1/* LibTomCrypt, modular cryptographic library -- Tom St Denis
2 *
3 * LibTomCrypt is a library that provides various cryptographic
4 * algorithms in a highly modular and flexible manner.
5 *
6 * The library is free for all purposes without any express
7 * guarantee it works.
8 *
9 * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
10 */
11
12 /**
13   @file twofish.c
14   Implementation of Twofish by Tom St Denis
15 */
16#include "tomcrypt.h"
17
18#ifdef TWOFISH
19
20/* first TWOFISH_ALL_TABLES must ensure TWOFISH_TABLES is defined */
21#ifdef TWOFISH_ALL_TABLES
22#ifndef TWOFISH_TABLES
23#define TWOFISH_TABLES
24#endif
25#endif
26
27const struct ltc_cipher_descriptor twofish_desc =
28{
29    "twofish",
30    7,
31    16, 32, 16, 16,
32    &twofish_setup,
33    &twofish_ecb_encrypt,
34    &twofish_ecb_decrypt,
35    &twofish_test,
36    &twofish_done,
37    &twofish_keysize,
38    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
39};
40
41/* the two polynomials */
42#define MDS_POLY          0x169
43#define RS_POLY           0x14D
44
45/* The 4x4 MDS Linear Transform */
46#if 0
47static const unsigned char MDS[4][4] = {
48    { 0x01, 0xEF, 0x5B, 0x5B },
49    { 0x5B, 0xEF, 0xEF, 0x01 },
50    { 0xEF, 0x5B, 0x01, 0xEF },
51    { 0xEF, 0x01, 0xEF, 0x5B }
52};
53#endif
54
55/* The 4x8 RS Linear Transform */
56static const unsigned char RS[4][8] = {
57    { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E },
58    { 0xA4, 0x56, 0x82, 0xF3, 0X1E, 0XC6, 0X68, 0XE5 },
59    { 0X02, 0XA1, 0XFC, 0XC1, 0X47, 0XAE, 0X3D, 0X19 },
60    { 0XA4, 0X55, 0X87, 0X5A, 0X58, 0XDB, 0X9E, 0X03 }
61};
62
63/* sbox usage orderings */
64static const unsigned char qord[4][5] = {
65   { 1, 1, 0, 0, 1 },
66   { 0, 1, 1, 0, 0 },
67   { 0, 0, 0, 1, 1 },
68   { 1, 0, 1, 1, 0 }
69};
70
71#ifdef TWOFISH_TABLES
72
73#include "twofish_tab.c"
74
75#define sbox(i, x) ((ulong32)SBOX[i][(x)&255])
76
77#else
78
79/* The Q-box tables */
80static const unsigned char qbox[2][4][16] = {
81{
82   { 0x8, 0x1, 0x7, 0xD, 0x6, 0xF, 0x3, 0x2, 0x0, 0xB, 0x5, 0x9, 0xE, 0xC, 0xA, 0x4 },
83   { 0xE, 0XC, 0XB, 0X8, 0X1, 0X2, 0X3, 0X5, 0XF, 0X4, 0XA, 0X6, 0X7, 0X0, 0X9, 0XD },
84   { 0XB, 0XA, 0X5, 0XE, 0X6, 0XD, 0X9, 0X0, 0XC, 0X8, 0XF, 0X3, 0X2, 0X4, 0X7, 0X1 },
85   { 0XD, 0X7, 0XF, 0X4, 0X1, 0X2, 0X6, 0XE, 0X9, 0XB, 0X3, 0X0, 0X8, 0X5, 0XC, 0XA }
86},
87{
88   { 0X2, 0X8, 0XB, 0XD, 0XF, 0X7, 0X6, 0XE, 0X3, 0X1, 0X9, 0X4, 0X0, 0XA, 0XC, 0X5 },
89   { 0X1, 0XE, 0X2, 0XB, 0X4, 0XC, 0X3, 0X7, 0X6, 0XD, 0XA, 0X5, 0XF, 0X9, 0X0, 0X8 },
90   { 0X4, 0XC, 0X7, 0X5, 0X1, 0X6, 0X9, 0XA, 0X0, 0XE, 0XD, 0X8, 0X2, 0XB, 0X3, 0XF },
91   { 0xB, 0X9, 0X5, 0X1, 0XC, 0X3, 0XD, 0XE, 0X6, 0X4, 0X7, 0XF, 0X2, 0X0, 0X8, 0XA }
92}
93};
94
95/* computes S_i[x] */
96#ifdef LTC_CLEAN_STACK
97static ulong32 _sbox(int i, ulong32 x)
98#else
99static ulong32 sbox(int i, ulong32 x)
100#endif
101{
102   unsigned char a0,b0,a1,b1,a2,b2,a3,b3,a4,b4,y;
103
104   /* a0,b0 = [x/16], x mod 16 */
105   a0 = (unsigned char)((x>>4)&15);
106   b0 = (unsigned char)((x)&15);
107
108   /* a1 = a0 ^ b0 */
109   a1 = a0 ^ b0;
110
111   /* b1 = a0 ^ ROR(b0, 1) ^ 8a0 */
112   b1 = (a0 ^ ((b0<<3)|(b0>>1)) ^ (a0<<3)) & 15;
113
114   /* a2,b2 = t0[a1], t1[b1] */
115   a2 = qbox[i][0][(int)a1];
116   b2 = qbox[i][1][(int)b1];
117
118   /* a3 = a2 ^ b2 */
119   a3 = a2 ^ b2;
120
121   /* b3 = a2 ^ ROR(b2, 1) ^ 8a2 */
122   b3 = (a2 ^ ((b2<<3)|(b2>>1)) ^ (a2<<3)) & 15;
123
124   /* a4,b4 = t2[a3], t3[b3] */
125   a4 = qbox[i][2][(int)a3];
126   b4 = qbox[i][3][(int)b3];
127
128   /* y = 16b4 + a4 */
129   y = (b4 << 4) + a4;
130
131   /* return result */
132   return (ulong32)y;
133}
134
135#ifdef LTC_CLEAN_STACK
136static ulong32 sbox(int i, ulong32 x)
137{
138   ulong32 y;
139   y = _sbox(i, x);
140   burn_stack(sizeof(unsigned char) * 11);
141   return y;
142}
143#endif /* LTC_CLEAN_STACK */
144
145#endif /* TWOFISH_TABLES */
146
147/* computes ab mod p */
148static ulong32 gf_mult(ulong32 a, ulong32 b, ulong32 p)
149{
150   ulong32 result, B[2], P[2];
151
152   P[1] = p;
153   B[1] = b;
154   result = P[0] = B[0] = 0;
155
156   /* unrolled branchless GF multiplier */
157   result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
158   result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
159   result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
160   result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
161   result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
162   result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
163   result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1);
164   result ^= B[a&1];
165
166   return result;
167}
168
169/* computes [y0 y1 y2 y3] = MDS . [x0] */
170#ifndef TWOFISH_TABLES
171static ulong32 mds_column_mult(unsigned char in, int col)
172{
173   ulong32 x01, x5B, xEF;
174
175   x01 = in;
176   x5B = gf_mult(in, 0x5B, MDS_POLY);
177   xEF = gf_mult(in, 0xEF, MDS_POLY);
178
179   switch (col) {
180       case 0:
181          return (x01 << 0 ) |
182                 (x5B << 8 ) |
183                 (xEF << 16) |
184                 (xEF << 24);
185       case 1:
186          return (xEF << 0 ) |
187                 (xEF << 8 ) |
188                 (x5B << 16) |
189                 (x01 << 24);
190       case 2:
191          return (x5B << 0 ) |
192                 (xEF << 8 ) |
193                 (x01 << 16) |
194                 (xEF << 24);
195       case 3:
196          return (x5B << 0 ) |
197                 (x01 << 8 ) |
198                 (xEF << 16) |
199                 (x5B << 24);
200   }
201   /* avoid warnings, we'd never get here normally but just to calm compiler warnings... */
202   return 0;
203}
204
205#else /* !TWOFISH_TABLES */
206
207#define mds_column_mult(x, i) mds_tab[i][x]
208
209#endif /* TWOFISH_TABLES */
210
211/* Computes [y0 y1 y2 y3] = MDS . [x0 x1 x2 x3] */
212static void mds_mult(const unsigned char *in, unsigned char *out)
213{
214  int x;
215  ulong32 tmp;
216  for (tmp = x = 0; x < 4; x++) {
217      tmp ^= mds_column_mult(in[x], x);
218  }
219  STORE32L(tmp, out);
220}
221
222#ifdef TWOFISH_ALL_TABLES
223/* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */
224static void rs_mult(const unsigned char *in, unsigned char *out)
225{
226   ulong32 tmp;
227   tmp = rs_tab0[in[0]] ^ rs_tab1[in[1]] ^ rs_tab2[in[2]] ^ rs_tab3[in[3]] ^
228         rs_tab4[in[4]] ^ rs_tab5[in[5]] ^ rs_tab6[in[6]] ^ rs_tab7[in[7]];
229   STORE32L(tmp, out);
230}
231
232#else /* !TWOFISH_ALL_TABLES */
233
234/* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */
235static void rs_mult(const unsigned char *in, unsigned char *out)
236{
237  int x, y;
238  for (x = 0; x < 4; x++) {
239      out[x] = 0;
240      for (y = 0; y < 8; y++) {
241          out[x] ^= gf_mult(in[y], RS[x][y], RS_POLY);
242      }
243  }
244}
245
246#endif
247
248/* computes h(x) */
249static void h_func(const unsigned char *in, unsigned char *out, unsigned char *M, int k, int offset)
250{
251  int x;
252  unsigned char y[4];
253  for (x = 0; x < 4; x++) {
254      y[x] = in[x];
255 }
256  switch (k) {
257     case 4:
258            y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (6 + offset) + 0]);
259            y[1] = (unsigned char)(sbox(0, (ulong32)y[1]) ^ M[4 * (6 + offset) + 1]);
260            y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (6 + offset) + 2]);
261            y[3] = (unsigned char)(sbox(1, (ulong32)y[3]) ^ M[4 * (6 + offset) + 3]);
262     case 3:
263            y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (4 + offset) + 0]);
264            y[1] = (unsigned char)(sbox(1, (ulong32)y[1]) ^ M[4 * (4 + offset) + 1]);
265            y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (4 + offset) + 2]);
266            y[3] = (unsigned char)(sbox(0, (ulong32)y[3]) ^ M[4 * (4 + offset) + 3]);
267     case 2:
268            y[0] = (unsigned char)(sbox(1, sbox(0, sbox(0, (ulong32)y[0]) ^ M[4 * (2 + offset) + 0]) ^ M[4 * (0 + offset) + 0]));
269            y[1] = (unsigned char)(sbox(0, sbox(0, sbox(1, (ulong32)y[1]) ^ M[4 * (2 + offset) + 1]) ^ M[4 * (0 + offset) + 1]));
270            y[2] = (unsigned char)(sbox(1, sbox(1, sbox(0, (ulong32)y[2]) ^ M[4 * (2 + offset) + 2]) ^ M[4 * (0 + offset) + 2]));
271            y[3] = (unsigned char)(sbox(0, sbox(1, sbox(1, (ulong32)y[3]) ^ M[4 * (2 + offset) + 3]) ^ M[4 * (0 + offset) + 3]));
272  }
273  mds_mult(y, out);
274}
275
276#ifndef TWOFISH_SMALL
277
278/* for GCC we don't use pointer aliases */
279#if defined(__GNUC__)
280    #define S1 skey->twofish.S[0]
281    #define S2 skey->twofish.S[1]
282    #define S3 skey->twofish.S[2]
283    #define S4 skey->twofish.S[3]
284#endif
285
286/* the G function */
287#define g_func(x, dum)  (S1[byte(x,0)] ^ S2[byte(x,1)] ^ S3[byte(x,2)] ^ S4[byte(x,3)])
288#define g1_func(x, dum) (S2[byte(x,0)] ^ S3[byte(x,1)] ^ S4[byte(x,2)] ^ S1[byte(x,3)])
289
290#else
291
292#ifdef LTC_CLEAN_STACK
293static ulong32 _g_func(ulong32 x, symmetric_key *key)
294#else
295static ulong32 g_func(ulong32 x, symmetric_key *key)
296#endif
297{
298   unsigned char g, i, y, z;
299   ulong32 res;
300
301   res = 0;
302   for (y = 0; y < 4; y++) {
303       z = key->twofish.start;
304
305       /* do unkeyed substitution */
306       g = sbox(qord[y][z++], (x >> (8*y)) & 255);
307
308       /* first subkey */
309       i = 0;
310
311       /* do key mixing+sbox until z==5 */
312       while (z != 5) {
313          g = g ^ key->twofish.S[4*i++ + y];
314          g = sbox(qord[y][z++], g);
315       }
316
317       /* multiply g by a column of the MDS */
318       res ^= mds_column_mult(g, y);
319   }
320   return res;
321}
322
323#define g1_func(x, key) g_func(ROLc(x, 8), key)
324
325#ifdef LTC_CLEAN_STACK
326static ulong32 g_func(ulong32 x, symmetric_key *key)
327{
328    ulong32 y;
329    y = _g_func(x, key);
330    burn_stack(sizeof(unsigned char) * 4 + sizeof(ulong32));
331    return y;
332}
333#endif /* LTC_CLEAN_STACK */
334
335#endif /* TWOFISH_SMALL */
336
337 /**
338    Initialize the Twofish block cipher
339    @param key The symmetric key you wish to pass
340    @param keylen The key length in bytes
341    @param num_rounds The number of rounds desired (0 for default)
342    @param skey The key in as scheduled by this function.
343    @return CRYPT_OK if successful
344 */
345#ifdef LTC_CLEAN_STACK
346static int _twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
347#else
348int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
349#endif
350{
351#ifndef TWOFISH_SMALL
352   unsigned char S[4*4], tmpx0, tmpx1;
353#endif
354   int k, x, y;
355   unsigned char tmp[4], tmp2[4], M[8*4];
356   ulong32 A, B;
357
358   LTC_ARGCHK(key  != NULL);
359   LTC_ARGCHK(skey != NULL);
360
361   /* invalid arguments? */
362   if (num_rounds != 16 && num_rounds != 0) {
363      return CRYPT_INVALID_ROUNDS;
364   }
365
366   if (keylen != 16 && keylen != 24 && keylen != 32) {
367      return CRYPT_INVALID_KEYSIZE;
368   }
369
370   /* k = keysize/64 [but since our keysize is in bytes...] */
371   k = keylen / 8;
372
373   /* copy the key into M */
374   for (x = 0; x < keylen; x++) {
375       M[x] = key[x] & 255;
376   }
377
378   /* create the S[..] words */
379#ifndef TWOFISH_SMALL
380   for (x = 0; x < k; x++) {
381       rs_mult(M+(x*8), S+(x*4));
382   }
383#else
384   for (x = 0; x < k; x++) {
385       rs_mult(M+(x*8), skey->twofish.S+(x*4));
386   }
387#endif
388
389   /* make subkeys */
390   for (x = 0; x < 20; x++) {
391       /* A = h(p * 2x, Me) */
392       for (y = 0; y < 4; y++) {
393           tmp[y] = x+x;
394       }
395       h_func(tmp, tmp2, M, k, 0);
396       LOAD32L(A, tmp2);
397
398       /* B = ROL(h(p * (2x + 1), Mo), 8) */
399       for (y = 0; y < 4; y++) {
400           tmp[y] = (unsigned char)(x+x+1);
401       }
402       h_func(tmp, tmp2, M, k, 1);
403       LOAD32L(B, tmp2);
404       B = ROLc(B, 8);
405
406       /* K[2i]   = A + B */
407       skey->twofish.K[x+x] = (A + B) & 0xFFFFFFFFUL;
408
409       /* K[2i+1] = (A + 2B) <<< 9 */
410       skey->twofish.K[x+x+1] = ROLc(B + B + A, 9);
411   }
412
413#ifndef TWOFISH_SMALL
414   /* make the sboxes (large ram variant) */
415   if (k == 2) {
416        for (x = 0; x < 256; x++) {
417           tmpx0 = (unsigned char)sbox(0, x);
418           tmpx1 = (unsigned char)sbox(1, x);
419           skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, tmpx0 ^ S[0]) ^ S[4])),0);
420           skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, tmpx1 ^ S[1]) ^ S[5])),1);
421           skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, tmpx0 ^ S[2]) ^ S[6])),2);
422           skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, tmpx1 ^ S[3]) ^ S[7])),3);
423        }
424   } else if (k == 3) {
425        for (x = 0; x < 256; x++) {
426           tmpx0 = (unsigned char)sbox(0, x);
427           tmpx1 = (unsigned char)sbox(1, x);
428           skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, tmpx1 ^ S[0]) ^ S[4]) ^ S[8])),0);
429           skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, tmpx1 ^ S[1]) ^ S[5]) ^ S[9])),1);
430           skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10])),2);
431           skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, tmpx0 ^ S[3]) ^ S[7]) ^ S[11])),3);
432        }
433   } else {
434        for (x = 0; x < 256; x++) {
435           tmpx0 = (unsigned char)sbox(0, x);
436           tmpx1 = (unsigned char)sbox(1, x);
437           skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, sbox(1, tmpx1 ^ S[0]) ^ S[4]) ^ S[8]) ^ S[12])),0);
438           skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, sbox(1, tmpx0 ^ S[1]) ^ S[5]) ^ S[9]) ^ S[13])),1);
439           skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10]) ^ S[14])),2);
440           skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, sbox(0, tmpx1 ^ S[3]) ^ S[7]) ^ S[11]) ^ S[15])),3);
441        }
442   }
443#else
444   /* where to start in the sbox layers */
445   /* small ram variant */
446   switch (k) {
447         case 4 : skey->twofish.start = 0; break;
448         case 3 : skey->twofish.start = 1; break;
449         default: skey->twofish.start = 2; break;
450   }
451#endif
452   return CRYPT_OK;
453}
454
455#ifdef LTC_CLEAN_STACK
456int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
457{
458   int x;
459   x = _twofish_setup(key, keylen, num_rounds, skey);
460   burn_stack(sizeof(int) * 7 + sizeof(unsigned char) * 56 + sizeof(ulong32) * 2);
461   return x;
462}
463#endif
464
465/**
466  Encrypts a block of text with Twofish
467  @param pt The input plaintext (16 bytes)
468  @param ct The output ciphertext (16 bytes)
469  @param skey The key as scheduled
470  @return CRYPT_OK if successful
471*/
472#ifdef LTC_CLEAN_STACK
473static int _twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
474#else
475int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
476#endif
477{
478    ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k;
479    int r;
480#if !defined(TWOFISH_SMALL) && !defined(__GNUC__)
481    ulong32 *S1, *S2, *S3, *S4;
482#endif
483
484    LTC_ARGCHK(pt   != NULL);
485    LTC_ARGCHK(ct   != NULL);
486    LTC_ARGCHK(skey != NULL);
487
488#if !defined(TWOFISH_SMALL) && !defined(__GNUC__)
489    S1 = skey->twofish.S[0];
490    S2 = skey->twofish.S[1];
491    S3 = skey->twofish.S[2];
492    S4 = skey->twofish.S[3];
493#endif
494
495    LOAD32L(a,&pt[0]); LOAD32L(b,&pt[4]);
496    LOAD32L(c,&pt[8]); LOAD32L(d,&pt[12]);
497    a ^= skey->twofish.K[0];
498    b ^= skey->twofish.K[1];
499    c ^= skey->twofish.K[2];
500    d ^= skey->twofish.K[3];
501
502    k  = skey->twofish.K + 8;
503    for (r = 8; r != 0; --r) {
504        t2 = g1_func(b, skey);
505        t1 = g_func(a, skey) + t2;
506        c  = RORc(c ^ (t1 + k[0]), 1);
507        d  = ROLc(d, 1) ^ (t2 + t1 + k[1]);
508
509        t2 = g1_func(d, skey);
510        t1 = g_func(c, skey) + t2;
511        a  = RORc(a ^ (t1 + k[2]), 1);
512        b  = ROLc(b, 1) ^ (t2 + t1 + k[3]);
513        k += 4;
514   }
515
516    /* output with "undo last swap" */
517    ta = c ^ skey->twofish.K[4];
518    tb = d ^ skey->twofish.K[5];
519    tc = a ^ skey->twofish.K[6];
520    td = b ^ skey->twofish.K[7];
521
522    /* store output */
523    STORE32L(ta,&ct[0]); STORE32L(tb,&ct[4]);
524    STORE32L(tc,&ct[8]); STORE32L(td,&ct[12]);
525
526    return CRYPT_OK;
527}
528
529#ifdef LTC_CLEAN_STACK
530int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
531{
532   int err = _twofish_ecb_encrypt(pt, ct, skey);
533   burn_stack(sizeof(ulong32) * 10 + sizeof(int));
534   return err;
535}
536#endif
537
538/**
539  Decrypts a block of text with Twofish
540  @param ct The input ciphertext (16 bytes)
541  @param pt The output plaintext (16 bytes)
542  @param skey The key as scheduled
543  @return CRYPT_OK if successful
544*/
545#ifdef LTC_CLEAN_STACK
546static int _twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
547#else
548int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
549#endif
550{
551    ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k;
552    int r;
553#if !defined(TWOFISH_SMALL) && !defined(__GNUC__)
554    ulong32 *S1, *S2, *S3, *S4;
555#endif
556
557    LTC_ARGCHK(pt   != NULL);
558    LTC_ARGCHK(ct   != NULL);
559    LTC_ARGCHK(skey != NULL);
560
561#if !defined(TWOFISH_SMALL) && !defined(__GNUC__)
562    S1 = skey->twofish.S[0];
563    S2 = skey->twofish.S[1];
564    S3 = skey->twofish.S[2];
565    S4 = skey->twofish.S[3];
566#endif
567
568    /* load input */
569    LOAD32L(ta,&ct[0]); LOAD32L(tb,&ct[4]);
570    LOAD32L(tc,&ct[8]); LOAD32L(td,&ct[12]);
571
572    /* undo undo final swap */
573    a = tc ^ skey->twofish.K[6];
574    b = td ^ skey->twofish.K[7];
575    c = ta ^ skey->twofish.K[4];
576    d = tb ^ skey->twofish.K[5];
577
578    k = skey->twofish.K + 36;
579    for (r = 8; r != 0; --r) {
580        t2 = g1_func(d, skey);
581        t1 = g_func(c, skey) + t2;
582        a = ROLc(a, 1) ^ (t1 + k[2]);
583        b = RORc(b ^ (t2 + t1 + k[3]), 1);
584
585        t2 = g1_func(b, skey);
586        t1 = g_func(a, skey) + t2;
587        c = ROLc(c, 1) ^ (t1 + k[0]);
588        d = RORc(d ^ (t2 +  t1 + k[1]), 1);
589        k -= 4;
590    }
591
592    /* pre-white */
593    a ^= skey->twofish.K[0];
594    b ^= skey->twofish.K[1];
595    c ^= skey->twofish.K[2];
596    d ^= skey->twofish.K[3];
597
598    /* store */
599    STORE32L(a, &pt[0]); STORE32L(b, &pt[4]);
600    STORE32L(c, &pt[8]); STORE32L(d, &pt[12]);
601    return CRYPT_OK;
602}
603
604#ifdef LTC_CLEAN_STACK
605int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
606{
607   int err =_twofish_ecb_decrypt(ct, pt, skey);
608   burn_stack(sizeof(ulong32) * 10 + sizeof(int));
609   return err;
610}
611#endif
612
613/**
614  Performs a self-test of the Twofish block cipher
615  @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
616*/
617int twofish_test(void)
618{
619 #ifndef LTC_TEST
620    return CRYPT_NOP;
621 #else
622 static const struct {
623     int keylen;
624     unsigned char key[32], pt[16], ct[16];
625 } tests[] = {
626   { 16,
627     { 0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32,
628       0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A },
629     { 0xD4, 0x91, 0xDB, 0x16, 0xE7, 0xB1, 0xC3, 0x9E,
630       0x86, 0xCB, 0x08, 0x6B, 0x78, 0x9F, 0x54, 0x19 },
631     { 0x01, 0x9F, 0x98, 0x09, 0xDE, 0x17, 0x11, 0x85,
632       0x8F, 0xAA, 0xC3, 0xA3, 0xBA, 0x20, 0xFB, 0xC3 }
633   }, {
634     24,
635     { 0x88, 0xB2, 0xB2, 0x70, 0x6B, 0x10, 0x5E, 0x36,
636       0xB4, 0x46, 0xBB, 0x6D, 0x73, 0x1A, 0x1E, 0x88,
637       0xEF, 0xA7, 0x1F, 0x78, 0x89, 0x65, 0xBD, 0x44 },
638     { 0x39, 0xDA, 0x69, 0xD6, 0xBA, 0x49, 0x97, 0xD5,
639       0x85, 0xB6, 0xDC, 0x07, 0x3C, 0xA3, 0x41, 0xB2 },
640     { 0x18, 0x2B, 0x02, 0xD8, 0x14, 0x97, 0xEA, 0x45,
641       0xF9, 0xDA, 0xAC, 0xDC, 0x29, 0x19, 0x3A, 0x65 }
642   }, {
643     32,
644     { 0xD4, 0x3B, 0xB7, 0x55, 0x6E, 0xA3, 0x2E, 0x46,
645       0xF2, 0xA2, 0x82, 0xB7, 0xD4, 0x5B, 0x4E, 0x0D,
646       0x57, 0xFF, 0x73, 0x9D, 0x4D, 0xC9, 0x2C, 0x1B,
647       0xD7, 0xFC, 0x01, 0x70, 0x0C, 0xC8, 0x21, 0x6F },
648     { 0x90, 0xAF, 0xE9, 0x1B, 0xB2, 0x88, 0x54, 0x4F,
649       0x2C, 0x32, 0xDC, 0x23, 0x9B, 0x26, 0x35, 0xE6 },
650     { 0x6C, 0xB4, 0x56, 0x1C, 0x40, 0xBF, 0x0A, 0x97,
651       0x05, 0x93, 0x1C, 0xB6, 0xD4, 0x08, 0xE7, 0xFA }
652   }
653};
654
655
656 symmetric_key key;
657 unsigned char tmp[2][16];
658 int err, i, y;
659
660 for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
661    if ((err = twofish_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
662       return err;
663    }
664    twofish_ecb_encrypt(tests[i].pt, tmp[0], &key);
665    twofish_ecb_decrypt(tmp[0], tmp[1], &key);
666    if (XMEMCMP(tmp[0], tests[i].ct, 16) != 0 || XMEMCMP(tmp[1], tests[i].pt, 16) != 0) {
667#if 0
668       printf("Twofish failed test %d, %d, %d\n", i, XMEMCMP(tmp[0], tests[i].ct, 16), XMEMCMP(tmp[1], tests[i].pt, 16));
669#endif
670       return CRYPT_FAIL_TESTVECTOR;
671    }
672      /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
673      for (y = 0; y < 16; y++) tmp[0][y] = 0;
674      for (y = 0; y < 1000; y++) twofish_ecb_encrypt(tmp[0], tmp[0], &key);
675      for (y = 0; y < 1000; y++) twofish_ecb_decrypt(tmp[0], tmp[0], &key);
676      for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
677 }
678 return CRYPT_OK;
679#endif
680}
681
682/** Terminate the context
683   @param skey    The scheduled key
684*/
685void twofish_done(symmetric_key *skey)
686{
687}
688
689/**
690  Gets suitable key size
691  @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
692  @return CRYPT_OK if the input key size is acceptable.
693*/
694int twofish_keysize(int *keysize)
695{
696   LTC_ARGCHK(keysize);
697   if (*keysize < 16)
698      return CRYPT_INVALID_KEYSIZE;
699   if (*keysize < 24) {
700      *keysize = 16;
701      return CRYPT_OK;
702   } else if (*keysize < 32) {
703      *keysize = 24;
704      return CRYPT_OK;
705   } else {
706      *keysize = 32;
707      return CRYPT_OK;
708   }
709}
710
711#endif
712
713
714
715
716/* $Source: /cvs/libtom/libtomcrypt/src/ciphers/twofish/twofish.c,v $ */
717/* $Revision: 1.14 $ */
718/* $Date: 2006/12/04 21:34:03 $ */
719