1// Copyright 2010 Google Inc. All Rights Reserved.
2//
3// Use of this source code is governed by a BSD-style license
4// that can be found in the COPYING file in the root of the source
5// tree. An additional intellectual property rights grant can be found
6// in the file PATENTS. All contributing project authors may
7// be found in the AUTHORS file in the root of the source tree.
8// -----------------------------------------------------------------------------
9//
10// Frame-reconstruction function. Memory allocation.
11//
12// Author: Skal (pascal.massimino@gmail.com)
13
14#include <stdlib.h>
15#include "./vp8i.h"
16#include "../utils/utils.h"
17
18#if defined(__cplusplus) || defined(c_plusplus)
19extern "C" {
20#endif
21
22#define ALIGN_MASK (32 - 1)
23
24//------------------------------------------------------------------------------
25// Filtering
26
27// kFilterExtraRows[] = How many extra lines are needed on the MB boundary
28// for caching, given a filtering level.
29// Simple filter:  up to 2 luma samples are read and 1 is written.
30// Complex filter: up to 4 luma samples are read and 3 are written. Same for
31//                 U/V, so it's 8 samples total (because of the 2x upsampling).
32static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 };
33
34static WEBP_INLINE int hev_thresh_from_level(int level, int keyframe) {
35  if (keyframe) {
36    return (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
37  } else {
38    return (level >= 40) ? 3 : (level >= 20) ? 2 : (level >= 15) ? 1 : 0;
39  }
40}
41
42static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) {
43  const VP8ThreadContext* const ctx = &dec->thread_ctx_;
44  const int y_bps = dec->cache_y_stride_;
45  VP8FInfo* const f_info = ctx->f_info_ + mb_x;
46  uint8_t* const y_dst = dec->cache_y_ + ctx->id_ * 16 * y_bps + mb_x * 16;
47  const int level = f_info->f_level_;
48  const int ilevel = f_info->f_ilevel_;
49  const int limit = 2 * level + ilevel;
50  if (level == 0) {
51    return;
52  }
53  if (dec->filter_type_ == 1) {   // simple
54    if (mb_x > 0) {
55      VP8SimpleHFilter16(y_dst, y_bps, limit + 4);
56    }
57    if (f_info->f_inner_) {
58      VP8SimpleHFilter16i(y_dst, y_bps, limit);
59    }
60    if (mb_y > 0) {
61      VP8SimpleVFilter16(y_dst, y_bps, limit + 4);
62    }
63    if (f_info->f_inner_) {
64      VP8SimpleVFilter16i(y_dst, y_bps, limit);
65    }
66  } else {    // complex
67    const int uv_bps = dec->cache_uv_stride_;
68    uint8_t* const u_dst = dec->cache_u_ + ctx->id_ * 8 * uv_bps + mb_x * 8;
69    uint8_t* const v_dst = dec->cache_v_ + ctx->id_ * 8 * uv_bps + mb_x * 8;
70    const int hev_thresh =
71        hev_thresh_from_level(level, dec->frm_hdr_.key_frame_);
72    if (mb_x > 0) {
73      VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
74      VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
75    }
76    if (f_info->f_inner_) {
77      VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
78      VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
79    }
80    if (mb_y > 0) {
81      VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
82      VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
83    }
84    if (f_info->f_inner_) {
85      VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
86      VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
87    }
88  }
89}
90
91// Filter the decoded macroblock row (if needed)
92static void FilterRow(const VP8Decoder* const dec) {
93  int mb_x;
94  const int mb_y = dec->thread_ctx_.mb_y_;
95  assert(dec->thread_ctx_.filter_row_);
96  for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
97    DoFilter(dec, mb_x, mb_y);
98  }
99}
100
101//------------------------------------------------------------------------------
102// Precompute the filtering strength for each segment and each i4x4/i16x16 mode.
103
104static void PrecomputeFilterStrengths(VP8Decoder* const dec) {
105  if (dec->filter_type_ > 0) {
106    int s;
107    const VP8FilterHeader* const hdr = &dec->filter_hdr_;
108    for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
109      int i4x4;
110      // First, compute the initial level
111      int base_level;
112      if (dec->segment_hdr_.use_segment_) {
113        base_level = dec->segment_hdr_.filter_strength_[s];
114        if (!dec->segment_hdr_.absolute_delta_) {
115          base_level += hdr->level_;
116        }
117      } else {
118        base_level = hdr->level_;
119      }
120      for (i4x4 = 0; i4x4 <= 1; ++i4x4) {
121        VP8FInfo* const info = &dec->fstrengths_[s][i4x4];
122        int level = base_level;
123        if (hdr->use_lf_delta_) {
124          // TODO(skal): only CURRENT is handled for now.
125          level += hdr->ref_lf_delta_[0];
126          if (i4x4) {
127            level += hdr->mode_lf_delta_[0];
128          }
129        }
130        level = (level < 0) ? 0 : (level > 63) ? 63 : level;
131        info->f_level_ = level;
132
133        if (hdr->sharpness_ > 0) {
134          if (hdr->sharpness_ > 4) {
135            level >>= 2;
136          } else {
137            level >>= 1;
138          }
139          if (level > 9 - hdr->sharpness_) {
140            level = 9 - hdr->sharpness_;
141          }
142        }
143        info->f_ilevel_ = (level < 1) ? 1 : level;
144        info->f_inner_ = 0;
145      }
146    }
147  }
148}
149
150//------------------------------------------------------------------------------
151// This function is called after a row of macroblocks is finished decoding.
152// It also takes into account the following restrictions:
153//  * In case of in-loop filtering, we must hold off sending some of the bottom
154//    pixels as they are yet unfiltered. They will be when the next macroblock
155//    row is decoded. Meanwhile, we must preserve them by rotating them in the
156//    cache area. This doesn't hold for the very bottom row of the uncropped
157//    picture of course.
158//  * we must clip the remaining pixels against the cropping area. The VP8Io
159//    struct must have the following fields set correctly before calling put():
160
161#define MACROBLOCK_VPOS(mb_y)  ((mb_y) * 16)    // vertical position of a MB
162
163// Finalize and transmit a complete row. Return false in case of user-abort.
164static int FinishRow(VP8Decoder* const dec, VP8Io* const io) {
165  int ok = 1;
166  const VP8ThreadContext* const ctx = &dec->thread_ctx_;
167  const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
168  const int ysize = extra_y_rows * dec->cache_y_stride_;
169  const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
170  const int y_offset = ctx->id_ * 16 * dec->cache_y_stride_;
171  const int uv_offset = ctx->id_ * 8 * dec->cache_uv_stride_;
172  uint8_t* const ydst = dec->cache_y_ - ysize + y_offset;
173  uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset;
174  uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset;
175  const int first_row = (ctx->mb_y_ == 0);
176  const int last_row = (ctx->mb_y_ >= dec->br_mb_y_ - 1);
177  int y_start = MACROBLOCK_VPOS(ctx->mb_y_);
178  int y_end = MACROBLOCK_VPOS(ctx->mb_y_ + 1);
179
180  if (ctx->filter_row_) {
181    FilterRow(dec);
182  }
183
184  if (io->put) {
185    if (!first_row) {
186      y_start -= extra_y_rows;
187      io->y = ydst;
188      io->u = udst;
189      io->v = vdst;
190    } else {
191      io->y = dec->cache_y_ + y_offset;
192      io->u = dec->cache_u_ + uv_offset;
193      io->v = dec->cache_v_ + uv_offset;
194    }
195
196    if (!last_row) {
197      y_end -= extra_y_rows;
198    }
199    if (y_end > io->crop_bottom) {
200      y_end = io->crop_bottom;    // make sure we don't overflow on last row.
201    }
202    io->a = NULL;
203    if (dec->alpha_data_ != NULL && y_start < y_end) {
204      // TODO(skal): several things to correct here:
205      // * testing presence of alpha with dec->alpha_data_ is not a good idea
206      // * we're actually decompressing the full plane only once. It should be
207      //   more obvious from signature.
208      // * we could free alpha_data_ right after this call, but we don't own.
209      io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start);
210      if (io->a == NULL) {
211        return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
212                           "Could not decode alpha data.");
213      }
214    }
215    if (y_start < io->crop_top) {
216      const int delta_y = io->crop_top - y_start;
217      y_start = io->crop_top;
218      assert(!(delta_y & 1));
219      io->y += dec->cache_y_stride_ * delta_y;
220      io->u += dec->cache_uv_stride_ * (delta_y >> 1);
221      io->v += dec->cache_uv_stride_ * (delta_y >> 1);
222      if (io->a != NULL) {
223        io->a += io->width * delta_y;
224      }
225    }
226    if (y_start < y_end) {
227      io->y += io->crop_left;
228      io->u += io->crop_left >> 1;
229      io->v += io->crop_left >> 1;
230      if (io->a != NULL) {
231        io->a += io->crop_left;
232      }
233      io->mb_y = y_start - io->crop_top;
234      io->mb_w = io->crop_right - io->crop_left;
235      io->mb_h = y_end - y_start;
236      ok = io->put(io);
237    }
238  }
239  // rotate top samples if needed
240  if (ctx->id_ + 1 == dec->num_caches_) {
241    if (!last_row) {
242      memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize);
243      memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize);
244      memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize);
245    }
246  }
247
248  return ok;
249}
250
251#undef MACROBLOCK_VPOS
252
253//------------------------------------------------------------------------------
254
255int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) {
256  int ok = 1;
257  VP8ThreadContext* const ctx = &dec->thread_ctx_;
258  if (!dec->use_threads_) {
259    // ctx->id_ and ctx->f_info_ are already set
260    ctx->mb_y_ = dec->mb_y_;
261    ctx->filter_row_ = dec->filter_row_;
262    ok = FinishRow(dec, io);
263  } else {
264    WebPWorker* const worker = &dec->worker_;
265    // Finish previous job *before* updating context
266    ok &= WebPWorkerSync(worker);
267    assert(worker->status_ == OK);
268    if (ok) {   // spawn a new deblocking/output job
269      ctx->io_ = *io;
270      ctx->id_ = dec->cache_id_;
271      ctx->mb_y_ = dec->mb_y_;
272      ctx->filter_row_ = dec->filter_row_;
273      if (ctx->filter_row_) {    // just swap filter info
274        VP8FInfo* const tmp = ctx->f_info_;
275        ctx->f_info_ = dec->f_info_;
276        dec->f_info_ = tmp;
277      }
278      WebPWorkerLaunch(worker);
279      if (++dec->cache_id_ == dec->num_caches_) {
280        dec->cache_id_ = 0;
281      }
282    }
283  }
284  return ok;
285}
286
287//------------------------------------------------------------------------------
288// Finish setting up the decoding parameter once user's setup() is called.
289
290VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) {
291  // Call setup() first. This may trigger additional decoding features on 'io'.
292  // Note: Afterward, we must call teardown() not matter what.
293  if (io->setup && !io->setup(io)) {
294    VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed");
295    return dec->status_;
296  }
297
298  // Disable filtering per user request
299  if (io->bypass_filtering) {
300    dec->filter_type_ = 0;
301  }
302  // TODO(skal): filter type / strength / sharpness forcing
303
304  // Define the area where we can skip in-loop filtering, in case of cropping.
305  //
306  // 'Simple' filter reads two luma samples outside of the macroblock and
307  // and filters one. It doesn't filter the chroma samples. Hence, we can
308  // avoid doing the in-loop filtering before crop_top/crop_left position.
309  // For the 'Complex' filter, 3 samples are read and up to 3 are filtered.
310  // Means: there's a dependency chain that goes all the way up to the
311  // top-left corner of the picture (MB #0). We must filter all the previous
312  // macroblocks.
313  // TODO(skal): add an 'approximate_decoding' option, that won't produce
314  // a 1:1 bit-exactness for complex filtering?
315  {
316    const int extra_pixels = kFilterExtraRows[dec->filter_type_];
317    if (dec->filter_type_ == 2) {
318      // For complex filter, we need to preserve the dependency chain.
319      dec->tl_mb_x_ = 0;
320      dec->tl_mb_y_ = 0;
321    } else {
322      // For simple filter, we can filter only the cropped region.
323      // We include 'extra_pixels' on the other side of the boundary, since
324      // vertical or horizontal filtering of the previous macroblock can
325      // modify some abutting pixels.
326      dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4;
327      dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4;
328      if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0;
329      if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0;
330    }
331    // We need some 'extra' pixels on the right/bottom.
332    dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4;
333    dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4;
334    if (dec->br_mb_x_ > dec->mb_w_) {
335      dec->br_mb_x_ = dec->mb_w_;
336    }
337    if (dec->br_mb_y_ > dec->mb_h_) {
338      dec->br_mb_y_ = dec->mb_h_;
339    }
340  }
341  PrecomputeFilterStrengths(dec);
342  return VP8_STATUS_OK;
343}
344
345int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) {
346  int ok = 1;
347  if (dec->use_threads_) {
348    ok = WebPWorkerSync(&dec->worker_);
349  }
350
351  if (io->teardown) {
352    io->teardown(io);
353  }
354  return ok;
355}
356
357//------------------------------------------------------------------------------
358// For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line.
359//
360// Reason is: the deblocking filter cannot deblock the bottom horizontal edges
361// immediately, and needs to wait for first few rows of the next macroblock to
362// be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending
363// on strength).
364// With two threads, the vertical positions of the rows being decoded are:
365// Decode:  [ 0..15][16..31][32..47][48..63][64..79][...
366// Deblock:         [ 0..11][12..27][28..43][44..59][...
367// If we use two threads and two caches of 16 pixels, the sequence would be:
368// Decode:  [ 0..15][16..31][ 0..15!!][16..31][ 0..15][...
369// Deblock:         [ 0..11][12..27!!][-4..11][12..27][...
370// The problem occurs during row [12..15!!] that both the decoding and
371// deblocking threads are writing simultaneously.
372// With 3 cache lines, one get a safe write pattern:
373// Decode:  [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0..
374// Deblock:         [ 0..11][12..27][28..43][-4..11][12..27][28...
375// Note that multi-threaded output _without_ deblocking can make use of two
376// cache lines of 16 pixels only, since there's no lagging behind. The decoding
377// and output process have non-concurrent writing:
378// Decode:  [ 0..15][16..31][ 0..15][16..31][...
379// io->put:         [ 0..15][16..31][ 0..15][...
380
381#define MT_CACHE_LINES 3
382#define ST_CACHE_LINES 1   // 1 cache row only for single-threaded case
383
384// Initialize multi/single-thread worker
385static int InitThreadContext(VP8Decoder* const dec) {
386  dec->cache_id_ = 0;
387  if (dec->use_threads_) {
388    WebPWorker* const worker = &dec->worker_;
389    if (!WebPWorkerReset(worker)) {
390      return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
391                         "thread initialization failed.");
392    }
393    worker->data1 = dec;
394    worker->data2 = (void*)&dec->thread_ctx_.io_;
395    worker->hook = (WebPWorkerHook)FinishRow;
396    dec->num_caches_ =
397      (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1;
398  } else {
399    dec->num_caches_ = ST_CACHE_LINES;
400  }
401  return 1;
402}
403
404#undef MT_CACHE_LINES
405#undef ST_CACHE_LINES
406
407//------------------------------------------------------------------------------
408// Memory setup
409
410static int AllocateMemory(VP8Decoder* const dec) {
411  const int num_caches = dec->num_caches_;
412  const int mb_w = dec->mb_w_;
413  // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise.
414  const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t);
415  const size_t top_size = (16 + 8 + 8) * mb_w;
416  const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB);
417  const size_t f_info_size =
418      (dec->filter_type_ > 0) ?
419          mb_w * (dec->use_threads_ ? 2 : 1) * sizeof(VP8FInfo)
420        : 0;
421  const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_);
422  const size_t coeffs_size = 384 * sizeof(*dec->coeffs_);
423  const size_t cache_height = (16 * num_caches
424                            + kFilterExtraRows[dec->filter_type_]) * 3 / 2;
425  const size_t cache_size = top_size * cache_height;
426  // alpha_size is the only one that scales as width x height.
427  const uint64_t alpha_size = (dec->alpha_data_ != NULL) ?
428      (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL;
429  const uint64_t needed = (uint64_t)intra_pred_mode_size
430                        + top_size + mb_info_size + f_info_size
431                        + yuv_size + coeffs_size
432                        + cache_size + alpha_size + ALIGN_MASK;
433  uint8_t* mem;
434
435  if (needed != (size_t)needed) return 0;  // check for overflow
436  if (needed > dec->mem_size_) {
437    free(dec->mem_);
438    dec->mem_size_ = 0;
439    dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t));
440    if (dec->mem_ == NULL) {
441      return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
442                         "no memory during frame initialization.");
443    }
444    // down-cast is ok, thanks to WebPSafeAlloc() above.
445    dec->mem_size_ = (size_t)needed;
446  }
447
448  mem = (uint8_t*)dec->mem_;
449  dec->intra_t_ = (uint8_t*)mem;
450  mem += intra_pred_mode_size;
451
452  dec->y_t_ = (uint8_t*)mem;
453  mem += 16 * mb_w;
454  dec->u_t_ = (uint8_t*)mem;
455  mem += 8 * mb_w;
456  dec->v_t_ = (uint8_t*)mem;
457  mem += 8 * mb_w;
458
459  dec->mb_info_ = ((VP8MB*)mem) + 1;
460  mem += mb_info_size;
461
462  dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL;
463  mem += f_info_size;
464  dec->thread_ctx_.id_ = 0;
465  dec->thread_ctx_.f_info_ = dec->f_info_;
466  if (dec->use_threads_) {
467    // secondary cache line. The deblocking process need to make use of the
468    // filtering strength from previous macroblock row, while the new ones
469    // are being decoded in parallel. We'll just swap the pointers.
470    dec->thread_ctx_.f_info_ += mb_w;
471  }
472
473  mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK);
474  assert((yuv_size & ALIGN_MASK) == 0);
475  dec->yuv_b_ = (uint8_t*)mem;
476  mem += yuv_size;
477
478  dec->coeffs_ = (int16_t*)mem;
479  mem += coeffs_size;
480
481  dec->cache_y_stride_ = 16 * mb_w;
482  dec->cache_uv_stride_ = 8 * mb_w;
483  {
484    const int extra_rows = kFilterExtraRows[dec->filter_type_];
485    const int extra_y = extra_rows * dec->cache_y_stride_;
486    const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_;
487    dec->cache_y_ = ((uint8_t*)mem) + extra_y;
488    dec->cache_u_ = dec->cache_y_
489                  + 16 * num_caches * dec->cache_y_stride_ + extra_uv;
490    dec->cache_v_ = dec->cache_u_
491                  + 8 * num_caches * dec->cache_uv_stride_ + extra_uv;
492    dec->cache_id_ = 0;
493  }
494  mem += cache_size;
495
496  // alpha plane
497  dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL;
498  mem += alpha_size;
499  assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_);
500
501  // note: left-info is initialized once for all.
502  memset(dec->mb_info_ - 1, 0, mb_info_size);
503
504  // initialize top
505  memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);
506
507  return 1;
508}
509
510static void InitIo(VP8Decoder* const dec, VP8Io* io) {
511  // prepare 'io'
512  io->mb_y = 0;
513  io->y = dec->cache_y_;
514  io->u = dec->cache_u_;
515  io->v = dec->cache_v_;
516  io->y_stride = dec->cache_y_stride_;
517  io->uv_stride = dec->cache_uv_stride_;
518  io->a = NULL;
519}
520
521int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) {
522  if (!InitThreadContext(dec)) return 0;  // call first. Sets dec->num_caches_.
523  if (!AllocateMemory(dec)) return 0;
524  InitIo(dec, io);
525  VP8DspInit();  // Init critical function pointers and look-up tables.
526  return 1;
527}
528
529//------------------------------------------------------------------------------
530// Main reconstruction function.
531
532static const int kScan[16] = {
533  0 +  0 * BPS,  4 +  0 * BPS, 8 +  0 * BPS, 12 +  0 * BPS,
534  0 +  4 * BPS,  4 +  4 * BPS, 8 +  4 * BPS, 12 +  4 * BPS,
535  0 +  8 * BPS,  4 +  8 * BPS, 8 +  8 * BPS, 12 +  8 * BPS,
536  0 + 12 * BPS,  4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS
537};
538
539static WEBP_INLINE int CheckMode(VP8Decoder* const dec, int mode) {
540  if (mode == B_DC_PRED) {
541    if (dec->mb_x_ == 0) {
542      return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
543    } else {
544      return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
545    }
546  }
547  return mode;
548}
549
550static WEBP_INLINE void Copy32b(uint8_t* dst, uint8_t* src) {
551  *(uint32_t*)dst = *(uint32_t*)src;
552}
553
554void VP8ReconstructBlock(VP8Decoder* const dec) {
555  int j;
556  uint8_t* const y_dst = dec->yuv_b_ + Y_OFF;
557  uint8_t* const u_dst = dec->yuv_b_ + U_OFF;
558  uint8_t* const v_dst = dec->yuv_b_ + V_OFF;
559
560  // Rotate in the left samples from previously decoded block. We move four
561  // pixels at a time for alignment reason, and because of in-loop filter.
562  if (dec->mb_x_ > 0) {
563    for (j = -1; j < 16; ++j) {
564      Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
565    }
566    for (j = -1; j < 8; ++j) {
567      Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
568      Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
569    }
570  } else {
571    for (j = 0; j < 16; ++j) {
572      y_dst[j * BPS - 1] = 129;
573    }
574    for (j = 0; j < 8; ++j) {
575      u_dst[j * BPS - 1] = 129;
576      v_dst[j * BPS - 1] = 129;
577    }
578    // Init top-left sample on left column too
579    if (dec->mb_y_ > 0) {
580      y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
581    }
582  }
583  {
584    // bring top samples into the cache
585    uint8_t* const top_y = dec->y_t_ + dec->mb_x_ * 16;
586    uint8_t* const top_u = dec->u_t_ + dec->mb_x_ * 8;
587    uint8_t* const top_v = dec->v_t_ + dec->mb_x_ * 8;
588    const int16_t* coeffs = dec->coeffs_;
589    int n;
590
591    if (dec->mb_y_ > 0) {
592      memcpy(y_dst - BPS, top_y, 16);
593      memcpy(u_dst - BPS, top_u, 8);
594      memcpy(v_dst - BPS, top_v, 8);
595    } else if (dec->mb_x_ == 0) {
596      // we only need to do this init once at block (0,0).
597      // Afterward, it remains valid for the whole topmost row.
598      memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
599      memset(u_dst - BPS - 1, 127, 8 + 1);
600      memset(v_dst - BPS - 1, 127, 8 + 1);
601    }
602
603    // predict and add residuals
604
605    if (dec->is_i4x4_) {   // 4x4
606      uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);
607
608      if (dec->mb_y_ > 0) {
609        if (dec->mb_x_ >= dec->mb_w_ - 1) {    // on rightmost border
610          top_right[0] = top_y[15] * 0x01010101u;
611        } else {
612          memcpy(top_right, top_y + 16, sizeof(*top_right));
613        }
614      }
615      // replicate the top-right pixels below
616      top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];
617
618      // predict and add residues for all 4x4 blocks in turn.
619      for (n = 0; n < 16; n++) {
620        uint8_t* const dst = y_dst + kScan[n];
621        VP8PredLuma4[dec->imodes_[n]](dst);
622        if (dec->non_zero_ac_ & (1 << n)) {
623          VP8Transform(coeffs + n * 16, dst, 0);
624        } else if (dec->non_zero_ & (1 << n)) {  // only DC is present
625          VP8TransformDC(coeffs + n * 16, dst);
626        }
627      }
628    } else {    // 16x16
629      const int pred_func = CheckMode(dec, dec->imodes_[0]);
630      VP8PredLuma16[pred_func](y_dst);
631      if (dec->non_zero_) {
632        for (n = 0; n < 16; n++) {
633          uint8_t* const dst = y_dst + kScan[n];
634          if (dec->non_zero_ac_ & (1 << n)) {
635            VP8Transform(coeffs + n * 16, dst, 0);
636          } else if (dec->non_zero_ & (1 << n)) {  // only DC is present
637            VP8TransformDC(coeffs + n * 16, dst);
638          }
639        }
640      }
641    }
642    {
643      // Chroma
644      const int pred_func = CheckMode(dec, dec->uvmode_);
645      VP8PredChroma8[pred_func](u_dst);
646      VP8PredChroma8[pred_func](v_dst);
647
648      if (dec->non_zero_ & 0x0f0000) {   // chroma-U
649        const int16_t* const u_coeffs = dec->coeffs_ + 16 * 16;
650        if (dec->non_zero_ac_ & 0x0f0000) {
651          VP8TransformUV(u_coeffs, u_dst);
652        } else {
653          VP8TransformDCUV(u_coeffs, u_dst);
654        }
655      }
656      if (dec->non_zero_ & 0xf00000) {   // chroma-V
657        const int16_t* const v_coeffs = dec->coeffs_ + 20 * 16;
658        if (dec->non_zero_ac_ & 0xf00000) {
659          VP8TransformUV(v_coeffs, v_dst);
660        } else {
661          VP8TransformDCUV(v_coeffs, v_dst);
662        }
663      }
664
665      // stash away top samples for next block
666      if (dec->mb_y_ < dec->mb_h_ - 1) {
667        memcpy(top_y, y_dst + 15 * BPS, 16);
668        memcpy(top_u, u_dst +  7 * BPS,  8);
669        memcpy(top_v, v_dst +  7 * BPS,  8);
670      }
671    }
672  }
673  // Transfer reconstructed samples from yuv_b_ cache to final destination.
674  {
675    const int y_offset = dec->cache_id_ * 16 * dec->cache_y_stride_;
676    const int uv_offset = dec->cache_id_ * 8 * dec->cache_uv_stride_;
677    uint8_t* const y_out = dec->cache_y_ + dec->mb_x_ * 16 + y_offset;
678    uint8_t* const u_out = dec->cache_u_ + dec->mb_x_ * 8 + uv_offset;
679    uint8_t* const v_out = dec->cache_v_ + dec->mb_x_ * 8 + uv_offset;
680    for (j = 0; j < 16; ++j) {
681      memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16);
682    }
683    for (j = 0; j < 8; ++j) {
684      memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8);
685      memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8);
686    }
687  }
688}
689
690//------------------------------------------------------------------------------
691
692#if defined(__cplusplus) || defined(c_plusplus)
693}    // extern "C"
694#endif
695