Dominators.h revision 45934330150aecbc98c2d60fe7f17fa69e62ba71
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. DominatorTree: Represent dominators as an explicit tree structure.
12//  2. DominanceFrontier: Calculate and hold the dominance frontier for a
13//     function.
14//
15//  These data structures are listed in increasing order of complexity.  It
16//  takes longer to calculate the dominator frontier, for example, than the
17//  DominatorTree mapping.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_DOMINATORS_H
22#define LLVM_ANALYSIS_DOMINATORS_H
23
24#include "llvm/Pass.h"
25#include "llvm/Function.h"
26#include "llvm/Instructions.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/DepthFirstIterator.h"
29#include "llvm/ADT/GraphTraits.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Support/CFG.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/raw_ostream.h"
36#include <algorithm>
37#include <map>
38#include <set>
39
40namespace llvm {
41
42//===----------------------------------------------------------------------===//
43/// DominatorBase - Base class that other, more interesting dominator analyses
44/// inherit from.
45///
46template <class NodeT>
47class DominatorBase {
48protected:
49  std::vector<NodeT*> Roots;
50  const bool IsPostDominators;
51  inline explicit DominatorBase(bool isPostDom) :
52    Roots(), IsPostDominators(isPostDom) {}
53public:
54
55  /// getRoots - Return the root blocks of the current CFG.  This may include
56  /// multiple blocks if we are computing post dominators.  For forward
57  /// dominators, this will always be a single block (the entry node).
58  ///
59  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
60
61  /// isPostDominator - Returns true if analysis based of postdoms
62  ///
63  bool isPostDominator() const { return IsPostDominators; }
64};
65
66
67//===----------------------------------------------------------------------===//
68// DomTreeNode - Dominator Tree Node
69template<class NodeT> class DominatorTreeBase;
70struct PostDominatorTree;
71class MachineBasicBlock;
72
73template <class NodeT>
74class DomTreeNodeBase {
75  NodeT *TheBB;
76  DomTreeNodeBase<NodeT> *IDom;
77  std::vector<DomTreeNodeBase<NodeT> *> Children;
78  int DFSNumIn, DFSNumOut;
79
80  template<class N> friend class DominatorTreeBase;
81  friend struct PostDominatorTree;
82public:
83  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
84  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
85                   const_iterator;
86
87  iterator begin()             { return Children.begin(); }
88  iterator end()               { return Children.end(); }
89  const_iterator begin() const { return Children.begin(); }
90  const_iterator end()   const { return Children.end(); }
91
92  NodeT *getBlock() const { return TheBB; }
93  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
94  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
95    return Children;
96  }
97
98  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
99    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
100
101  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
102    Children.push_back(C);
103    return C;
104  }
105
106  size_t getNumChildren() const {
107    return Children.size();
108  }
109
110  void clearAllChildren() {
111    Children.clear();
112  }
113
114  bool compare(DomTreeNodeBase<NodeT> *Other) {
115    if (getNumChildren() != Other->getNumChildren())
116      return true;
117
118    SmallPtrSet<NodeT *, 4> OtherChildren;
119    for (iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
120      NodeT *Nd = (*I)->getBlock();
121      OtherChildren.insert(Nd);
122    }
123
124    for (iterator I = begin(), E = end(); I != E; ++I) {
125      NodeT *N = (*I)->getBlock();
126      if (OtherChildren.count(N) == 0)
127        return true;
128    }
129    return false;
130  }
131
132  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
133    assert(IDom && "No immediate dominator?");
134    if (IDom != NewIDom) {
135      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
136                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
137      assert(I != IDom->Children.end() &&
138             "Not in immediate dominator children set!");
139      // I am no longer your child...
140      IDom->Children.erase(I);
141
142      // Switch to new dominator
143      IDom = NewIDom;
144      IDom->Children.push_back(this);
145    }
146  }
147
148  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
149  /// not call them.
150  unsigned getDFSNumIn() const { return DFSNumIn; }
151  unsigned getDFSNumOut() const { return DFSNumOut; }
152private:
153  // Return true if this node is dominated by other. Use this only if DFS info
154  // is valid.
155  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
156    return this->DFSNumIn >= other->DFSNumIn &&
157      this->DFSNumOut <= other->DFSNumOut;
158  }
159};
160
161EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
162EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
163
164template<class NodeT>
165static raw_ostream &operator<<(raw_ostream &o,
166                               const DomTreeNodeBase<NodeT> *Node) {
167  if (Node->getBlock())
168    WriteAsOperand(o, Node->getBlock(), false);
169  else
170    o << " <<exit node>>";
171
172  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
173
174  return o << "\n";
175}
176
177template<class NodeT>
178static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
179                         unsigned Lev) {
180  o.indent(2*Lev) << "[" << Lev << "] " << N;
181  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
182       E = N->end(); I != E; ++I)
183    PrintDomTree<NodeT>(*I, o, Lev+1);
184}
185
186typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
187
188//===----------------------------------------------------------------------===//
189/// DominatorTree - Calculate the immediate dominator tree for a function.
190///
191
192template<class FuncT, class N>
193void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
194               FuncT& F);
195
196template<class NodeT>
197class DominatorTreeBase : public DominatorBase<NodeT> {
198protected:
199  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
200  DomTreeNodeMapType DomTreeNodes;
201  DomTreeNodeBase<NodeT> *RootNode;
202
203  bool DFSInfoValid;
204  unsigned int SlowQueries;
205  // Information record used during immediate dominators computation.
206  struct InfoRec {
207    unsigned DFSNum;
208    unsigned Semi;
209    unsigned Size;
210    NodeT *Label, *Child;
211    unsigned Parent, Ancestor;
212
213    std::vector<NodeT*> Bucket;
214
215    InfoRec() : DFSNum(0), Semi(0), Size(0), Label(0), Child(0), Parent(0),
216                Ancestor(0) {}
217  };
218
219  DenseMap<NodeT*, NodeT*> IDoms;
220
221  // Vertex - Map the DFS number to the BasicBlock*
222  std::vector<NodeT*> Vertex;
223
224  // Info - Collection of information used during the computation of idoms.
225  DenseMap<NodeT*, InfoRec> Info;
226
227  void reset() {
228    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
229           E = DomTreeNodes.end(); I != E; ++I)
230      delete I->second;
231    DomTreeNodes.clear();
232    IDoms.clear();
233    this->Roots.clear();
234    Vertex.clear();
235    RootNode = 0;
236  }
237
238  // NewBB is split and now it has one successor. Update dominator tree to
239  // reflect this change.
240  template<class N, class GraphT>
241  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
242             typename GraphT::NodeType* NewBB) {
243    assert(std::distance(GraphT::child_begin(NewBB),
244                         GraphT::child_end(NewBB)) == 1 &&
245           "NewBB should have a single successor!");
246    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
247
248    std::vector<typename GraphT::NodeType*> PredBlocks;
249    for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
250         GraphTraits<Inverse<N> >::child_begin(NewBB),
251         PE = GraphTraits<Inverse<N> >::child_end(NewBB); PI != PE; ++PI)
252      PredBlocks.push_back(*PI);
253
254    assert(!PredBlocks.empty() && "No predblocks??");
255
256    bool NewBBDominatesNewBBSucc = true;
257    for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
258         GraphTraits<Inverse<N> >::child_begin(NewBBSucc),
259         E = GraphTraits<Inverse<N> >::child_end(NewBBSucc); PI != E; ++PI)
260      if (*PI != NewBB && !DT.dominates(NewBBSucc, *PI) &&
261          DT.isReachableFromEntry(*PI)) {
262        NewBBDominatesNewBBSucc = false;
263        break;
264      }
265
266    // Find NewBB's immediate dominator and create new dominator tree node for
267    // NewBB.
268    NodeT *NewBBIDom = 0;
269    unsigned i = 0;
270    for (i = 0; i < PredBlocks.size(); ++i)
271      if (DT.isReachableFromEntry(PredBlocks[i])) {
272        NewBBIDom = PredBlocks[i];
273        break;
274      }
275
276    // It's possible that none of the predecessors of NewBB are reachable;
277    // in that case, NewBB itself is unreachable, so nothing needs to be
278    // changed.
279    if (!NewBBIDom)
280      return;
281
282    for (i = i + 1; i < PredBlocks.size(); ++i) {
283      if (DT.isReachableFromEntry(PredBlocks[i]))
284        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
285    }
286
287    // Create the new dominator tree node... and set the idom of NewBB.
288    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
289
290    // If NewBB strictly dominates other blocks, then it is now the immediate
291    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
292    if (NewBBDominatesNewBBSucc) {
293      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
294      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
295    }
296  }
297
298public:
299  explicit DominatorTreeBase(bool isPostDom)
300    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
301  virtual ~DominatorTreeBase() { reset(); }
302
303  // FIXME: Should remove this
304  virtual bool runOnFunction(Function &F) { return false; }
305
306  /// compare - Return false if the other dominator tree base matches this
307  /// dominator tree base. Otherwise return true.
308  bool compare(DominatorTreeBase &Other) const {
309
310    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
311    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
312      return true;
313
314    for (typename DomTreeNodeMapType::const_iterator
315           I = this->DomTreeNodes.begin(),
316           E = this->DomTreeNodes.end(); I != E; ++I) {
317      NodeT *BB = I->first;
318      typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
319      if (OI == OtherDomTreeNodes.end())
320        return true;
321
322      DomTreeNodeBase<NodeT>* MyNd = I->second;
323      DomTreeNodeBase<NodeT>* OtherNd = OI->second;
324
325      if (MyNd->compare(OtherNd))
326        return true;
327    }
328
329    return false;
330  }
331
332  virtual void releaseMemory() { reset(); }
333
334  /// getNode - return the (Post)DominatorTree node for the specified basic
335  /// block.  This is the same as using operator[] on this class.
336  ///
337  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
338    typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
339    return I != DomTreeNodes.end() ? I->second : 0;
340  }
341
342  /// getRootNode - This returns the entry node for the CFG of the function.  If
343  /// this tree represents the post-dominance relations for a function, however,
344  /// this root may be a node with the block == NULL.  This is the case when
345  /// there are multiple exit nodes from a particular function.  Consumers of
346  /// post-dominance information must be capable of dealing with this
347  /// possibility.
348  ///
349  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
350  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
351
352  /// properlyDominates - Returns true iff this dominates N and this != N.
353  /// Note that this is not a constant time operation!
354  ///
355  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
356                         const DomTreeNodeBase<NodeT> *B) const {
357    if (A == 0 || B == 0) return false;
358    return dominatedBySlowTreeWalk(A, B);
359  }
360
361  inline bool properlyDominates(NodeT *A, NodeT *B) {
362    return properlyDominates(getNode(A), getNode(B));
363  }
364
365  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
366                               const DomTreeNodeBase<NodeT> *B) const {
367    const DomTreeNodeBase<NodeT> *IDom;
368    if (A == 0 || B == 0) return false;
369    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
370      B = IDom;   // Walk up the tree
371    return IDom != 0;
372  }
373
374
375  /// isReachableFromEntry - Return true if A is dominated by the entry
376  /// block of the function containing it.
377  bool isReachableFromEntry(NodeT* A) {
378    assert(!this->isPostDominator() &&
379           "This is not implemented for post dominators");
380    return dominates(&A->getParent()->front(), A);
381  }
382
383  /// dominates - Returns true iff A dominates B.  Note that this is not a
384  /// constant time operation!
385  ///
386  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
387                        const DomTreeNodeBase<NodeT> *B) {
388    if (B == A)
389      return true;  // A node trivially dominates itself.
390
391    if (A == 0 || B == 0)
392      return false;
393
394    // Compare the result of the tree walk and the dfs numbers, if expensive
395    // checks are enabled.
396#ifdef XDEBUG
397    assert((!DFSInfoValid ||
398            (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
399           "Tree walk disagrees with dfs numbers!");
400#endif
401
402    if (DFSInfoValid)
403      return B->DominatedBy(A);
404
405    // If we end up with too many slow queries, just update the
406    // DFS numbers on the theory that we are going to keep querying.
407    SlowQueries++;
408    if (SlowQueries > 32) {
409      updateDFSNumbers();
410      return B->DominatedBy(A);
411    }
412
413    return dominatedBySlowTreeWalk(A, B);
414  }
415
416  inline bool dominates(const NodeT *A, const NodeT *B) {
417    if (A == B)
418      return true;
419
420    // Cast away the const qualifiers here. This is ok since
421    // this function doesn't actually return the values returned
422    // from getNode.
423    return dominates(getNode(const_cast<NodeT *>(A)),
424                     getNode(const_cast<NodeT *>(B)));
425  }
426
427  NodeT *getRoot() const {
428    assert(this->Roots.size() == 1 && "Should always have entry node!");
429    return this->Roots[0];
430  }
431
432  /// findNearestCommonDominator - Find nearest common dominator basic block
433  /// for basic block A and B. If there is no such block then return NULL.
434  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
435    assert(A->getParent() == B->getParent() &&
436           "Two blocks are not in same function");
437
438    // If either A or B is a entry block then it is nearest common dominator
439    // (for forward-dominators).
440    if (!this->isPostDominator()) {
441      NodeT &Entry = A->getParent()->front();
442      if (A == &Entry || B == &Entry)
443        return &Entry;
444    }
445
446    // If B dominates A then B is nearest common dominator.
447    if (dominates(B, A))
448      return B;
449
450    // If A dominates B then A is nearest common dominator.
451    if (dominates(A, B))
452      return A;
453
454    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
455    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
456
457    // Collect NodeA dominators set.
458    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
459    NodeADoms.insert(NodeA);
460    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
461    while (IDomA) {
462      NodeADoms.insert(IDomA);
463      IDomA = IDomA->getIDom();
464    }
465
466    // Walk NodeB immediate dominators chain and find common dominator node.
467    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
468    while (IDomB) {
469      if (NodeADoms.count(IDomB) != 0)
470        return IDomB->getBlock();
471
472      IDomB = IDomB->getIDom();
473    }
474
475    return NULL;
476  }
477
478  //===--------------------------------------------------------------------===//
479  // API to update (Post)DominatorTree information based on modifications to
480  // the CFG...
481
482  /// addNewBlock - Add a new node to the dominator tree information.  This
483  /// creates a new node as a child of DomBB dominator node,linking it into
484  /// the children list of the immediate dominator.
485  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
486    assert(getNode(BB) == 0 && "Block already in dominator tree!");
487    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
488    assert(IDomNode && "Not immediate dominator specified for block!");
489    DFSInfoValid = false;
490    return DomTreeNodes[BB] =
491      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
492  }
493
494  /// changeImmediateDominator - This method is used to update the dominator
495  /// tree information when a node's immediate dominator changes.
496  ///
497  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
498                                DomTreeNodeBase<NodeT> *NewIDom) {
499    assert(N && NewIDom && "Cannot change null node pointers!");
500    DFSInfoValid = false;
501    N->setIDom(NewIDom);
502  }
503
504  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
505    changeImmediateDominator(getNode(BB), getNode(NewBB));
506  }
507
508  /// eraseNode - Removes a node from the dominator tree. Block must not
509  /// domiante any other blocks. Removes node from its immediate dominator's
510  /// children list. Deletes dominator node associated with basic block BB.
511  void eraseNode(NodeT *BB) {
512    DomTreeNodeBase<NodeT> *Node = getNode(BB);
513    assert(Node && "Removing node that isn't in dominator tree.");
514    assert(Node->getChildren().empty() && "Node is not a leaf node.");
515
516      // Remove node from immediate dominator's children list.
517    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
518    if (IDom) {
519      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
520        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
521      assert(I != IDom->Children.end() &&
522             "Not in immediate dominator children set!");
523      // I am no longer your child...
524      IDom->Children.erase(I);
525    }
526
527    DomTreeNodes.erase(BB);
528    delete Node;
529  }
530
531  /// removeNode - Removes a node from the dominator tree.  Block must not
532  /// dominate any other blocks.  Invalidates any node pointing to removed
533  /// block.
534  void removeNode(NodeT *BB) {
535    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
536    DomTreeNodes.erase(BB);
537  }
538
539  /// splitBlock - BB is split and now it has one successor. Update dominator
540  /// tree to reflect this change.
541  void splitBlock(NodeT* NewBB) {
542    if (this->IsPostDominators)
543      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
544    else
545      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
546  }
547
548  /// print - Convert to human readable form
549  ///
550  void print(raw_ostream &o) const {
551    o << "=============================--------------------------------\n";
552    if (this->isPostDominator())
553      o << "Inorder PostDominator Tree: ";
554    else
555      o << "Inorder Dominator Tree: ";
556    if (this->DFSInfoValid)
557      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
558    o << "\n";
559
560    // The postdom tree can have a null root if there are no returns.
561    if (getRootNode())
562      PrintDomTree<NodeT>(getRootNode(), o, 1);
563  }
564
565protected:
566  template<class GraphT>
567  friend void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
568                       typename GraphT::NodeType* VIn);
569
570  template<class GraphT>
571  friend typename GraphT::NodeType* Eval(
572                               DominatorTreeBase<typename GraphT::NodeType>& DT,
573                                         typename GraphT::NodeType* V);
574
575  template<class GraphT>
576  friend void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
577                   unsigned DFSNumV, typename GraphT::NodeType* W,
578         typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo);
579
580  template<class GraphT>
581  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
582                          typename GraphT::NodeType* V,
583                          unsigned N);
584
585  template<class FuncT, class N>
586  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
587                        FuncT& F);
588
589  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
590  /// dominator tree in dfs order.
591  void updateDFSNumbers() {
592    unsigned DFSNum = 0;
593
594    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
595                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
596
597    DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
598
599    if (!ThisRoot)
600      return;
601
602    // Even in the case of multiple exits that form the post dominator root
603    // nodes, do not iterate over all exits, but start from the virtual root
604    // node. Otherwise bbs, that are not post dominated by any exit but by the
605    // virtual root node, will never be assigned a DFS number.
606    WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
607    ThisRoot->DFSNumIn = DFSNum++;
608
609    while (!WorkStack.empty()) {
610      DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
611      typename DomTreeNodeBase<NodeT>::iterator ChildIt =
612        WorkStack.back().second;
613
614      // If we visited all of the children of this node, "recurse" back up the
615      // stack setting the DFOutNum.
616      if (ChildIt == Node->end()) {
617        Node->DFSNumOut = DFSNum++;
618        WorkStack.pop_back();
619      } else {
620        // Otherwise, recursively visit this child.
621        DomTreeNodeBase<NodeT> *Child = *ChildIt;
622        ++WorkStack.back().second;
623
624        WorkStack.push_back(std::make_pair(Child, Child->begin()));
625        Child->DFSNumIn = DFSNum++;
626      }
627    }
628
629    SlowQueries = 0;
630    DFSInfoValid = true;
631  }
632
633  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
634    typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.find(BB);
635    if (I != this->DomTreeNodes.end() && I->second)
636      return I->second;
637
638    // Haven't calculated this node yet?  Get or calculate the node for the
639    // immediate dominator.
640    NodeT *IDom = getIDom(BB);
641
642    assert(IDom || this->DomTreeNodes[NULL]);
643    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
644
645    // Add a new tree node for this BasicBlock, and link it as a child of
646    // IDomNode
647    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
648    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
649  }
650
651  inline NodeT *getIDom(NodeT *BB) const {
652    typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
653    return I != IDoms.end() ? I->second : 0;
654  }
655
656  inline void addRoot(NodeT* BB) {
657    this->Roots.push_back(BB);
658  }
659
660public:
661  /// recalculate - compute a dominator tree for the given function
662  template<class FT>
663  void recalculate(FT& F) {
664    reset();
665    this->Vertex.push_back(0);
666
667    if (!this->IsPostDominators) {
668      // Initialize root
669      this->Roots.push_back(&F.front());
670      this->IDoms[&F.front()] = 0;
671      this->DomTreeNodes[&F.front()] = 0;
672
673      Calculate<FT, NodeT*>(*this, F);
674    } else {
675      // Initialize the roots list
676      for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) {
677        if (std::distance(GraphTraits<FT*>::child_begin(I),
678                          GraphTraits<FT*>::child_end(I)) == 0)
679          addRoot(I);
680
681        // Prepopulate maps so that we don't get iterator invalidation issues later.
682        this->IDoms[I] = 0;
683        this->DomTreeNodes[I] = 0;
684      }
685
686      Calculate<FT, Inverse<NodeT*> >(*this, F);
687    }
688  }
689};
690
691EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
692
693//===-------------------------------------
694/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
695/// compute a normal dominator tree.
696///
697class DominatorTree : public FunctionPass {
698public:
699  static char ID; // Pass ID, replacement for typeid
700  DominatorTreeBase<BasicBlock>* DT;
701
702  DominatorTree() : FunctionPass(&ID) {
703    DT = new DominatorTreeBase<BasicBlock>(false);
704  }
705
706  ~DominatorTree() {
707    delete DT;
708  }
709
710  DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
711
712  /// getRoots - Return the root blocks of the current CFG.  This may include
713  /// multiple blocks if we are computing post dominators.  For forward
714  /// dominators, this will always be a single block (the entry node).
715  ///
716  inline const std::vector<BasicBlock*> &getRoots() const {
717    return DT->getRoots();
718  }
719
720  inline BasicBlock *getRoot() const {
721    return DT->getRoot();
722  }
723
724  inline DomTreeNode *getRootNode() const {
725    return DT->getRootNode();
726  }
727
728  /// compare - Return false if the other dominator tree matches this
729  /// dominator tree. Otherwise return true.
730  inline bool compare(DominatorTree &Other) const {
731    DomTreeNode *R = getRootNode();
732    DomTreeNode *OtherR = Other.getRootNode();
733
734    if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
735      return true;
736
737    if (DT->compare(Other.getBase()))
738      return true;
739
740    return false;
741  }
742
743  virtual bool runOnFunction(Function &F);
744
745  virtual void verifyAnalysis() const;
746
747  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
748    AU.setPreservesAll();
749  }
750
751  inline bool dominates(DomTreeNode* A, DomTreeNode* B) const {
752    return DT->dominates(A, B);
753  }
754
755  inline bool dominates(const BasicBlock* A, const BasicBlock* B) const {
756    return DT->dominates(A, B);
757  }
758
759  // dominates - Return true if A dominates B. This performs the
760  // special checks necessary if A and B are in the same basic block.
761  bool dominates(const Instruction *A, const Instruction *B) const;
762
763  bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const {
764    return DT->properlyDominates(A, B);
765  }
766
767  bool properlyDominates(BasicBlock *A, BasicBlock *B) const {
768    return DT->properlyDominates(A, B);
769  }
770
771  /// findNearestCommonDominator - Find nearest common dominator basic block
772  /// for basic block A and B. If there is no such block then return NULL.
773  inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
774    return DT->findNearestCommonDominator(A, B);
775  }
776
777  inline DomTreeNode *operator[](BasicBlock *BB) const {
778    return DT->getNode(BB);
779  }
780
781  /// getNode - return the (Post)DominatorTree node for the specified basic
782  /// block.  This is the same as using operator[] on this class.
783  ///
784  inline DomTreeNode *getNode(BasicBlock *BB) const {
785    return DT->getNode(BB);
786  }
787
788  /// addNewBlock - Add a new node to the dominator tree information.  This
789  /// creates a new node as a child of DomBB dominator node,linking it into
790  /// the children list of the immediate dominator.
791  inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
792    return DT->addNewBlock(BB, DomBB);
793  }
794
795  /// changeImmediateDominator - This method is used to update the dominator
796  /// tree information when a node's immediate dominator changes.
797  ///
798  inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
799    DT->changeImmediateDominator(N, NewIDom);
800  }
801
802  inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
803    DT->changeImmediateDominator(N, NewIDom);
804  }
805
806  /// eraseNode - Removes a node from the dominator tree. Block must not
807  /// domiante any other blocks. Removes node from its immediate dominator's
808  /// children list. Deletes dominator node associated with basic block BB.
809  inline void eraseNode(BasicBlock *BB) {
810    DT->eraseNode(BB);
811  }
812
813  /// splitBlock - BB is split and now it has one successor. Update dominator
814  /// tree to reflect this change.
815  inline void splitBlock(BasicBlock* NewBB) {
816    DT->splitBlock(NewBB);
817  }
818
819  bool isReachableFromEntry(BasicBlock* A) {
820    return DT->isReachableFromEntry(A);
821  }
822
823
824  virtual void releaseMemory() {
825    DT->releaseMemory();
826  }
827
828  virtual void print(raw_ostream &OS, const Module* M= 0) const;
829};
830
831//===-------------------------------------
832/// DominatorTree GraphTraits specialization so the DominatorTree can be
833/// iterable by generic graph iterators.
834///
835template <> struct GraphTraits<DomTreeNode*> {
836  typedef DomTreeNode NodeType;
837  typedef NodeType::iterator  ChildIteratorType;
838
839  static NodeType *getEntryNode(NodeType *N) {
840    return N;
841  }
842  static inline ChildIteratorType child_begin(NodeType *N) {
843    return N->begin();
844  }
845  static inline ChildIteratorType child_end(NodeType *N) {
846    return N->end();
847  }
848
849  typedef df_iterator<DomTreeNode*> nodes_iterator;
850
851  static nodes_iterator nodes_begin(DomTreeNode *N) {
852    return df_begin(getEntryNode(N));
853  }
854
855  static nodes_iterator nodes_end(DomTreeNode *N) {
856    return df_end(getEntryNode(N));
857  }
858};
859
860template <> struct GraphTraits<DominatorTree*>
861  : public GraphTraits<DomTreeNode*> {
862  static NodeType *getEntryNode(DominatorTree *DT) {
863    return DT->getRootNode();
864  }
865
866  static nodes_iterator nodes_begin(DominatorTree *N) {
867    return df_begin(getEntryNode(N));
868  }
869
870  static nodes_iterator nodes_end(DominatorTree *N) {
871    return df_end(getEntryNode(N));
872  }
873};
874
875
876//===----------------------------------------------------------------------===//
877/// DominanceFrontierBase - Common base class for computing forward and inverse
878/// dominance frontiers for a function.
879///
880class DominanceFrontierBase : public FunctionPass {
881public:
882  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
883  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
884protected:
885  DomSetMapType Frontiers;
886  std::vector<BasicBlock*> Roots;
887  const bool IsPostDominators;
888
889public:
890  DominanceFrontierBase(void *ID, bool isPostDom)
891    : FunctionPass(ID), IsPostDominators(isPostDom) {}
892
893  /// getRoots - Return the root blocks of the current CFG.  This may include
894  /// multiple blocks if we are computing post dominators.  For forward
895  /// dominators, this will always be a single block (the entry node).
896  ///
897  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
898
899  /// isPostDominator - Returns true if analysis based of postdoms
900  ///
901  bool isPostDominator() const { return IsPostDominators; }
902
903  virtual void releaseMemory() { Frontiers.clear(); }
904
905  // Accessor interface:
906  typedef DomSetMapType::iterator iterator;
907  typedef DomSetMapType::const_iterator const_iterator;
908  iterator       begin()       { return Frontiers.begin(); }
909  const_iterator begin() const { return Frontiers.begin(); }
910  iterator       end()         { return Frontiers.end(); }
911  const_iterator end()   const { return Frontiers.end(); }
912  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
913  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
914
915  iterator addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
916    assert(find(BB) == end() && "Block already in DominanceFrontier!");
917    return Frontiers.insert(std::make_pair(BB, frontier)).first;
918  }
919
920  /// removeBlock - Remove basic block BB's frontier.
921  void removeBlock(BasicBlock *BB) {
922    assert(find(BB) != end() && "Block is not in DominanceFrontier!");
923    for (iterator I = begin(), E = end(); I != E; ++I)
924      I->second.erase(BB);
925    Frontiers.erase(BB);
926  }
927
928  void addToFrontier(iterator I, BasicBlock *Node) {
929    assert(I != end() && "BB is not in DominanceFrontier!");
930    I->second.insert(Node);
931  }
932
933  void removeFromFrontier(iterator I, BasicBlock *Node) {
934    assert(I != end() && "BB is not in DominanceFrontier!");
935    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
936    I->second.erase(Node);
937  }
938
939  /// compareDomSet - Return false if two domsets match. Otherwise
940  /// return true;
941  bool compareDomSet(DomSetType &DS1, const DomSetType &DS2) const {
942    std::set<BasicBlock *> tmpSet;
943    for (DomSetType::const_iterator I = DS2.begin(),
944           E = DS2.end(); I != E; ++I)
945      tmpSet.insert(*I);
946
947    for (DomSetType::const_iterator I = DS1.begin(),
948           E = DS1.end(); I != E; ) {
949      BasicBlock *Node = *I++;
950
951      if (tmpSet.erase(Node) == 0)
952        // Node is in DS1 but not in DS2.
953        return true;
954    }
955
956    if (!tmpSet.empty())
957      // There are nodes that are in DS2 but not in DS1.
958      return true;
959
960    // DS1 and DS2 matches.
961    return false;
962  }
963
964  /// compare - Return true if the other dominance frontier base matches
965  /// this dominance frontier base. Otherwise return false.
966  bool compare(DominanceFrontierBase &Other) const {
967    DomSetMapType tmpFrontiers;
968    for (DomSetMapType::const_iterator I = Other.begin(),
969           E = Other.end(); I != E; ++I)
970      tmpFrontiers.insert(std::make_pair(I->first, I->second));
971
972    for (DomSetMapType::iterator I = tmpFrontiers.begin(),
973           E = tmpFrontiers.end(); I != E; ) {
974      BasicBlock *Node = I->first;
975      const_iterator DFI = find(Node);
976      if (DFI == end())
977        return true;
978
979      if (compareDomSet(I->second, DFI->second))
980        return true;
981
982      ++I;
983      tmpFrontiers.erase(Node);
984    }
985
986    if (!tmpFrontiers.empty())
987      return true;
988
989    return false;
990  }
991
992  /// print - Convert to human readable form
993  ///
994  virtual void print(raw_ostream &OS, const Module* = 0) const;
995};
996
997
998//===-------------------------------------
999/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
1000/// used to compute a forward dominator frontiers.
1001///
1002class DominanceFrontier : public DominanceFrontierBase {
1003public:
1004  static char ID; // Pass ID, replacement for typeid
1005  DominanceFrontier() :
1006    DominanceFrontierBase(&ID, false) {}
1007
1008  BasicBlock *getRoot() const {
1009    assert(Roots.size() == 1 && "Should always have entry node!");
1010    return Roots[0];
1011  }
1012
1013  virtual bool runOnFunction(Function &) {
1014    Frontiers.clear();
1015    DominatorTree &DT = getAnalysis<DominatorTree>();
1016    Roots = DT.getRoots();
1017    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
1018    calculate(DT, DT[Roots[0]]);
1019    return false;
1020  }
1021
1022  virtual void verifyAnalysis() const;
1023
1024  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1025    AU.setPreservesAll();
1026    AU.addRequired<DominatorTree>();
1027  }
1028
1029  /// splitBlock - BB is split and now it has one successor. Update dominance
1030  /// frontier to reflect this change.
1031  void splitBlock(BasicBlock *BB);
1032
1033  /// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier
1034  /// to reflect this change.
1035  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB,
1036                                DominatorTree *DT) {
1037    // NewBB is now dominating BB. Which means BB's dominance
1038    // frontier is now part of NewBB's dominance frontier. However, BB
1039    // itself is not member of NewBB's dominance frontier.
1040    DominanceFrontier::iterator NewDFI = find(NewBB);
1041    DominanceFrontier::iterator DFI = find(BB);
1042    // If BB was an entry block then its frontier is empty.
1043    if (DFI == end())
1044      return;
1045    DominanceFrontier::DomSetType BBSet = DFI->second;
1046    for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(),
1047           BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) {
1048      BasicBlock *DFMember = *BBSetI;
1049      // Insert only if NewBB dominates DFMember.
1050      if (!DT->dominates(NewBB, DFMember))
1051        NewDFI->second.insert(DFMember);
1052    }
1053    NewDFI->second.erase(BB);
1054  }
1055
1056  const DomSetType &calculate(const DominatorTree &DT,
1057                              const DomTreeNode *Node);
1058};
1059
1060
1061} // End llvm namespace
1062
1063#endif
1064