CGValue.h revision db45806b991013280a03057025c9538de64d5dfb
1//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes implement wrappers around llvm::Value in order to
11// fully represent the range of values for C L- and R- values.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef CLANG_CODEGEN_CGVALUE_H
16#define CLANG_CODEGEN_CGVALUE_H
17
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Type.h"
20
21namespace llvm {
22  class Constant;
23  class Value;
24}
25
26namespace clang {
27namespace CodeGen {
28  class AggValueSlot;
29  class CGBitFieldInfo;
30
31/// RValue - This trivial value class is used to represent the result of an
32/// expression that is evaluated.  It can be one of three things: either a
33/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
34/// address of an aggregate value in memory.
35class RValue {
36  enum Flavor { Scalar, Complex, Aggregate };
37
38  // Stores first value and flavor.
39  llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
40  // Stores second value and volatility.
41  llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
42
43public:
44  bool isScalar() const { return V1.getInt() == Scalar; }
45  bool isComplex() const { return V1.getInt() == Complex; }
46  bool isAggregate() const { return V1.getInt() == Aggregate; }
47
48  bool isVolatileQualified() const { return V2.getInt(); }
49
50  /// getScalarVal() - Return the Value* of this scalar value.
51  llvm::Value *getScalarVal() const {
52    assert(isScalar() && "Not a scalar!");
53    return V1.getPointer();
54  }
55
56  /// getComplexVal - Return the real/imag components of this complex value.
57  ///
58  std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
59    return std::make_pair(V1.getPointer(), V2.getPointer());
60  }
61
62  /// getAggregateAddr() - Return the Value* of the address of the aggregate.
63  llvm::Value *getAggregateAddr() const {
64    assert(isAggregate() && "Not an aggregate!");
65    return V1.getPointer();
66  }
67
68  static RValue get(llvm::Value *V) {
69    RValue ER;
70    ER.V1.setPointer(V);
71    ER.V1.setInt(Scalar);
72    ER.V2.setInt(false);
73    return ER;
74  }
75  static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
76    RValue ER;
77    ER.V1.setPointer(V1);
78    ER.V2.setPointer(V2);
79    ER.V1.setInt(Complex);
80    ER.V2.setInt(false);
81    return ER;
82  }
83  static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
84    return getComplex(C.first, C.second);
85  }
86  // FIXME: Aggregate rvalues need to retain information about whether they are
87  // volatile or not.  Remove default to find all places that probably get this
88  // wrong.
89  static RValue getAggregate(llvm::Value *V, bool Volatile = false) {
90    RValue ER;
91    ER.V1.setPointer(V);
92    ER.V1.setInt(Aggregate);
93    ER.V2.setInt(Volatile);
94    return ER;
95  }
96};
97
98
99/// LValue - This represents an lvalue references.  Because C/C++ allow
100/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
101/// bitrange.
102class LValue {
103  enum {
104    Simple,       // This is a normal l-value, use getAddress().
105    VectorElt,    // This is a vector element l-value (V[i]), use getVector*
106    BitField,     // This is a bitfield l-value, use getBitfield*.
107    ExtVectorElt  // This is an extended vector subset, use getExtVectorComp
108  } LVType;
109
110  llvm::Value *V;
111
112  union {
113    // Index into a vector subscript: V[i]
114    llvm::Value *VectorIdx;
115
116    // ExtVector element subset: V.xyx
117    llvm::Constant *VectorElts;
118
119    // BitField start bit and size
120    const CGBitFieldInfo *BitFieldInfo;
121  };
122
123  QualType Type;
124
125  // 'const' is unused here
126  Qualifiers Quals;
127
128  /// The alignment to use when accessing this lvalue.
129  unsigned short Alignment;
130
131  // objective-c's ivar
132  bool Ivar:1;
133
134  // objective-c's ivar is an array
135  bool ObjIsArray:1;
136
137  // LValue is non-gc'able for any reason, including being a parameter or local
138  // variable.
139  bool NonGC: 1;
140
141  // Lvalue is a global reference of an objective-c object
142  bool GlobalObjCRef : 1;
143
144  // Lvalue is a thread local reference
145  bool ThreadLocalRef : 1;
146
147  Expr *BaseIvarExp;
148
149  /// TBAAInfo - TBAA information to attach to dereferences of this LValue.
150  llvm::MDNode *TBAAInfo;
151
152private:
153  void Initialize(QualType Type, Qualifiers Quals, unsigned Alignment = 0,
154                  llvm::MDNode *TBAAInfo = 0) {
155    this->Type = Type;
156    this->Quals = Quals;
157    this->Alignment = Alignment;
158    assert(this->Alignment == Alignment && "Alignment exceeds allowed max!");
159
160    // Initialize Objective-C flags.
161    this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
162    this->ThreadLocalRef = false;
163    this->BaseIvarExp = 0;
164    this->TBAAInfo = TBAAInfo;
165  }
166
167public:
168  bool isSimple() const { return LVType == Simple; }
169  bool isVectorElt() const { return LVType == VectorElt; }
170  bool isBitField() const { return LVType == BitField; }
171  bool isExtVectorElt() const { return LVType == ExtVectorElt; }
172
173  bool isVolatileQualified() const { return Quals.hasVolatile(); }
174  bool isRestrictQualified() const { return Quals.hasRestrict(); }
175  unsigned getVRQualifiers() const {
176    return Quals.getCVRQualifiers() & ~Qualifiers::Const;
177  }
178
179  QualType getType() const { return Type; }
180
181  Qualifiers::ObjCLifetime getObjCLifetime() const {
182    return Quals.getObjCLifetime();
183  }
184
185  bool isObjCIvar() const { return Ivar; }
186  void setObjCIvar(bool Value) { Ivar = Value; }
187
188  bool isObjCArray() const { return ObjIsArray; }
189  void setObjCArray(bool Value) { ObjIsArray = Value; }
190
191  bool isNonGC () const { return NonGC; }
192  void setNonGC(bool Value) { NonGC = Value; }
193
194  bool isGlobalObjCRef() const { return GlobalObjCRef; }
195  void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }
196
197  bool isThreadLocalRef() const { return ThreadLocalRef; }
198  void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}
199
200  bool isObjCWeak() const {
201    return Quals.getObjCGCAttr() == Qualifiers::Weak;
202  }
203  bool isObjCStrong() const {
204    return Quals.getObjCGCAttr() == Qualifiers::Strong;
205  }
206
207  bool isVolatile() const {
208    return Quals.hasVolatile();
209  }
210
211  Expr *getBaseIvarExp() const { return BaseIvarExp; }
212  void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }
213
214  llvm::MDNode *getTBAAInfo() const { return TBAAInfo; }
215  void setTBAAInfo(llvm::MDNode *N) { TBAAInfo = N; }
216
217  const Qualifiers &getQuals() const { return Quals; }
218  Qualifiers &getQuals() { return Quals; }
219
220  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
221
222  unsigned getAlignment() const { return Alignment; }
223
224  // simple lvalue
225  llvm::Value *getAddress() const { assert(isSimple()); return V; }
226  void setAddress(llvm::Value *address) {
227    assert(isSimple());
228    V = address;
229  }
230
231  // vector elt lvalue
232  llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; }
233  llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
234
235  // extended vector elements.
236  llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; }
237  llvm::Constant *getExtVectorElts() const {
238    assert(isExtVectorElt());
239    return VectorElts;
240  }
241
242  // bitfield lvalue
243  llvm::Value *getBitFieldBaseAddr() const {
244    assert(isBitField());
245    return V;
246  }
247  const CGBitFieldInfo &getBitFieldInfo() const {
248    assert(isBitField());
249    return *BitFieldInfo;
250  }
251
252  static LValue MakeAddr(llvm::Value *address, QualType type,
253                         unsigned alignment, ASTContext &Context,
254                         llvm::MDNode *TBAAInfo = 0) {
255    Qualifiers qs = type.getQualifiers();
256    qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));
257
258    LValue R;
259    R.LVType = Simple;
260    R.V = address;
261    R.Initialize(type, qs, alignment, TBAAInfo);
262    return R;
263  }
264
265  static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx,
266                              QualType type) {
267    LValue R;
268    R.LVType = VectorElt;
269    R.V = Vec;
270    R.VectorIdx = Idx;
271    R.Initialize(type, type.getQualifiers());
272    return R;
273  }
274
275  static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts,
276                                 QualType type) {
277    LValue R;
278    R.LVType = ExtVectorElt;
279    R.V = Vec;
280    R.VectorElts = Elts;
281    R.Initialize(type, type.getQualifiers());
282    return R;
283  }
284
285  /// \brief Create a new object to represent a bit-field access.
286  ///
287  /// \param BaseValue - The base address of the structure containing the
288  /// bit-field.
289  /// \param Info - The information describing how to perform the bit-field
290  /// access.
291  static LValue MakeBitfield(llvm::Value *BaseValue,
292                             const CGBitFieldInfo &Info,
293                             QualType type) {
294    LValue R;
295    R.LVType = BitField;
296    R.V = BaseValue;
297    R.BitFieldInfo = &Info;
298    R.Initialize(type, type.getQualifiers());
299    return R;
300  }
301};
302
303/// An aggregate value slot.
304class AggValueSlot {
305  /// The address.
306  llvm::Value *Addr;
307
308  // Qualifiers
309  Qualifiers Quals;
310
311  /// DestructedFlag - This is set to true if some external code is
312  /// responsible for setting up a destructor for the slot.  Otherwise
313  /// the code which constructs it should push the appropriate cleanup.
314  bool DestructedFlag : 1;
315
316  /// ObjCGCFlag - This is set to true if writing to the memory in the
317  /// slot might require calling an appropriate Objective-C GC
318  /// barrier.  The exact interaction here is unnecessarily mysterious.
319  bool ObjCGCFlag : 1;
320
321  /// ZeroedFlag - This is set to true if the memory in the slot is
322  /// known to be zero before the assignment into it.  This means that
323  /// zero fields don't need to be set.
324  bool ZeroedFlag : 1;
325
326  /// AliasedFlag - This is set to true if the slot might be aliased
327  /// and it's not undefined behavior to access it through such an
328  /// alias.  Note that it's always undefined behavior to access a C++
329  /// object that's under construction through an alias derived from
330  /// outside the construction process.
331  ///
332  /// This flag controls whether calls that produce the aggregate
333  /// value may be evaluated directly into the slot, or whether they
334  /// must be evaluated into an unaliased temporary and then memcpy'ed
335  /// over.  Since it's invalid in general to memcpy a non-POD C++
336  /// object, it's important that this flag never be set when
337  /// evaluating an expression which constructs such an object.
338  bool AliasedFlag : 1;
339
340public:
341  enum IsAliased_t { IsNotAliased, IsAliased };
342  enum IsDestructed_t { IsNotDestructed, IsDestructed };
343  enum IsZeroed_t { IsNotZeroed, IsZeroed };
344  enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
345
346  /// ignored - Returns an aggregate value slot indicating that the
347  /// aggregate value is being ignored.
348  static AggValueSlot ignored() {
349    AggValueSlot AV;
350    AV.Addr = 0;
351    AV.Quals = Qualifiers();
352    AV.DestructedFlag = AV.ObjCGCFlag = AV.ZeroedFlag = AV.AliasedFlag = false;
353    return AV;
354  }
355
356  /// forAddr - Make a slot for an aggregate value.
357  ///
358  /// \param quals - The qualifiers that dictate how the slot should
359  /// be initialied. Only 'volatile' and the Objective-C lifetime
360  /// qualifiers matter.
361  ///
362  /// \param isDestructed - true if something else is responsible
363  ///   for calling destructors on this object
364  /// \param needsGC - true if the slot is potentially located
365  ///   somewhere that ObjC GC calls should be emitted for
366  static AggValueSlot forAddr(llvm::Value *addr, Qualifiers quals,
367                              IsDestructed_t isDestructed,
368                              NeedsGCBarriers_t needsGC,
369                              IsAliased_t isAliased,
370                              IsZeroed_t isZeroed = IsNotZeroed) {
371    AggValueSlot AV;
372    AV.Addr = addr;
373    AV.Quals = quals;
374    AV.DestructedFlag = isDestructed;
375    AV.ObjCGCFlag = needsGC;
376    AV.ZeroedFlag = isZeroed;
377    AV.AliasedFlag = isAliased;
378    return AV;
379  }
380
381  static AggValueSlot forLValue(LValue LV, IsDestructed_t isDestructed,
382                                NeedsGCBarriers_t needsGC,
383                                IsAliased_t isAliased,
384                                IsZeroed_t isZeroed = IsNotZeroed) {
385    return forAddr(LV.getAddress(), LV.getQuals(),
386                   isDestructed, needsGC, isAliased, isZeroed);
387  }
388
389  IsDestructed_t isExternallyDestructed() const {
390    return IsDestructed_t(DestructedFlag);
391  }
392  void setExternallyDestructed(bool destructed = true) {
393    DestructedFlag = destructed;
394  }
395
396  Qualifiers getQualifiers() const { return Quals; }
397
398  bool isVolatile() const {
399    return Quals.hasVolatile();
400  }
401
402  Qualifiers::ObjCLifetime getObjCLifetime() const {
403    return Quals.getObjCLifetime();
404  }
405
406  NeedsGCBarriers_t requiresGCollection() const {
407    return NeedsGCBarriers_t(ObjCGCFlag);
408  }
409
410  llvm::Value *getAddr() const {
411    return Addr;
412  }
413
414  bool isIgnored() const {
415    return Addr == 0;
416  }
417
418  IsAliased_t isPotentiallyAliased() const {
419    return IsAliased_t(AliasedFlag);
420  }
421
422  RValue asRValue() const {
423    return RValue::getAggregate(getAddr(), isVolatile());
424  }
425
426  void setZeroed(bool V = true) { ZeroedFlag = V; }
427  IsZeroed_t isZeroed() const {
428    return IsZeroed_t(ZeroedFlag);
429  }
430};
431
432}  // end namespace CodeGen
433}  // end namespace clang
434
435#endif
436