EventHub.cpp revision 80fd47ce75253dcdc2cfa85d7a3f42634b923a47
1/*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17//
18// Handle events, like key input and vsync.
19//
20// The goal is to provide an optimized solution for Linux, not an
21// implementation that works well across all platforms.  We expect
22// events to arrive on file descriptors, so that we can use a select()
23// select() call to sleep.
24//
25// We can't select() on anything but network sockets in Windows, so we
26// provide an alternative implementation of waitEvent for that platform.
27//
28#define LOG_TAG "EventHub"
29
30//#define LOG_NDEBUG 0
31
32#include "EventHub.h"
33
34#include <hardware_legacy/power.h>
35
36#include <cutils/properties.h>
37#include <utils/Log.h>
38#include <utils/Timers.h>
39#include <utils/threads.h>
40#include <utils/Errors.h>
41
42#include <stdlib.h>
43#include <stdio.h>
44#include <unistd.h>
45#include <fcntl.h>
46#include <memory.h>
47#include <errno.h>
48#include <assert.h>
49
50#include <ui/KeyLayoutMap.h>
51#include <ui/KeyCharacterMap.h>
52#include <ui/VirtualKeyMap.h>
53
54#include <string.h>
55#include <stdint.h>
56#include <dirent.h>
57#ifdef HAVE_INOTIFY
58# include <sys/inotify.h>
59#endif
60#ifdef HAVE_ANDROID_OS
61# include <sys/limits.h>        /* not part of Linux */
62#endif
63#include <sys/poll.h>
64#include <sys/ioctl.h>
65
66/* this macro is used to tell if "bit" is set in "array"
67 * it selects a byte from the array, and does a boolean AND
68 * operation with a byte that only has the relevant bit set.
69 * eg. to check for the 12th bit, we do (array[1] & 1<<4)
70 */
71#define test_bit(bit, array)    (array[bit/8] & (1<<(bit%8)))
72
73/* this macro computes the number of bytes needed to represent a bit array of the specified size */
74#define sizeof_bit_array(bits)  ((bits + 7) / 8)
75
76// Fd at index 0 is always reserved for inotify
77#define FIRST_ACTUAL_DEVICE_INDEX 1
78
79#define INDENT "  "
80#define INDENT2 "    "
81#define INDENT3 "      "
82
83namespace android {
84
85static const char *WAKE_LOCK_ID = "KeyEvents";
86static const char *DEVICE_PATH = "/dev/input";
87
88/* return the larger integer */
89static inline int max(int v1, int v2)
90{
91    return (v1 > v2) ? v1 : v2;
92}
93
94static inline const char* toString(bool value) {
95    return value ? "true" : "false";
96}
97
98// --- EventHub::Device ---
99
100EventHub::Device::Device(int fd, int32_t id, const String8& path,
101        const InputDeviceIdentifier& identifier) :
102        next(NULL),
103        fd(fd), id(id), path(path), identifier(identifier),
104        classes(0), keyBitmask(NULL), relBitmask(NULL), propBitmask(NULL),
105        configuration(NULL), virtualKeyMap(NULL) {
106}
107
108EventHub::Device::~Device() {
109    close();
110    delete[] keyBitmask;
111    delete[] relBitmask;
112    delete[] propBitmask;
113    delete configuration;
114    delete virtualKeyMap;
115}
116
117void EventHub::Device::close() {
118    if (fd >= 0) {
119        ::close(fd);
120        fd = -1;
121    }
122}
123
124
125// --- EventHub ---
126
127EventHub::EventHub(void) :
128        mError(NO_INIT), mBuiltInKeyboardId(-1), mNextDeviceId(1),
129        mOpeningDevices(0), mClosingDevices(0),
130        mOpened(false), mNeedToSendFinishedDeviceScan(false),
131        mInputFdIndex(1) {
132    acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
133
134    memset(mSwitches, 0, sizeof(mSwitches));
135    mNumCpus = sysconf(_SC_NPROCESSORS_ONLN);
136}
137
138EventHub::~EventHub(void) {
139    release_wake_lock(WAKE_LOCK_ID);
140    // we should free stuff here...
141}
142
143status_t EventHub::errorCheck() const {
144    return mError;
145}
146
147String8 EventHub::getDeviceName(int32_t deviceId) const {
148    AutoMutex _l(mLock);
149    Device* device = getDeviceLocked(deviceId);
150    if (device == NULL) return String8();
151    return device->identifier.name;
152}
153
154uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
155    AutoMutex _l(mLock);
156    Device* device = getDeviceLocked(deviceId);
157    if (device == NULL) return 0;
158    return device->classes;
159}
160
161void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
162    AutoMutex _l(mLock);
163    Device* device = getDeviceLocked(deviceId);
164    if (device && device->configuration) {
165        *outConfiguration = *device->configuration;
166    } else {
167        outConfiguration->clear();
168    }
169}
170
171status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
172        RawAbsoluteAxisInfo* outAxisInfo) const {
173    outAxisInfo->clear();
174
175    AutoMutex _l(mLock);
176    Device* device = getDeviceLocked(deviceId);
177    if (device == NULL) return -1;
178
179    struct input_absinfo info;
180
181    if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
182        LOGW("Error reading absolute controller %d for device %s fd %d\n",
183             axis, device->identifier.name.string(), device->fd);
184        return -errno;
185    }
186
187    if (info.minimum != info.maximum) {
188        outAxisInfo->valid = true;
189        outAxisInfo->minValue = info.minimum;
190        outAxisInfo->maxValue = info.maximum;
191        outAxisInfo->flat = info.flat;
192        outAxisInfo->fuzz = info.fuzz;
193    }
194    return OK;
195}
196
197bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
198    if (axis >= 0 && axis <= REL_MAX) {
199        AutoMutex _l(mLock);
200
201        Device* device = getDeviceLocked(deviceId);
202        if (device && device->relBitmask) {
203            return test_bit(axis, device->relBitmask);
204        }
205    }
206    return false;
207}
208
209bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
210    if (property >= 0 && property <= INPUT_PROP_MAX) {
211        AutoMutex _l(mLock);
212
213        Device* device = getDeviceLocked(deviceId);
214        if (device && device->propBitmask) {
215            return test_bit(property, device->propBitmask);
216        }
217    }
218    return false;
219}
220
221int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
222    if (scanCode >= 0 && scanCode <= KEY_MAX) {
223        AutoMutex _l(mLock);
224
225        Device* device = getDeviceLocked(deviceId);
226        if (device != NULL) {
227            return getScanCodeStateLocked(device, scanCode);
228        }
229    }
230    return AKEY_STATE_UNKNOWN;
231}
232
233int32_t EventHub::getScanCodeStateLocked(Device* device, int32_t scanCode) const {
234    uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
235    memset(key_bitmask, 0, sizeof(key_bitmask));
236    if (ioctl(device->fd,
237               EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) {
238        return test_bit(scanCode, key_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
239    }
240    return AKEY_STATE_UNKNOWN;
241}
242
243int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
244    AutoMutex _l(mLock);
245
246    Device* device = getDeviceLocked(deviceId);
247    if (device != NULL) {
248        return getKeyCodeStateLocked(device, keyCode);
249    }
250    return AKEY_STATE_UNKNOWN;
251}
252
253int32_t EventHub::getKeyCodeStateLocked(Device* device, int32_t keyCode) const {
254    if (!device->keyMap.haveKeyLayout()) {
255        return AKEY_STATE_UNKNOWN;
256    }
257
258    Vector<int32_t> scanCodes;
259    device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
260
261    uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
262    memset(key_bitmask, 0, sizeof(key_bitmask));
263    if (ioctl(device->fd, EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) {
264        #if 0
265        for (size_t i=0; i<=KEY_MAX; i++) {
266            LOGI("(Scan code %d: down=%d)", i, test_bit(i, key_bitmask));
267        }
268        #endif
269        const size_t N = scanCodes.size();
270        for (size_t i=0; i<N && i<=KEY_MAX; i++) {
271            int32_t sc = scanCodes.itemAt(i);
272            //LOGI("Code %d: down=%d", sc, test_bit(sc, key_bitmask));
273            if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, key_bitmask)) {
274                return AKEY_STATE_DOWN;
275            }
276        }
277        return AKEY_STATE_UP;
278    }
279    return AKEY_STATE_UNKNOWN;
280}
281
282int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
283    if (sw >= 0 && sw <= SW_MAX) {
284        AutoMutex _l(mLock);
285
286        Device* device = getDeviceLocked(deviceId);
287        if (device != NULL) {
288            return getSwitchStateLocked(device, sw);
289        }
290    }
291    return AKEY_STATE_UNKNOWN;
292}
293
294int32_t EventHub::getSwitchStateLocked(Device* device, int32_t sw) const {
295    uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)];
296    memset(sw_bitmask, 0, sizeof(sw_bitmask));
297    if (ioctl(device->fd,
298               EVIOCGSW(sizeof(sw_bitmask)), sw_bitmask) >= 0) {
299        return test_bit(sw, sw_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
300    }
301    return AKEY_STATE_UNKNOWN;
302}
303
304bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
305        const int32_t* keyCodes, uint8_t* outFlags) const {
306    AutoMutex _l(mLock);
307
308    Device* device = getDeviceLocked(deviceId);
309    if (device != NULL) {
310        return markSupportedKeyCodesLocked(device, numCodes, keyCodes, outFlags);
311    }
312    return false;
313}
314
315bool EventHub::markSupportedKeyCodesLocked(Device* device, size_t numCodes,
316        const int32_t* keyCodes, uint8_t* outFlags) const {
317    if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) {
318        return false;
319    }
320
321    Vector<int32_t> scanCodes;
322    for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
323        scanCodes.clear();
324
325        status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
326                keyCodes[codeIndex], &scanCodes);
327        if (! err) {
328            // check the possible scan codes identified by the layout map against the
329            // map of codes actually emitted by the driver
330            for (size_t sc = 0; sc < scanCodes.size(); sc++) {
331                if (test_bit(scanCodes[sc], device->keyBitmask)) {
332                    outFlags[codeIndex] = 1;
333                    break;
334                }
335            }
336        }
337    }
338    return true;
339}
340
341status_t EventHub::mapKey(int32_t deviceId, int scancode,
342        int32_t* outKeycode, uint32_t* outFlags) const
343{
344    AutoMutex _l(mLock);
345    Device* device = getDeviceLocked(deviceId);
346
347    if (device && device->keyMap.haveKeyLayout()) {
348        status_t err = device->keyMap.keyLayoutMap->mapKey(scancode, outKeycode, outFlags);
349        if (err == NO_ERROR) {
350            return NO_ERROR;
351        }
352    }
353
354    if (mBuiltInKeyboardId != -1) {
355        device = getDeviceLocked(mBuiltInKeyboardId);
356
357        if (device && device->keyMap.haveKeyLayout()) {
358            status_t err = device->keyMap.keyLayoutMap->mapKey(scancode, outKeycode, outFlags);
359            if (err == NO_ERROR) {
360                return NO_ERROR;
361            }
362        }
363    }
364
365    *outKeycode = 0;
366    *outFlags = 0;
367    return NAME_NOT_FOUND;
368}
369
370status_t EventHub::mapAxis(int32_t deviceId, int scancode, AxisInfo* outAxisInfo) const
371{
372    AutoMutex _l(mLock);
373    Device* device = getDeviceLocked(deviceId);
374
375    if (device && device->keyMap.haveKeyLayout()) {
376        status_t err = device->keyMap.keyLayoutMap->mapAxis(scancode, outAxisInfo);
377        if (err == NO_ERROR) {
378            return NO_ERROR;
379        }
380    }
381
382    if (mBuiltInKeyboardId != -1) {
383        device = getDeviceLocked(mBuiltInKeyboardId);
384
385        if (device && device->keyMap.haveKeyLayout()) {
386            status_t err = device->keyMap.keyLayoutMap->mapAxis(scancode, outAxisInfo);
387            if (err == NO_ERROR) {
388                return NO_ERROR;
389            }
390        }
391    }
392
393    return NAME_NOT_FOUND;
394}
395
396void EventHub::addExcludedDevice(const char* deviceName)
397{
398    AutoMutex _l(mLock);
399
400    String8 name(deviceName);
401    mExcludedDevices.push_back(name);
402}
403
404bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
405    AutoMutex _l(mLock);
406    Device* device = getDeviceLocked(deviceId);
407    if (device) {
408        uint8_t bitmask[sizeof_bit_array(LED_MAX + 1)];
409        memset(bitmask, 0, sizeof(bitmask));
410        if (ioctl(device->fd, EVIOCGBIT(EV_LED, sizeof(bitmask)), bitmask) >= 0) {
411            if (test_bit(led, bitmask)) {
412                return true;
413            }
414        }
415    }
416    return false;
417}
418
419void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
420    AutoMutex _l(mLock);
421    Device* device = getDeviceLocked(deviceId);
422    if (device) {
423        struct input_event ev;
424        ev.time.tv_sec = 0;
425        ev.time.tv_usec = 0;
426        ev.type = EV_LED;
427        ev.code = led;
428        ev.value = on ? 1 : 0;
429
430        ssize_t nWrite;
431        do {
432            nWrite = write(device->fd, &ev, sizeof(struct input_event));
433        } while (nWrite == -1 && errno == EINTR);
434    }
435}
436
437void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
438        Vector<VirtualKeyDefinition>& outVirtualKeys) const {
439    outVirtualKeys.clear();
440
441    AutoMutex _l(mLock);
442    Device* device = getDeviceLocked(deviceId);
443    if (device && device->virtualKeyMap) {
444        outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
445    }
446}
447
448EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
449    if (deviceId == 0) {
450        deviceId = mBuiltInKeyboardId;
451    }
452
453    size_t numDevices = mDevices.size();
454    for (size_t i = FIRST_ACTUAL_DEVICE_INDEX; i < numDevices; i++) {
455        Device* device = mDevices[i];
456        if (device->id == deviceId) {
457            return device;
458        }
459    }
460    return NULL;
461}
462
463size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
464    // Note that we only allow one caller to getEvents(), so don't need
465    // to do locking here...  only when adding/removing devices.
466    LOG_ASSERT(bufferSize >= 1);
467
468    if (!mOpened) {
469        mError = openPlatformInput() ? NO_ERROR : UNKNOWN_ERROR;
470        mOpened = true;
471        mNeedToSendFinishedDeviceScan = true;
472    }
473
474    struct input_event readBuffer[bufferSize];
475
476    RawEvent* event = buffer;
477    size_t capacity = bufferSize;
478    for (;;) {
479        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
480
481        // Report any devices that had last been added/removed.
482        while (mClosingDevices) {
483            Device* device = mClosingDevices;
484            LOGV("Reporting device closed: id=%d, name=%s\n",
485                 device->id, device->path.string());
486            mClosingDevices = device->next;
487            event->when = now;
488            event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
489            event->type = DEVICE_REMOVED;
490            event += 1;
491            delete device;
492            mNeedToSendFinishedDeviceScan = true;
493            if (--capacity == 0) {
494                break;
495            }
496        }
497
498        while (mOpeningDevices != NULL) {
499            Device* device = mOpeningDevices;
500            LOGV("Reporting device opened: id=%d, name=%s\n",
501                 device->id, device->path.string());
502            mOpeningDevices = device->next;
503            event->when = now;
504            event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
505            event->type = DEVICE_ADDED;
506            event += 1;
507            mNeedToSendFinishedDeviceScan = true;
508            if (--capacity == 0) {
509                break;
510            }
511        }
512
513        if (mNeedToSendFinishedDeviceScan) {
514            mNeedToSendFinishedDeviceScan = false;
515            event->when = now;
516            event->type = FINISHED_DEVICE_SCAN;
517            event += 1;
518            if (--capacity == 0) {
519                break;
520            }
521        }
522
523        // Grab the next input event.
524        // mInputFdIndex is initially 1 because index 0 is used for inotify.
525        bool deviceWasRemoved = false;
526        while (mInputFdIndex < mFds.size()) {
527            const struct pollfd& pfd = mFds[mInputFdIndex];
528            if (pfd.revents & POLLIN) {
529                int32_t readSize = read(pfd.fd, readBuffer, sizeof(struct input_event) * capacity);
530                if (readSize < 0) {
531                    if (errno == ENODEV) {
532                        deviceWasRemoved = true;
533                        break;
534                    }
535                    if (errno != EAGAIN && errno != EINTR) {
536                        LOGW("could not get event (errno=%d)", errno);
537                    }
538                } else if ((readSize % sizeof(struct input_event)) != 0) {
539                    LOGE("could not get event (wrong size: %d)", readSize);
540                } else if (readSize == 0) { // eof
541                    deviceWasRemoved = true;
542                    break;
543                } else {
544                    const Device* device = mDevices[mInputFdIndex];
545                    int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
546
547                    size_t count = size_t(readSize) / sizeof(struct input_event);
548                    for (size_t i = 0; i < count; i++) {
549                        const struct input_event& iev = readBuffer[i];
550                        LOGV("%s got: t0=%d, t1=%d, type=%d, code=%d, value=%d",
551                                device->path.string(),
552                                (int) iev.time.tv_sec, (int) iev.time.tv_usec,
553                                iev.type, iev.code, iev.value);
554
555#ifdef HAVE_POSIX_CLOCKS
556                        // Use the time specified in the event instead of the current time
557                        // so that downstream code can get more accurate estimates of
558                        // event dispatch latency from the time the event is enqueued onto
559                        // the evdev client buffer.
560                        //
561                        // The event's timestamp fortuitously uses the same monotonic clock
562                        // time base as the rest of Android.  The kernel event device driver
563                        // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
564                        // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
565                        // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
566                        // system call that also queries ktime_get_ts().
567                        event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
568                                + nsecs_t(iev.time.tv_usec) * 1000LL;
569                        LOGV("event time %lld, now %lld", event->when, now);
570#else
571                        event->when = now;
572#endif
573                        event->deviceId = deviceId;
574                        event->type = iev.type;
575                        event->scanCode = iev.code;
576                        event->value = iev.value;
577                        event->keyCode = AKEYCODE_UNKNOWN;
578                        event->flags = 0;
579                        if (iev.type == EV_KEY && device->keyMap.haveKeyLayout()) {
580                            status_t err = device->keyMap.keyLayoutMap->mapKey(iev.code,
581                                        &event->keyCode, &event->flags);
582                            LOGV("iev.code=%d keyCode=%d flags=0x%08x err=%d\n",
583                                    iev.code, event->keyCode, event->flags, err);
584                        }
585                        event += 1;
586                    }
587                    capacity -= count;
588                    if (capacity == 0) {
589                        break;
590                    }
591                }
592            }
593            mInputFdIndex += 1;
594        }
595
596        // Handle the case where a device has been removed but INotify has not yet noticed.
597        if (deviceWasRemoved) {
598            AutoMutex _l(mLock);
599            closeDeviceAtIndexLocked(mInputFdIndex);
600            continue; // report added or removed devices immediately
601        }
602
603#if HAVE_INOTIFY
604        // readNotify() will modify mFDs and mFDCount, so this must be done after
605        // processing all other events.
606        if(mFds[0].revents & POLLIN) {
607            readNotify(mFds[0].fd);
608            mFds.editItemAt(0).revents = 0;
609            mInputFdIndex = mFds.size();
610            continue; // report added or removed devices immediately
611        }
612#endif
613
614        // Return now if we have collected any events, otherwise poll.
615        if (event != buffer) {
616            break;
617        }
618
619        // Poll for events.  Mind the wake lock dance!
620        // We hold a wake lock at all times except during poll().  This works due to some
621        // subtle choreography.  When a device driver has pending (unread) events, it acquires
622        // a kernel wake lock.  However, once the last pending event has been read, the device
623        // driver will release the kernel wake lock.  To prevent the system from going to sleep
624        // when this happens, the EventHub holds onto its own user wake lock while the client
625        // is processing events.  Thus the system can only sleep if there are no events
626        // pending or currently being processed.
627        //
628        // The timeout is advisory only.  If the device is asleep, it will not wake just to
629        // service the timeout.
630        release_wake_lock(WAKE_LOCK_ID);
631
632        int pollResult = poll(mFds.editArray(), mFds.size(), timeoutMillis);
633
634        acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
635
636        if (pollResult == 0) {
637            break; // timed out
638        }
639        if (pollResult < 0) {
640            // Sleep after errors to avoid locking up the system.
641            // Hopefully the error is transient.
642            if (errno != EINTR) {
643                LOGW("poll failed (errno=%d)\n", errno);
644                usleep(100000);
645            }
646        } else {
647            // On an SMP system, it is possible for the framework to read input events
648            // faster than the kernel input device driver can produce a complete packet.
649            // Because poll() wakes up as soon as the first input event becomes available,
650            // the framework will often end up reading one event at a time until the
651            // packet is complete.  Instead of one call to read() returning 71 events,
652            // it could take 71 calls to read() each returning 1 event.
653            //
654            // Sleep for a short period of time after waking up from the poll() to give
655            // the kernel time to finish writing the entire packet of input events.
656            if (mNumCpus > 1) {
657                usleep(250);
658            }
659        }
660
661        // Prepare to process all of the FDs we just polled.
662        mInputFdIndex = 1;
663    }
664
665    // All done, return the number of events we read.
666    return event - buffer;
667}
668
669/*
670 * Open the platform-specific input device.
671 */
672bool EventHub::openPlatformInput(void) {
673    /*
674     * Open platform-specific input device(s).
675     */
676    int res, fd;
677
678#ifdef HAVE_INOTIFY
679    fd = inotify_init();
680    res = inotify_add_watch(fd, DEVICE_PATH, IN_DELETE | IN_CREATE);
681    if(res < 0) {
682        LOGE("could not add watch for %s, %s\n", DEVICE_PATH, strerror(errno));
683    }
684#else
685    /*
686     * The code in EventHub::getEvent assumes that mFDs[0] is an inotify fd.
687     * We allocate space for it and set it to something invalid.
688     */
689    fd = -1;
690#endif
691
692    // Reserve fd index 0 for inotify.
693    struct pollfd pollfd;
694    pollfd.fd = fd;
695    pollfd.events = POLLIN;
696    pollfd.revents = 0;
697    mFds.push(pollfd);
698    mDevices.push(NULL);
699
700    res = scanDir(DEVICE_PATH);
701    if(res < 0) {
702        LOGE("scan dir failed for %s\n", DEVICE_PATH);
703    }
704
705    return true;
706}
707
708// ----------------------------------------------------------------------------
709
710static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
711    const uint8_t* end = array + endIndex;
712    array += startIndex;
713    while (array != end) {
714        if (*(array++) != 0) {
715            return true;
716        }
717    }
718    return false;
719}
720
721static const int32_t GAMEPAD_KEYCODES[] = {
722        AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
723        AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
724        AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
725        AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
726        AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
727        AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
728        AKEYCODE_BUTTON_1, AKEYCODE_BUTTON_2, AKEYCODE_BUTTON_3, AKEYCODE_BUTTON_4,
729        AKEYCODE_BUTTON_5, AKEYCODE_BUTTON_6, AKEYCODE_BUTTON_7, AKEYCODE_BUTTON_8,
730        AKEYCODE_BUTTON_9, AKEYCODE_BUTTON_10, AKEYCODE_BUTTON_11, AKEYCODE_BUTTON_12,
731        AKEYCODE_BUTTON_13, AKEYCODE_BUTTON_14, AKEYCODE_BUTTON_15, AKEYCODE_BUTTON_16,
732};
733
734int EventHub::openDevice(const char *devicePath) {
735    char buffer[80];
736
737    LOGV("Opening device: %s", devicePath);
738
739    AutoMutex _l(mLock);
740
741    int fd = open(devicePath, O_RDWR);
742    if(fd < 0) {
743        LOGE("could not open %s, %s\n", devicePath, strerror(errno));
744        return -1;
745    }
746
747    InputDeviceIdentifier identifier;
748
749    // Get device name.
750    if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
751        //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
752    } else {
753        buffer[sizeof(buffer) - 1] = '\0';
754        identifier.name.setTo(buffer);
755    }
756
757    // Check to see if the device is on our excluded list
758    List<String8>::iterator iter = mExcludedDevices.begin();
759    List<String8>::iterator end = mExcludedDevices.end();
760    for ( ; iter != end; iter++) {
761        const char* test = *iter;
762        if (identifier.name == test) {
763            LOGI("ignoring event id %s driver %s\n", devicePath, test);
764            close(fd);
765            return -1;
766        }
767    }
768
769    // Get device driver version.
770    int driverVersion;
771    if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
772        LOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
773        close(fd);
774        return -1;
775    }
776
777    // Get device identifier.
778    struct input_id inputId;
779    if(ioctl(fd, EVIOCGID, &inputId)) {
780        LOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
781        close(fd);
782        return -1;
783    }
784    identifier.bus = inputId.bustype;
785    identifier.product = inputId.product;
786    identifier.vendor = inputId.vendor;
787    identifier.version = inputId.version;
788
789    // Get device physical location.
790    if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
791        //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
792    } else {
793        buffer[sizeof(buffer) - 1] = '\0';
794        identifier.location.setTo(buffer);
795    }
796
797    // Get device unique id.
798    if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
799        //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
800    } else {
801        buffer[sizeof(buffer) - 1] = '\0';
802        identifier.uniqueId.setTo(buffer);
803    }
804
805    // Make file descriptor non-blocking for use with poll().
806    if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
807        LOGE("Error %d making device file descriptor non-blocking.", errno);
808        close(fd);
809        return -1;
810    }
811
812    // Allocate device.  (The device object takes ownership of the fd at this point.)
813    int32_t deviceId = mNextDeviceId++;
814    Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
815
816#if 0
817    LOGI("add device %d: %s\n", deviceId, devicePath);
818    LOGI("  bus:       %04x\n"
819         "  vendor     %04x\n"
820         "  product    %04x\n"
821         "  version    %04x\n",
822        identifier.bus, identifier.vendor, identifier.product, identifier.version);
823    LOGI("  name:      \"%s\"\n", identifier.name.string());
824    LOGI("  location:  \"%s\"\n", identifier.location.string());
825    LOGI("  unique id: \"%s\"\n", identifier.uniqueId.string());
826    LOGI("  driver:    v%d.%d.%d\n",
827        driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
828#endif
829
830    // Load the configuration file for the device.
831    loadConfiguration(device);
832
833    // Figure out the kinds of events the device reports.
834    uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
835    memset(key_bitmask, 0, sizeof(key_bitmask));
836    ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(key_bitmask)), key_bitmask);
837
838    uint8_t abs_bitmask[sizeof_bit_array(ABS_MAX + 1)];
839    memset(abs_bitmask, 0, sizeof(abs_bitmask));
840    ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(abs_bitmask)), abs_bitmask);
841
842    uint8_t rel_bitmask[sizeof_bit_array(REL_MAX + 1)];
843    memset(rel_bitmask, 0, sizeof(rel_bitmask));
844    ioctl(fd, EVIOCGBIT(EV_REL, sizeof(rel_bitmask)), rel_bitmask);
845
846    uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)];
847    memset(sw_bitmask, 0, sizeof(sw_bitmask));
848    ioctl(fd, EVIOCGBIT(EV_SW, sizeof(sw_bitmask)), sw_bitmask);
849
850    uint8_t prop_bitmask[sizeof_bit_array(INPUT_PROP_MAX + 1)];
851    memset(prop_bitmask, 0, sizeof(prop_bitmask));
852    ioctl(fd, EVIOCGPROP(sizeof(prop_bitmask)), prop_bitmask);
853
854    device->keyBitmask = new uint8_t[sizeof(key_bitmask)];
855    device->relBitmask = new uint8_t[sizeof(rel_bitmask)];
856    device->propBitmask = new uint8_t[sizeof(prop_bitmask)];
857
858    if (!device->keyBitmask || !device->relBitmask || !device->propBitmask) {
859        delete device;
860        LOGE("out of memory allocating bitmasks");
861        return -1;
862    }
863
864    memcpy(device->keyBitmask, key_bitmask, sizeof(key_bitmask));
865    memcpy(device->relBitmask, rel_bitmask, sizeof(rel_bitmask));
866    memcpy(device->propBitmask, prop_bitmask, sizeof(prop_bitmask));
867
868    // See if this is a keyboard.  Ignore everything in the button range except for
869    // joystick and gamepad buttons which are handled like keyboards for the most part.
870    bool haveKeyboardKeys = containsNonZeroByte(key_bitmask, 0, sizeof_bit_array(BTN_MISC))
871            || containsNonZeroByte(key_bitmask, sizeof_bit_array(KEY_OK),
872                    sizeof_bit_array(KEY_MAX + 1));
873    bool haveGamepadButtons = containsNonZeroByte(key_bitmask, sizeof_bit_array(BTN_MISC),
874                    sizeof_bit_array(BTN_MOUSE))
875            || containsNonZeroByte(key_bitmask, sizeof_bit_array(BTN_JOYSTICK),
876                    sizeof_bit_array(BTN_DIGI));
877    if (haveKeyboardKeys || haveGamepadButtons) {
878        device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
879    }
880
881    // See if this is a cursor device such as a trackball or mouse.
882    if (test_bit(BTN_MOUSE, key_bitmask)
883            && test_bit(REL_X, rel_bitmask)
884            && test_bit(REL_Y, rel_bitmask)) {
885        device->classes |= INPUT_DEVICE_CLASS_CURSOR;
886    }
887
888    // See if this is a touch pad.
889    // Is this a new modern multi-touch driver?
890    if (test_bit(ABS_MT_POSITION_X, abs_bitmask)
891            && test_bit(ABS_MT_POSITION_Y, abs_bitmask)) {
892        // Some joysticks such as the PS3 controller report axes that conflict
893        // with the ABS_MT range.  Try to confirm that the device really is
894        // a touch screen.
895        if (test_bit(BTN_TOUCH, key_bitmask) || !haveGamepadButtons) {
896            device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
897        }
898    // Is this an old style single-touch driver?
899    } else if (test_bit(BTN_TOUCH, key_bitmask)
900            && test_bit(ABS_X, abs_bitmask)
901            && test_bit(ABS_Y, abs_bitmask)) {
902        device->classes |= INPUT_DEVICE_CLASS_TOUCH;
903    }
904
905    // See if this device is a joystick.
906    // Ignore touchscreens because they use the same absolute axes for other purposes.
907    // Assumes that joysticks always have gamepad buttons in order to distinguish them
908    // from other devices such as accelerometers that also have absolute axes.
909    if (haveGamepadButtons
910            && !(device->classes & INPUT_DEVICE_CLASS_TOUCH)
911            && containsNonZeroByte(abs_bitmask, 0, sizeof_bit_array(ABS_MAX + 1))) {
912        device->classes |= INPUT_DEVICE_CLASS_JOYSTICK;
913    }
914
915    // figure out the switches this device reports
916    bool haveSwitches = false;
917    for (int i=0; i<EV_SW; i++) {
918        //LOGI("Device %d sw %d: has=%d", device->id, i, test_bit(i, sw_bitmask));
919        if (test_bit(i, sw_bitmask)) {
920            haveSwitches = true;
921            if (mSwitches[i] == 0) {
922                mSwitches[i] = device->id;
923            }
924        }
925    }
926    if (haveSwitches) {
927        device->classes |= INPUT_DEVICE_CLASS_SWITCH;
928    }
929
930    if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
931        // Load the virtual keys for the touch screen, if any.
932        // We do this now so that we can make sure to load the keymap if necessary.
933        status_t status = loadVirtualKeyMap(device);
934        if (!status) {
935            device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
936        }
937    }
938
939    // Load the key map.
940    // We need to do this for joysticks too because the key layout may specify axes.
941    status_t keyMapStatus = NAME_NOT_FOUND;
942    if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
943        // Load the keymap for the device.
944        keyMapStatus = loadKeyMap(device);
945    }
946
947    // Configure the keyboard, gamepad or virtual keyboard.
948    if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
949        // Set system properties for the keyboard.
950        setKeyboardProperties(device, false);
951
952        // Register the keyboard as a built-in keyboard if it is eligible.
953        if (!keyMapStatus
954                && mBuiltInKeyboardId == -1
955                && isEligibleBuiltInKeyboard(device->identifier,
956                        device->configuration, &device->keyMap)) {
957            mBuiltInKeyboardId = device->id;
958            setKeyboardProperties(device, true);
959        }
960
961        // 'Q' key support = cheap test of whether this is an alpha-capable kbd
962        if (hasKeycodeLocked(device, AKEYCODE_Q)) {
963            device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
964        }
965
966        // See if this device has a DPAD.
967        if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
968                hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
969                hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
970                hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
971                hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
972            device->classes |= INPUT_DEVICE_CLASS_DPAD;
973        }
974
975        // See if this device has a gamepad.
976        for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
977            if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
978                device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
979                break;
980            }
981        }
982    }
983
984    // If the device isn't recognized as something we handle, don't monitor it.
985    if (device->classes == 0) {
986        LOGV("Dropping device: id=%d, path='%s', name='%s'",
987                deviceId, devicePath, device->identifier.name.string());
988        delete device;
989        return -1;
990    }
991
992    // Determine whether the device is external or internal.
993    if (isExternalDevice(device)) {
994        device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
995    }
996
997    LOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
998            "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s",
999         deviceId, fd, devicePath, device->identifier.name.string(),
1000         device->classes,
1001         device->configurationFile.string(),
1002         device->keyMap.keyLayoutFile.string(),
1003         device->keyMap.keyCharacterMapFile.string(),
1004         toString(mBuiltInKeyboardId == deviceId));
1005
1006    struct pollfd pollfd;
1007    pollfd.fd = fd;
1008    pollfd.events = POLLIN;
1009    pollfd.revents = 0;
1010    mFds.push(pollfd);
1011    mDevices.push(device);
1012
1013    device->next = mOpeningDevices;
1014    mOpeningDevices = device;
1015    return 0;
1016}
1017
1018void EventHub::loadConfiguration(Device* device) {
1019    device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
1020            device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
1021    if (device->configurationFile.isEmpty()) {
1022        LOGD("No input device configuration file found for device '%s'.",
1023                device->identifier.name.string());
1024    } else {
1025        status_t status = PropertyMap::load(device->configurationFile,
1026                &device->configuration);
1027        if (status) {
1028            LOGE("Error loading input device configuration file for device '%s'.  "
1029                    "Using default configuration.",
1030                    device->identifier.name.string());
1031        }
1032    }
1033}
1034
1035status_t EventHub::loadVirtualKeyMap(Device* device) {
1036    // The virtual key map is supplied by the kernel as a system board property file.
1037    String8 path;
1038    path.append("/sys/board_properties/virtualkeys.");
1039    path.append(device->identifier.name);
1040    if (access(path.string(), R_OK)) {
1041        return NAME_NOT_FOUND;
1042    }
1043    return VirtualKeyMap::load(path, &device->virtualKeyMap);
1044}
1045
1046status_t EventHub::loadKeyMap(Device* device) {
1047    return device->keyMap.load(device->identifier, device->configuration);
1048}
1049
1050void EventHub::setKeyboardProperties(Device* device, bool builtInKeyboard) {
1051    int32_t id = builtInKeyboard ? 0 : device->id;
1052    android::setKeyboardProperties(id, device->identifier,
1053            device->keyMap.keyLayoutFile, device->keyMap.keyCharacterMapFile);
1054}
1055
1056void EventHub::clearKeyboardProperties(Device* device, bool builtInKeyboard) {
1057    int32_t id = builtInKeyboard ? 0 : device->id;
1058    android::clearKeyboardProperties(id);
1059}
1060
1061bool EventHub::isExternalDevice(Device* device) {
1062    if (device->configuration) {
1063        bool value;
1064        if (device->configuration->tryGetProperty(String8("device.internal"), value)
1065                && value) {
1066            return false;
1067        }
1068    }
1069    return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
1070}
1071
1072bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
1073    if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) {
1074        return false;
1075    }
1076
1077    Vector<int32_t> scanCodes;
1078    device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
1079    const size_t N = scanCodes.size();
1080    for (size_t i=0; i<N && i<=KEY_MAX; i++) {
1081        int32_t sc = scanCodes.itemAt(i);
1082        if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
1083            return true;
1084        }
1085    }
1086
1087    return false;
1088}
1089
1090int EventHub::closeDevice(const char *devicePath) {
1091    AutoMutex _l(mLock);
1092
1093    for (size_t i = FIRST_ACTUAL_DEVICE_INDEX; i < mDevices.size(); i++) {
1094        Device* device = mDevices[i];
1095        if (device->path == devicePath) {
1096            return closeDeviceAtIndexLocked(i);
1097        }
1098    }
1099    LOGV("Remove device: %s not found, device may already have been removed.", devicePath);
1100    return -1;
1101}
1102
1103int EventHub::closeDeviceAtIndexLocked(int index) {
1104    Device* device = mDevices[index];
1105    LOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
1106         device->path.string(), device->identifier.name.string(), device->id,
1107         device->fd, device->classes);
1108
1109    for (int j=0; j<EV_SW; j++) {
1110        if (mSwitches[j] == device->id) {
1111            mSwitches[j] = 0;
1112        }
1113    }
1114
1115    if (device->id == mBuiltInKeyboardId) {
1116        LOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
1117                device->path.string(), mBuiltInKeyboardId);
1118        mBuiltInKeyboardId = -1;
1119        clearKeyboardProperties(device, true);
1120    }
1121    clearKeyboardProperties(device, false);
1122
1123    mFds.removeAt(index);
1124    mDevices.removeAt(index);
1125    device->close();
1126
1127    // Unlink for opening devices list if it is present.
1128    Device* pred = NULL;
1129    bool found = false;
1130    for (Device* entry = mOpeningDevices; entry != NULL; ) {
1131        if (entry == device) {
1132            found = true;
1133            break;
1134        }
1135        pred = entry;
1136        entry = entry->next;
1137    }
1138    if (found) {
1139        // Unlink the device from the opening devices list then delete it.
1140        // We don't need to tell the client that the device was closed because
1141        // it does not even know it was opened in the first place.
1142        LOGI("Device %s was immediately closed after opening.", device->path.string());
1143        if (pred) {
1144            pred->next = device->next;
1145        } else {
1146            mOpeningDevices = device->next;
1147        }
1148        delete device;
1149    } else {
1150        // Link into closing devices list.
1151        // The device will be deleted later after we have informed the client.
1152        device->next = mClosingDevices;
1153        mClosingDevices = device;
1154    }
1155    return 0;
1156}
1157
1158int EventHub::readNotify(int nfd) {
1159#ifdef HAVE_INOTIFY
1160    int res;
1161    char devname[PATH_MAX];
1162    char *filename;
1163    char event_buf[512];
1164    int event_size;
1165    int event_pos = 0;
1166    struct inotify_event *event;
1167
1168    LOGV("EventHub::readNotify nfd: %d\n", nfd);
1169    res = read(nfd, event_buf, sizeof(event_buf));
1170    if(res < (int)sizeof(*event)) {
1171        if(errno == EINTR)
1172            return 0;
1173        LOGW("could not get event, %s\n", strerror(errno));
1174        return 1;
1175    }
1176    //printf("got %d bytes of event information\n", res);
1177
1178    strcpy(devname, DEVICE_PATH);
1179    filename = devname + strlen(devname);
1180    *filename++ = '/';
1181
1182    while(res >= (int)sizeof(*event)) {
1183        event = (struct inotify_event *)(event_buf + event_pos);
1184        //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
1185        if(event->len) {
1186            strcpy(filename, event->name);
1187            if(event->mask & IN_CREATE) {
1188                openDevice(devname);
1189            }
1190            else {
1191                closeDevice(devname);
1192            }
1193        }
1194        event_size = sizeof(*event) + event->len;
1195        res -= event_size;
1196        event_pos += event_size;
1197    }
1198#endif
1199    return 0;
1200}
1201
1202int EventHub::scanDir(const char *dirname)
1203{
1204    char devname[PATH_MAX];
1205    char *filename;
1206    DIR *dir;
1207    struct dirent *de;
1208    dir = opendir(dirname);
1209    if(dir == NULL)
1210        return -1;
1211    strcpy(devname, dirname);
1212    filename = devname + strlen(devname);
1213    *filename++ = '/';
1214    while((de = readdir(dir))) {
1215        if(de->d_name[0] == '.' &&
1216           (de->d_name[1] == '\0' ||
1217            (de->d_name[1] == '.' && de->d_name[2] == '\0')))
1218            continue;
1219        strcpy(filename, de->d_name);
1220        openDevice(devname);
1221    }
1222    closedir(dir);
1223    return 0;
1224}
1225
1226void EventHub::dump(String8& dump) {
1227    dump.append("Event Hub State:\n");
1228
1229    { // acquire lock
1230        AutoMutex _l(mLock);
1231
1232        dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
1233
1234        dump.append(INDENT "Devices:\n");
1235
1236        for (size_t i = FIRST_ACTUAL_DEVICE_INDEX; i < mDevices.size(); i++) {
1237            const Device* device = mDevices[i];
1238            if (device) {
1239                if (mBuiltInKeyboardId == device->id) {
1240                    dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
1241                            device->id, device->identifier.name.string());
1242                } else {
1243                    dump.appendFormat(INDENT2 "%d: %s\n", device->id,
1244                            device->identifier.name.string());
1245                }
1246                dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
1247                dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
1248                dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
1249                dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
1250                dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
1251                        "product=0x%04x, version=0x%04x\n",
1252                        device->identifier.bus, device->identifier.vendor,
1253                        device->identifier.product, device->identifier.version);
1254                dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
1255                        device->keyMap.keyLayoutFile.string());
1256                dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
1257                        device->keyMap.keyCharacterMapFile.string());
1258                dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
1259                        device->configurationFile.string());
1260            }
1261        }
1262    } // release lock
1263}
1264
1265}; // namespace android
1266