (info_->is_strict_mode() || info_->is_native()) {
136    Label ok;
137    __ test(ecx, Operand(ecx));
138    __ j(zero, &ok, Label::kNear);
139    // +1 for return address.
140    int receiver_offset = (scope()->num_parameters() + 1) * kPointerSize;
141    __ mov(Operand(esp, receiver_offset),
142           Immediate(isolate()->factory()->undefined_value()));
143    __ bind(&ok);
144  }
145
146  __ push(ebp);  // Caller's frame pointer.
147  __ mov(ebp, esp);
148  __ push(esi);  // Callee's context.
149  __ push(edi);  // Callee's JS function.
150
151  // Reserve space for the stack slots needed by the code.
152  int slots = GetStackSlotCount();
153  if (slots > 0) {
154    if (FLAG_debug_code) {
155      __ mov(Operand(eax), Immediate(slots));
156      Label loop;
157      __ bind(&loop);
158      __ push(Immediate(kSlotsZapValue));
159      __ dec(eax);
160      __ j(not_zero, &loop);
161    } else {
162      __ sub(Operand(esp), Immediate(slots * kPointerSize));
163#ifdef _MSC_VER
164      // On windows, you may not access the stack more than one page below
165      // the most recently mapped page. To make the allocated area randomly
166      // accessible, we write to each page in turn (the value is irrelevant).
167      const int kPageSize = 4 * KB;
168      for (int offset = slots * kPointerSize - kPageSize;
169           offset > 0;
170           offset -= kPageSize) {
171        __ mov(Operand(esp, offset), eax);
172      }
173#endif
174    }
175  }
176
177  // Possibly allocate a local context.
178  int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
179  if (heap_slots > 0) {
180    Comment(";;; Allocate local context");
181    // Argument to NewContext is the function, which is still in edi.
182    __ push(edi);
183    if (heap_slots <= FastNewContextStub::kMaximumSlots) {
184      FastNewContextStub stub(heap_slots);
185      __ CallStub(&stub);
186    } else {
187      __ CallRuntime(Runtime::kNewFunctionContext, 1);
188    }
189    RecordSafepoint(Safepoint::kNoDeoptimizationIndex);
190    // Context is returned in both eax and esi.  It replaces the context
191    // passed to us.  It's saved in the stack and kept live in esi.
192    __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
193
194    // Copy parameters into context if necessary.
195    int num_parameters = scope()->num_parameters();
196    for (int i = 0; i < num_parameters; i++) {
197      Slot* slot = scope()->parameter(i)->AsSlot();
198      if (slot != NULL && slot->type() == Slot::CONTEXT) {
199        int parameter_offset = StandardFrameConstants::kCallerSPOffset +
200            (num_parameters - 1 - i) * kPointerSize;
201        // Load parameter from stack.
202        __ mov(eax, Operand(ebp, parameter_offset));
203        // Store it in the context.
204        int context_offset = Context::SlotOffset(slot->index());
205        __ mov(Operand(esi, context_offset), eax);
206        // Update the write barrier. This clobbers all involved
207        // registers, so we have to use a third register to avoid
208        // clobbering esi.
209        __ mov(ecx, esi);
210        __ RecordWrite(ecx, context_offset, eax, ebx);
211      }
212    }
213    Comment(";;; End allocate local context");
214  }
215
216  // Trace the call.
217  if (FLAG_trace) {
218    // We have not executed any compiled code yet, so esi still holds the
219    // incoming context.
220    __ CallRuntime(Runtime::kTraceEnter, 0);
221  }
222  return !is_aborted();
223}
224
225
226bool LCodeGen::GenerateBody() {
227  ASSERT(is_generating());
228  bool emit_instructions = true;
229  for (current_instruction_ = 0;
230       !is_aborted() && current_instruction_ < instructions_->length();
231       current_instruction_++) {
232    LInstruction* instr = instructions_->at(current_instruction_);
233    if (instr->IsLabel()) {
234      LLabel* label = LLabel::cast(instr);
235      emit_instructions = !label->HasReplacement();
236    }
237
238    if (emit_instructions) {
239      Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic());
240      instr->CompileToNative(this);
241    }
242  }
243  return !is_aborted();
244}
245
246
247LInstruction* LCodeGen::GetNextInstruction() {
248  if (current_instruction_ < instructions_->length() - 1) {
249    return instructions_->at(current_instruction_ + 1);
250  } else {
251    return NULL;
252  }
253}
254
255
256bool LCodeGen::GenerateDeferredCode() {
257  ASSERT(is_generating());
258  if (deferred_.length() > 0) {
259    for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
260      LDeferredCode* code = deferred_[i];
261      __ bind(code->entry());
262      code->Generate();
263      __ jmp(code->exit());
264    }
265
266    // Pad code to ensure that the last piece of deferred code have
267    // room for lazy bailout.
268    while ((masm()->pc_offset() - LastSafepointEnd())
269           < Deoptimizer::patch_size()) {
270      __ nop();
271    }
272  }
273
274  // Deferred code is the last part of the instruction sequence. Mark
275  // the generated code as done unless we bailed out.
276  if (!is_aborted()) status_ = DONE;
277  return !is_aborted();
278}
279
280
281bool LCodeGen::GenerateSafepointTable() {
282  ASSERT(is_done());
283  safepoints_.Emit(masm(), GetStackSlotCount());
284  return !is_aborted();
285}
286
287
288Register LCodeGen::ToRegister(int index) const {
289  return Register::FromAllocationIndex(index);
290}
291
292
293XMMRegister LCodeGen::ToDoubleRegister(int index) const {
294  return XMMRegister::FromAllocationIndex(index);
295}
296
297
298Register LCodeGen::ToRegister(LOperand* op) const {
299  ASSERT(op->IsRegister());
300  return ToRegister(op->index());
301}
302
303
304XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
305  ASSERT(op->IsDoubleRegister());
306  return ToDoubleRegister(op->index());
307}
308
309
310int LCodeGen::ToInteger32(LConstantOperand* op) const {
311  Handle<Object> value = chunk_->LookupLiteral(op);
312  ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32());
313  ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) ==
314      value->Number());
315  return static_cast<int32_t>(value->Number());
316}
317
318
319Immediate LCodeGen::ToImmediate(LOperand* op) {
320  LConstantOperand* const_op = LConstantOperand::cast(op);
321  Handle<Object> literal = chunk_->LookupLiteral(const_op);
322  Representation r = chunk_->LookupLiteralRepresentation(const_op);
323  if (r.IsInteger32()) {
324    ASSERT(literal->IsNumber());
325    return Immediate(static_cast<int32_t>(literal->Number()));
326  } else if (r.IsDouble()) {
327    Abort("unsupported double immediate");
328  }
329  ASSERT(r.IsTagged());
330  return Immediate(literal);
331}
332
333
334Operand LCodeGen::ToOperand(LOperand* op) const {
335  if (op->IsRegister()) return Operand(ToRegister(op));
336  if (op->IsDoubleRegister()) return Operand(ToDoubleRegister(op));
337  ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
338  int index = op->index();
339  if (index >= 0) {
340    // Local or spill slot. Skip the frame pointer, function, and
341    // context in the fixed part of the frame.
342    return Operand(ebp, -(index + 3) * kPointerSize);
343  } else {
344    // Incoming parameter. Skip the return address.
345    return Operand(ebp, -(index - 1) * kPointerSize);
346  }
347}
348
349
350Operand LCodeGen::HighOperand(LOperand* op) {
351  ASSERT(op->IsDoubleStackSlot());
352  int index = op->index();
353  int offset = (index >= 0) ? index + 3 : index - 1;
354  return Operand(ebp, -offset * kPointerSize);
355}
356
357
358void LCodeGen::WriteTranslation(LEnvironment* environment,
359                                Translation* translation) {
360  if (environment == NULL) return;
361
362  // The translation includes one command per value in the environment.
363  int translation_size = environment->values()->length();
364  // The output frame height does not include the parameters.
365  int height = translation_size - environment->parameter_count();
366
367  WriteTranslation(environment->outer(), translation);
368  int closure_id = DefineDeoptimizationLiteral(environment->closure());
369  translation->BeginFrame(environment->ast_id(), closure_id, height);
370  for (int i = 0; i < translation_size; ++i) {
371    LOperand* value = environment->values()->at(i);
372    // spilled_registers_ and spilled_double_registers_ are either
373    // both NULL or both set.
374    if (environment->spilled_registers() != NULL && value != NULL) {
375      if (value->IsRegister() &&
376          environment->spilled_registers()[value->index()] != NULL) {
377        translation->MarkDuplicate();
378        AddToTranslation(translation,
379                         environment->spilled_registers()[value->index()],
380                         environment->HasTaggedValueAt(i));
381      } else if (
382          value->IsDoubleRegister() &&
383          environment->spilled_double_registers()[value->index()] != NULL) {
384        translation->MarkDuplicate();
385        AddToTranslation(
386            translation,
387            environment->spilled_double_registers()[value->index()],
388            false);
389      }
390    }
391
392    AddToTranslation(translation, value, environment->HasTaggedValueAt(i));
393  }
394}
395
396
397void LCodeGen::AddToTranslation(Translation* translation,
398                                LOperand* op,
399                                bool is_tagged) {
400  if (op == NULL) {
401    // TODO(twuerthinger): Introduce marker operands to indicate that this value
402    // is not present and must be reconstructed from the deoptimizer. Currently
403    // this is only used for the arguments object.
404    translation->StoreArgumentsObject();
405  } else if (op->IsStackSlot()) {
406    if (is_tagged) {
407      translation->StoreStackSlot(op->index());
408    } else {
409      translation->StoreInt32StackSlot(op->index());
410    }
411  } else if (op->IsDoubleStackSlot()) {
412    translation->StoreDoubleStackSlot(op->index());
413  } else if (op->IsArgument()) {
414    ASSERT(is_tagged);
415    int src_index = GetStackSlotCount() + op->index();
416    translation->StoreStackSlot(src_index);
417  } else if (op->IsRegister()) {
418    Register reg = ToRegister(op);
419    if (is_tagged) {
420      translation->StoreRegister(reg);
421    } else {
422      translation->StoreInt32Register(reg);
423    }
424  } else if (op->IsDoubleRegister()) {
425    XMMRegister reg = ToDoubleRegister(op);
426    translation->StoreDoubleRegister(reg);
427  } else if (op->IsConstantOperand()) {
428    Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op));
429    int src_index = DefineDeoptimizationLiteral(literal);
430    translation->StoreLiteral(src_index);
431  } else {
432    UNREACHABLE();
433  }
434}
435
436
437void LCodeGen::CallCodeGeneric(Handle<Code> code,
438                               RelocInfo::Mode mode,
439                               LInstruction* instr,
440                               SafepointMode safepoint_mode) {
441  ASSERT(instr != NULL);
442  LPointerMap* pointers = instr->pointer_map();
443  RecordPosition(pointers->position());
444
445  __ call(code, mode);
446
447  RegisterLazyDeoptimization(instr, safepoint_mode);
448
449  // Signal that we don't inline smi code before these stubs in the
450  // optimizing code generator.
451  if (code->kind() == Code::BINARY_OP_IC ||
452      code->kind() == Code::COMPARE_IC) {
453    __ nop();
454  }
455}
456
457
458void LCodeGen::CallCode(Handle<Code> code,
459                        RelocInfo::Mode mode,
460                        LInstruction* instr) {
461  CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
462}
463
464
465void LCodeGen::CallRuntime(const Runtime::Function* fun,
466                           int argc,
467                           LInstruction* instr) {
468  ASSERT(instr != NULL);
469  ASSERT(instr->HasPointerMap());
470  LPointerMap* pointers = instr->pointer_map();
471  RecordPosition(pointers->position());
472
473  __ CallRuntime(fun, argc);
474
475  RegisterLazyDeoptimization(instr, RECORD_SIMPLE_SAFEPOINT);
476}
477
478
479void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
480                                       int argc,
481                                       LInstruction* instr,
482                                       LOperand* context) {
483  ASSERT(context->IsRegister() || context->IsStackSlot());
484  if (context->IsRegister()) {
485    if (!ToRegister(context).is(esi)) {
486      __ mov(esi, ToRegister(context));
487    }
488  } else {
489    // Context is stack slot.
490    __ mov(esi, ToOperand(context));
491  }
492
493  __ CallRuntimeSaveDoubles(id);
494  RecordSafepointWithRegisters(
495      instr->pointer_map(), argc, Safepoint::kNoDeoptimizationIndex);
496}
497
498
499void LCodeGen::RegisterLazyDeoptimization(LInstruction* instr,
500                                          SafepointMode safepoint_mode) {
501  // Create the environment to bailout to. If the call has side effects
502  // execution has to continue after the call otherwise execution can continue
503  // from a previous bailout point repeating the call.
504  LEnvironment* deoptimization_environment;
505  if (instr->HasDeoptimizationEnvironment()) {
506    deoptimization_environment = instr->deoptimization_environment();
507  } else {
508    deoptimization_environment = instr->environment();
509  }
510
511  RegisterEnvironmentForDeoptimization(deoptimization_environment);
512  if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
513    RecordSafepoint(instr->pointer_map(),
514                    deoptimization_environment->deoptimization_index());
515  } else {
516    ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
517    RecordSafepointWithRegisters(
518        instr->pointer_map(),
519        0,
520        deoptimization_environment->deoptimization_index());
521  }
522}
523
524
525void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment) {
526  if (!environment->HasBeenRegistered()) {
527    // Physical stack frame layout:
528    // -x ............. -4  0 ..................................... y
529    // [incoming arguments] [spill slots] [pushed outgoing arguments]
530
531    // Layout of the environment:
532    // 0 ..................................................... size-1
533    // [parameters] [locals] [expression stack including arguments]
534
535    // Layout of the translation:
536    // 0 ........................................................ size - 1 + 4
537    // [expression stack including arguments] [locals] [4 words] [parameters]
538    // |>------------  translation_size ------------<|
539
540    int frame_count = 0;
541    for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
542      ++frame_count;
543    }
544    Translation translation(&translations_, frame_count);
545    WriteTranslation(environment, &translation);
546    int deoptimization_index = deoptimizations_.length();
547    environment->Register(deoptimization_index, translation.index());
548    deoptimizations_.Add(environment);
549  }
550}
551
552
553void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) {
554  RegisterEnvironmentForDeoptimization(environment);
555  ASSERT(environment->HasBeenRegistered());
556  int id = environment->deoptimization_index();
557  Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER);
558  ASSERT(entry != NULL);
559  if (entry == NULL) {
560    Abort("bailout was not prepared");
561    return;
562  }
563
564  if (FLAG_deopt_every_n_times != 0) {
565    Handle<SharedFunctionInfo> shared(info_->shared_info());
566    Label no_deopt;
567    __ pushfd();
568    __ push(eax);
569    __ push(ebx);
570    __ mov(ebx, shared);
571    __ mov(eax, FieldOperand(ebx, SharedFunctionInfo::kDeoptCounterOffset));
572    __ sub(Operand(eax), Immediate(Smi::FromInt(1)));
573    __ j(not_zero, &no_deopt, Label::kNear);
574    if (FLAG_trap_on_deopt) __ int3();
575    __ mov(eax, Immediate(Smi::FromInt(FLAG_deopt_every_n_times)));
576    __ mov(FieldOperand(ebx, SharedFunctionInfo::kDeoptCounterOffset), eax);
577    __ pop(ebx);
578    __ pop(eax);
579    __ popfd();
580    __ jmp(entry, RelocInfo::RUNTIME_ENTRY);
581
582    __ bind(&no_deopt);
583    __ mov(FieldOperand(ebx, SharedFunctionInfo::kDeoptCounterOffset), eax);
584    __ pop(ebx);
585    __ pop(eax);
586    __ popfd();
587  }
588
589  if (cc == no_condition) {
590    if (FLAG_trap_on_deopt) __ int3();
591    __ jmp(entry, RelocInfo::RUNTIME_ENTRY);
592  } else {
593    if (FLAG_trap_on_deopt) {
594      Label done;
595      __ j(NegateCondition(cc), &done, Label::kNear);
596      __ int3();
597      __ jmp(entry, RelocInfo::RUNTIME_ENTRY);
598      __ bind(&done);
599    } else {
600      __ j(cc, entry, RelocInfo::RUNTIME_ENTRY);
601    }
602  }
603}
604
605
606void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
607  int length = deoptimizations_.length();
608  if (length == 0) return;
609  ASSERT(FLAG_deopt);
610  Handle<DeoptimizationInputData> data =
611      factory()->NewDeoptimizationInputData(length, TENURED);
612
613  Handle<ByteArray> translations = translations_.CreateByteArray();
614  data->SetTranslationByteArray(*translations);
615  data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
616
617  Handle<FixedArray> literals =
618      factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
619  for (int i = 0; i < deoptimization_literals_.length(); i++) {
620    literals->set(i, *deoptimization_literals_[i]);
621  }
622  data->SetLiteralArray(*literals);
623
624  data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id()));
625  data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
626
627  // Populate the deoptimization entries.
628  for (int i = 0; i < length; i++) {
629    LEnvironment* env = deoptimizations_[i];
630    data->SetAstId(i, Smi::FromInt(env->ast_id()));
631    data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
632    data->SetArgumentsStackHeight(i,
633                                  Smi::FromInt(env->arguments_stack_height()));
634  }
635  code->set_deoptimization_data(*data);
636}
637
638
639int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
640  int result = deoptimization_literals_.length();
641  for (int i = 0; i < deoptimization_literals_.length(); ++i) {
642    if (deoptimization_literals_[i].is_identical_to(literal)) return i;
643  }
644  deoptimization_literals_.Add(literal);
645  return result;
646}
647
648
649void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
650  ASSERT(deoptimization_literals_.length() == 0);
651
652  const ZoneList<Handle<JSFunction> >* inlined_closures =
653      chunk()->inlined_closures();
654
655  for (int i = 0, length = inlined_closures->length();
656       i < length;
657       i++) {
658    DefineDeoptimizationLiteral(inlined_closures->at(i));
659  }
660
661  inlined_function_count_ = deoptimization_literals_.length();
662}
663
664
665void LCodeGen::RecordSafepoint(
666    LPointerMap* pointers,
667    Safepoint::Kind kind,
668    int arguments,
669    int deoptimization_index) {
670  ASSERT(kind == expected_safepoint_kind_);
671  const ZoneList<LOperand*>* operands = pointers->operands();
672  Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
673      kind, arguments, deoptimization_index);
674  for (int i = 0; i < operands->length(); i++) {
675    LOperand* pointer = operands->at(i);
676    if (pointer->IsStackSlot()) {
677      safepoint.DefinePointerSlot(pointer->index());
678    } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
679      safepoint.DefinePointerRegister(ToRegister(pointer));
680    }
681  }
682}
683
684
685void LCodeGen::RecordSafepoint(LPointerMap* pointers,
686                               int deoptimization_index) {
687  RecordSafepoint(pointers, Safepoint::kSimple, 0, deoptimization_index);
688}
689
690
691void LCodeGen::RecordSafepoint(int deoptimization_index) {
692  LPointerMap empty_pointers(RelocInfo::kNoPosition);
693  RecordSafepoint(&empty_pointers, deoptimization_index);
694}
695
696
697void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
698                                            int arguments,
699                                            int deoptimization_index) {
700  RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments,
701      deoptimization_index);
702}
703
704
705void LCodeGen::RecordPosition(int position) {
706  if (position == RelocInfo::kNoPosition) return;
707  masm()->positions_recorder()->RecordPosition(position);
708}
709
710
711void LCodeGen::DoLabel(LLabel* label) {
712  if (label->is_loop_header()) {
713    Comment(";;; B%d - LOOP entry", label->block_id());
714  } else {
715    Comment(";;; B%d", label->block_id());
716  }
717  __ bind(label->label());
718  current_block_ = label->block_id();
719  DoGap(label);
720}
721
722
723void LCodeGen::DoParallelMove(LParallelMove* move) {
724  resolver_.Resolve(move);
725}
726
727
728void LCodeGen::DoGap(LGap* gap) {
729  for (int i = LGap::FIRST_INNER_POSITION;
730       i <= LGap::LAST_INNER_POSITION;
731       i++) {
732    LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
733    LParallelMove* move = gap->GetParallelMove(inner_pos);
734    if (move != NULL) DoParallelMove(move);
735  }
736
737  LInstruction* next = GetNextInstruction();
738  if (next != NULL && next->IsLazyBailout()) {
739    int pc = masm()->pc_offset();
740    safepoints_.SetPcAfterGap(pc);
741  }
742}
743
744
745void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
746  DoGap(instr);
747}
748
749
750void LCodeGen::DoParameter(LParameter* instr) {
751  // Nothing to do.
752}
753
754
755void LCodeGen::DoCallStub(LCallStub* instr) {
756  ASSERT(ToRegister(instr->context()).is(esi));
757  ASSERT(ToRegister(instr->result()).is(eax));
758  switch (instr->hydrogen()->major_key()) {
759    case CodeStub::RegExpConstructResult: {
760      RegExpConstructResultStub stub;
761      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
762      break;
763    }
764    case CodeStub::RegExpExec: {
765      RegExpExecStub stub;
766      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
767      break;
768    }
769    case CodeStub::SubString: {
770      SubStringStub stub;
771      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
772      break;
773    }
774    case CodeStub::NumberToString: {
775      NumberToStringStub stub;
776      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
777      break;
778    }
779    case CodeStub::StringAdd: {
780      StringAddStub stub(NO_STRING_ADD_FLAGS);
781      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
782      break;
783    }
784    case CodeStub::StringCompare: {
785      StringCompareStub stub;
786      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
787      break;
788    }
789    case CodeStub::TranscendentalCache: {
790      TranscendentalCacheStub stub(instr->transcendental_type(),
791                                   TranscendentalCacheStub::TAGGED);
792      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
793      break;
794    }
795    default:
796      UNREACHABLE();
797  }
798}
799
800
801void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
802  // Nothing to do.
803}
804
805
806void LCodeGen::DoModI(LModI* instr) {
807  if (instr->hydrogen()->HasPowerOf2Divisor()) {
808    Register dividend = ToRegister(instr->InputAt(0));
809
810    int32_t divisor =
811        HConstant::cast(instr->hydrogen()->right())->Integer32Value();
812
813    if (divisor < 0) divisor = -divisor;
814
815    Label positive_dividend, done;
816    __ test(dividend, Operand(dividend));
817    __ j(not_sign, &positive_dividend, Label::kNear);
818    __ neg(dividend);
819    __ and_(dividend, divisor - 1);
820    __ neg(dividend);
821    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
822      __ j(not_zero, &done, Label::kNear);
823      DeoptimizeIf(no_condition, instr->environment());
824    } else {
825      __ jmp(&done, Label::kNear);
826    }
827    __ bind(&positive_dividend);
828    __ and_(dividend, divisor - 1);
829    __ bind(&done);
830  } else {
831    Label done, remainder_eq_dividend, slow, do_subtraction, both_positive;
832    Register left_reg = ToRegister(instr->InputAt(0));
833    Register right_reg = ToRegister(instr->InputAt(1));
834    Register result_reg = ToRegister(instr->result());
835
836    ASSERT(left_reg.is(eax));
837    ASSERT(result_reg.is(edx));
838    ASSERT(!right_reg.is(eax));
839    ASSERT(!right_reg.is(edx));
840
841    // Check for x % 0.
842    if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
843      __ test(right_reg, Operand(right_reg));
844      DeoptimizeIf(zero, instr->environment());
845    }
846
847    __ test(left_reg, Operand(left_reg));
848    __ j(zero, &remainder_eq_dividend, Label::kNear);
849    __ j(sign, &slow, Label::kNear);
850
851    __ test(right_reg, Operand(right_reg));
852    __ j(not_sign, &both_positive, Label::kNear);
853    // The sign of the divisor doesn't matter.
854    __ neg(right_reg);
855
856    __ bind(&both_positive);
857    // If the dividend is smaller than the nonnegative
858    // divisor, the dividend is the result.
859    __ cmp(left_reg, Operand(right_reg));
860    __ j(less, &remainder_eq_dividend, Label::kNear);
861
862    // Check if the divisor is a PowerOfTwo integer.
863    Register scratch = ToRegister(instr->TempAt(0));
864    __ mov(scratch, right_reg);
865    __ sub(Operand(scratch), Immediate(1));
866    __ test(scratch, Operand(right_reg));
867    __ j(not_zero, &do_subtraction, Label::kNear);
868    __ and_(left_reg, Operand(scratch));
869    __ jmp(&remainder_eq_dividend, Label::kNear);
870
871    __ bind(&do_subtraction);
872    const int kUnfolds = 3;
873    // Try a few subtractions of the dividend.
874    __ mov(scratch, left_reg);
875    for (int i = 0; i < kUnfolds; i++) {
876      // Reduce the dividend by the divisor.
877      __ sub(left_reg, Operand(right_reg));
878      // Check if the dividend is less than the divisor.
879      __ cmp(left_reg, Operand(right_reg));
880      __ j(less, &remainder_eq_dividend, Label::kNear);
881    }
882    __ mov(left_reg, scratch);
883
884    // Slow case, using idiv instruction.
885    __ bind(&slow);
886    // Sign extend to edx.
887    __ cdq();
888
889    // Check for (0 % -x) that will produce negative zero.
890    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
891      Label positive_left;
892      Label done;
893      __ test(left_reg, Operand(left_reg));
894      __ j(not_sign, &positive_left, Label::kNear);
895      __ idiv(right_reg);
896
897      // Test the remainder for 0, because then the result would be -0.
898      __ test(result_reg, Operand(result_reg));
899      __ j(not_zero, &done, Label::kNear);
900
901      DeoptimizeIf(no_condition, instr->environment());
902      __ bind(&positive_left);
903      __ idiv(right_reg);
904      __ bind(&done);
905    } else {
906      __ idiv(right_reg);
907    }
908    __ jmp(&done, Label::kNear);
909
910    __ bind(&remainder_eq_dividend);
911    __ mov(result_reg, left_reg);
912
913    __ bind(&done);
914  }
915}
916
917
918void LCodeGen::DoDivI(LDivI* instr) {
919  LOperand* right = instr->InputAt(1);
920  ASSERT(ToRegister(instr->result()).is(eax));
921  ASSERT(ToRegister(instr->InputAt(0)).is(eax));
922  ASSERT(!ToRegister(instr->InputAt(1)).is(eax));
923  ASSERT(!ToRegister(instr->InputAt(1)).is(edx));
924
925  Register left_reg = eax;
926
927  // Check for x / 0.
928  Register right_reg = ToRegister(right);
929  if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
930    __ test(right_reg, ToOperand(right));
931    DeoptimizeIf(zero, instr->environment());
932  }
933
934  // Check for (0 / -x) that will produce negative zero.
935  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
936    Label left_not_zero;
937    __ test(left_reg, Operand(left_reg));
938    __ j(not_zero, &left_not_zero, Label::kNear);
939    __ test(right_reg, ToOperand(right));
940    DeoptimizeIf(sign, instr->environment());
941    __ bind(&left_not_zero);
942  }
943
944  // Check for (-kMinInt / -1).
945  if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
946    Label left_not_min_int;
947    __ cmp(left_reg, kMinInt);
948    __ j(not_zero, &left_not_min_int, Label::kNear);
949    __ cmp(right_reg, -1);
950    DeoptimizeIf(zero, instr->environment());
951    __ bind(&left_not_min_int);
952  }
953
954  // Sign extend to edx.
955  __ cdq();
956  __ idiv(right_reg);
957
958  // Deoptimize if remainder is not 0.
959  __ test(edx, Operand(edx));
960  DeoptimizeIf(not_zero, instr->environment());
961}
962
963
964void LCodeGen::DoMulI(LMulI* instr) {
965  Register left = ToRegister(instr->InputAt(0));
966  LOperand* right = instr->InputAt(1);
967
968  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
969    __ mov(ToRegister(instr->TempAt(0)), left);
970  }
971
972  if (right->IsConstantOperand()) {
973    // Try strength reductions on the multiplication.
974    // All replacement instructions are at most as long as the imul
975    // and have better latency.
976    int constant = ToInteger32(LConstantOperand::cast(right));
977    if (constant == -1) {
978      __ neg(left);
979    } else if (constant == 0) {
980      __ xor_(left, Operand(left));
981    } else if (constant == 2) {
982      __ add(left, Operand(left));
983    } else if (!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
984      // If we know that the multiplication can't overflow, it's safe to
985      // use instructions that don't set the overflow flag for the
986      // multiplication.
987      switch (constant) {
988        case 1:
989          // Do nothing.
990          break;
991        case 3:
992          __ lea(left, Operand(left, left, times_2, 0));
993          break;
994        case 4:
995          __ shl(left, 2);
996          break;
997        case 5:
998          __ lea(left, Operand(left, left, times_4, 0));
999          break;
1000        case 8:
1001          __ shl(left, 3);
1002          break;
1003        case 9:
1004          __ lea(left, Operand(left, left, times_8, 0));
1005          break;
1006       case 16:
1007         __ shl(left, 4);
1008         break;
1009        default:
1010          __ imul(left, left, constant);
1011          break;
1012      }
1013    } else {
1014      __ imul(left, left, constant);
1015    }
1016  } else {
1017    __ imul(left, ToOperand(right));
1018  }
1019
1020  if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1021    DeoptimizeIf(overflow, instr->environment());
1022  }
1023
1024  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1025    // Bail out if the result is supposed to be negative zero.
1026    Label done;
1027    __ test(left, Operand(left));
1028    __ j(not_zero, &done, Label::kNear);
1029    if (right->IsConstantOperand()) {
1030      if (ToInteger32(LConstantOperand::cast(right)) <= 0) {
1031        DeoptimizeIf(no_condition, instr->environment());
1032      }
1033    } else {
1034      // Test the non-zero operand for negative sign.
1035      __ or_(ToRegister(instr->TempAt(0)), ToOperand(right));
1036      DeoptimizeIf(sign, instr->environment());
1037    }
1038    __ bind(&done);
1039  }
1040}
1041
1042
1043void LCodeGen::DoBitI(LBitI* instr) {
1044  LOperand* left = instr->InputAt(0);
1045  LOperand* right = instr->InputAt(1);
1046  ASSERT(left->Equals(instr->result()));
1047  ASSERT(left->IsRegister());
1048
1049  if (right->IsConstantOperand()) {
1050    int right_operand = ToInteger32(LConstantOperand::cast(right));
1051    switch (instr->op()) {
1052      case Token::BIT_AND:
1053        __ and_(ToRegister(left), right_operand);
1054        break;
1055      case Token::BIT_OR:
1056        __ or_(ToRegister(left), right_operand);
1057        break;
1058      case Token::BIT_XOR:
1059        __ xor_(ToRegister(left), right_operand);
1060        break;
1061      default:
1062        UNREACHABLE();
1063        break;
1064    }
1065  } else {
1066    switch (instr->op()) {
1067      case Token::BIT_AND:
1068        __ and_(ToRegister(left), ToOperand(right));
1069        break;
1070      case Token::BIT_OR:
1071        __ or_(ToRegister(left), ToOperand(right));
1072        break;
1073      case Token::BIT_XOR:
1074        __ xor_(ToRegister(left), ToOperand(right));
1075        break;
1076      default:
1077        UNREACHABLE();
1078        break;
1079    }
1080  }
1081}
1082
1083
1084void LCodeGen::DoShiftI(LShiftI* instr) {
1085  LOperand* left = instr->InputAt(0);
1086  LOperand* right = instr->InputAt(1);
1087  ASSERT(left->Equals(instr->result()));
1088  ASSERT(left->IsRegister());
1089  if (right->IsRegister()) {
1090    ASSERT(ToRegister(right).is(ecx));
1091
1092    switch (instr->op()) {
1093      case Token::SAR:
1094        __ sar_cl(ToRegister(left));
1095        break;
1096      case Token::SHR:
1097        __ shr_cl(ToRegister(left));
1098        if (instr->can_deopt()) {
1099          __ test(ToRegister(left), Immediate(0x80000000));
1100          DeoptimizeIf(not_zero, instr->environment());
1101        }
1102        break;
1103      case Token::SHL:
1104        __ shl_cl(ToRegister(left));
1105        break;
1106      default:
1107        UNREACHABLE();
1108        break;
1109    }
1110  } else {
1111    int value = ToInteger32(LConstantOperand::cast(right));
1112    uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1113    switch (instr->op()) {
1114      case Token::SAR:
1115        if (shift_count != 0) {
1116          __ sar(ToRegister(left), shift_count);
1117        }
1118        break;
1119      case Token::SHR:
1120        if (shift_count == 0 && instr->can_deopt()) {
1121          __ test(ToRegister(left), Immediate(0x80000000));
1122          DeoptimizeIf(not_zero, instr->environment());
1123        } else {
1124          __ shr(ToRegister(left), shift_count);
1125        }
1126        break;
1127      case Token::SHL:
1128        if (shift_count != 0) {
1129          __ shl(ToRegister(left), shift_count);
1130        }
1131        break;
1132      default:
1133        UNREACHABLE();
1134        break;
1135    }
1136  }
1137}
1138
1139
1140void LCodeGen::DoSubI(LSubI* instr) {
1141  LOperand* left = instr->InputAt(0);
1142  LOperand* right = instr->InputAt(1);
1143  ASSERT(left->Equals(instr->result()));
1144
1145  if (right->IsConstantOperand()) {
1146    __ sub(ToOperand(left), ToImmediate(right));
1147  } else {
1148    __ sub(ToRegister(left), ToOperand(right));
1149  }
1150  if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1151    DeoptimizeIf(overflow, instr->environment());
1152  }
1153}
1154
1155
1156void LCodeGen::DoConstantI(LConstantI* instr) {
1157  ASSERT(instr->result()->IsRegister());
1158  __ Set(ToRegister(instr->result()), Immediate(instr->value()));
1159}
1160
1161
1162void LCodeGen::DoConstantD(LConstantD* instr) {
1163  ASSERT(instr->result()->IsDoubleRegister());
1164  XMMRegister res = ToDoubleRegister(instr->result());
1165  double v = instr->value();
1166  // Use xor to produce +0.0 in a fast and compact way, but avoid to
1167  // do so if the constant is -0.0.
1168  if (BitCast<uint64_t, double>(v) == 0) {
1169    __ xorps(res, res);
1170  } else {
1171    Register temp = ToRegister(instr->TempAt(0));
1172    uint64_t int_val = BitCast<uint64_t, double>(v);
1173    int32_t lower = static_cast<int32_t>(int_val);
1174    int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
1175    if (CpuFeatures::IsSupported(SSE4_1)) {
1176      CpuFeatures::Scope scope(SSE4_1);
1177      if (lower != 0) {
1178        __ Set(temp, Immediate(lower));
1179        __ movd(res, Operand(temp));
1180        __ Set(temp, Immediate(upper));
1181        __ pinsrd(res, Operand(temp), 1);
1182      } else {
1183        __ xorps(res, res);
1184        __ Set(temp, Immediate(upper));
1185        __ pinsrd(res, Operand(temp), 1);
1186      }
1187    } else {
1188      __ Set(temp, Immediate(upper));
1189      __ movd(res, Operand(temp));
1190      __ psllq(res, 32);
1191      if (lower != 0) {
1192        __ Set(temp, Immediate(lower));
1193        __ movd(xmm0, Operand(temp));
1194        __ por(res, xmm0);
1195      }
1196    }
1197  }
1198}
1199
1200
1201void LCodeGen::DoConstantT(LConstantT* instr) {
1202  ASSERT(instr->result()->IsRegister());
1203  __ Set(ToRegister(instr->result()), Immediate(instr->value()));
1204}
1205
1206
1207void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) {
1208  Register result = ToRegister(instr->result());
1209  Register array = ToRegister(instr->InputAt(0));
1210  __ mov(result, FieldOperand(array, JSArray::kLengthOffset));
1211}
1212
1213
1214void LCodeGen::DoFixedArrayBaseLength(
1215    LFixedArrayBaseLength* instr) {
1216  Register result = ToRegister(instr->result());
1217  Register array = ToRegister(instr->InputAt(0));
1218  __ mov(result, FieldOperand(array, FixedArrayBase::kLengthOffset));
1219}
1220
1221
1222void LCodeGen::DoElementsKind(LElementsKind* instr) {
1223  Register result = ToRegister(instr->result());
1224  Register input = ToRegister(instr->InputAt(0));
1225
1226  // Load map into |result|.
1227  __ mov(result, FieldOperand(input, HeapObject::kMapOffset));
1228  // Load the map's "bit field 2" into |result|. We only need the first byte,
1229  // but the following masking takes care of that anyway.
1230  __ mov(result, FieldOperand(result, Map::kBitField2Offset));
1231  // Retrieve elements_kind from bit field 2.
1232  __ and_(result, Map::kElementsKindMask);
1233  __ shr(result, Map::kElementsKindShift);
1234}
1235
1236
1237void LCodeGen::DoValueOf(LValueOf* instr) {
1238  Register input = ToRegister(instr->InputAt(0));
1239  Register result = ToRegister(instr->result());
1240  Register map = ToRegister(instr->TempAt(0));
1241  ASSERT(input.is(result));
1242  Label done;
1243  // If the object is a smi return the object.
1244  __ JumpIfSmi(input, &done, Label::kNear);
1245
1246  // If the object is not a value type, return the object.
1247  __ CmpObjectType(input, JS_VALUE_TYPE, map);
1248  __ j(not_equal, &done, Label::kNear);
1249  __ mov(result, FieldOperand(input, JSValue::kValueOffset));
1250
1251  __ bind(&done);
1252}
1253
1254
1255void LCodeGen::DoBitNotI(LBitNotI* instr) {
1256  LOperand* input = instr->InputAt(0);
1257  ASSERT(input->Equals(instr->result()));
1258  __ not_(ToRegister(input));
1259}
1260
1261
1262void LCodeGen::DoThrow(LThrow* instr) {
1263  __ push(ToOperand(instr->value()));
1264  ASSERT(ToRegister(instr->context()).is(esi));
1265  CallRuntime(Runtime::kThrow, 1, instr);
1266
1267  if (FLAG_debug_code) {
1268    Comment("Unreachable code.");
1269    __ int3();
1270  }
1271}
1272
1273
1274void LCodeGen::DoAddI(LAddI* instr) {
1275  LOperand* left = instr->InputAt(0);
1276  LOperand* right = instr->InputAt(1);
1277  ASSERT(left->Equals(instr->result()));
1278
1279  if (right->IsConstantOperand()) {
1280    __ add(ToOperand(left), ToImmediate(right));
1281  } else {
1282    __ add(ToRegister(left), ToOperand(right));
1283  }
1284
1285  if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1286    DeoptimizeIf(overflow, instr->environment());
1287  }
1288}
1289
1290
1291void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1292  XMMRegister left = ToDoubleRegister(instr->InputAt(0));
1293  XMMRegister right = ToDoubleRegister(instr->InputAt(1));
1294  XMMRegister result = ToDoubleRegister(instr->result());
1295  // Modulo uses a fixed result register.
1296  ASSERT(instr->op() == Token::MOD || left.is(result));
1297  switch (instr->op()) {
1298    case Token::ADD:
1299      __ addsd(left, right);
1300      break;
1301    case Token::SUB:
1302       __ subsd(left, right);
1303       break;
1304    case Token::MUL:
1305      __ mulsd(left, right);
1306      break;
1307    case Token::DIV:
1308      __ divsd(left, right);
1309      break;
1310    case Token::MOD: {
1311      // Pass two doubles as arguments on the stack.
1312      __ PrepareCallCFunction(4, eax);
1313      __ movdbl(Operand(esp, 0 * kDoubleSize), left);
1314      __ movdbl(Operand(esp, 1 * kDoubleSize), right);
1315      __ CallCFunction(
1316          ExternalReference::double_fp_operation(Token::MOD, isolate()),
1317          4);
1318
1319      // Return value is in st(0) on ia32.
1320      // Store it into the (fixed) result register.
1321      __ sub(Operand(esp), Immediate(kDoubleSize));
1322      __ fstp_d(Operand(esp, 0));
1323      __ movdbl(result, Operand(esp, 0));
1324      __ add(Operand(esp), Immediate(kDoubleSize));
1325      break;
1326    }
1327    default:
1328      UNREACHABLE();
1329      break;
1330  }
1331}
1332
1333
1334void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1335  ASSERT(ToRegister(instr->context()).is(esi));
1336  ASSERT(ToRegister(instr->left()).is(edx));
1337  ASSERT(ToRegister(instr->right()).is(eax));
1338  ASSERT(ToRegister(instr->result()).is(eax));
1339
1340  BinaryOpStub stub(instr->op(), NO_OVERWRITE);
1341  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1342  __ nop();  // Signals no inlined code.
1343}
1344
1345
1346int LCodeGen::GetNextEmittedBlock(int block) {
1347  for (int i = block + 1; i < graph()->blocks()->length(); ++i) {
1348    LLabel* label = chunk_->GetLabel(i);
1349    if (!label->HasReplacement()) return i;
1350  }
1351  return -1;
1352}
1353
1354
1355void LCodeGen::EmitBranch(int left_block, int right_block, Condition cc) {
1356  int next_block = GetNextEmittedBlock(current_block_);
1357  right_block = chunk_->LookupDestination(right_block);
1358  left_block = chunk_->LookupDestination(left_block);
1359
1360  if (right_block == left_block) {
1361    EmitGoto(left_block);
1362  } else if (left_block == next_block) {
1363    __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
1364  } else if (right_block == next_block) {
1365    __ j(cc, chunk_->GetAssemblyLabel(left_block));
1366  } else {
1367    __ j(cc, chunk_->GetAssemblyLabel(left_block));
1368    __ jmp(chunk_->GetAssemblyLabel(right_block));
1369  }
1370}
1371
1372
1373void LCodeGen::DoBranch(LBranch* instr) {
1374  int true_block = chunk_->LookupDestination(instr->true_block_id());
1375  int false_block = chunk_->LookupDestination(instr->false_block_id());
1376
1377  Representation r = instr->hydrogen()->value()->representation();
1378  if (r.IsInteger32()) {
1379    Register reg = ToRegister(instr->InputAt(0));
1380    __ test(reg, Operand(reg));
1381    EmitBranch(true_block, false_block, not_zero);
1382  } else if (r.IsDouble()) {
1383    XMMRegister reg = ToDoubleRegister(instr->InputAt(0));
1384    __ xorps(xmm0, xmm0);
1385    __ ucomisd(reg, xmm0);
1386    EmitBranch(true_block, false_block, not_equal);
1387  } else {
1388    ASSERT(r.IsTagged());
1389    Register reg = ToRegister(instr->InputAt(0));
1390    HType type = instr->hydrogen()->value()->type();
1391    if (type.IsBoolean()) {
1392      __ cmp(reg, factory()->true_value());
1393      EmitBranch(true_block, false_block, equal);
1394    } else if (type.IsSmi()) {
1395      __ test(reg, Operand(reg));
1396      EmitBranch(true_block, false_block, not_equal);
1397    } else {
1398      Label* true_label = chunk_->GetAssemblyLabel(true_block);
1399      Label* false_label = chunk_->GetAssemblyLabel(false_block);
1400
1401      ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
1402      // Avoid deopts in the case where we've never executed this path before.
1403      if (expected.IsEmpty()) expected = ToBooleanStub::all_types();
1404
1405      if (expected.Contains(ToBooleanStub::UNDEFINED)) {
1406        // undefined -> false.
1407        __ cmp(reg, factory()->undefined_value());
1408        __ j(equal, false_label);
1409      }
1410      if (expected.Contains(ToBooleanStub::BOOLEAN)) {
1411        // true -> true.
1412        __ cmp(reg, factory()->true_value());
1413        __ j(equal, true_label);
1414        // false -> false.
1415        __ cmp(reg, factory()->false_value());
1416        __ j(equal, false_label);
1417      }
1418      if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
1419        // 'null' -> false.
1420        __ cmp(reg, factory()->null_value());
1421        __ j(equal, false_label);
1422      }
1423
1424      if (expected.Contains(ToBooleanStub::SMI)) {
1425        // Smis: 0 -> false, all other -> true.
1426        __ test(reg, Operand(reg));
1427        __ j(equal, false_label);
1428        __ JumpIfSmi(reg, true_label);
1429      } else if (expected.NeedsMap()) {
1430        // If we need a map later and have a Smi -> deopt.
1431        __ test(reg, Immediate(kSmiTagMask));
1432        DeoptimizeIf(zero, instr->environment());
1433      }
1434
1435      Register map = no_reg;  // Keep the compiler happy.
1436      if (expected.NeedsMap()) {
1437        map = ToRegister(instr->TempAt(0));
1438        ASSERT(!map.is(reg));
1439        __ mov(map, FieldOperand(reg, HeapObject::kMapOffset));
1440
1441        if (expected.CanBeUndetectable()) {
1442          // Undetectable -> false.
1443          __ test_b(FieldOperand(map, Map::kBitFieldOffset),
1444                    1 << Map::kIsUndetectable);
1445          __ j(not_zero, false_label);
1446        }
1447      }
1448
1449      if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
1450        // spec object -> true.
1451        __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
1452        __ j(above_equal, true_label);
1453      }
1454
1455      if (expected.Contains(ToBooleanStub::STRING)) {
1456        // String value -> false iff empty.
1457        Label not_string;
1458        __ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
1459        __ j(above_equal, &not_string, Label::kNear);
1460        __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
1461        __ j(not_zero, true_label);
1462        __ jmp(false_label);
1463        __ bind(&not_string);
1464      }
1465
1466      if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
1467        // heap number -> false iff +0, -0, or NaN.
1468        Label not_heap_number;
1469        __ cmp(FieldOperand(reg, HeapObject::kMapOffset),
1470               factory()->heap_number_map());
1471        __ j(not_equal, &not_heap_number, Label::kNear);
1472        __ fldz();
1473        __ fld_d(FieldOperand(reg, HeapNumber::kValueOffset));
1474        __ FCmp();
1475        __ j(zero, false_label);
1476        __ jmp(true_label);
1477        __ bind(&not_heap_number);
1478      }
1479
1480      // We've seen something for the first time -> deopt.
1481      DeoptimizeIf(no_condition, instr->environment());
1482    }
1483  }
1484}
1485
1486
1487void LCodeGen::EmitGoto(int block) {
1488  block = chunk_->LookupDestination(block);
1489  int next_block = GetNextEmittedBlock(current_block_);
1490  if (block != next_block) {
1491    __ jmp(chunk_->GetAssemblyLabel(block));
1492  }
1493}
1494
1495
1496void LCodeGen::DoGoto(LGoto* instr) {
1497  EmitGoto(instr->block_id());
1498}
1499
1500
1501Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
1502  Condition cond = no_condition;
1503  switch (op) {
1504    case Token::EQ:
1505    case Token::EQ_STRICT:
1506      cond = equal;
1507      break;
1508    case Token::LT:
1509      cond = is_unsigned ? below : less;
1510      break;
1511    case Token::GT:
1512      cond = is_unsigned ? above : greater;
1513      break;
1514    case Token::LTE:
1515      cond = is_unsigned ? below_equal : less_equal;
1516      break;
1517    case Token::GTE:
1518      cond = is_unsigned ? above_equal : greater_equal;
1519      break;
1520    case Token::IN:
1521    case Token::INSTANCEOF:
1522    default:
1523      UNREACHABLE();
1524  }
1525  return cond;
1526}
1527
1528
1529void LCodeGen::EmitCmpI(LOperand* left, LOperand* right) {
1530  if (right->IsConstantOperand()) {
1531    __ cmp(ToOperand(left), ToImmediate(right));
1532  } else {
1533    __ cmp(ToRegister(left), ToOperand(right));
1534  }
1535}
1536
1537
1538void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) {
1539  LOperand* left = instr->InputAt(0);
1540  LOperand* right = instr->InputAt(1);
1541  int false_block = chunk_->LookupDestination(instr->false_block_id());
1542  int true_block = chunk_->LookupDestination(instr->true_block_id());
1543
1544  if (instr->is_double()) {
1545    // Don't base result on EFLAGS when a NaN is involved. Instead
1546    // jump to the false block.
1547    __ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
1548    __ j(parity_even, chunk_->GetAssemblyLabel(false_block));
1549  } else {
1550    EmitCmpI(left, right);
1551  }
1552
1553  Condition cc = TokenToCondition(instr->op(), instr->is_double());
1554  EmitBranch(true_block, false_block, cc);
1555}
1556
1557
1558void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
1559  Register left = ToRegister(instr->InputAt(0));
1560  Operand right = ToOperand(instr->InputAt(1));
1561  int false_block = chunk_->LookupDestination(instr->false_block_id());
1562  int true_block = chunk_->LookupDestination(instr->true_block_id());
1563
1564  __ cmp(left, Operand(right));
1565  EmitBranch(true_block, false_block, equal);
1566}
1567
1568
1569void LCodeGen::DoCmpConstantEqAndBranch(LCmpConstantEqAndBranch* instr) {
1570  Register left = ToRegister(instr->InputAt(0));
1571  int true_block = chunk_->LookupDestination(instr->true_block_id());
1572  int false_block = chunk_->LookupDestination(instr->false_block_id());
1573
1574  __ cmp(left, instr->hydrogen()->right());
1575  EmitBranch(true_block, false_block, equal);
1576}
1577
1578
1579void LCodeGen::DoIsNullAndBranch(LIsNullAndBranch* instr) {
1580  Register reg = ToRegister(instr->InputAt(0));
1581
1582  // TODO(fsc): If the expression is known to be a smi, then it's
1583  // definitely not null. Jump to the false block.
1584
1585  int true_block = chunk_->LookupDestination(instr->true_block_id());
1586  int false_block = chunk_->LookupDestination(instr->false_block_id());
1587
1588  __ cmp(reg, factory()->null_value());
1589  if (instr->is_strict()) {
1590    EmitBranch(true_block, false_block, equal);
1591  } else {
1592    Label* true_label = chunk_->GetAssemblyLabel(true_block);
1593    Label* false_label = chunk_->GetAssemblyLabel(false_block);
1594    __ j(equal, true_label);
1595    __ cmp(reg, factory()->undefined_value());
1596    __ j(equal, true_label);
1597    __ JumpIfSmi(reg, false_label);
1598    // Check for undetectable objects by looking in the bit field in
1599    // the map. The object has already been smi checked.
1600    Register scratch = ToRegister(instr->TempAt(0));
1601    __ mov(scratch, FieldOperand(reg, HeapObject::kMapOffset));
1602    __ movzx_b(scratch, FieldOperand(scratch, Map::kBitFieldOffset));
1603    __ test(scratch, Immediate(1 << Map::kIsUndetectable));
1604    EmitBranch(true_block, false_block, not_zero);
1605  }
1606}
1607
1608
1609Condition LCodeGen::EmitIsObject(Register input,
1610                                 Register temp1,
1611                                 Label* is_not_object,
1612                                 Label* is_object) {
1613  __ JumpIfSmi(input, is_not_object);
1614
1615  __ cmp(input, isolate()->factory()->null_value());
1616  __ j(equal, is_object);
1617
1618  __ mov(temp1, FieldOperand(input, HeapObject::kMapOffset));
1619  // Undetectable objects behave like undefined.
1620  __ test_b(FieldOperand(temp1, Map::kBitFieldOffset),
1621            1 << Map::kIsUndetectable);
1622  __ j(not_zero, is_not_object);
1623
1624  __ movzx_b(temp1, FieldOperand(temp1, Map::kInstanceTypeOffset));
1625  __ cmp(temp1, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
1626  __ j(below, is_not_object);
1627  __ cmp(temp1, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
1628  return below_equal;
1629}
1630
1631
1632void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
1633  Register reg = ToRegister(instr->InputAt(0));
1634  Register temp = ToRegister(instr->TempAt(0));
1635
1636  int true_block = chunk_->LookupDestination(instr->true_block_id());
1637  int false_block = chunk_->LookupDestination(instr->false_block_id());
1638  Label* true_label = chunk_->GetAssemblyLabel(true_block);
1639  Label* false_label = chunk_->GetAssemblyLabel(false_block);
1640
1641  Condition true_cond = EmitIsObject(reg, temp, false_label, true_label);
1642
1643  EmitBranch(true_block, false_block, true_cond);
1644}
1645
1646
1647void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
1648  Operand input = ToOperand(instr->InputAt(0));
1649
1650  int true_block = chunk_->LookupDestination(instr->true_block_id());
1651  int false_block = chunk_->LookupDestination(instr->false_block_id());
1652
1653  __ test(input, Immediate(kSmiTagMask));
1654  EmitBranch(true_block, false_block, zero);
1655}
1656
1657
1658void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
1659  Register input = ToRegister(instr->InputAt(0));
1660  Register temp = ToRegister(instr->TempAt(0));
1661
1662  int true_block = chunk_->LookupDestination(instr->true_block_id());
1663  int false_block = chunk_->LookupDestination(instr->false_block_id());
1664
1665  STATIC_ASSERT(kSmiTag == 0);
1666  __ JumpIfSmi(input, chunk_->GetAssemblyLabel(false_block));
1667  __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
1668  __ test_b(FieldOperand(temp, Map::kBitFieldOffset),
1669            1 << Map::kIsUndetectable);
1670  EmitBranch(true_block, false_block, not_zero);
1671}
1672
1673
1674static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
1675  InstanceType from = instr->from();
1676  InstanceType to = instr->to();
1677  if (from == FIRST_TYPE) return to;
1678  ASSERT(from == to || to == LAST_TYPE);
1679  return from;
1680}
1681
1682
1683static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
1684  InstanceType from = instr->from();
1685  InstanceType to = instr->to();
1686  if (from == to) return equal;
1687  if (to == LAST_TYPE) return above_equal;
1688  if (from == FIRST_TYPE) return below_equal;
1689  UNREACHABLE();
1690  return equal;
1691}
1692
1693
1694void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
1695  Register input = ToRegister(instr->InputAt(0));
1696  Register temp = ToRegister(instr->TempAt(0));
1697
1698  int true_block = chunk_->LookupDestination(instr->true_block_id());
1699  int false_block = chunk_->LookupDestination(instr->false_block_id());
1700
1701  Label* false_label = chunk_->GetAssemblyLabel(false_block);
1702
1703  __ JumpIfSmi(input, false_label);
1704
1705  __ CmpObjectType(input, TestType(instr->hydrogen()), temp);
1706  EmitBranch(true_block, false_block, BranchCondition(instr->hydrogen()));
1707}
1708
1709
1710void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
1711  Register input = ToRegister(instr->InputAt(0));
1712  Register result = ToRegister(instr->result());
1713
1714  if (FLAG_debug_code) {
1715    __ AbortIfNotString(input);
1716  }
1717
1718  __ mov(result, FieldOperand(input, String::kHashFieldOffset));
1719  __ IndexFromHash(result, result);
1720}
1721
1722
1723void LCodeGen::DoHasCachedArrayIndexAndBranch(
1724    LHasCachedArrayIndexAndBranch* instr) {
1725  Register input = ToRegister(instr->InputAt(0));
1726
1727  int true_block = chunk_->LookupDestination(instr->true_block_id());
1728  int false_block = chunk_->LookupDestination(instr->false_block_id());
1729
1730  __ test(FieldOperand(input, String::kHashFieldOffset),
1731          Immediate(String::kContainsCachedArrayIndexMask));
1732  EmitBranch(true_block, false_block, equal);
1733}
1734
1735
1736// Branches to a label or falls through with the answer in the z flag.  Trashes
1737// the temp registers, but not the input.  Only input and temp2 may alias.
1738void LCodeGen::EmitClassOfTest(Label* is_true,
1739                               Label* is_false,
1740                               Handle<String>class_name,
1741                               Register input,
1742                               Register temp,
1743                               Register temp2) {
1744  ASSERT(!input.is(temp));
1745  ASSERT(!temp.is(temp2));  // But input and temp2 may be the same register.
1746  __ JumpIfSmi(input, is_false);
1747  __ CmpObjectType(input, FIRST_SPEC_OBJECT_TYPE, temp);
1748  __ j(below, is_false);
1749
1750  // Map is now in temp.
1751  // Functions have class 'Function'.
1752  __ CmpInstanceType(temp, FIRST_CALLABLE_SPEC_OBJECT_TYPE);
1753  if (class_name->IsEqualTo(CStrVector("Function"))) {
1754    __ j(above_equal, is_true);
1755  } else {
1756    __ j(above_equal, is_false);
1757  }
1758
1759  // Check if the constructor in the map is a function.
1760  __ mov(temp, FieldOperand(temp, Map::kConstructorOffset));
1761
1762  // As long as LAST_CALLABLE_SPEC_OBJECT_TYPE is the last instance type, and
1763  // FIRST_CALLABLE_SPEC_OBJECT_TYPE comes right after
1764  // LAST_NONCALLABLE_SPEC_OBJECT_TYPE, we can avoid checking for the latter.
1765  STATIC_ASSERT(LAST_TYPE == LAST_CALLABLE_SPEC_OBJECT_TYPE);
1766  STATIC_ASSERT(FIRST_CALLABLE_SPEC_OBJECT_TYPE ==
1767                LAST_NONCALLABLE_SPEC_OBJECT_TYPE + 1);
1768
1769  // Objects with a non-function constructor have class 'Object'.
1770  __ CmpObjectType(temp, JS_FUNCTION_TYPE, temp2);
1771  if (class_name->IsEqualTo(CStrVector("Object"))) {
1772    __ j(not_equal, is_true);
1773  } else {
1774    __ j(not_equal, is_false);
1775  }
1776
1777  // temp now contains the constructor function. Grab the
1778  // instance class name from there.
1779  __ mov(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
1780  __ mov(temp, FieldOperand(temp,
1781                            SharedFunctionInfo::kInstanceClassNameOffset));
1782  // The class name we are testing against is a symbol because it's a literal.
1783  // The name in the constructor is a symbol because of the way the context is
1784  // booted.  This routine isn't expected to work for random API-created
1785  // classes and it doesn't have to because you can't access it with natives
1786  // syntax.  Since both sides are symbols it is sufficient to use an identity
1787  // comparison.
1788  __ cmp(temp, class_name);
1789  // End with the answer in the z flag.
1790}
1791
1792
1793void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
1794  Register input = ToRegister(instr->InputAt(0));
1795  Register temp = ToRegister(instr->TempAt(0));
1796  Register temp2 = ToRegister(instr->TempAt(1));
1797  if (input.is(temp)) {
1798    // Swap.
1799    Register swapper = temp;
1800    temp = temp2;
1801    temp2 = swapper;
1802  }
1803  Handle<String> class_name = instr->hydrogen()->class_name();
1804
1805  int true_block = chunk_->LookupDestination(instr->true_block_id());
1806  int false_block = chunk_->LookupDestination(instr->false_block_id());
1807
1808  Label* true_label = chunk_->GetAssemblyLabel(true_block);
1809  Label* false_label = chunk_->GetAssemblyLabel(false_block);
1810
1811  EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2);
1812
1813  EmitBranch(true_block, false_block, equal);
1814}
1815
1816
1817void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
1818  Register reg = ToRegister(instr->InputAt(0));
1819  int true_block = instr->true_block_id();
1820  int false_block = instr->false_block_id();
1821
1822  __ cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
1823  EmitBranch(true_block, false_block, equal);
1824}
1825
1826
1827void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
1828  // Object and function are in fixed registers defined by the stub.
1829  ASSERT(ToRegister(instr->context()).is(esi));
1830  InstanceofStub stub(InstanceofStub::kArgsInRegisters);
1831  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1832
1833  Label true_value, done;
1834  __ test(eax, Operand(eax));
1835  __ j(zero, &true_value, Label::kNear);
1836  __ mov(ToRegister(instr->result()), factory()->false_value());
1837  __ jmp(&done, Label::kNear);
1838  __ bind(&true_value);
1839  __ mov(ToRegister(instr->result()), factory()->true_value());
1840  __ bind(&done);
1841}
1842
1843
1844void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
1845  class DeferredInstanceOfKnownGlobal: public LDeferredCode {
1846   public:
1847    DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
1848                                  LInstanceOfKnownGlobal* instr)
1849        : LDeferredCode(codegen), instr_(instr) { }
1850    virtual void Generate() {
1851      codegen()->DoDeferredLInstanceOfKnownGlobal(instr_, &map_check_);
1852    }
1853
1854    Label* map_check() { return &map_check_; }
1855
1856   private:
1857    LInstanceOfKnownGlobal* instr_;
1858    Label map_check_;
1859  };
1860
1861  DeferredInstanceOfKnownGlobal* deferred;
1862  deferred = new DeferredInstanceOfKnownGlobal(this, instr);
1863
1864  Label done, false_result;
1865  Register object = ToRegister(instr->InputAt(1));
1866  Register temp = ToRegister(instr->TempAt(0));
1867
1868  // A Smi is not an instance of anything.
1869  __ JumpIfSmi(object, &false_result);
1870
1871  // This is the inlined call site instanceof cache. The two occurences of the
1872  // hole value will be patched to the last map/result pair generated by the
1873  // instanceof stub.
1874  Label cache_miss;
1875  Register map = ToRegister(instr->TempAt(0));
1876  __ mov(map, FieldOperand(object, HeapObject::kMapOffset));
1877  __ bind(deferred->map_check());  // Label for calculating code patching.
1878  __ cmp(map, factory()->the_hole_value());  // Patched to cached map.
1879  __ j(not_equal, &cache_miss, Label::kNear);
1880  __ mov(eax, factory()->the_hole_value());  // Patched to either true or false.
1881  __ jmp(&done);
1882
1883  // The inlined call site cache did not match. Check for null and string
1884  // before calling the deferred code.
1885  __ bind(&cache_miss);
1886  // Null is not an instance of anything.
1887  __ cmp(object, factory()->null_value());
1888  __ j(equal, &false_result);
1889
1890  // String values are not instances of anything.
1891  Condition is_string = masm_->IsObjectStringType(object, temp, temp);
1892  __ j(is_string, &false_result);
1893
1894  // Go to the deferred code.
1895  __ jmp(deferred->entry());
1896
1897  __ bind(&false_result);
1898  __ mov(ToRegister(instr->result()), factory()->false_value());
1899
1900  // Here result has either true or false. Deferred code also produces true or
1901  // false object.
1902  __ bind(deferred->exit());
1903  __ bind(&done);
1904}
1905
1906
1907void LCodeGen::DoDeferredLInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
1908                                                Label* map_check) {
1909  PushSafepointRegistersScope scope(this);
1910
1911  InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
1912  flags = static_cast<InstanceofStub::Flags>(
1913      flags | InstanceofStub::kArgsInRegisters);
1914  flags = static_cast<InstanceofStub::Flags>(
1915      flags | InstanceofStub::kCallSiteInlineCheck);
1916  flags = static_cast<InstanceofStub::Flags>(
1917      flags | InstanceofStub::kReturnTrueFalseObject);
1918  InstanceofStub stub(flags);
1919
1920  // Get the temp register reserved by the instruction. This needs to be a
1921  // register which is pushed last by PushSafepointRegisters as top of the
1922  // stack is used to pass the offset to the location of the map check to
1923  // the stub.
1924  Register temp = ToRegister(instr->TempAt(0));
1925  ASSERT(MacroAssembler::SafepointRegisterStackIndex(temp) == 0);
1926  __ mov(InstanceofStub::right(), Immediate(instr->function()));
1927  static const int kAdditionalDelta = 13;
1928  int delta = masm_->SizeOfCodeGeneratedSince(map_check) + kAdditionalDelta;
1929  __ mov(temp, Immediate(delta));
1930  __ StoreToSafepointRegisterSlot(temp, temp);
1931  CallCodeGeneric(stub.GetCode(),
1932                  RelocInfo::CODE_TARGET,
1933                  instr,
1934                  RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
1935  // Put the result value into the eax slot and restore all registers.
1936  __ StoreToSafepointRegisterSlot(eax, eax);
1937}
1938
1939
1940static Condition ComputeCompareCondition(Token::Value op) {
1941  switch (op) {
1942    case Token::EQ_STRICT:
1943    case Token::EQ:
1944      return equal;
1945    case Token::LT:
1946      return less;
1947    case Token::GT:
1948      return greater;
1949    case Token::LTE:
1950      return less_equal;
1951    case Token::GTE:
1952      return greater_equal;
1953    default:
1954      UNREACHABLE();
1955      return no_condition;
1956  }
1957}
1958
1959
1960void LCodeGen::DoCmpT(LCmpT* instr) {
1961  Token::Value op = instr->op();
1962
1963  Handle<Code> ic = CompareIC::GetUninitialized(op);
1964  CallCode(ic, RelocInfo::CODE_TARGET, instr);
1965
1966  Condition condition = ComputeCompareCondition(op);
1967  if (op == Token::GT || op == Token::LTE) {
1968    condition = ReverseCondition(condition);
1969  }
1970  Label true_value, done;
1971  __ test(eax, Operand(eax));
1972  __ j(condition, &true_value, Label::kNear);
1973  __ mov(ToRegister(instr->result()), factory()->false_value());
1974  __ jmp(&done, Label::kNear);
1975  __ bind(&true_value);
1976  __ mov(ToRegister(instr->result()), factory()->true_value());
1977  __ bind(&done);
1978}
1979
1980
1981void LCodeGen::DoReturn(LReturn* instr) {
1982  if (FLAG_trace) {
1983    // Preserve the return value on the stack and rely on the runtime call
1984    // to return the value in the same register.  We're leaving the code
1985    // managed by the register allocator and tearing down the frame, it's
1986    // safe to write to the context register.
1987    __ push(eax);
1988    __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
1989    __ CallRuntime(Runtime::kTraceExit, 1);
1990  }
1991  __ mov(esp, ebp);
1992  __ pop(ebp);
1993  __ Ret((GetParameterCount() + 1) * kPointerSize, ecx);
1994}
1995
1996
1997void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
1998  Register result = ToRegister(instr->result());
1999  __ mov(result, Operand::Cell(instr->hydrogen()->cell()));
2000  if (instr->hydrogen()->check_hole_value()) {
2001    __ cmp(result, factory()->the_hole_value());
2002    DeoptimizeIf(equal, instr->environment());
2003  }
2004}
2005
2006
2007void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2008  ASSERT(ToRegister(instr->context()).is(esi));
2009  ASSERT(ToRegister(instr->global_object()).is(eax));
2010  ASSERT(ToRegister(instr->result()).is(eax));
2011
2012  __ mov(ecx, instr->name());
2013  RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET :
2014                                               RelocInfo::CODE_TARGET_CONTEXT;
2015  Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2016  CallCode(ic, mode, instr);
2017}
2018
2019
2020void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
2021  Register value = ToRegister(instr->InputAt(0));
2022  Operand cell_operand = Operand::Cell(instr->hydrogen()->cell());
2023
2024  // If the cell we are storing to contains the hole it could have
2025  // been deleted from the property dictionary. In that case, we need
2026  // to update the property details in the property dictionary to mark
2027  // it as no longer deleted. We deoptimize in that case.
2028  if (instr->hydrogen()->check_hole_value()) {
2029    __ cmp(cell_operand, factory()->the_hole_value());
2030    DeoptimizeIf(equal, instr->environment());
2031  }
2032
2033  // Store the value.
2034  __ mov(cell_operand, value);
2035}
2036
2037
2038void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) {
2039  ASSERT(ToRegister(instr->context()).is(esi));
2040  ASSERT(ToRegister(instr->global_object()).is(edx));
2041  ASSERT(ToRegister(instr->value()).is(eax));
2042
2043  __ mov(ecx, instr->name());
2044  Handle<Code> ic = instr->strict_mode()
2045      ? isolate()->builtins()->StoreIC_Initialize_Strict()
2046      : isolate()->builtins()->StoreIC_Initialize();
2047  CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
2048}
2049
2050
2051void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2052  Register context = ToRegister(instr->context());
2053  Register result = ToRegister(instr->result());
2054  __ mov(result, ContextOperand(context, instr->slot_index()));
2055}
2056
2057
2058void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2059  Register context = ToRegister(instr->context());
2060  Register value = ToRegister(instr->value());
2061  __ mov(ContextOperand(context, instr->slot_index()), value);
2062  if (instr->needs_write_barrier()) {
2063    Register temp = ToRegister(instr->TempAt(0));
2064    int offset = Context::SlotOffset(instr->slot_index());
2065    __ RecordWrite(context, offset, value, temp);
2066  }
2067}
2068
2069
2070void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2071  Register object = ToRegister(instr->object());
2072  Register result = ToRegister(instr->result());
2073  if (instr->hydrogen()->is_in_object()) {
2074    __ mov(result, FieldOperand(object, instr->hydrogen()->offset()));
2075  } else {
2076    __ mov(result, FieldOperand(object, JSObject::kPropertiesOffset));
2077    __ mov(result, FieldOperand(result, instr->hydrogen()->offset()));
2078  }
2079}
2080
2081
2082void LCodeGen::EmitLoadFieldOrConstantFunction(Register result,
2083                                               Register object,
2084                                               Handle<Map> type,
2085                                               Handle<String> name) {
2086  LookupResult lookup;
2087  type->LookupInDescriptors(NULL, *name, &lookup);
2088  ASSERT(lookup.IsProperty() &&
2089         (lookup.type() == FIELD || lookup.type() == CONSTANT_FUNCTION));
2090  if (lookup.type() == FIELD) {
2091    int index = lookup.GetLocalFieldIndexFromMap(*type);
2092    int offset = index * kPointerSize;
2093    if (index < 0) {
2094      // Negative property indices are in-object properties, indexed
2095      // from the end of the fixed part of the object.
2096      __ mov(result, FieldOperand(object, offset + type->instance_size()));
2097    } else {
2098      // Non-negative property indices are in the properties array.
2099      __ mov(result, FieldOperand(object, JSObject::kPropertiesOffset));
2100      __ mov(result, FieldOperand(result, offset + FixedArray::kHeaderSize));
2101    }
2102  } else {
2103    Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*type));
2104    LoadHeapObject(result, Handle<HeapObject>::cast(function));
2105  }
2106}
2107
2108
2109void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) {
2110  Register object = ToRegister(instr->object());
2111  Register result = ToRegister(instr->result());
2112
2113  int map_count = instr->hydrogen()->types()->length();
2114  Handle<String> name = instr->hydrogen()->name();
2115  if (map_count == 0) {
2116    ASSERT(instr->hydrogen()->need_generic());
2117    __ mov(ecx, name);
2118    Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2119    CallCode(ic, RelocInfo::CODE_TARGET, instr);
2120  } else {
2121    Label done;
2122    for (int i = 0; i < map_count - 1; ++i) {
2123      Handle<Map> map = instr->hydrogen()->types()->at(i);
2124      Label next;
2125      __ cmp(FieldOperand(object, HeapObject::kMapOffset), map);
2126      __ j(not_equal, &next, Label::kNear);
2127      EmitLoadFieldOrConstantFunction(result, object, map, name);
2128      __ jmp(&done, Label::kNear);
2129      __ bind(&next);
2130    }
2131    Handle<Map> map = instr->hydrogen()->types()->last();
2132    __ cmp(FieldOperand(object, HeapObject::kMapOffset), map);
2133    if (instr->hydrogen()->need_generic()) {
2134      Label generic;
2135      __ j(not_equal, &generic, Label::kNear);
2136      EmitLoadFieldOrConstantFunction(result, object, map, name);
2137      __ jmp(&done, Label::kNear);
2138      __ bind(&generic);
2139      __ mov(ecx, name);
2140      Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2141      CallCode(ic, RelocInfo::CODE_TARGET, instr);
2142    } else {
2143      DeoptimizeIf(not_equal, instr->environment());
2144      EmitLoadFieldOrConstantFunction(result, object, map, name);
2145    }
2146    __ bind(&done);
2147  }
2148}
2149
2150
2151void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
2152  ASSERT(ToRegister(instr->context()).is(esi));
2153  ASSERT(ToRegister(instr->object()).is(eax));
2154  ASSERT(ToRegister(instr->result()).is(eax));
2155
2156  __ mov(ecx, instr->name());
2157  Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2158  CallCode(ic, RelocInfo::CODE_TARGET, instr);
2159}
2160
2161
2162void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2163  Register function = ToRegister(instr->function());
2164  Register temp = ToRegister(instr->TempAt(0));
2165  Register result = ToRegister(instr->result());
2166
2167  // Check that the function really is a function.
2168  __ CmpObjectType(function, JS_FUNCTION_TYPE, result);
2169  DeoptimizeIf(not_equal, instr->environment());
2170
2171  // Check whether the function has an instance prototype.
2172  Label non_instance;
2173  __ test_b(FieldOperand(result, Map::kBitFieldOffset),
2174            1 << Map::kHasNonInstancePrototype);
2175  __ j(not_zero, &non_instance, Label::kNear);
2176
2177  // Get the prototype or initial map from the function.
2178  __ mov(result,
2179         FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2180
2181  // Check that the function has a prototype or an initial map.
2182  __ cmp(Operand(result), Immediate(factory()->the_hole_value()));
2183  DeoptimizeIf(equal, instr->environment());
2184
2185  // If the function does not have an initial map, we're done.
2186  Label done;
2187  __ CmpObjectType(result, MAP_TYPE, temp);
2188  __ j(not_equal, &done, Label::kNear);
2189
2190  // Get the prototype from the initial map.
2191  __ mov(result, FieldOperand(result, Map::kPrototypeOffset));
2192  __ jmp(&done, Label::kNear);
2193
2194  // Non-instance prototype: Fetch prototype from constructor field
2195  // in the function's map.
2196  __ bind(&non_instance);
2197  __ mov(result, FieldOperand(result, Map::kConstructorOffset));
2198
2199  // All done.
2200  __ bind(&done);
2201}
2202
2203
2204void LCodeGen::DoLoadElements(LLoadElements* instr) {
2205  Register result = ToRegister(instr->result());
2206  Register input = ToRegister(instr->InputAt(0));
2207  __ mov(result, FieldOperand(input, JSObject::kElementsOffset));
2208  if (FLAG_debug_code) {
2209    Label done, ok, fail;
2210    __ cmp(FieldOperand(result, HeapObject::kMapOffset),
2211           Immediate(factory()->fixed_array_map()));
2212    __ j(equal, &done, Label::kNear);
2213    __ cmp(FieldOperand(result, HeapObject::kMapOffset),
2214           Immediate(factory()->fixed_cow_array_map()));
2215    __ j(equal, &done, Label::kNear);
2216    Register temp((result.is(eax)) ? ebx : eax);
2217    __ push(temp);
2218    __ mov(temp, FieldOperand(result, HeapObject::kMapOffset));
2219    __ movzx_b(temp, FieldOperand(temp, Map::kBitField2Offset));
2220    __ and_(temp, Map::kElementsKindMask);
2221    __ shr(temp, Map::kElementsKindShift);
2222    __ cmp(temp, JSObject::FAST_ELEMENTS);
2223    __ j(equal, &ok, Label::kNear);
2224    __ cmp(temp, JSObject::FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND);
2225    __ j(less, &fail, Label::kNear);
2226    __ cmp(temp, JSObject::LAST_EXTERNAL_ARRAY_ELEMENTS_KIND);
2227    __ j(less_equal, &ok, Label::kNear);
2228    __ bind(&fail);
2229    __ Abort("Check for fast or external elements failed.");
2230    __ bind(&ok);
2231    __ pop(temp);
2232    __ bind(&done);
2233  }
2234}
2235
2236
2237void LCodeGen::DoLoadExternalArrayPointer(
2238    LLoadExternalArrayPointer* instr) {
2239  Register result = ToRegister(instr->result());
2240  Register input = ToRegister(instr->InputAt(0));
2241  __ mov(result, FieldOperand(input,
2242                              ExternalArray::kExternalPointerOffset));
2243}
2244
2245
2246void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2247  Register arguments = ToRegister(instr->arguments());
2248  Register length = ToRegister(instr->length());
2249  Operand index = ToOperand(instr->index());
2250  Register result = ToRegister(instr->result());
2251
2252  __ sub(length, index);
2253  DeoptimizeIf(below_equal, instr->environment());
2254
2255  // There are two words between the frame pointer and the last argument.
2256  // Subtracting from length accounts for one of them add one more.
2257  __ mov(result, Operand(arguments, length, times_4, kPointerSize));
2258}
2259
2260
2261void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) {
2262  Register result = ToRegister(instr->result());
2263
2264  // Load the result.
2265  __ mov(result,
2266         BuildFastArrayOperand(instr->elements(), instr->key(),
2267                               JSObject::FAST_ELEMENTS,
2268                               FixedArray::kHeaderSize - kHeapObjectTag));
2269
2270  // Check for the hole value.
2271  if (instr->hydrogen()->RequiresHoleCheck()) {
2272    __ cmp(result, factory()->the_hole_value());
2273    DeoptimizeIf(equal, instr->environment());
2274  }
2275}
2276
2277
2278void LCodeGen::DoLoadKeyedFastDoubleElement(
2279    LLoadKeyedFastDoubleElement* instr) {
2280  XMMRegister result = ToDoubleRegister(instr->result());
2281
2282  if (instr->hydrogen()->RequiresHoleCheck()) {
2283    int offset = FixedDoubleArray::kHeaderSize - kHeapObjectTag +
2284        sizeof(kHoleNanLower32);
2285    Operand hole_check_operand = BuildFastArrayOperand(
2286        instr->elements(), instr->key(),
2287        JSObject::FAST_DOUBLE_ELEMENTS,
2288        offset);
2289    __ cmp(hole_check_operand, Immediate(kHoleNanUpper32));
2290    DeoptimizeIf(equal, instr->environment());
2291  }
2292
2293  Operand double_load_operand = BuildFastArrayOperand(
2294      instr->elements(), instr->key(), JSObject::FAST_DOUBLE_ELEMENTS,
2295      FixedDoubleArray::kHeaderSize - kHeapObjectTag);
2296  __ movdbl(result, double_load_operand);
2297}
2298
2299
2300Operand LCodeGen::BuildFastArrayOperand(
2301    LOperand* elements_pointer,
2302    LOperand* key,
2303    JSObject::ElementsKind elements_kind,
2304    uint32_t offset) {
2305  Register elements_pointer_reg = ToRegister(elements_pointer);
2306  int shift_size = ElementsKindToShiftSize(elements_kind);
2307  if (key->IsConstantOperand()) {
2308    int constant_value = ToInteger32(LConstantOperand::cast(key));
2309    if (constant_value & 0xF0000000) {
2310      Abort("array index constant value too big");
2311    }
2312    return Operand(elements_pointer_reg,
2313                   constant_value * (1 << shift_size) + offset);
2314  } else {
2315    ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
2316    return Operand(elements_pointer_reg, ToRegister(key), scale_factor, offset);
2317  }
2318}
2319
2320
2321void LCodeGen::DoLoadKeyedSpecializedArrayElement(
2322    LLoadKeyedSpecializedArrayElement* instr) {
2323  JSObject::ElementsKind elements_kind = instr->elements_kind();
2324  Operand operand(BuildFastArrayOperand(instr->external_pointer(),
2325                                        instr->key(), elements_kind, 0));
2326  if (elements_kind == JSObject::EXTERNAL_FLOAT_ELEMENTS) {
2327    XMMRegister result(ToDoubleRegister(instr->result()));
2328    __ movss(result, operand);
2329    __ cvtss2sd(result, result);
2330  } else if (elements_kind == JSObject::EXTERNAL_DOUBLE_ELEMENTS) {
2331    __ movdbl(ToDoubleRegister(instr->result()), operand);
2332  } else {
2333    Register result(ToRegister(instr->result()));
2334    switch (elements_kind) {
2335      case JSObject::EXTERNAL_BYTE_ELEMENTS:
2336        __ movsx_b(result, operand);
2337        break;
2338      case JSObject::EXTERNAL_PIXEL_ELEMENTS:
2339      case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
2340        __ movzx_b(result, operand);
2341        break;
2342      case JSObject::EXTERNAL_SHORT_ELEMENTS:
2343        __ movsx_w(result, operand);
2344        break;
2345      case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
2346        __ movzx_w(result, operand);
2347        break;
2348      case JSObject::EXTERNAL_INT_ELEMENTS:
2349        __ mov(result, operand);
2350        break;
2351      case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS:
2352        __ mov(result, operand);
2353        __ test(result, Operand(result));
2354        // TODO(danno): we could be more clever here, perhaps having a special
2355        // version of the stub that detects if the overflow case actually
2356        // happens, and generate code that returns a double rather than int.
2357        DeoptimizeIf(negative, instr->environment());
2358        break;
2359      case JSObject::EXTERNAL_FLOAT_ELEMENTS:
2360      case JSObject::EXTERNAL_DOUBLE_ELEMENTS:
2361      case JSObject::FAST_ELEMENTS:
2362      case JSObject::FAST_DOUBLE_ELEMENTS:
2363      case JSObject::DICTIONARY_ELEMENTS:
2364      case JSObject::NON_STRICT_ARGUMENTS_ELEMENTS:
2365        UNREACHABLE();
2366        break;
2367    }
2368  }
2369}
2370
2371
2372void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
2373  ASSERT(ToRegister(instr->context()).is(esi));
2374  ASSERT(ToRegister(instr->object()).is(edx));
2375  ASSERT(ToRegister(instr->key()).is(eax));
2376
2377  Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
2378  CallCode(ic, RelocInfo::CODE_TARGET, instr);
2379}
2380
2381
2382void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
2383  Register result = ToRegister(instr->result());
2384
2385  // Check for arguments adapter frame.
2386  Label done, adapted;
2387  __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
2388  __ mov(result, Operand(result, StandardFrameConstants::kContextOffset));
2389  __ cmp(Operand(result),
2390         Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2391  __ j(equal, &adapted, Label::kNear);
2392
2393  // No arguments adaptor frame.
2394  __ mov(result, Operand(ebp));
2395  __ jmp(&done, Label::kNear);
2396
2397  // Arguments adaptor frame present.
2398  __ bind(&adapted);
2399  __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
2400
2401  // Result is the frame pointer for the frame if not adapted and for the real
2402  // frame below the adaptor frame if adapted.
2403  __ bind(&done);
2404}
2405
2406
2407void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
2408  Operand elem = ToOperand(instr->InputAt(0));
2409  Register result = ToRegister(instr->result());
2410
2411  Label done;
2412
2413  // If no arguments adaptor frame the number of arguments is fixed.
2414  __ cmp(ebp, elem);
2415  __ mov(result, Immediate(scope()->num_parameters()));
2416  __ j(equal, &done, Label::kNear);
2417
2418  // Arguments adaptor frame present. Get argument length from there.
2419  __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
2420  __ mov(result, Operand(result,
2421                         ArgumentsAdaptorFrameConstants::kLengthOffset));
2422  __ SmiUntag(result);
2423
2424  // Argument length is in result register.
2425  __ bind(&done);
2426}
2427
2428
2429void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
2430  Register receiver = ToRegister(instr->receiver());
2431  Register function = ToRegister(instr->function());
2432  Register length = ToRegister(instr->length());
2433  Register elements = ToRegister(instr->elements());
2434  Register scratch = ToRegister(instr->TempAt(0));
2435  ASSERT(receiver.is(eax));  // Used for parameter count.
2436  ASSERT(function.is(edi));  // Required by InvokeFunction.
2437  ASSERT(ToRegister(instr->result()).is(eax));
2438
2439  // If the receiver is null or undefined, we have to pass the global
2440  // object as a receiver to normal functions. Values have to be
2441  // passed unchanged to builtins and strict-mode functions.
2442  Label global_object, receiver_ok;
2443
2444  // Do not transform the receiver to object for strict mode
2445  // functions.
2446  __ mov(scratch,
2447         FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
2448  __ test_b(FieldOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset),
2449            1 << SharedFunctionInfo::kStrictModeBitWithinByte);
2450  __ j(not_equal, &receiver_ok, Label::kNear);
2451
2452  // Do not transform the receiver to object for builtins.
2453  __ test_b(FieldOperand(scratch, SharedFunctionInfo::kNativeByteOffset),
2454            1 << SharedFunctionInfo::kNativeBitWithinByte);
2455  __ j(not_equal, &receiver_ok, Label::kNear);
2456
2457  // Normal function. Replace undefined or null with global receiver.
2458  __ cmp(receiver, factory()->null_value());
2459  __ j(equal, &global_object, Label::kNear);
2460  __ cmp(receiver, factory()->undefined_value());
2461  __ j(equal, &global_object, Label::kNear);
2462
2463  // The receiver should be a JS object.
2464  __ test(receiver, Immediate(kSmiTagMask));
2465  DeoptimizeIf(equal, instr->environment());
2466  __ CmpObjectType(receiver, FIRST_SPEC_OBJECT_TYPE, scratch);
2467  DeoptimizeIf(below, instr->environment());
2468  __ jmp(&receiver_ok, Label::kNear);
2469
2470  __ bind(&global_object);
2471  // TODO(kmillikin): We have a hydrogen value for the global object.  See
2472  // if it's better to use it than to explicitly fetch it from the context
2473  // here.
2474  __ mov(receiver, Operand(ebp, StandardFrameConstants::kContextOffset));
2475  __ mov(receiver, ContextOperand(receiver, Context::GLOBAL_INDEX));
2476  __ mov(receiver,
2477         FieldOperand(receiver, JSGlobalObject::kGlobalReceiverOffset));
2478  __ bind(&receiver_ok);
2479
2480  // Copy the arguments to this function possibly from the
2481  // adaptor frame below it.
2482  const uint32_t kArgumentsLimit = 1 * KB;
2483  __ cmp(length, kArgumentsLimit);
2484  DeoptimizeIf(above, instr->environment());
2485
2486  __ push(receiver);
2487  __ mov(receiver, length);
2488
2489  // Loop through the arguments pushing them onto the execution
2490  // stack.
2491  Label invoke, loop;
2492  // length is a small non-negative integer, due to the test above.
2493  __ test(length, Operand(length));
2494  __ j(zero, &invoke, Label::kNear);
2495  __ bind(&loop);
2496  __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize));
2497  __ dec(length);
2498  __ j(not_zero, &loop);
2499
2500  // Invoke the function.
2501  __ bind(&invoke);
2502  ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
2503  LPointerMap* pointers = instr->pointer_map();
2504  LEnvironment* env = instr->deoptimization_environment();
2505  RecordPosition(pointers->position());
2506  RegisterEnvironmentForDeoptimization(env);
2507  SafepointGenerator safepoint_generator(this,
2508                                         pointers,
2509                                         env->deoptimization_index());
2510  ParameterCount actual(eax);
2511  __ InvokeFunction(function, actual, CALL_FUNCTION,
2512                    safepoint_generator, CALL_AS_METHOD);
2513}
2514
2515
2516void LCodeGen::DoPushArgument(LPushArgument* instr) {
2517  LOperand* argument = instr->InputAt(0);
2518  if (argument->IsConstantOperand()) {
2519    __ push(ToImmediate(argument));
2520  } else {
2521    __ push(ToOperand(argument));
2522  }
2523}
2524
2525
2526void LCodeGen::DoThisFunction(LThisFunction* instr) {
2527  Register result = ToRegister(instr->result());
2528  __ mov(result, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
2529}
2530
2531
2532void LCodeGen::DoContext(LContext* instr) {
2533  Register result = ToRegister(instr->result());
2534  __ mov(result, Operand(ebp, StandardFrameConstants::kContextOffset));
2535}
2536
2537
2538void LCodeGen::DoOuterContext(LOuterContext* instr) {
2539  Register context = ToRegister(instr->context());
2540  Register result = ToRegister(instr->result());
2541  __ mov(result,
2542         Operand(context, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2543}
2544
2545
2546void LCodeGen::DoGlobalObject(LGlobalObject* instr) {
2547  Register context = ToRegister(instr->context());
2548  Register result = ToRegister(instr->result());
2549  __ mov(result, Operand(context, Context::SlotOffset(Context::GLOBAL_INDEX)));
2550}
2551
2552
2553void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) {
2554  Register global = ToRegister(instr->global());
2555  Register result = ToRegister(instr->result());
2556  __ mov(result, FieldOperand(global, GlobalObject::kGlobalReceiverOffset));
2557}
2558
2559
2560void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
2561                                 int arity,
2562                                 LInstruction* instr,
2563                                 CallKind call_kind) {
2564  // Change context if needed.
2565  bool change_context =
2566      (info()->closure()->context() != function->context()) ||
2567      scope()->contains_with() ||
2568      (scope()->num_heap_slots() > 0);
2569  if (change_context) {
2570    __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
2571  } else {
2572    __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
2573  }
2574
2575  // Set eax to arguments count if adaption is not needed. Assumes that eax
2576  // is available to write to at this point.
2577  if (!function->NeedsArgumentsAdaption()) {
2578    __ mov(eax, arity);
2579  }
2580
2581  LPointerMap* pointers = instr->pointer_map();
2582  RecordPosition(pointers->position());
2583
2584  // Invoke function.
2585  __ SetCallKind(ecx, call_kind);
2586  if (*function == *info()->closure()) {
2587    __ CallSelf();
2588  } else {
2589    __ call(FieldOperand(edi, JSFunction::kCodeEntryOffset));
2590  }
2591
2592  // Setup deoptimization.
2593  RegisterLazyDeoptimization(instr, RECORD_SIMPLE_SAFEPOINT);
2594}
2595
2596
2597void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) {
2598  ASSERT(ToRegister(instr->result()).is(eax));
2599  __ mov(edi, instr->function());
2600  CallKnownFunction(instr->function(),
2601                    instr->arity(),
2602                    instr,
2603                    CALL_AS_METHOD);
2604}
2605
2606
2607void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) {
2608  Register input_reg = ToRegister(instr->value());
2609  __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
2610         factory()->heap_number_map());
2611  DeoptimizeIf(not_equal, instr->environment());
2612
2613  Label done;
2614  Register tmp = input_reg.is(eax) ? ecx : eax;
2615  Register tmp2 = tmp.is(ecx) ? edx : input_reg.is(ecx) ? edx : ecx;
2616
2617  // Preserve the value of all registers.
2618  PushSafepointRegistersScope scope(this);
2619
2620  Label negative;
2621  __ mov(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
2622  // Check the sign of the argument. If the argument is positive, just
2623  // return it. We do not need to patch the stack since |input| and
2624  // |result| are the same register and |input| will be restored
2625  // unchanged by popping safepoint registers.
2626  __ test(tmp, Immediate(HeapNumber::kSignMask));
2627  __ j(not_zero, &negative);
2628  __ jmp(&done);
2629
2630  __ bind(&negative);
2631
2632  Label allocated, slow;
2633  __ AllocateHeapNumber(tmp, tmp2, no_reg, &slow);
2634  __ jmp(&allocated);
2635
2636  // Slow case: Call the runtime system to do the number allocation.
2637  __ bind(&slow);
2638
2639  CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0,
2640                          instr, instr->context());
2641
2642  // Set the pointer to the new heap number in tmp.
2643  if (!tmp.is(eax)) __ mov(tmp, eax);
2644
2645  // Restore input_reg after call to runtime.
2646  __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
2647
2648  __ bind(&allocated);
2649  __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kExponentOffset));
2650  __ and_(tmp2, ~HeapNumber::kSignMask);
2651  __ mov(FieldOperand(tmp, HeapNumber::kExponentOffset), tmp2);
2652  __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
2653  __ mov(FieldOperand(tmp, HeapNumber::kMantissaOffset), tmp2);
2654  __ StoreToSafepointRegisterSlot(input_reg, tmp);
2655
2656  __ bind(&done);
2657}
2658
2659
2660void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) {
2661  Register input_reg = ToRegister(instr->value());
2662  __ test(input_reg, Operand(input_reg));
2663  Label is_positive;
2664  __ j(not_sign, &is_positive);
2665  __ neg(input_reg);
2666  __ test(input_reg, Operand(input_reg));
2667  DeoptimizeIf(negative, instr->environment());
2668  __ bind(&is_positive);
2669}
2670
2671
2672void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) {
2673  // Class for deferred case.
2674  class DeferredMathAbsTaggedHeapNumber: public LDeferredCode {
2675   public:
2676    DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
2677                                    LUnaryMathOperation* instr)
2678        : LDeferredCode(codegen), instr_(instr) { }
2679    virtual void Generate() {
2680      codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
2681    }
2682   private:
2683    LUnaryMathOperation* instr_;
2684  };
2685
2686  ASSERT(instr->value()->Equals(instr->result()));
2687  Representation r = instr->hydrogen()->value()->representation();
2688
2689  if (r.IsDouble()) {
2690    XMMRegister  scratch = xmm0;
2691    XMMRegister input_reg = ToDoubleRegister(instr->value());
2692    __ xorps(scratch, scratch);
2693    __ subsd(scratch, input_reg);
2694    __ pand(input_reg, scratch);
2695  } else if (r.IsInteger32()) {
2696    EmitIntegerMathAbs(instr);
2697  } else {  // Tagged case.
2698    DeferredMathAbsTaggedHeapNumber* deferred =
2699        new DeferredMathAbsTaggedHeapNumber(this, instr);
2700    Register input_reg = ToRegister(instr->value());
2701    // Smi check.
2702    __ JumpIfNotSmi(input_reg, deferred->entry());
2703    EmitIntegerMathAbs(instr);
2704    __ bind(deferred->exit());
2705  }
2706}
2707
2708
2709void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) {
2710  XMMRegister xmm_scratch = xmm0;
2711  Register output_reg = ToRegister(instr->result());
2712  XMMRegister input_reg = ToDoubleRegister(instr->value());
2713
2714  if (CpuFeatures::IsSupported(SSE4_1)) {
2715    CpuFeatures::Scope scope(SSE4_1);
2716    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
2717      // Deoptimize on negative zero.
2718      Label non_zero;
2719      __ xorps(xmm_scratch, xmm_scratch);  // Zero the register.
2720      __ ucomisd(input_reg, xmm_scratch);
2721      __ j(not_equal, &non_zero, Label::kNear);
2722      __ movmskpd(output_reg, input_reg);
2723      __ test(output_reg, Immediate(1));
2724      DeoptimizeIf(not_zero, instr->environment());
2725      __ bind(&non_zero);
2726    }
2727    __ roundsd(xmm_scratch, input_reg, Assembler::kRoundDown);
2728    __ cvttsd2si(output_reg, Operand(xmm_scratch));
2729    // Overflow is signalled with minint.
2730    __ cmp(output_reg, 0x80000000u);
2731    DeoptimizeIf(equal, instr->environment());
2732  } else {
2733    Label done;
2734    // Deoptimize on negative numbers.
2735    __ xorps(xmm_scratch, xmm_scratch);  // Zero the register.
2736    __ ucomisd(input_reg, xmm_scratch);
2737    DeoptimizeIf(below, instr->environment());
2738
2739    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
2740      // Check for negative zero.
2741      Label positive_sign;
2742      __ j(above, &positive_sign, Label::kNear);
2743      __ movmskpd(output_reg, input_reg);
2744      __ test(output_reg, Immediate(1));
2745      DeoptimizeIf(not_zero, instr->environment());
2746      __ Set(output_reg, Immediate(0));
2747      __ jmp(&done, Label::kNear);
2748      __ bind(&positive_sign);
2749    }
2750
2751    // Use truncating instruction (OK because input is positive).
2752    __ cvttsd2si(output_reg, Operand(input_reg));
2753
2754    // Overflow is signalled with minint.
2755    __ cmp(output_reg, 0x80000000u);
2756    DeoptimizeIf(equal, instr->environment());
2757    __ bind(&done);
2758  }
2759}
2760
2761void LCodeGen::DoMathRound(LUnaryMathOperation* instr) {
2762  XMMRegister xmm_scratch = xmm0;
2763  Register output_reg = ToRegister(instr->result());
2764  XMMRegister input_reg = ToDoubleRegister(instr->value());
2765
2766  Label below_half, done;
2767  // xmm_scratch = 0.5
2768  ExternalReference one_half = ExternalReference::address_of_one_half();
2769  __ movdbl(xmm_scratch, Operand::StaticVariable(one_half));
2770  __ ucomisd(xmm_scratch, input_reg);
2771  __ j(above, &below_half);
2772  // input = input + 0.5
2773  __ addsd(input_reg, xmm_scratch);
2774
2775  // Compute Math.floor(value + 0.5).
2776  // Use truncating instruction (OK because input is positive).
2777  __ cvttsd2si(output_reg, Operand(input_reg));
2778
2779  // Overflow is signalled with minint.
2780  __ cmp(output_reg, 0x80000000u);
2781  DeoptimizeIf(equal, instr->environment());
2782  __ jmp(&done);
2783
2784  __ bind(&below_half);
2785
2786  // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if
2787  // we can ignore the difference between a result of -0 and +0.
2788  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
2789    // If the sign is positive, we return +0.
2790    __ movmskpd(output_reg, input_reg);
2791    __ test(output_reg, Immediate(1));
2792    DeoptimizeIf(not_zero, instr->environment());
2793  } else {
2794    // If the input is >= -0.5, we return +0.
2795    __ mov(output_reg, Immediate(0xBF000000));
2796    __ movd(xmm_scratch, Operand(output_reg));
2797    __ cvtss2sd(xmm_scratch, xmm_scratch);
2798    __ ucomisd(input_reg, xmm_scratch);
2799    DeoptimizeIf(below, instr->environment());
2800  }
2801  __ Set(output_reg, Immediate(0));
2802  __ bind(&done);
2803}
2804
2805
2806void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) {
2807  XMMRegister input_reg = ToDoubleRegister(instr->value());
2808  ASSERT(ToDoubleRegister(instr->result()).is(input_reg));
2809  __ sqrtsd(input_reg, input_reg);
2810}
2811
2812
2813void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) {
2814  XMMRegister xmm_scratch = xmm0;
2815  XMMRegister input_reg = ToDoubleRegister(instr->value());
2816  ASSERT(ToDoubleRegister(instr->result()).is(input_reg));
2817  __ xorps(xmm_scratch, xmm_scratch);
2818  __ addsd(input_reg, xmm_scratch);  // Convert -0 to +0.
2819  __ sqrtsd(input_reg, input_reg);
2820}
2821
2822
2823void LCodeGen::DoPower(LPower* instr) {
2824  LOperand* left = instr->InputAt(0);
2825  LOperand* right = instr->InputAt(1);
2826  DoubleRegister result_reg = ToDoubleRegister(instr->result());
2827  Representation exponent_type = instr->hydrogen()->right()->representation();
2828
2829  if (exponent_type.IsDouble()) {
2830    // It is safe to use ebx directly since the instruction is marked
2831    // as a call.
2832    __ PrepareCallCFunction(4, ebx);
2833    __ movdbl(Operand(esp, 0 * kDoubleSize), ToDoubleRegister(left));
2834    __ movdbl(Operand(esp, 1 * kDoubleSize), ToDoubleRegister(right));
2835    __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
2836                     4);
2837  } else if (exponent_type.IsInteger32()) {
2838    // It is safe to use ebx directly since the instruction is marked
2839    // as a call.
2840    ASSERT(!ToRegister(right).is(ebx));
2841    __ PrepareCallCFunction(4, ebx);
2842    __ movdbl(Operand(esp, 0 * kDoubleSize), ToDoubleRegister(left));
2843    __ mov(Operand(esp, 1 * kDoubleSize), ToRegister(right));
2844    __ CallCFunction(ExternalReference::power_double_int_function(isolate()),
2845                     4);
2846  } else {
2847    ASSERT(exponent_type.IsTagged());
2848    CpuFeatures::Scope scope(SSE2);
2849    Register right_reg = ToRegister(right);
2850
2851    Label non_smi, call;
2852    __ JumpIfNotSmi(right_reg, &non_smi);
2853    __ SmiUntag(right_reg);
2854    __ cvtsi2sd(result_reg, Operand(right_reg));
2855    __ jmp(&call);
2856
2857    __ bind(&non_smi);
2858    // It is safe to use ebx directly since the instruction is marked
2859    // as a call.
2860    ASSERT(!right_reg.is(ebx));
2861    __ CmpObjectType(right_reg, HEAP_NUMBER_TYPE , ebx);
2862    DeoptimizeIf(not_equal, instr->environment());
2863    __ movdbl(result_reg, FieldOperand(right_reg, HeapNumber::kValueOffset));
2864
2865    __ bind(&call);
2866    __ PrepareCallCFunction(4, ebx);
2867    __ movdbl(Operand(esp, 0 * kDoubleSize), ToDoubleRegister(left));
2868    __ movdbl(Operand(esp, 1 * kDoubleSize), result_reg);
2869    __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
2870                     4);
2871  }
2872
2873  // Return value is in st(0) on ia32.
2874  // Store it into the (fixed) result register.
2875  __ sub(Operand(esp), Immediate(kDoubleSize));
2876  __ fstp_d(Operand(esp, 0));
2877  __ movdbl(result_reg, Operand(esp, 0));
2878  __ add(Operand(esp), Immediate(kDoubleSize));
2879}
2880
2881
2882void LCodeGen::DoMathLog(LUnaryMathOperation* instr) {
2883  ASSERT(instr->value()->Equals(instr->result()));
2884  XMMRegister input_reg = ToDoubleRegister(instr->value());
2885  Label positive, done, zero;
2886  __ xorps(xmm0, xmm0);
2887  __ ucomisd(input_reg, xmm0);
2888  __ j(above, &positive, Label::kNear);
2889  __ j(equal, &zero, Label::kNear);
2890  ExternalReference nan =
2891      ExternalReference::address_of_canonical_non_hole_nan();
2892  __ movdbl(input_reg, Operand::StaticVariable(nan));
2893  __ jmp(&done, Label::kNear);
2894  __ bind(&zero);
2895  __ push(Immediate(0xFFF00000));
2896  __ push(Immediate(0));
2897  __ movdbl(input_reg, Operand(esp, 0));
2898  __ add(Operand(esp), Immediate(kDoubleSize));
2899  __ jmp(&done, Label::kNear);
2900  __ bind(&positive);
2901  __ fldln2();
2902  __ sub(Operand(esp), Immediate(kDoubleSize));
2903  __ movdbl(Operand(esp, 0), input_reg);
2904  __ fld_d(Operand(esp, 0));
2905  __ fyl2x();
2906  __ fstp_d(Operand(esp, 0));
2907  __ movdbl(input_reg, Operand(esp, 0));
2908  __ add(Operand(esp), Immediate(kDoubleSize));
2909  __ bind(&done);
2910}
2911
2912
2913void LCodeGen::DoMathCos(LUnaryMathOperation* instr) {
2914  ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
2915  TranscendentalCacheStub stub(TranscendentalCache::COS,
2916                               TranscendentalCacheStub::UNTAGGED);
2917  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2918}
2919
2920
2921void LCodeGen::DoMathSin(LUnaryMathOperation* instr) {
2922  ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
2923  TranscendentalCacheStub stub(TranscendentalCache::SIN,
2924                               TranscendentalCacheStub::UNTAGGED);
2925  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2926}
2927
2928
2929void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) {
2930  switch (instr->op()) {
2931    case kMathAbs:
2932      DoMathAbs(instr);
2933      break;
2934    case kMathFloor:
2935      DoMathFloor(instr);
2936      break;
2937    case kMathRound:
2938      DoMathRound(instr);
2939      break;
2940    case kMathSqrt:
2941      DoMathSqrt(instr);
2942      break;
2943    case kMathPowHalf:
2944      DoMathPowHalf(instr);
2945      break;
2946    case kMathCos:
2947      DoMathCos(instr);
2948      break;
2949    case kMathSin:
2950      DoMathSin(instr);
2951      break;
2952    case kMathLog:
2953      DoMathLog(instr);
2954      break;
2955
2956    default:
2957      UNREACHABLE();
2958  }
2959}
2960
2961
2962void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
2963  ASSERT(ToRegister(instr->context()).is(esi));
2964  ASSERT(ToRegister(instr->function()).is(edi));
2965  ASSERT(instr->HasPointerMap());
2966  ASSERT(instr->HasDeoptimizationEnvironment());
2967  LPointerMap* pointers = instr->pointer_map();
2968  LEnvironment* env = instr->deoptimization_environment();
2969  RecordPosition(pointers->position());
2970  RegisterEnvironmentForDeoptimization(env);
2971  SafepointGenerator generator(this, pointers, env->deoptimization_index());
2972  ParameterCount count(instr->arity());
2973  __ InvokeFunction(edi, count, CALL_FUNCTION, generator, CALL_AS_METHOD);
2974}
2975
2976
2977void LCodeGen::DoCallKeyed(LCallKeyed* instr) {
2978  ASSERT(ToRegister(instr->context()).is(esi));
2979  ASSERT(ToRegister(instr->key()).is(ecx));
2980  ASSERT(ToRegister(instr->result()).is(eax));
2981
2982  int arity = instr->arity();
2983  Handle<Code> ic = isolate()->stub_cache()->
2984      ComputeKeyedCallInitialize(arity, NOT_IN_LOOP);
2985  CallCode(ic, RelocInfo::CODE_TARGET, instr);
2986}
2987
2988
2989void LCodeGen::DoCallNamed(LCallNamed* instr) {
2990  ASSERT(ToRegister(instr->context()).is(esi));
2991  ASSERT(ToRegister(instr->result()).is(eax));
2992
2993  int arity = instr->arity();
2994  RelocInfo::Mode mode = RelocInfo::CODE_TARGET;
2995  Handle<Code> ic =
2996      isolate()->stub_cache()->ComputeCallInitialize(arity, NOT_IN_LOOP, mode);
2997  __ mov(ecx, instr->name());
2998  CallCode(ic, mode, instr);
2999}
3000
3001
3002void LCodeGen::DoCallFunction(LCallFunction* instr) {
3003  ASSERT(ToRegister(instr->context()).is(esi));
3004  ASSERT(ToRegister(instr->result()).is(eax));
3005
3006  int arity = instr->arity();
3007  CallFunctionStub stub(arity, NOT_IN_LOOP, RECEIVER_MIGHT_BE_IMPLICIT);
3008  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3009  __ Drop(1);
3010}
3011
3012
3013void LCodeGen::DoCallGlobal(LCallGlobal* instr) {
3014  ASSERT(ToRegister(instr->context()).is(esi));
3015  ASSERT(ToRegister(instr->result()).is(eax));
3016
3017  int arity = instr->arity();
3018  RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT;
3019  Handle<Code> ic =
3020      isolate()->stub_cache()->ComputeCallInitialize(arity, NOT_IN_LOOP, mode);
3021  __ mov(ecx, instr->name());
3022  CallCode(ic, mode, instr);
3023}
3024
3025
3026void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) {
3027  ASSERT(ToRegister(instr->result()).is(eax));
3028  __ mov(edi, instr->target());
3029  CallKnownFunction(instr->target(), instr->arity(), instr, CALL_AS_FUNCTION);
3030}
3031
3032
3033void LCodeGen::DoCallNew(LCallNew* instr) {
3034  ASSERT(ToRegister(instr->context()).is(esi));
3035  ASSERT(ToRegister(instr->constructor()).is(edi));
3036  ASSERT(ToRegister(instr->result()).is(eax));
3037
3038  Handle<Code> builtin = isolate()->builtins()->JSConstructCall();
3039  __ Set(eax, Immediate(instr->arity()));
3040  CallCode(builtin, RelocInfo::CONSTRUCT_CALL, instr);
3041}
3042
3043
3044void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3045  CallRuntime(instr->function(), instr->arity(), instr);
3046}
3047
3048
3049void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3050  Register object = ToRegister(instr->object());
3051  Register value = ToRegister(instr->value());
3052  int offset = instr->offset();
3053
3054  if (!instr->transition().is_null()) {
3055    __ mov(FieldOperand(object, HeapObject::kMapOffset), instr->transition());
3056  }
3057
3058  // Do the store.
3059  if (instr->is_in_object()) {
3060    __ mov(FieldOperand(object, offset), value);
3061    if (instr->needs_write_barrier()) {
3062      Register temp = ToRegister(instr->TempAt(0));
3063      // Update the write barrier for the object for in-object properties.
3064      __ RecordWrite(object, offset, value, temp);
3065    }
3066  } else {
3067    Register temp = ToRegister(instr->TempAt(0));
3068    __ mov(temp, FieldOperand(object, JSObject::kPropertiesOffset));
3069    __ mov(FieldOperand(temp, offset), value);
3070    if (instr->needs_write_barrier()) {
3071      // Update the write barrier for the properties array.
3072      // object is used as a scratch register.
3073      __ RecordWrite(temp, offset, value, object);
3074    }
3075  }
3076}
3077
3078
3079void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
3080  ASSERT(ToRegister(instr->context()).is(esi));
3081  ASSERT(ToRegister(instr->object()).is(edx));
3082  ASSERT(ToRegister(instr->value()).is(eax));
3083
3084  __ mov(ecx, instr->name());
3085  Handle<Code> ic = instr->strict_mode()
3086      ? isolate()->builtins()->StoreIC_Initialize_Strict()
3087      : isolate()->builtins()->StoreIC_Initialize();
3088  CallCode(ic, RelocInfo::CODE_TARGET, instr);
3089}
3090
3091
3092void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3093  if (instr->index()->IsConstantOperand()) {
3094    __ cmp(ToOperand(instr->length()),
3095           ToImmediate(LConstantOperand::cast(instr->index())));
3096    DeoptimizeIf(below_equal, instr->environment());
3097  } else {
3098    __ cmp(ToRegister(instr->index()), ToOperand(instr->length()));
3099    DeoptimizeIf(above_equal, instr->environment());
3100  }
3101}
3102
3103
3104void LCodeGen::DoStoreKeyedSpecializedArrayElement(
3105    LStoreKeyedSpecializedArrayElement* instr) {
3106  JSObject::ElementsKind elements_kind = instr->elements_kind();
3107  Operand operand(BuildFastArrayOperand(instr->external_pointer(),
3108                                        instr->key(), elements_kind, 0));
3109  if (elements_kind == JSObject::EXTERNAL_FLOAT_ELEMENTS) {
3110    __ cvtsd2ss(xmm0, ToDoubleRegister(instr->value()));
3111    __ movss(operand, xmm0);
3112  } else if (elements_kind == JSObject::EXTERNAL_DOUBLE_ELEMENTS) {
3113    __ movdbl(operand, ToDoubleRegister(instr->value()));
3114  } else {
3115    Register value = ToRegister(instr->value());
3116    switch (elements_kind) {
3117      case JSObject::EXTERNAL_PIXEL_ELEMENTS:
3118      case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
3119      case JSObject::EXTERNAL_BYTE_ELEMENTS:
3120        __ mov_b(operand, value);
3121        break;
3122      case JSObject::EXTERNAL_SHORT_ELEMENTS:
3123      case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
3124        __ mov_w(operand, value);
3125        break;
3126      case JSObject::EXTERNAL_INT_ELEMENTS:
3127      case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS:
3128        __ mov(operand, value);
3129        break;
3130      case JSObject::EXTERNAL_FLOAT_ELEMENTS:
3131      case JSObject::EXTERNAL_DOUBLE_ELEMENTS:
3132      case JSObject::FAST_ELEMENTS:
3133      case JSObject::FAST_DOUBLE_ELEMENTS:
3134      case JSObject::DICTIONARY_ELEMENTS:
3135      case JSObject::NON_STRICT_ARGUMENTS_ELEMENTS:
3136        UNREACHABLE();
3137        break;
3138    }
3139  }
3140}
3141
3142
3143void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) {
3144  Register value = ToRegister(instr->value());
3145  Register elements = ToRegister(instr->object());
3146  Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
3147
3148  // Do the store.
3149  if (instr->key()->IsConstantOperand()) {
3150    ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
3151    LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3152    int offset =
3153        ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize;
3154    __ mov(FieldOperand(elements, offset), value);
3155  } else {
3156    __ mov(FieldOperand(elements,
3157                        key,
3158                        times_pointer_size,
3159                        FixedArray::kHeaderSize),
3160           value);
3161  }
3162
3163  if (instr->hydrogen()->NeedsWriteBarrier()) {
3164    // Compute address of modified element and store it into key register.
3165    __ lea(key,
3166           FieldOperand(elements,
3167                        key,
3168                        times_pointer_size,
3169                        FixedArray::kHeaderSize));
3170    __ RecordWrite(elements, key, value);
3171  }
3172}
3173
3174
3175void LCodeGen::DoStoreKeyedFastDoubleElement(
3176    LStoreKeyedFastDoubleElement* instr) {
3177  XMMRegister value = ToDoubleRegister(instr->value());
3178  Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
3179  Label have_value;
3180
3181  __ ucomisd(value, value);
3182  __ j(parity_odd, &have_value);  // NaN.
3183
3184  ExternalReference canonical_nan_reference =
3185      ExternalReference::address_of_canonical_non_hole_nan();
3186  __ movdbl(value, Operand::StaticVariable(canonical_nan_reference));
3187  __ bind(&have_value);
3188
3189  Operand double_store_operand = BuildFastArrayOperand(
3190      instr->elements(), instr->key(), JSObject::FAST_DOUBLE_ELEMENTS,
3191      FixedDoubleArray::kHeaderSize - kHeapObjectTag);
3192  __ movdbl(double_store_operand, value);
3193}
3194
3195
3196void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
3197  ASSERT(ToRegister(instr->context()).is(esi));
3198  ASSERT(ToRegister(instr->object()).is(edx));
3199  ASSERT(ToRegister(instr->key()).is(ecx));
3200  ASSERT(ToRegister(instr->value()).is(eax));
3201
3202  Handle<Code> ic = instr->strict_mode()
3203      ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
3204      : isolate()->builtins()->KeyedStoreIC_Initialize();
3205  CallCode(ic, RelocInfo::CODE_TARGET, instr);
3206}
3207
3208
3209void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
3210  class DeferredStringCharCodeAt: public LDeferredCode {
3211   public:
3212    DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
3213        : LDeferredCode(codegen), instr_(instr) { }
3214    virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
3215   private:
3216    LStringCharCodeAt* instr_;
3217  };
3218
3219  Register string = ToRegister(instr->string());
3220  Register index = ToRegister(instr->index());
3221  Register result = ToRegister(instr->result());
3222
3223  DeferredStringCharCodeAt* deferred =
3224      new DeferredStringCharCodeAt(this, instr);
3225
3226  // Fetch the instance type of the receiver into result register.
3227  __ mov(result, FieldOperand(string, HeapObject::kMapOffset));
3228  __ movzx_b(result, FieldOperand(result, Map::kInstanceTypeOffset));
3229
3230  // We need special handling for indirect strings.
3231  Label check_sequential;
3232  __ test(result, Immediate(kIsIndirectStringMask));
3233  __ j(zero, &check_sequential, Label::kNear);
3234
3235  // Dispatch on the indirect string shape: slice or cons.
3236  Label cons_string;
3237  __ test(result, Immediate(kSlicedNotConsMask));
3238  __ j(zero, &cons_string, Label::kNear);
3239
3240  // Handle slices.
3241  Label indirect_string_loaded;
3242  __ mov(result, FieldOperand(string, SlicedString::kOffsetOffset));
3243  __ SmiUntag(result);
3244  __ add(index, Operand(result));
3245  __ mov(string, FieldOperand(string, SlicedString::kParentOffset));
3246  __ jmp(&indirect_string_loaded, Label::kNear);
3247
3248  // Handle conses.
3249  // Check whether the right hand side is the empty string (i.e. if
3250  // this is really a flat string in a cons string). If that is not
3251  // the case we would rather go to the runtime system now to flatten
3252  // the string.
3253  __ bind(&cons_string);
3254  __ cmp(FieldOperand(string, ConsString::kSecondOffset),
3255         Immediate(factory()->empty_string()));
3256  __ j(not_equal, deferred->entry());
3257  __ mov(string, FieldOperand(string, ConsString::kFirstOffset));
3258
3259  __ bind(&indirect_string_loaded);
3260  __ mov(result, FieldOperand(string, HeapObject::kMapOffset));
3261  __ movzx_b(result, FieldOperand(result, Map::kInstanceTypeOffset));
3262
3263  // Check whether the string is sequential. The only non-sequential
3264  // shapes we support have just been unwrapped above.
3265  __ bind(&check_sequential);
3266  STATIC_ASSERT(kSeqStringTag == 0);
3267  __ test(result, Immediate(kStringRepresentationMask));
3268  __ j(not_zero, deferred->entry());
3269
3270  // Dispatch on the encoding: ASCII or two-byte.
3271  Label ascii_string;
3272  STATIC_ASSERT(kAsciiStringTag != 0);
3273  __ test(result, Immediate(kStringEncodingMask));
3274  __ j(not_zero, &ascii_string, Label::kNear);
3275
3276  // Two-byte string.
3277  // Load the two-byte character code into the result register.
3278  Label done;
3279  STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
3280  __ movzx_w(result, FieldOperand(string,
3281                                  index,
3282                                  times_2,
3283                                  SeqTwoByteString::kHeaderSize));
3284  __ jmp(&done, Label::kNear);
3285
3286  // ASCII string.
3287  // Load the byte into the result register.
3288  __ bind(&ascii_string);
3289  __ movzx_b(result, FieldOperand(string,
3290                                  index,
3291                                  times_1,
3292                                  SeqAsciiString::kHeaderSize));
3293  __ bind(&done);
3294  __ bind(deferred->exit());
3295}
3296
3297
3298void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
3299  Register string = ToRegister(instr->string());
3300  Register result = ToRegister(instr->result());
3301
3302  // TODO(3095996): Get rid of this. For now, we need to make the
3303  // result register contain a valid pointer because it is already
3304  // contained in the register pointer map.
3305  __ Set(result, Immediate(0));
3306
3307  PushSafepointRegistersScope scope(this);
3308  __ push(string);
3309  // Push the index as a smi. This is safe because of the checks in
3310  // DoStringCharCodeAt above.
3311  STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
3312  if (instr->index()->IsConstantOperand()) {
3313    int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
3314    __ push(Immediate(Smi::FromInt(const_index)));
3315  } else {
3316    Register index = ToRegister(instr->index());
3317    __ SmiTag(index);
3318    __ push(index);
3319  }
3320  CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2,
3321                          instr, instr->context());
3322  if (FLAG_debug_code) {
3323    __ AbortIfNotSmi(eax);
3324  }
3325  __ SmiUntag(eax);
3326  __ StoreToSafepointRegisterSlot(result, eax);
3327}
3328
3329
3330void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
3331  class DeferredStringCharFromCode: public LDeferredCode {
3332   public:
3333    DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
3334        : LDeferredCode(codegen), instr_(instr) { }
3335    virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
3336   private:
3337    LStringCharFromCode* instr_;
3338  };
3339
3340  DeferredStringCharFromCode* deferred =
3341      new DeferredStringCharFromCode(this, instr);
3342
3343  ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
3344  Register char_code = ToRegister(instr->char_code());
3345  Register result = ToRegister(instr->result());
3346  ASSERT(!char_code.is(result));
3347
3348  __ cmp(char_code, String::kMaxAsciiCharCode);
3349  __ j(above, deferred->entry());
3350  __ Set(result, Immediate(factory()->single_character_string_cache()));
3351  __ mov(result, FieldOperand(result,
3352                              char_code, times_pointer_size,
3353                              FixedArray::kHeaderSize));
3354  __ cmp(result, factory()->undefined_value());
3355  __ j(equal, deferred->entry());
3356  __ bind(deferred->exit());
3357}
3358
3359
3360void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
3361  Register char_code = ToRegister(instr->char_code());
3362  Register result = ToRegister(instr->result());
3363
3364  // TODO(3095996): Get rid of this. For now, we need to make the
3365  // result register contain a valid pointer because it is already
3366  // contained in the register pointer map.
3367  __ Set(result, Immediate(0));
3368
3369  PushSafepointRegistersScope scope(this);
3370  __ SmiTag(char_code);
3371  __ push(char_code);
3372  CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
3373  __ StoreToSafepointRegisterSlot(result, eax);
3374}
3375
3376
3377void LCodeGen::DoStringLength(LStringLength* instr) {
3378  Register string = ToRegister(instr->string());
3379  Register result = ToRegister(instr->result());
3380  __ mov(result, FieldOperand(string, String::kLengthOffset));
3381}
3382
3383
3384void LCodeGen::DoStringAdd(LStringAdd* instr) {
3385  if (instr->left()->IsConstantOperand()) {
3386    __ push(ToImmediate(instr->left()));
3387  } else {
3388    __ push(ToOperand(instr->left()));
3389  }
3390  if (instr->right()->IsConstantOperand()) {
3391    __ push(ToImmediate(instr->right()));
3392  } else {
3393    __ push(ToOperand(instr->right()));
3394  }
3395  StringAddStub stub(NO_STRING_CHECK_IN_STUB);
3396  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3397}
3398
3399
3400void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
3401  LOperand* input = instr->InputAt(0);
3402  ASSERT(input->IsRegister() || input->IsStackSlot());
3403  LOperand* output = instr->result();
3404  ASSERT(output->IsDoubleRegister());
3405  __ cvtsi2sd(ToDoubleRegister(output), ToOperand(input));
3406}
3407
3408
3409void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
3410  class DeferredNumberTagI: public LDeferredCode {
3411   public:
3412    DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
3413        : LDeferredCode(codegen), instr_(instr) { }
3414    virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_); }
3415   private:
3416    LNumberTagI* instr_;
3417  };
3418
3419  LOperand* input = instr->InputAt(0);
3420  ASSERT(input->IsRegister() && input->Equals(instr->result()));
3421  Register reg = ToRegister(input);
3422
3423  DeferredNumberTagI* deferred = new DeferredNumberTagI(this, instr);
3424  __ SmiTag(reg);
3425  __ j(overflow, deferred->entry());
3426  __ bind(deferred->exit());
3427}
3428
3429
3430void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) {
3431  Label slow;
3432  Register reg = ToRegister(instr->InputAt(0));
3433  Register tmp = reg.is(eax) ? ecx : eax;
3434
3435  // Preserve the value of all registers.
3436  PushSafepointRegistersScope scope(this);
3437
3438  // There was overflow, so bits 30 and 31 of the original integer
3439  // disagree. Try to allocate a heap number in new space and store
3440  // the value in there. If that fails, call the runtime system.
3441  Label done;
3442  __ SmiUntag(reg);
3443  __ xor_(reg, 0x80000000);
3444  __ cvtsi2sd(xmm0, Operand(reg));
3445  if (FLAG_inline_new) {
3446    __ AllocateHeapNumber(reg, tmp, no_reg, &slow);
3447    __ jmp(&done, Label::kNear);
3448  }
3449
3450  // Slow case: Call the runtime system to do the number allocation.
3451  __ bind(&slow);
3452
3453  // TODO(3095996): Put a valid pointer value in the stack slot where the result
3454  // register is stored, as this register is in the pointer map, but contains an
3455  // integer value.
3456  __ StoreToSafepointRegisterSlot(reg, Immediate(0));
3457  // NumberTagI and NumberTagD use the context from the frame, rather than
3458  // the environment's HContext or HInlinedContext value.
3459  // They only call Runtime::kAllocateHeapNumber.
3460  // The corresponding HChange instructions are added in a phase that does
3461  // not have easy access to the local context.
3462  __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
3463  __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
3464  RecordSafepointWithRegisters(
3465      instr->pointer_map(), 0, Safepoint::kNoDeoptimizationIndex);
3466  if (!reg.is(eax)) __ mov(reg, eax);
3467
3468  // Done. Put the value in xmm0 into the value of the allocated heap
3469  // number.
3470  __ bind(&done);
3471  __ movdbl(FieldOperand(reg, HeapNumber::kValueOffset), xmm0);
3472  __ StoreToSafepointRegisterSlot(reg, reg);
3473}
3474
3475
3476void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
3477  class DeferredNumberTagD: public LDeferredCode {
3478   public:
3479    DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
3480        : LDeferredCode(codegen), instr_(instr) { }
3481    virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
3482   private:
3483    LNumberTagD* instr_;
3484  };
3485
3486  XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
3487  Register reg = ToRegister(instr->result());
3488  Register tmp = ToRegister(instr->TempAt(0));
3489
3490  DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr);
3491  if (FLAG_inline_new) {
3492    __ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry());
3493  } else {
3494    __ jmp(deferred->entry());
3495  }
3496  __ bind(deferred->exit());
3497  __ movdbl(FieldOperand(reg, HeapNumber::kValueOffset), input_reg);
3498}
3499
3500
3501void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
3502  // TODO(3095996): Get rid of this. For now, we need to make the
3503  // result register contain a valid pointer because it is already
3504  // contained in the register pointer map.
3505  Register reg = ToRegister(instr->result());
3506  __ Set(reg, Immediate(0));
3507
3508  PushSafepointRegistersScope scope(this);
3509  // NumberTagI and NumberTagD use the context from the frame, rather than
3510  // the environment's HContext or HInlinedContext value.
3511  // They only call Runtime::kAllocateHeapNumber.
3512  // The corresponding HChange instructions are added in a phase that does
3513  // not have easy access to the local context.
3514  __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
3515  __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
3516  RecordSafepointWithRegisters(instr->pointer_map(), 0,
3517                               Safepoint::kNoDeoptimizationIndex);
3518  __ StoreToSafepointRegisterSlot(reg, eax);
3519}
3520
3521
3522void LCodeGen::DoSmiTag(LSmiTag* instr) {
3523  LOperand* input = instr->InputAt(0);
3524  ASSERT(input->IsRegister() && input->Equals(instr->result()));
3525  ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
3526  __ SmiTag(ToRegister(input));
3527}
3528
3529
3530void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
3531  LOperand* input = instr->InputAt(0);
3532  ASSERT(input->IsRegister() && input->Equals(instr->result()));
3533  if (instr->needs_check()) {
3534    __ test(ToRegister(input), Immediate(kSmiTagMask));
3535    DeoptimizeIf(not_zero, instr->environment());
3536  }
3537  __ SmiUntag(ToRegister(input));
3538}
3539
3540
3541void LCodeGen::EmitNumberUntagD(Register input_reg,
3542                                XMMRegister result_reg,
3543                                bool deoptimize_on_undefined,
3544                                LEnvironment* env) {
3545  Label load_smi, done;
3546
3547  // Smi check.
3548  __ JumpIfSmi(input_reg, &load_smi, Label::kNear);
3549
3550  // Heap number map check.
3551  __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
3552         factory()->heap_number_map());
3553  if (deoptimize_on_undefined) {
3554    DeoptimizeIf(not_equal, env);
3555  } else {
3556    Label heap_number;
3557    __ j(equal, &heap_number, Label::kNear);
3558
3559    __ cmp(input_reg, factory()->undefined_value());
3560    DeoptimizeIf(not_equal, env);
3561
3562    // Convert undefined to NaN.
3563    ExternalReference nan =
3564        ExternalReference::address_of_canonical_non_hole_nan();
3565    __ movdbl(result_reg, Operand::StaticVariable(nan));
3566    __ jmp(&done, Label::kNear);
3567
3568    __ bind(&heap_number);
3569  }
3570  // Heap number to XMM conversion.
3571  __ movdbl(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset));
3572  __ jmp(&done, Label::kNear);
3573
3574  // Smi to XMM conversion
3575  __ bind(&load_smi);
3576  __ SmiUntag(input_reg);  // Untag smi before converting to float.
3577  __ cvtsi2sd(result_reg, Operand(input_reg));
3578  __ SmiTag(input_reg);  // Retag smi.
3579  __ bind(&done);
3580}
3581
3582
3583class DeferredTaggedToI: public LDeferredCode {
3584 public:
3585  DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
3586      : LDeferredCode(codegen), instr_(instr) { }
3587  virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); }
3588 private:
3589  LTaggedToI* instr_;
3590};
3591
3592
3593void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
3594  Label done, heap_number;
3595  Register input_reg = ToRegister(instr->InputAt(0));
3596
3597  // Heap number map check.
3598  __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
3599         factory()->heap_number_map());
3600
3601  if (instr->truncating()) {
3602    __ j(equal, &heap_number, Label::kNear);
3603    // Check for undefined. Undefined is converted to zero for truncating
3604    // conversions.
3605    __ cmp(input_reg, factory()->undefined_value());
3606    DeoptimizeIf(not_equal, instr->environment());
3607    __ mov(input_reg, 0);
3608    __ jmp(&done, Label::kNear);
3609
3610    __ bind(&heap_number);
3611    if (CpuFeatures::IsSupported(SSE3)) {
3612      CpuFeatures::Scope scope(SSE3);
3613      Label convert;
3614      // Use more powerful conversion when sse3 is available.
3615      // Load x87 register with heap number.
3616      __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
3617      // Get exponent alone and check for too-big exponent.
3618      __ mov(input_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset));
3619      __ and_(input_reg, HeapNumber::kExponentMask);
3620      const uint32_t kTooBigExponent =
3621          (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
3622      __ cmp(Operand(input_reg), Immediate(kTooBigExponent));
3623      __ j(less, &convert, Label::kNear);
3624      // Pop FPU stack before deoptimizing.
3625      __ ffree(0);
3626      __ fincstp();
3627      DeoptimizeIf(no_condition, instr->environment());
3628
3629      // Reserve space for 64 bit answer.
3630      __ bind(&convert);
3631      __ sub(Operand(esp), Immediate(kDoubleSize));
3632      // Do conversion, which cannot fail because we checked the exponent.
3633      __ fisttp_d(Operand(esp, 0));
3634      __ mov(input_reg, Operand(esp, 0));  // Low word of answer is the result.
3635      __ add(Operand(esp), Immediate(kDoubleSize));
3636    } else {
3637      XMMRegister xmm_temp = ToDoubleRegister(instr->TempAt(0));
3638      __ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
3639      __ cvttsd2si(input_reg, Operand(xmm0));
3640      __ cmp(input_reg, 0x80000000u);
3641      __ j(not_equal, &done);
3642      // Check if the input was 0x8000000 (kMinInt).
3643      // If no, then we got an overflow and we deoptimize.
3644      ExternalReference min_int = ExternalReference::address_of_min_int();
3645      __ movdbl(xmm_temp, Operand::StaticVariable(min_int));
3646      __ ucomisd(xmm_temp, xmm0);
3647      DeoptimizeIf(not_equal, instr->environment());
3648      DeoptimizeIf(parity_even, instr->environment());  // NaN.
3649    }
3650  } else {
3651    // Deoptimize if we don't have a heap number.
3652    DeoptimizeIf(not_equal, instr->environment());
3653
3654    XMMRegister xmm_temp = ToDoubleRegister(instr->TempAt(0));
3655    __ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
3656    __ cvttsd2si(input_reg, Operand(xmm0));
3657    __ cvtsi2sd(xmm_temp, Operand(input_reg));
3658    __ ucomisd(xmm0, xmm_temp);
3659    DeoptimizeIf(not_equal, instr->environment());
3660    DeoptimizeIf(parity_even, instr->environment());  // NaN.
3661    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3662      __ test(input_reg, Operand(input_reg));
3663      __ j(not_zero, &done);
3664      __ movmskpd(input_reg, xmm0);
3665      __ and_(input_reg, 1);
3666      DeoptimizeIf(not_zero, instr->environment());
3667    }
3668  }
3669  __ bind(&done);
3670}
3671
3672
3673void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
3674  LOperand* input = instr->InputAt(0);
3675  ASSERT(input->IsRegister());
3676  ASSERT(input->Equals(instr->result()));
3677
3678  Register input_reg = ToRegister(input);
3679
3680  DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr);
3681
3682  // Smi check.
3683  __ JumpIfNotSmi(input_reg, deferred->entry());
3684
3685  // Smi to int32 conversion
3686  __ SmiUntag(input_reg);  // Untag smi.
3687
3688  __ bind(deferred->exit());
3689}
3690
3691
3692void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
3693  LOperand* input = instr->InputAt(0);
3694  ASSERT(input->IsRegister());
3695  LOperand* result = instr->result();
3696  ASSERT(result->IsDoubleRegister());
3697
3698  Register input_reg = ToRegister(input);
3699  XMMRegister result_reg = ToDoubleRegister(result);
3700
3701  EmitNumberUntagD(input_reg, result_reg,
3702                   instr->hydrogen()->deoptimize_on_undefined(),
3703                   instr->environment());
3704}
3705
3706
3707void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
3708  LOperand* input = instr->InputAt(0);
3709  ASSERT(input->IsDoubleRegister());
3710  LOperand* result = instr->result();
3711  ASSERT(result->IsRegister());
3712
3713  XMMRegister input_reg = ToDoubleRegister(input);
3714  Register result_reg = ToRegister(result);
3715
3716  if (instr->truncating()) {
3717    // Performs a truncating conversion of a floating point number as used by
3718    // the JS bitwise operations.
3719    __ cvttsd2si(result_reg, Operand(input_reg));
3720    __ cmp(result_reg, 0x80000000u);
3721    if (CpuFeatures::IsSupported(SSE3)) {
3722      // This will deoptimize if the exponent of the input in out of range.
3723      CpuFeatures::Scope scope(SSE3);
3724      Label convert, done;
3725      __ j(not_equal, &done, Label::kNear);
3726      __ sub(Operand(esp), Immediate(kDoubleSize));
3727      __ movdbl(Operand(esp, 0), input_reg);
3728      // Get exponent alone and check for too-big exponent.
3729      __ mov(result_reg, Operand(esp, sizeof(int32_t)));
3730      __ and_(result_reg, HeapNumber::kExponentMask);
3731      const uint32_t kTooBigExponent =
3732          (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
3733      __ cmp(Operand(result_reg), Immediate(kTooBigExponent));
3734      __ j(less, &convert, Label::kNear);
3735      __ add(Operand(esp), Immediate(kDoubleSize));
3736      DeoptimizeIf(no_condition, instr->environment());
3737      __ bind(&convert);
3738      // Do conversion, which cannot fail because we checked the exponent.
3739      __ fld_d(Operand(esp, 0));
3740      __ fisttp_d(Operand(esp, 0));
3741      __ mov(result_reg, Operand(esp, 0));  // Low word of answer is the result.
3742      __ add(Operand(esp), Immediate(kDoubleSize));
3743      __ bind(&done);
3744    } else {
3745      Label done;
3746      Register temp_reg = ToRegister(instr->TempAt(0));
3747      XMMRegister xmm_scratch = xmm0;
3748
3749      // If cvttsd2si succeeded, we're done. Otherwise, we attempt
3750      // manual conversion.
3751      __ j(not_equal, &done, Label::kNear);
3752
3753      // Get high 32 bits of the input in result_reg and temp_reg.
3754      __ pshufd(xmm_scratch, input_reg, 1);
3755      __ movd(Operand(temp_reg), xmm_scratch);
3756      __ mov(result_reg, temp_reg);
3757
3758      // Prepare negation mask in temp_reg.
3759      __ sar(temp_reg, kBitsPerInt - 1);
3760
3761      // Extract the exponent from result_reg and subtract adjusted
3762      // bias from it. The adjustment is selected in a way such that
3763      // when the difference is zero, the answer is in the low 32 bits
3764      // of the input, otherwise a shift has to be performed.
3765      __ shr(result_reg, HeapNumber::kExponentShift);
3766      __ and_(result_reg,
3767              HeapNumber::kExponentMask >> HeapNumber::kExponentShift);
3768      __ sub(Operand(result_reg),
3769             Immediate(HeapNumber::kExponentBias +
3770                       HeapNumber::kExponentBits +
3771                       HeapNumber::kMantissaBits));
3772      // Don't handle big (> kMantissaBits + kExponentBits == 63) or
3773      // special exponents.
3774      DeoptimizeIf(greater, instr->environment());
3775
3776      // Zero out the sign and the exponent in the input (by shifting
3777      // it to the left) and restore the implicit mantissa bit,
3778      // i.e. convert the input to unsigned int64 shifted left by
3779      // kExponentBits.
3780      ExternalReference minus_zero = ExternalReference::address_of_minus_zero();
3781      // Minus zero has the most significant bit set and the other
3782      // bits cleared.
3783      __ movdbl(xmm_scratch, Operand::StaticVariable(minus_zero));
3784      __ psllq(input_reg, HeapNumber::kExponentBits);
3785      __ por(input_reg, xmm_scratch);
3786
3787      // Get the amount to shift the input right in xmm_scratch.
3788      __ neg(result_reg);
3789      __ movd(xmm_scratch, Operand(result_reg));
3790
3791      // Shift the input right and extract low 32 bits.
3792      __ psrlq(input_reg, xmm_scratch);
3793      __ movd(Operand(result_reg), input_reg);
3794
3795      // Use the prepared mask in temp_reg to negate the result if necessary.
3796      __ xor_(result_reg, Operand(temp_reg));
3797      __ sub(result_reg, Operand(temp_reg));
3798      __ bind(&done);
3799    }
3800  } else {
3801    Label done;
3802    __ cvttsd2si(result_reg, Operand(input_reg));
3803    __ cvtsi2sd(xmm0, Operand(result_reg));
3804    __ ucomisd(xmm0, input_reg);
3805    DeoptimizeIf(not_equal, instr->environment());
3806    DeoptimizeIf(parity_even, instr->environment());  // NaN.
3807    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3808      // The integer converted back is equal to the original. We
3809      // only have to test if we got -0 as an input.
3810      __ test(result_reg, Operand(result_reg));
3811      __ j(not_zero, &done, Label::kNear);
3812      __ movmskpd(result_reg, input_reg);
3813      // Bit 0 contains the sign of the double in input_reg.
3814      // If input was positive, we are ok and return 0, otherwise
3815      // deoptimize.
3816      __ and_(result_reg, 1);
3817      DeoptimizeIf(not_zero, instr->environment());
3818    }
3819    __ bind(&done);
3820  }
3821}
3822
3823
3824void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
3825  LOperand* input = instr->InputAt(0);
3826  __ test(ToOperand(input), Immediate(kSmiTagMask));
3827  DeoptimizeIf(not_zero, instr->environment());
3828}
3829
3830
3831void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
3832  LOperand* input = instr->InputAt(0);
3833  __ test(ToOperand(input), Immediate(kSmiTagMask));
3834  DeoptimizeIf(zero, instr->environment());
3835}
3836
3837
3838void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
3839  Register input = ToRegister(instr->InputAt(0));
3840  Register temp = ToRegister(instr->TempAt(0));
3841
3842  __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
3843
3844  if (instr->hydrogen()->is_interval_check()) {
3845    InstanceType first;
3846    InstanceType last;
3847    instr->hydrogen()->GetCheckInterval(&first, &last);
3848
3849    __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
3850            static_cast<int8_t>(first));
3851
3852    // If there is only one type in the interval check for equality.
3853    if (first == last) {
3854      DeoptimizeIf(not_equal, instr->environment());
3855    } else {
3856      DeoptimizeIf(below, instr->environment());
3857      // Omit check for the last type.
3858      if (last != LAST_TYPE) {
3859        __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
3860                static_cast<int8_t>(last));
3861        DeoptimizeIf(above, instr->environment());
3862      }
3863    }
3864  } else {
3865    uint8_t mask;
3866    uint8_t tag;
3867    instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
3868
3869    if (IsPowerOf2(mask)) {
3870      ASSERT(tag == 0 || IsPowerOf2(tag));
3871      __ test_b(FieldOperand(temp, Map::kInstanceTypeOffset), mask);
3872      DeoptimizeIf(tag == 0 ? not_zero : zero, instr->environment());
3873    } else {
3874      __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
3875      __ and_(temp, mask);
3876      __ cmpb(Operand(temp), tag);
3877      DeoptimizeIf(not_equal, instr->environment());
3878    }
3879  }
3880}
3881
3882
3883void LCodeGen::DoCheckFunction(LCheckFunction* instr) {
3884  ASSERT(instr->InputAt(0)->IsRegister());
3885  Operand operand = ToOperand(instr->InputAt(0));
3886  __ cmp(operand, instr->hydrogen()->target());
3887  DeoptimizeIf(not_equal, instr->environment());
3888}
3889
3890
3891void LCodeGen::DoCheckMap(LCheckMap* instr) {
3892  LOperand* input = instr->InputAt(0);
3893  ASSERT(input->IsRegister());
3894  Register reg = ToRegister(input);
3895  __ cmp(FieldOperand(reg, HeapObject::kMapOffset),
3896         instr->hydrogen()->map());
3897  DeoptimizeIf(not_equal, instr->environment());
3898}
3899
3900
3901void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
3902  XMMRegister value_reg = ToDoubleRegister(instr->unclamped());
3903  Register result_reg = ToRegister(instr->result());
3904  __ ClampDoubleToUint8(value_reg, xmm0, result_reg);
3905}
3906
3907
3908void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
3909  ASSERT(instr->unclamped()->Equals(instr->result()));
3910  Register value_reg = ToRegister(instr->result());
3911  __ ClampUint8(value_reg);
3912}
3913
3914
3915void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
3916  ASSERT(instr->unclamped()->Equals(instr->result()));
3917  Register input_reg = ToRegister(instr->unclamped());
3918  Label is_smi, done, heap_number;
3919
3920  __ JumpIfSmi(input_reg, &is_smi);
3921
3922  // Check for heap number
3923  __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
3924         factory()->heap_number_map());
3925  __ j(equal, &heap_number, Label::kNear);
3926
3927  // Check for undefined. Undefined is converted to zero for clamping
3928  // conversions.
3929  __ cmp(input_reg, factory()->undefined_value());
3930  DeoptimizeIf(not_equal, instr->environment());
3931  __ mov(input_reg, 0);
3932  __ jmp(&done, Label::kNear);
3933
3934  // Heap number
3935  __ bind(&heap_number);
3936  __ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
3937  __ ClampDoubleToUint8(xmm0, xmm1, input_reg);
3938  __ jmp(&done, Label::kNear);
3939
3940  // smi
3941  __ bind(&is_smi);
3942  __ SmiUntag(input_reg);
3943  __ ClampUint8(input_reg);
3944
3945  __ bind(&done);
3946}
3947
3948
3949void LCodeGen::LoadHeapObject(Register result, Handle<HeapObject> object) {
3950  if (isolate()->heap()->InNewSpace(*object)) {
3951    Handle<JSGlobalPropertyCell> cell =
3952        isolate()->factory()->NewJSGlobalPropertyCell(object);
3953    __ mov(result, Operand::Cell(cell));
3954  } else {
3955    __ mov(result, object);
3956  }
3957}
3958
3959
3960void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) {
3961  Register reg = ToRegister(instr->TempAt(0));
3962
3963  Handle<JSObject> holder = instr->holder();
3964  Handle<JSObject> current_prototype = instr->prototype();
3965
3966  // Load prototype object.
3967  LoadHeapObject(reg, current_prototype);
3968
3969  // Check prototype maps up to the holder.
3970  while (!current_prototype.is_identical_to(holder)) {
3971    __ cmp(FieldOperand(reg, HeapObject::kMapOffset),
3972           Handle<Map>(current_prototype->map()));
3973    DeoptimizeIf(not_equal, instr->environment());
3974    current_prototype =
3975        Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype()));
3976    // Load next prototype object.
3977    LoadHeapObject(reg, current_prototype);
3978  }
3979
3980  // Check the holder map.
3981  __ cmp(FieldOperand(reg, HeapObject::kMapOffset),
3982         Handle<Map>(current_prototype->map()));
3983  DeoptimizeIf(not_equal, instr->environment());
3984}
3985
3986
3987void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) {
3988  ASSERT(ToRegister(instr->context()).is(esi));
3989  // Setup the parameters to the stub/runtime call.
3990  __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
3991  __ push(FieldOperand(eax, JSFunction::kLiteralsOffset));
3992  __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index())));
3993  __ push(Immediate(instr->hydrogen()->constant_elements()));
3994
3995  // Pick the right runtime function or stub to call.
3996  int length = instr->hydrogen()->length();
3997  if (instr->hydrogen()->IsCopyOnWrite()) {
3998    ASSERT(instr->hydrogen()->depth() == 1);
3999    FastCloneShallowArrayStub::Mode mode =
4000        FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS;
4001    FastCloneShallowArrayStub stub(mode, length);
4002    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4003  } else if (instr->hydrogen()->depth() > 1) {
4004    CallRuntime(Runtime::kCreateArrayLiteral, 3, instr);
4005  } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
4006    CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr);
4007  } else {
4008    FastCloneShallowArrayStub::Mode mode =
4009        FastCloneShallowArrayStub::CLONE_ELEMENTS;
4010    FastCloneShallowArrayStub stub(mode, length);
4011    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4012  }
4013}
4014
4015
4016void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) {
4017  ASSERT(ToRegister(instr->context()).is(esi));
4018  // Setup the parameters to the stub/runtime call.
4019  __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
4020  __ push(FieldOperand(eax, JSFunction::kLiteralsOffset));
4021  __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index())));
4022  __ push(Immediate(instr->hydrogen()->constant_properties()));
4023  int flags = instr->hydrogen()->fast_elements()
4024      ? ObjectLiteral::kFastElements
4025      : ObjectLiteral::kNoFlags;
4026  flags |= instr->hydrogen()->has_function()
4027      ? ObjectLiteral::kHasFunction
4028      : ObjectLiteral::kNoFlags;
4029  __ push(Immediate(Smi::FromInt(flags)));
4030
4031  // Pick the right runtime function to call.
4032  if (instr->hydrogen()->depth() > 1) {
4033    CallRuntime(Runtime::kCreateObjectLiteral, 4, instr);
4034  } else {
4035    CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr);
4036  }
4037}
4038
4039
4040void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
4041  ASSERT(ToRegister(instr->InputAt(0)).is(eax));
4042  __ push(eax);
4043  CallRuntime(Runtime::kToFastProperties, 1, instr);
4044}
4045
4046
4047void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
4048  ASSERT(ToRegister(instr->context()).is(esi));
4049  Label materialized;
4050  // Registers will be used as follows:
4051  // edi = JS function.
4052  // ecx = literals array.
4053  // ebx = regexp literal.
4054  // eax = regexp literal clone.
4055  // esi = context.
4056  __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
4057  __ mov(ecx, FieldOperand(edi, JSFunction::kLiteralsOffset));
4058  int literal_offset = FixedArray::kHeaderSize +
4059      instr->hydrogen()->literal_index() * kPointerSize;
4060  __ mov(ebx, FieldOperand(ecx, literal_offset));
4061  __ cmp(ebx, factory()->undefined_value());
4062  __ j(not_equal, &materialized, Label::kNear);
4063
4064  // Create regexp literal using runtime function
4065  // Result will be in eax.
4066  __ push(ecx);
4067  __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index())));
4068  __ push(Immediate(instr->hydrogen()->pattern()));
4069  __ push(Immediate(instr->hydrogen()->flags()));
4070  CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
4071  __ mov(ebx, eax);
4072
4073  __ bind(&materialized);
4074  int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
4075  Label allocated, runtime_allocate;
4076  __ AllocateInNewSpace(size, eax, ecx, edx, &runtime_allocate, TAG_OBJECT);
4077  __ jmp(&allocated);
4078
4079  __ bind(&runtime_allocate);
4080  __ push(ebx);
4081  __ push(Immediate(Smi::FromInt(size)));
4082  CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
4083  __ pop(ebx);
4084
4085  __ bind(&allocated);
4086  // Copy the content into the newly allocated memory.
4087  // (Unroll copy loop once for better throughput).
4088  for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
4089    __ mov(edx, FieldOperand(ebx, i));
4090    __ mov(ecx, FieldOperand(ebx, i + kPointerSize));
4091    __ mov(FieldOperand(eax, i), edx);
4092    __ mov(FieldOperand(eax, i + kPointerSize), ecx);
4093  }
4094  if ((size % (2 * kPointerSize)) != 0) {
4095    __ mov(edx, FieldOperand(ebx, size - kPointerSize));
4096    __ mov(FieldOperand(eax, size - kPointerSize), edx);
4097  }
4098}
4099
4100
4101void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
4102  ASSERT(ToRegister(instr->context()).is(esi));
4103  // Use the fast case closure allocation code that allocates in new
4104  // space for nested functions that don't need literals cloning.
4105  Handle<SharedFunctionInfo> shared_info = instr->shared_info();
4106  bool pretenure = instr->hydrogen()->pretenure();
4107  if (!pretenure && shared_info->num_literals() == 0) {
4108    FastNewClosureStub stub(
4109        shared_info->strict_mode() ? kStrictMode : kNonStrictMode);
4110    __ push(Immediate(shared_info));
4111    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4112  } else {
4113    __ push(Operand(ebp, StandardFrameConstants::kContextOffset));
4114    __ push(Immediate(shared_info));
4115    __ push(Immediate(pretenure
4116                      ? factory()->true_value()
4117                      : factory()->false_value()));
4118    CallRuntime(Runtime::kNewClosure, 3, instr);
4119  }
4120}
4121
4122
4123void LCodeGen::DoTypeof(LTypeof* instr) {
4124  LOperand* input = instr->InputAt(1);
4125  if (input->IsConstantOperand()) {
4126    __ push(ToImmediate(input));
4127  } else {
4128    __ push(ToOperand(input));
4129  }
4130  CallRuntime(Runtime::kTypeof, 1, instr);
4131}
4132
4133
4134void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
4135  Register input = ToRegister(instr->InputAt(0));
4136  int true_block = chunk_->LookupDestination(instr->true_block_id());
4137  int false_block = chunk_->LookupDestination(instr->false_block_id());
4138  Label* true_label = chunk_->GetAssemblyLabel(true_block);
4139  Label* false_label = chunk_->GetAssemblyLabel(false_block);
4140
4141  Condition final_branch_condition = EmitTypeofIs(true_label,
4142                                                  false_label,
4143                                                  input,
4144                                                  instr->type_literal());
4145
4146  EmitBranch(true_block, false_block, final_branch_condition);
4147}
4148
4149
4150Condition LCodeGen::EmitTypeofIs(Label* true_label,
4151                                 Label* false_label,
4152                                 Register input,
4153                                 Handle<String> type_name) {
4154  Condition final_branch_condition = no_condition;
4155  if (type_name->Equals(heap()->number_symbol())) {
4156    __ JumpIfSmi(input, true_label);
4157    __ cmp(FieldOperand(input, HeapObject::kMapOffset),
4158           factory()->heap_number_map());
4159    final_branch_condition = equal;
4160
4161  } else if (type_name->Equals(heap()->string_symbol())) {
4162    __ JumpIfSmi(input, false_label);
4163    __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
4164    __ j(above_equal, false_label);
4165    __ test_b(FieldOperand(input, Map::kBitFieldOffset),
4166              1 << Map::kIsUndetectable);
4167    final_branch_condition = zero;
4168
4169  } else if (type_name->Equals(heap()->boolean_symbol())) {
4170    __ cmp(input, factory()->true_value());
4171    __ j(equal, true_label);
4172    __ cmp(input, factory()->false_value());
4173    final_branch_condition = equal;
4174
4175  } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_symbol())) {
4176    __ cmp(input, factory()->null_value());
4177    final_branch_condition = equal;
4178
4179  } else if (type_name->Equals(heap()->undefined_symbol())) {
4180    __ cmp(input, factory()->undefined_value());
4181    __ j(equal, true_label);
4182    __ JumpIfSmi(input, false_label);
4183    // Check for undetectable objects => true.
4184    __ mov(input, FieldOperand(input, HeapObject::kMapOffset));
4185    __ test_b(FieldOperand(input, Map::kBitFieldOffset),
4186              1 << Map::kIsUndetectable);
4187    final_branch_condition = not_zero;
4188
4189  } else if (type_name->Equals(heap()->function_symbol())) {
4190    STATIC_ASSERT(LAST_TYPE == LAST_CALLABLE_SPEC_OBJECT_TYPE);
4191    __ JumpIfSmi(input, false_label);
4192    __ CmpObjectType(input, FIRST_CALLABLE_SPEC_OBJECT_TYPE, input);
4193    final_branch_condition = above_equal;
4194
4195  } else if (type_name->Equals(heap()->object_symbol())) {
4196    __ JumpIfSmi(input, false_label);
4197    if (!FLAG_harmony_typeof) {
4198      __ cmp(input, factory()->null_value());
4199      __ j(equal, true_label);
4200    }
4201    __ CmpObjectType(input, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, input);
4202    __ j(below, false_label);
4203    __ CmpInstanceType(input, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
4204    __ j(above, false_label);
4205    // Check for undetectable objects => false.
4206    __ test_b(FieldOperand(input, Map::kBitFieldOffset),
4207              1 << Map::kIsUndetectable);
4208    final_branch_condition = zero;
4209
4210  } else {
4211    final_branch_condition = not_equal;
4212    __ jmp(false_label);
4213    // A dead branch instruction will be generated after this point.
4214  }
4215
4216  return final_branch_condition;
4217}
4218
4219
4220void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
4221  Register temp = ToRegister(instr->TempAt(0));
4222  int true_block = chunk_->LookupDestination(instr->true_block_id());
4223  int false_block = chunk_->LookupDestination(instr->false_block_id());
4224
4225  EmitIsConstructCall(temp);
4226  EmitBranch(true_block, false_block, equal);
4227}
4228
4229
4230void LCodeGen::EmitIsConstructCall(Register temp) {
4231  // Get the frame pointer for the calling frame.
4232  __ mov(temp, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
4233
4234  // Skip the arguments adaptor frame if it exists.
4235  Label check_frame_marker;
4236  __ cmp(Operand(temp, StandardFrameConstants::kContextOffset),
4237         Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4238  __ j(not_equal, &check_frame_marker, Label::kNear);
4239  __ mov(temp, Operand(temp, StandardFrameConstants::kCallerFPOffset));
4240
4241  // Check the marker in the calling frame.
4242  __ bind(&check_frame_marker);
4243  __ cmp(Operand(temp, StandardFrameConstants::kMarkerOffset),
4244         Immediate(Smi::FromInt(StackFrame::CONSTRUCT)));
4245}
4246
4247
4248void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
4249  // No code for lazy bailout instruction. Used to capture environment after a
4250  // call for populating the safepoint data with deoptimization data.
4251}
4252
4253
4254void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
4255  DeoptimizeIf(no_condition, instr->environment());
4256}
4257
4258
4259void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) {
4260  LOperand* obj = instr->object();
4261  LOperand* key = instr->key();
4262  __ push(ToOperand(obj));
4263  if (key->IsConstantOperand()) {
4264    __ push(ToImmediate(key));
4265  } else {
4266    __ push(ToOperand(key));
4267  }
4268  ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
4269  LPointerMap* pointers = instr->pointer_map();
4270  LEnvironment* env = instr->deoptimization_environment();
4271  RecordPosition(pointers->position());
4272  RegisterEnvironmentForDeoptimization(env);
4273  // Create safepoint generator that will also ensure enough space in the
4274  // reloc info for patching in deoptimization (since this is invoking a
4275  // builtin)
4276  SafepointGenerator safepoint_generator(this,
4277                                         pointers,
4278                                         env->deoptimization_index());
4279  __ push(Immediate(Smi::FromInt(strict_mode_flag())));
4280  __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, safepoint_generator);
4281}
4282
4283
4284void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
4285  {
4286    PushSafepointRegistersScope scope(this);
4287    __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
4288    __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
4289    RegisterLazyDeoptimization(
4290        instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4291  }
4292
4293  // The gap code includes the restoring of the safepoint registers.
4294  int pc = masm()->pc_offset();
4295  safepoints_.SetPcAfterGap(pc);
4296}
4297
4298
4299void LCodeGen::DoStackCheck(LStackCheck* instr) {
4300  class DeferredStackCheck: public LDeferredCode {
4301   public:
4302    DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
4303        : LDeferredCode(codegen), instr_(instr) { }
4304    virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
4305   private:
4306    LStackCheck* instr_;
4307  };
4308
4309  if (instr->hydrogen()->is_function_entry()) {
4310    // Perform stack overflow check.
4311    Label done;
4312    ExternalReference stack_limit =
4313        ExternalReference::address_of_stack_limit(isolate());
4314    __ cmp(esp, Operand::StaticVariable(stack_limit));
4315    __ j(above_equal, &done, Label::kNear);
4316
4317    ASSERT(instr->context()->IsRegister());
4318    ASSERT(ToRegister(instr->context()).is(esi));
4319    StackCheckStub stub;
4320    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4321    __ bind(&done);
4322  } else {
4323    ASSERT(instr->hydrogen()->is_backwards_branch());
4324    // Perform stack overflow check if this goto needs it before jumping.
4325    DeferredStackCheck* deferred_stack_check =
4326        new DeferredStackCheck(this, instr);
4327    ExternalReference stack_limit =
4328        ExternalReference::address_of_stack_limit(isolate());
4329    __ cmp(esp, Operand::StaticVariable(stack_limit));
4330    __ j(below, deferred_stack_check->entry());
4331    __ bind(instr->done_label());
4332    deferred_stack_check->SetExit(instr->done_label());
4333  }
4334}
4335
4336
4337void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
4338  // This is a pseudo-instruction that ensures that the environment here is
4339  // properly registered for deoptimization and records the assembler's PC
4340  // offset.
4341  LEnvironment* environment = instr->environment();
4342  environment->SetSpilledRegisters(instr->SpilledRegisterArray(),
4343                                   instr->SpilledDoubleRegisterArray());
4344
4345  // If the environment were already registered, we would have no way of
4346  // backpatching it with the spill slot operands.
4347  ASSERT(!environment->HasBeenRegistered());
4348  RegisterEnvironmentForDeoptimization(environment);
4349  ASSERT(osr_pc_offset_ == -1);
4350  osr_pc_offset_ = masm()->pc_offset();
4351}
4352
4353
4354void LCodeGen::DoIn(LIn* instr) {
4355  LOperand* obj = instr->object();
4356  LOperand* key = instr->key();
4357  if (key->IsConstantOperand()) {
4358    __ push(ToImmediate(key));
4359  } else {
4360    __ push(ToOperand(key));
4361  }
4362  if (obj->IsConstantOperand()) {
4363    __ push(ToImmediate(obj));
4364  } else {
4365    __ push(ToOperand(obj));
4366  }
4367  ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
4368  LPointerMap* pointers = instr->pointer_map();
4369  LEnvironment* env = instr->deoptimization_environment();
4370  RecordPosition(pointers->position());
4371  RegisterEnvironmentForDeoptimization(env);
4372  // Create safepoint generator that will also ensure enough space in the
4373  // reloc info for patching in deoptimization (since this is invoking a
4374  // builtin)
4375  SafepointGenerator safepoint_generator(this,
4376                                         pointers,
4377                                         env->deoptimization_index());
4378  __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION, safepoint_generator);
4379}
4380
4381
4382#undef __
4383
4384} }  // namespace v8::internal
4385
4386#endif  // V8_TARGET_ARCH_IA32
4387