10ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Ceres Solver - A fast non-linear least squares minimizer
20ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
30ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// http://code.google.com/p/ceres-solver/
40ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
50ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Redistribution and use in source and binary forms, with or without
60ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// modification, are permitted provided that the following conditions are met:
70ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
80ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// * Redistributions of source code must retain the above copyright notice,
90ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   this list of conditions and the following disclaimer.
100ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// * Redistributions in binary form must reproduce the above copyright notice,
110ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   this list of conditions and the following disclaimer in the documentation
120ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   and/or other materials provided with the distribution.
130ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// * Neither the name of Google Inc. nor the names of its contributors may be
140ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   used to endorse or promote products derived from this software without
150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//   specific prior written permission.
160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
180ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
200ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
210ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
260ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
270ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// POSSIBILITY OF SUCH DAMAGE.
280ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
290ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Author: sameeragarwal@google.com (Sameer Agarwal)
300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/implicit_schur_complement.h"
320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include <cstddef>
340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "Eigen/Dense"
350ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/block_random_access_dense_matrix.h"
360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/block_sparse_matrix.h"
370ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/casts.h"
380ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/internal/eigen.h"
390ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/internal/scoped_ptr.h"
400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/linear_least_squares_problems.h"
410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/linear_solver.h"
420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/schur_eliminator.h"
430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/triplet_sparse_matrix.h"
440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "ceres/types.h"
450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "glog/logging.h"
460ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong#include "gtest/gtest.h"
470ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongnamespace ceres {
490ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongnamespace internal {
500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongusing testing::AssertionResult;
520ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
530ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongconst double kEpsilon = 1e-14;
540ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
550ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kongclass ImplicitSchurComplementTest : public ::testing::Test {
560ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong protected :
570ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  virtual void SetUp() {
580ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    scoped_ptr<LinearLeastSquaresProblem> problem(
590ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong        CreateLinearLeastSquaresProblemFromId(2));
600ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
610ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    CHECK_NOTNULL(problem.get());
620ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
630ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    b_.reset(problem->b.release());
640ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    D_.reset(problem->D.release());
650ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
660ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    num_cols_ = A_->num_cols();
670ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    num_rows_ = A_->num_rows();
680ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    num_eliminate_blocks_ = problem->num_eliminate_blocks;
690ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  }
700ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
710ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  void ReducedLinearSystemAndSolution(double* D,
720ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                                      Matrix* lhs,
730ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                                      Vector* rhs,
740ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                                      Vector* solution) {
750ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const CompressedRowBlockStructure* bs = A_->block_structure();
760ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const int num_col_blocks = bs->cols.size();
770ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    vector<int> blocks(num_col_blocks - num_eliminate_blocks_, 0);
780ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) {
790ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      blocks[i - num_eliminate_blocks_] = bs->cols[i].size;
800ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    }
810ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
820ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    BlockRandomAccessDenseMatrix blhs(blocks);
830ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const int num_schur_rows = blhs.num_rows();
840ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
850ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    LinearSolver::Options options;
860ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    options.elimination_groups.push_back(num_eliminate_blocks_);
870ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    options.type = DENSE_SCHUR;
880ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
890ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    scoped_ptr<SchurEliminatorBase> eliminator(
900ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong        SchurEliminatorBase::Create(options));
910ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    CHECK_NOTNULL(eliminator.get());
920ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    eliminator->Init(num_eliminate_blocks_, bs);
930ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
940ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    lhs->resize(num_schur_rows, num_schur_rows);
950ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    rhs->resize(num_schur_rows);
960ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
970ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    eliminator->Eliminate(A_.get(), b_.get(), D, &blhs, rhs->data());
980ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
990ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    MatrixRef lhs_ref(blhs.mutable_values(), num_schur_rows, num_schur_rows);
1000ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1010ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // lhs_ref is an upper triangular matrix. Construct a full version
1020ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // of lhs_ref in lhs by transposing lhs_ref, choosing the strictly
1030ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // lower triangular part of the matrix and adding it to lhs_ref.
1040ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    *lhs = lhs_ref;
1050ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    lhs->triangularView<Eigen::StrictlyLower>() =
1060ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong        lhs_ref.triangularView<Eigen::StrictlyUpper>().transpose();
1070ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1080ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    solution->resize(num_cols_);
1090ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    solution->setZero();
1100ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    VectorRef schur_solution(solution->data() + num_cols_ - num_schur_rows,
1110ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                             num_schur_rows);
112399f7d09e0c45af54b77b4ab9508d6f23759b927Scott Ettinger    schur_solution = lhs->selfadjointView<Eigen::Upper>().llt().solve(*rhs);
1130ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    eliminator->BackSubstitute(A_.get(), b_.get(), D,
1140ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong                               schur_solution.data(), solution->data());
1150ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  }
1160ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1170ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  AssertionResult TestImplicitSchurComplement(double* D) {
1180ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    Matrix lhs;
1190ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    Vector rhs;
1200ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    Vector reference_solution;
1210ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    ReducedLinearSystemAndSolution(D, &lhs, &rhs, &reference_solution);
1220ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1230ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    ImplicitSchurComplement isc(num_eliminate_blocks_, true);
1240ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    isc.Init(*A_, D, b_.get());
1250ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1260ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    int num_sc_cols = lhs.cols();
1270ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1280ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    for (int i = 0; i < num_sc_cols; ++i) {
1290ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      Vector x(num_sc_cols);
1300ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      x.setZero();
1310ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      x(i) = 1.0;
1320ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1330ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      Vector y(num_sc_cols);
1340ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      y = lhs * x;
1350ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1360ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      Vector z(num_sc_cols);
1370ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      isc.RightMultiply(x.data(), z.data());
1380ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1390ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      // The i^th column of the implicit schur complement is the same as
1400ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      // the explicit schur complement.
1410ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      if ((y - z).norm() > kEpsilon) {
1420ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong        return testing::AssertionFailure()
1430ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong            << "Explicit and Implicit SchurComplements differ in "
1440ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong            << "column " << i << ". explicit: " << y.transpose()
1450ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong            << " implicit: " << z.transpose();
1460ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      }
1470ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    }
1480ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1490ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Compare the rhs of the reduced linear system
1500ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    if ((isc.rhs() - rhs).norm() > kEpsilon) {
1510ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      return testing::AssertionFailure()
1520ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong            << "Explicit and Implicit SchurComplements differ in "
1530ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong            << "rhs. explicit: " << rhs.transpose()
1540ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong            << " implicit: " << isc.rhs().transpose();
1550ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    }
1560ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1570ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Reference solution to the f_block.
1580ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    const Vector reference_f_sol =
159399f7d09e0c45af54b77b4ab9508d6f23759b927Scott Ettinger        lhs.selfadjointView<Eigen::Upper>().llt().solve(rhs);
1600ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1610ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // Backsubstituted solution from the implicit schur solver using the
1620ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    // reference solution to the f_block.
1630ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    Vector sol(num_cols_);
1640ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    isc.BackSubstitute(reference_f_sol.data(), sol.data());
1650ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    if ((sol - reference_solution).norm() > kEpsilon) {
1660ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong      return testing::AssertionFailure()
1670ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong          << "Explicit and Implicit SchurComplements solutions differ. "
1680ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong          << "explicit: " << reference_solution.transpose()
1690ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong          << " implicit: " << sol.transpose();
1700ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    }
1710ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1720ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong    return testing::AssertionSuccess();
1730ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  }
1740ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1750ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  int num_rows_;
1760ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  int num_cols_;
1770ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  int num_eliminate_blocks_;
1780ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1790ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  scoped_ptr<BlockSparseMatrix> A_;
1800ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  scoped_array<double> b_;
1810ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  scoped_array<double> D_;
1820ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong};
1830ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1840ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// Verify that the Schur Complement matrix implied by the
1850ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// ImplicitSchurComplement class matches the one explicitly computed
1860ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// by the SchurComplement solver.
1870ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong//
1880ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// We do this with and without regularization to check that the
1890ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong// support for the LM diagonal is correct.
1900ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus KongTEST_F(ImplicitSchurComplementTest, SchurMatrixValuesTest) {
1910ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  EXPECT_TRUE(TestImplicitSchurComplement(NULL));
1920ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong  EXPECT_TRUE(TestImplicitSchurComplement(D_.get()));
1930ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}
1940ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong
1950ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}  // namespace internal
1960ae28bd5885b5daa526898fcf7c323dc2c3e1963Angus Kong}  // namespace ceres
197