call_mips.cc revision 7940e44f4517de5e2634a7e07d58d0fb26160513
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the Mips ISA */
18
19#include "codegen_mips.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mips_lir.h"
22#include "oat/runtime/oat_support_entrypoints.h"
23
24namespace art {
25
26void MipsMir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir,
27                                 SpecialCaseHandler special_case)
28{
29    // TODO
30}
31
32/*
33 * The lack of pc-relative loads on Mips presents somewhat of a challenge
34 * for our PIC switch table strategy.  To materialize the current location
35 * we'll do a dummy JAL and reference our tables using r_RA as the
36 * base register.  Note that r_RA will be used both as the base to
37 * locate the switch table data and as the reference base for the switch
38 * target offsets stored in the table.  We'll use a special pseudo-instruction
39 * to represent the jal and trigger the construction of the
40 * switch table offsets (which will happen after final assembly and all
41 * labels are fixed).
42 *
43 * The test loop will look something like:
44 *
45 *   ori   rEnd, r_ZERO, #table_size  ; size in bytes
46 *   jal   BaseLabel         ; stores "return address" (BaseLabel) in r_RA
47 *   nop                     ; opportunistically fill
48 * BaseLabel:
49 *   addiu rBase, r_RA, <table> - <BaseLabel>  ; table relative to BaseLabel
50     addu  rEnd, rEnd, rBase                   ; end of table
51 *   lw    r_val, [rSP, v_reg_off]                ; Test Value
52 * loop:
53 *   beq   rBase, rEnd, done
54 *   lw    r_key, 0(rBase)
55 *   addu  rBase, 8
56 *   bne   r_val, r_key, loop
57 *   lw    r_disp, -4(rBase)
58 *   addu  r_RA, r_disp
59 *   jr    r_RA
60 * done:
61 *
62 */
63void MipsMir2Lir::GenSparseSwitch(MIR* mir, uint32_t table_offset,
64                                  RegLocation rl_src)
65{
66  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
67  if (cu_->verbose) {
68    DumpSparseSwitchTable(table);
69  }
70  // Add the table to the list - we'll process it later
71  SwitchTable *tab_rec =
72      static_cast<SwitchTable*>(arena_->NewMem(sizeof(SwitchTable), true,
73                                               ArenaAllocator::kAllocData));
74  tab_rec->table = table;
75  tab_rec->vaddr = current_dalvik_offset_;
76  int elements = table[1];
77  tab_rec->targets =
78      static_cast<LIR**>(arena_->NewMem(elements * sizeof(LIR*), true, ArenaAllocator::kAllocLIR));
79  switch_tables_.Insert(tab_rec);
80
81  // The table is composed of 8-byte key/disp pairs
82  int byte_size = elements * 8;
83
84  int size_hi = byte_size >> 16;
85  int size_lo = byte_size & 0xffff;
86
87  int rEnd = AllocTemp();
88  if (size_hi) {
89    NewLIR2(kMipsLui, rEnd, size_hi);
90  }
91  // Must prevent code motion for the curr pc pair
92  GenBarrier();  // Scheduling barrier
93  NewLIR0(kMipsCurrPC);  // Really a jal to .+8
94  // Now, fill the branch delay slot
95  if (size_hi) {
96    NewLIR3(kMipsOri, rEnd, rEnd, size_lo);
97  } else {
98    NewLIR3(kMipsOri, rEnd, r_ZERO, size_lo);
99  }
100  GenBarrier();  // Scheduling barrier
101
102  // Construct BaseLabel and set up table base register
103  LIR* base_label = NewLIR0(kPseudoTargetLabel);
104  // Remember base label so offsets can be computed later
105  tab_rec->anchor = base_label;
106  int rBase = AllocTemp();
107  NewLIR4(kMipsDelta, rBase, 0, reinterpret_cast<uintptr_t>(base_label),
108          reinterpret_cast<uintptr_t>(tab_rec));
109  OpRegRegReg(kOpAdd, rEnd, rEnd, rBase);
110
111  // Grab switch test value
112  rl_src = LoadValue(rl_src, kCoreReg);
113
114  // Test loop
115  int r_key = AllocTemp();
116  LIR* loop_label = NewLIR0(kPseudoTargetLabel);
117  LIR* exit_branch = OpCmpBranch(kCondEq, rBase, rEnd, NULL);
118  LoadWordDisp(rBase, 0, r_key);
119  OpRegImm(kOpAdd, rBase, 8);
120  OpCmpBranch(kCondNe, rl_src.low_reg, r_key, loop_label);
121  int r_disp = AllocTemp();
122  LoadWordDisp(rBase, -4, r_disp);
123  OpRegRegReg(kOpAdd, r_RA, r_RA, r_disp);
124  OpReg(kOpBx, r_RA);
125
126  // Loop exit
127  LIR* exit_label = NewLIR0(kPseudoTargetLabel);
128  exit_branch->target = exit_label;
129}
130
131/*
132 * Code pattern will look something like:
133 *
134 *   lw    r_val
135 *   jal   BaseLabel         ; stores "return address" (BaseLabel) in r_RA
136 *   nop                     ; opportunistically fill
137 *   [subiu r_val, bias]      ; Remove bias if low_val != 0
138 *   bound check -> done
139 *   lw    r_disp, [r_RA, r_val]
140 *   addu  r_RA, r_disp
141 *   jr    r_RA
142 * done:
143 */
144void MipsMir2Lir::GenPackedSwitch(MIR* mir, uint32_t table_offset,
145                                  RegLocation rl_src)
146{
147  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
148  if (cu_->verbose) {
149    DumpPackedSwitchTable(table);
150  }
151  // Add the table to the list - we'll process it later
152  SwitchTable *tab_rec =
153      static_cast<SwitchTable*>(arena_->NewMem(sizeof(SwitchTable), true,
154                                               ArenaAllocator::kAllocData));
155  tab_rec->table = table;
156  tab_rec->vaddr = current_dalvik_offset_;
157  int size = table[1];
158  tab_rec->targets = static_cast<LIR**>(arena_->NewMem(size * sizeof(LIR*), true,
159                                                       ArenaAllocator::kAllocLIR));
160  switch_tables_.Insert(tab_rec);
161
162  // Get the switch value
163  rl_src = LoadValue(rl_src, kCoreReg);
164
165  // Prepare the bias.  If too big, handle 1st stage here
166  int low_key = s4FromSwitchData(&table[2]);
167  bool large_bias = false;
168  int r_key;
169  if (low_key == 0) {
170    r_key = rl_src.low_reg;
171  } else if ((low_key & 0xffff) != low_key) {
172    r_key = AllocTemp();
173    LoadConstant(r_key, low_key);
174    large_bias = true;
175  } else {
176    r_key = AllocTemp();
177  }
178
179  // Must prevent code motion for the curr pc pair
180  GenBarrier();
181  NewLIR0(kMipsCurrPC);  // Really a jal to .+8
182  // Now, fill the branch delay slot with bias strip
183  if (low_key == 0) {
184    NewLIR0(kMipsNop);
185  } else {
186    if (large_bias) {
187      OpRegRegReg(kOpSub, r_key, rl_src.low_reg, r_key);
188    } else {
189      OpRegRegImm(kOpSub, r_key, rl_src.low_reg, low_key);
190    }
191  }
192  GenBarrier();  // Scheduling barrier
193
194  // Construct BaseLabel and set up table base register
195  LIR* base_label = NewLIR0(kPseudoTargetLabel);
196  // Remember base label so offsets can be computed later
197  tab_rec->anchor = base_label;
198
199  // Bounds check - if < 0 or >= size continue following switch
200  LIR* branch_over = OpCmpImmBranch(kCondHi, r_key, size-1, NULL);
201
202  // Materialize the table base pointer
203  int rBase = AllocTemp();
204  NewLIR4(kMipsDelta, rBase, 0, reinterpret_cast<uintptr_t>(base_label),
205          reinterpret_cast<uintptr_t>(tab_rec));
206
207  // Load the displacement from the switch table
208  int r_disp = AllocTemp();
209  LoadBaseIndexed(rBase, r_key, r_disp, 2, kWord);
210
211  // Add to r_AP and go
212  OpRegRegReg(kOpAdd, r_RA, r_RA, r_disp);
213  OpReg(kOpBx, r_RA);
214
215  /* branch_over target here */
216  LIR* target = NewLIR0(kPseudoTargetLabel);
217  branch_over->target = target;
218}
219
220/*
221 * Array data table format:
222 *  ushort ident = 0x0300   magic value
223 *  ushort width            width of each element in the table
224 *  uint   size             number of elements in the table
225 *  ubyte  data[size*width] table of data values (may contain a single-byte
226 *                          padding at the end)
227 *
228 * Total size is 4+(width * size + 1)/2 16-bit code units.
229 */
230void MipsMir2Lir::GenFillArrayData(uint32_t table_offset, RegLocation rl_src)
231{
232  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
233  // Add the table to the list - we'll process it later
234  FillArrayData *tab_rec =
235      reinterpret_cast<FillArrayData*>(arena_->NewMem(sizeof(FillArrayData), true,
236                                                      ArenaAllocator::kAllocData));
237  tab_rec->table = table;
238  tab_rec->vaddr = current_dalvik_offset_;
239  uint16_t width = tab_rec->table[1];
240  uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
241  tab_rec->size = (size * width) + 8;
242
243  fill_array_data_.Insert(tab_rec);
244
245  // Making a call - use explicit registers
246  FlushAllRegs();   /* Everything to home location */
247  LockCallTemps();
248  LoadValueDirectFixed(rl_src, rMIPS_ARG0);
249
250  // Must prevent code motion for the curr pc pair
251  GenBarrier();
252  NewLIR0(kMipsCurrPC);  // Really a jal to .+8
253  // Now, fill the branch delay slot with the helper load
254  int r_tgt = LoadHelper(ENTRYPOINT_OFFSET(pHandleFillArrayDataFromCode));
255  GenBarrier();  // Scheduling barrier
256
257  // Construct BaseLabel and set up table base register
258  LIR* base_label = NewLIR0(kPseudoTargetLabel);
259
260  // Materialize a pointer to the fill data image
261  NewLIR4(kMipsDelta, rMIPS_ARG1, 0, reinterpret_cast<uintptr_t>(base_label),
262          reinterpret_cast<uintptr_t>(tab_rec));
263
264  // And go...
265  ClobberCalleeSave();
266  LIR* call_inst = OpReg(kOpBlx, r_tgt); // ( array*, fill_data* )
267  MarkSafepointPC(call_inst);
268}
269
270/*
271 * TODO: implement fast path to short-circuit thin-lock case
272 */
273void MipsMir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src)
274{
275  FlushAllRegs();
276  LoadValueDirectFixed(rl_src, rMIPS_ARG0);  // Get obj
277  LockCallTemps();  // Prepare for explicit register usage
278  GenNullCheck(rl_src.s_reg_low, rMIPS_ARG0, opt_flags);
279  // Go expensive route - artLockObjectFromCode(self, obj);
280  int r_tgt = LoadHelper(ENTRYPOINT_OFFSET(pLockObjectFromCode));
281  ClobberCalleeSave();
282  LIR* call_inst = OpReg(kOpBlx, r_tgt);
283  MarkSafepointPC(call_inst);
284}
285
286/*
287 * TODO: implement fast path to short-circuit thin-lock case
288 */
289void MipsMir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src)
290{
291  FlushAllRegs();
292  LoadValueDirectFixed(rl_src, rMIPS_ARG0);  // Get obj
293  LockCallTemps();  // Prepare for explicit register usage
294  GenNullCheck(rl_src.s_reg_low, rMIPS_ARG0, opt_flags);
295  // Go expensive route - UnlockObjectFromCode(obj);
296  int r_tgt = LoadHelper(ENTRYPOINT_OFFSET(pUnlockObjectFromCode));
297  ClobberCalleeSave();
298  LIR* call_inst = OpReg(kOpBlx, r_tgt);
299  MarkSafepointPC(call_inst);
300}
301
302void MipsMir2Lir::GenMoveException(RegLocation rl_dest)
303{
304  int ex_offset = Thread::ExceptionOffset().Int32Value();
305  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
306  int reset_reg = AllocTemp();
307  LoadWordDisp(rMIPS_SELF, ex_offset, rl_result.low_reg);
308  LoadConstant(reset_reg, 0);
309  StoreWordDisp(rMIPS_SELF, ex_offset, reset_reg);
310  FreeTemp(reset_reg);
311  StoreValue(rl_dest, rl_result);
312}
313
314/*
315 * Mark garbage collection card. Skip if the value we're storing is null.
316 */
317void MipsMir2Lir::MarkGCCard(int val_reg, int tgt_addr_reg)
318{
319  int reg_card_base = AllocTemp();
320  int reg_card_no = AllocTemp();
321  LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL);
322  LoadWordDisp(rMIPS_SELF, Thread::CardTableOffset().Int32Value(), reg_card_base);
323  OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
324  StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0,
325                   kUnsignedByte);
326  LIR* target = NewLIR0(kPseudoTargetLabel);
327  branch_over->target = target;
328  FreeTemp(reg_card_base);
329  FreeTemp(reg_card_no);
330}
331void MipsMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method)
332{
333  int spill_count = num_core_spills_ + num_fp_spills_;
334  /*
335   * On entry, rMIPS_ARG0, rMIPS_ARG1, rMIPS_ARG2 & rMIPS_ARG3 are live.  Let the register
336   * allocation mechanism know so it doesn't try to use any of them when
337   * expanding the frame or flushing.  This leaves the utility
338   * code with a single temp: r12.  This should be enough.
339   */
340  LockTemp(rMIPS_ARG0);
341  LockTemp(rMIPS_ARG1);
342  LockTemp(rMIPS_ARG2);
343  LockTemp(rMIPS_ARG3);
344
345  /*
346   * We can safely skip the stack overflow check if we're
347   * a leaf *and* our frame size < fudge factor.
348   */
349  bool skip_overflow_check = (mir_graph_->MethodIsLeaf() &&
350      (static_cast<size_t>(frame_size_) < Thread::kStackOverflowReservedBytes));
351  NewLIR0(kPseudoMethodEntry);
352  int check_reg = AllocTemp();
353  int new_sp = AllocTemp();
354  if (!skip_overflow_check) {
355    /* Load stack limit */
356    LoadWordDisp(rMIPS_SELF, Thread::StackEndOffset().Int32Value(), check_reg);
357  }
358  /* Spill core callee saves */
359  SpillCoreRegs();
360  /* NOTE: promotion of FP regs currently unsupported, thus no FP spill */
361  DCHECK_EQ(num_fp_spills_, 0);
362  if (!skip_overflow_check) {
363    OpRegRegImm(kOpSub, new_sp, rMIPS_SP, frame_size_ - (spill_count * 4));
364    GenRegRegCheck(kCondCc, new_sp, check_reg, kThrowStackOverflow);
365    OpRegCopy(rMIPS_SP, new_sp);     // Establish stack
366  } else {
367    OpRegImm(kOpSub, rMIPS_SP, frame_size_ - (spill_count * 4));
368  }
369
370  FlushIns(ArgLocs, rl_method);
371
372  FreeTemp(rMIPS_ARG0);
373  FreeTemp(rMIPS_ARG1);
374  FreeTemp(rMIPS_ARG2);
375  FreeTemp(rMIPS_ARG3);
376}
377
378void MipsMir2Lir::GenExitSequence()
379{
380  /*
381   * In the exit path, rMIPS_RET0/rMIPS_RET1 are live - make sure they aren't
382   * allocated by the register utilities as temps.
383   */
384  LockTemp(rMIPS_RET0);
385  LockTemp(rMIPS_RET1);
386
387  NewLIR0(kPseudoMethodExit);
388  UnSpillCoreRegs();
389  OpReg(kOpBx, r_RA);
390}
391
392}  // namespace art
393