Dominators.h revision 791102fb1192ac9483274e54cbc42480c9b1af10
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the following classes:
11//  1. DominatorTree: Represent dominators as an explicit tree structure.
12//  2. DominanceFrontier: Calculate and hold the dominance frontier for a
13//     function.
14//
15//  These data structures are listed in increasing order of complexity.  It
16//  takes longer to calculate the dominator frontier, for example, than the
17//  DominatorTree mapping.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_DOMINATORS_H
22#define LLVM_ANALYSIS_DOMINATORS_H
23
24#include "llvm/Pass.h"
25#include "llvm/BasicBlock.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/GraphTraits.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Support/CFG.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/raw_ostream.h"
36#include <algorithm>
37#include <map>
38#include <set>
39
40namespace llvm {
41
42//===----------------------------------------------------------------------===//
43/// DominatorBase - Base class that other, more interesting dominator analyses
44/// inherit from.
45///
46template <class NodeT>
47class DominatorBase {
48protected:
49  std::vector<NodeT*> Roots;
50  const bool IsPostDominators;
51  inline explicit DominatorBase(bool isPostDom) :
52    Roots(), IsPostDominators(isPostDom) {}
53public:
54
55  /// getRoots -  Return the root blocks of the current CFG.  This may include
56  /// multiple blocks if we are computing post dominators.  For forward
57  /// dominators, this will always be a single block (the entry node).
58  ///
59  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
60
61  /// isPostDominator - Returns true if analysis based of postdoms
62  ///
63  bool isPostDominator() const { return IsPostDominators; }
64};
65
66
67//===----------------------------------------------------------------------===//
68// DomTreeNode - Dominator Tree Node
69template<class NodeT> class DominatorTreeBase;
70struct PostDominatorTree;
71class MachineBasicBlock;
72
73template <class NodeT>
74class DomTreeNodeBase {
75  NodeT *TheBB;
76  DomTreeNodeBase<NodeT> *IDom;
77  std::vector<DomTreeNodeBase<NodeT> *> Children;
78  int DFSNumIn, DFSNumOut;
79
80  template<class N> friend class DominatorTreeBase;
81  friend struct PostDominatorTree;
82public:
83  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
84  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
85                   const_iterator;
86
87  iterator begin()             { return Children.begin(); }
88  iterator end()               { return Children.end(); }
89  const_iterator begin() const { return Children.begin(); }
90  const_iterator end()   const { return Children.end(); }
91
92  NodeT *getBlock() const { return TheBB; }
93  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
94  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
95    return Children;
96  }
97
98  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
99    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
100
101  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
102    Children.push_back(C);
103    return C;
104  }
105
106  size_t getNumChildren() const {
107    return Children.size();
108  }
109
110  void clearAllChildren() {
111    Children.clear();
112  }
113
114  bool compare(DomTreeNodeBase<NodeT> *Other) {
115    if (getNumChildren() != Other->getNumChildren())
116      return true;
117
118    SmallPtrSet<NodeT *, 4> OtherChildren;
119    for(iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
120      NodeT *Nd = (*I)->getBlock();
121      OtherChildren.insert(Nd);
122    }
123
124    for(iterator I = begin(), E = end(); I != E; ++I) {
125      NodeT *N = (*I)->getBlock();
126      if (OtherChildren.count(N) == 0)
127        return true;
128    }
129    return false;
130  }
131
132  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
133    assert(IDom && "No immediate dominator?");
134    if (IDom != NewIDom) {
135      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
136                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
137      assert(I != IDom->Children.end() &&
138             "Not in immediate dominator children set!");
139      // I am no longer your child...
140      IDom->Children.erase(I);
141
142      // Switch to new dominator
143      IDom = NewIDom;
144      IDom->Children.push_back(this);
145    }
146  }
147
148  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
149  /// not call them.
150  unsigned getDFSNumIn() const { return DFSNumIn; }
151  unsigned getDFSNumOut() const { return DFSNumOut; }
152private:
153  // Return true if this node is dominated by other. Use this only if DFS info
154  // is valid.
155  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
156    return this->DFSNumIn >= other->DFSNumIn &&
157      this->DFSNumOut <= other->DFSNumOut;
158  }
159};
160
161EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
162EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
163
164template<class NodeT>
165static raw_ostream &operator<<(raw_ostream &o,
166                               const DomTreeNodeBase<NodeT> *Node) {
167  if (Node->getBlock())
168    WriteAsOperand(o, Node->getBlock(), false);
169  else
170    o << " <<exit node>>";
171
172  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
173
174  return o << "\n";
175}
176
177template<class NodeT>
178static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
179                         unsigned Lev) {
180  o.indent(2*Lev) << "[" << Lev << "] " << N;
181  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
182       E = N->end(); I != E; ++I)
183    PrintDomTree<NodeT>(*I, o, Lev+1);
184}
185
186typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
187
188//===----------------------------------------------------------------------===//
189/// DominatorTree - Calculate the immediate dominator tree for a function.
190///
191
192template<class FuncT, class N>
193void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
194               FuncT& F);
195
196template<class NodeT>
197class DominatorTreeBase : public DominatorBase<NodeT> {
198protected:
199  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
200  DomTreeNodeMapType DomTreeNodes;
201  DomTreeNodeBase<NodeT> *RootNode;
202
203  bool DFSInfoValid;
204  unsigned int SlowQueries;
205  // Information record used during immediate dominators computation.
206  struct InfoRec {
207    unsigned DFSNum;
208    unsigned Semi;
209    unsigned Size;
210    NodeT *Label, *Child;
211    unsigned Parent, Ancestor;
212
213    std::vector<NodeT*> Bucket;
214
215    InfoRec() : DFSNum(0), Semi(0), Size(0), Label(0), Child(0), Parent(0),
216                Ancestor(0) {}
217  };
218
219  DenseMap<NodeT*, NodeT*> IDoms;
220
221  // Vertex - Map the DFS number to the BasicBlock*
222  std::vector<NodeT*> Vertex;
223
224  // Info - Collection of information used during the computation of idoms.
225  DenseMap<NodeT*, InfoRec> Info;
226
227  void reset() {
228    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
229           E = DomTreeNodes.end(); I != E; ++I)
230      delete I->second;
231    DomTreeNodes.clear();
232    IDoms.clear();
233    this->Roots.clear();
234    Vertex.clear();
235    RootNode = 0;
236  }
237
238  // NewBB is split and now it has one successor. Update dominator tree to
239  // reflect this change.
240  template<class N, class GraphT>
241  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
242             typename GraphT::NodeType* NewBB) {
243    assert(std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1
244           && "NewBB should have a single successor!");
245    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
246
247    std::vector<typename GraphT::NodeType*> PredBlocks;
248    for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
249         GraphTraits<Inverse<N> >::child_begin(NewBB),
250         PE = GraphTraits<Inverse<N> >::child_end(NewBB); PI != PE; ++PI)
251      PredBlocks.push_back(*PI);
252
253    assert(!PredBlocks.empty() && "No predblocks??");
254
255    bool NewBBDominatesNewBBSucc = true;
256    for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
257         GraphTraits<Inverse<N> >::child_begin(NewBBSucc),
258         E = GraphTraits<Inverse<N> >::child_end(NewBBSucc); PI != E; ++PI)
259      if (*PI != NewBB && !DT.dominates(NewBBSucc, *PI) &&
260          DT.isReachableFromEntry(*PI)) {
261        NewBBDominatesNewBBSucc = false;
262        break;
263      }
264
265    // Find NewBB's immediate dominator and create new dominator tree node for
266    // NewBB.
267    NodeT *NewBBIDom = 0;
268    unsigned i = 0;
269    for (i = 0; i < PredBlocks.size(); ++i)
270      if (DT.isReachableFromEntry(PredBlocks[i])) {
271        NewBBIDom = PredBlocks[i];
272        break;
273      }
274
275    // It's possible that none of the predecessors of NewBB are reachable;
276    // in that case, NewBB itself is unreachable, so nothing needs to be
277    // changed.
278    if (!NewBBIDom)
279      return;
280
281    for (i = i + 1; i < PredBlocks.size(); ++i) {
282      if (DT.isReachableFromEntry(PredBlocks[i]))
283        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
284    }
285
286    // Create the new dominator tree node... and set the idom of NewBB.
287    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
288
289    // If NewBB strictly dominates other blocks, then it is now the immediate
290    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
291    if (NewBBDominatesNewBBSucc) {
292      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
293      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
294    }
295  }
296
297public:
298  explicit DominatorTreeBase(bool isPostDom)
299    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
300  virtual ~DominatorTreeBase() { reset(); }
301
302  // FIXME: Should remove this
303  virtual bool runOnFunction(Function &F) { return false; }
304
305  /// compare - Return false if the other dominator tree base matches this
306  /// dominator tree base. Otherwise return true.
307  bool compare(DominatorTreeBase &Other) const {
308
309    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
310    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
311      return true;
312
313    SmallPtrSet<const NodeT *,4> MyBBs;
314    for (typename DomTreeNodeMapType::const_iterator
315           I = this->DomTreeNodes.begin(),
316           E = this->DomTreeNodes.end(); I != E; ++I) {
317      NodeT *BB = I->first;
318      typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
319      if (OI == OtherDomTreeNodes.end())
320        return true;
321
322      DomTreeNodeBase<NodeT>* MyNd = I->second;
323      DomTreeNodeBase<NodeT>* OtherNd = OI->second;
324
325      if (MyNd->compare(OtherNd))
326        return true;
327    }
328
329    return false;
330  }
331
332  virtual void releaseMemory() { reset(); }
333
334  /// getNode - return the (Post)DominatorTree node for the specified basic
335  /// block.  This is the same as using operator[] on this class.
336  ///
337  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
338    typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
339    return I != DomTreeNodes.end() ? I->second : 0;
340  }
341
342  /// getRootNode - This returns the entry node for the CFG of the function.  If
343  /// this tree represents the post-dominance relations for a function, however,
344  /// this root may be a node with the block == NULL.  This is the case when
345  /// there are multiple exit nodes from a particular function.  Consumers of
346  /// post-dominance information must be capable of dealing with this
347  /// possibility.
348  ///
349  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
350  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
351
352  /// properlyDominates - Returns true iff this dominates N and this != N.
353  /// Note that this is not a constant time operation!
354  ///
355  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
356                         DomTreeNodeBase<NodeT> *B) const {
357    if (A == 0 || B == 0) return false;
358    return dominatedBySlowTreeWalk(A, B);
359  }
360
361  inline bool properlyDominates(NodeT *A, NodeT *B) {
362    return properlyDominates(getNode(A), getNode(B));
363  }
364
365  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
366                               const DomTreeNodeBase<NodeT> *B) const {
367    const DomTreeNodeBase<NodeT> *IDom;
368    if (A == 0 || B == 0) return false;
369    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
370      B = IDom;   // Walk up the tree
371    return IDom != 0;
372  }
373
374
375  /// isReachableFromEntry - Return true if A is dominated by the entry
376  /// block of the function containing it.
377  bool isReachableFromEntry(NodeT* A) {
378    assert (!this->isPostDominator()
379            && "This is not implemented for post dominators");
380    return dominates(&A->getParent()->front(), A);
381  }
382
383  /// dominates - Returns true iff A dominates B.  Note that this is not a
384  /// constant time operation!
385  ///
386  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
387                        DomTreeNodeBase<NodeT> *B) {
388    if (B == A)
389      return true;  // A node trivially dominates itself.
390
391    if (A == 0 || B == 0)
392      return false;
393
394    if (DFSInfoValid)
395      return B->DominatedBy(A);
396
397    // If we end up with too many slow queries, just update the
398    // DFS numbers on the theory that we are going to keep querying.
399    SlowQueries++;
400    if (SlowQueries > 32) {
401      updateDFSNumbers();
402      return B->DominatedBy(A);
403    }
404
405    return dominatedBySlowTreeWalk(A, B);
406  }
407
408  inline bool dominates(NodeT *A, NodeT *B) {
409    if (A == B)
410      return true;
411
412    return dominates(getNode(A), getNode(B));
413  }
414
415  NodeT *getRoot() const {
416    assert(this->Roots.size() == 1 && "Should always have entry node!");
417    return this->Roots[0];
418  }
419
420  /// findNearestCommonDominator - Find nearest common dominator basic block
421  /// for basic block A and B. If there is no such block then return NULL.
422  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
423
424    assert (!this->isPostDominator()
425            && "This is not implemented for post dominators");
426    assert (A->getParent() == B->getParent()
427            && "Two blocks are not in same function");
428
429    // If either A or B is a entry block then it is nearest common dominator.
430    NodeT &Entry  = A->getParent()->front();
431    if (A == &Entry || B == &Entry)
432      return &Entry;
433
434    // If B dominates A then B is nearest common dominator.
435    if (dominates(B, A))
436      return B;
437
438    // If A dominates B then A is nearest common dominator.
439    if (dominates(A, B))
440      return A;
441
442    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
443    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
444
445    // Collect NodeA dominators set.
446    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
447    NodeADoms.insert(NodeA);
448    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
449    while (IDomA) {
450      NodeADoms.insert(IDomA);
451      IDomA = IDomA->getIDom();
452    }
453
454    // Walk NodeB immediate dominators chain and find common dominator node.
455    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
456    while(IDomB) {
457      if (NodeADoms.count(IDomB) != 0)
458        return IDomB->getBlock();
459
460      IDomB = IDomB->getIDom();
461    }
462
463    return NULL;
464  }
465
466  //===--------------------------------------------------------------------===//
467  // API to update (Post)DominatorTree information based on modifications to
468  // the CFG...
469
470  /// addNewBlock - Add a new node to the dominator tree information.  This
471  /// creates a new node as a child of DomBB dominator node,linking it into
472  /// the children list of the immediate dominator.
473  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
474    assert(getNode(BB) == 0 && "Block already in dominator tree!");
475    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
476    assert(IDomNode && "Not immediate dominator specified for block!");
477    DFSInfoValid = false;
478    return DomTreeNodes[BB] =
479      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
480  }
481
482  /// changeImmediateDominator - This method is used to update the dominator
483  /// tree information when a node's immediate dominator changes.
484  ///
485  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
486                                DomTreeNodeBase<NodeT> *NewIDom) {
487    assert(N && NewIDom && "Cannot change null node pointers!");
488    DFSInfoValid = false;
489    N->setIDom(NewIDom);
490  }
491
492  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
493    changeImmediateDominator(getNode(BB), getNode(NewBB));
494  }
495
496  /// eraseNode - Removes a node from  the dominator tree. Block must not
497  /// domiante any other blocks. Removes node from its immediate dominator's
498  /// children list. Deletes dominator node associated with basic block BB.
499  void eraseNode(NodeT *BB) {
500    DomTreeNodeBase<NodeT> *Node = getNode(BB);
501    assert (Node && "Removing node that isn't in dominator tree.");
502    assert (Node->getChildren().empty() && "Node is not a leaf node.");
503
504      // Remove node from immediate dominator's children list.
505    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
506    if (IDom) {
507      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
508        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
509      assert(I != IDom->Children.end() &&
510             "Not in immediate dominator children set!");
511      // I am no longer your child...
512      IDom->Children.erase(I);
513    }
514
515    DomTreeNodes.erase(BB);
516    delete Node;
517  }
518
519  /// removeNode - Removes a node from the dominator tree.  Block must not
520  /// dominate any other blocks.  Invalidates any node pointing to removed
521  /// block.
522  void removeNode(NodeT *BB) {
523    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
524    DomTreeNodes.erase(BB);
525  }
526
527  /// splitBlock - BB is split and now it has one successor. Update dominator
528  /// tree to reflect this change.
529  void splitBlock(NodeT* NewBB) {
530    if (this->IsPostDominators)
531      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
532    else
533      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
534  }
535
536  /// print - Convert to human readable form
537  ///
538  void print(raw_ostream &o) const {
539    o << "=============================--------------------------------\n";
540    if (this->isPostDominator())
541      o << "Inorder PostDominator Tree: ";
542    else
543      o << "Inorder Dominator Tree: ";
544    if (this->DFSInfoValid)
545      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
546    o << "\n";
547
548    PrintDomTree<NodeT>(getRootNode(), o, 1);
549  }
550
551protected:
552  template<class GraphT>
553  friend void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
554                       typename GraphT::NodeType* VIn);
555
556  template<class GraphT>
557  friend typename GraphT::NodeType* Eval(
558                               DominatorTreeBase<typename GraphT::NodeType>& DT,
559                                         typename GraphT::NodeType* V);
560
561  template<class GraphT>
562  friend void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
563                   unsigned DFSNumV, typename GraphT::NodeType* W,
564         typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo);
565
566  template<class GraphT>
567  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
568                          typename GraphT::NodeType* V,
569                          unsigned N);
570
571  template<class FuncT, class N>
572  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
573                        FuncT& F);
574
575  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
576  /// dominator tree in dfs order.
577  void updateDFSNumbers() {
578    unsigned DFSNum = 0;
579
580    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
581                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
582
583    for (unsigned i = 0, e = (unsigned)this->Roots.size(); i != e; ++i) {
584      DomTreeNodeBase<NodeT> *ThisRoot = getNode(this->Roots[i]);
585      WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
586      ThisRoot->DFSNumIn = DFSNum++;
587
588      while (!WorkStack.empty()) {
589        DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
590        typename DomTreeNodeBase<NodeT>::iterator ChildIt =
591                                                        WorkStack.back().second;
592
593        // If we visited all of the children of this node, "recurse" back up the
594        // stack setting the DFOutNum.
595        if (ChildIt == Node->end()) {
596          Node->DFSNumOut = DFSNum++;
597          WorkStack.pop_back();
598        } else {
599          // Otherwise, recursively visit this child.
600          DomTreeNodeBase<NodeT> *Child = *ChildIt;
601          ++WorkStack.back().second;
602
603          WorkStack.push_back(std::make_pair(Child, Child->begin()));
604          Child->DFSNumIn = DFSNum++;
605        }
606      }
607    }
608
609    SlowQueries = 0;
610    DFSInfoValid = true;
611  }
612
613  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
614    typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.find(BB);
615    if (I != this->DomTreeNodes.end() && I->second)
616      return I->second;
617
618    // Haven't calculated this node yet?  Get or calculate the node for the
619    // immediate dominator.
620    NodeT *IDom = getIDom(BB);
621
622    assert(IDom || this->DomTreeNodes[NULL]);
623    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
624
625    // Add a new tree node for this BasicBlock, and link it as a child of
626    // IDomNode
627    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
628    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
629  }
630
631  inline NodeT *getIDom(NodeT *BB) const {
632    typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
633    return I != IDoms.end() ? I->second : 0;
634  }
635
636  inline void addRoot(NodeT* BB) {
637    this->Roots.push_back(BB);
638  }
639
640public:
641  /// recalculate - compute a dominator tree for the given function
642  template<class FT>
643  void recalculate(FT& F) {
644    if (!this->IsPostDominators) {
645      reset();
646
647      // Initialize roots
648      this->Roots.push_back(&F.front());
649      this->IDoms[&F.front()] = 0;
650      this->DomTreeNodes[&F.front()] = 0;
651      this->Vertex.push_back(0);
652
653      Calculate<FT, NodeT*>(*this, F);
654
655      updateDFSNumbers();
656    } else {
657      reset();     // Reset from the last time we were run...
658
659      // Initialize the roots list
660      for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) {
661        if (std::distance(GraphTraits<FT*>::child_begin(I),
662                          GraphTraits<FT*>::child_end(I)) == 0)
663          addRoot(I);
664
665        // Prepopulate maps so that we don't get iterator invalidation issues later.
666        this->IDoms[I] = 0;
667        this->DomTreeNodes[I] = 0;
668      }
669
670      this->Vertex.push_back(0);
671
672      Calculate<FT, Inverse<NodeT*> >(*this, F);
673    }
674  }
675};
676
677EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
678
679//===-------------------------------------
680/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
681/// compute a normal dominator tree.
682///
683class DominatorTree : public FunctionPass {
684public:
685  static char ID; // Pass ID, replacement for typeid
686  DominatorTreeBase<BasicBlock>* DT;
687
688  DominatorTree() : FunctionPass(&ID) {
689    DT = new DominatorTreeBase<BasicBlock>(false);
690  }
691
692  ~DominatorTree() {
693    DT->releaseMemory();
694    delete DT;
695  }
696
697  DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
698
699  /// getRoots -  Return the root blocks of the current CFG.  This may include
700  /// multiple blocks if we are computing post dominators.  For forward
701  /// dominators, this will always be a single block (the entry node).
702  ///
703  inline const std::vector<BasicBlock*> &getRoots() const {
704    return DT->getRoots();
705  }
706
707  inline BasicBlock *getRoot() const {
708    return DT->getRoot();
709  }
710
711  inline DomTreeNode *getRootNode() const {
712    return DT->getRootNode();
713  }
714
715  /// compare - Return false if the other dominator tree matches this
716  /// dominator tree. Otherwise return true.
717  inline bool compare(DominatorTree &Other) const {
718    DomTreeNode *R = getRootNode();
719    DomTreeNode *OtherR = Other.getRootNode();
720
721    if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
722      return true;
723
724    if (DT->compare(Other.getBase()))
725      return true;
726
727    return false;
728  }
729
730  virtual bool runOnFunction(Function &F);
731
732  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
733    AU.setPreservesAll();
734  }
735
736  inline bool dominates(DomTreeNode* A, DomTreeNode* B) const {
737    return DT->dominates(A, B);
738  }
739
740  inline bool dominates(BasicBlock* A, BasicBlock* B) const {
741    return DT->dominates(A, B);
742  }
743
744  // dominates - Return true if A dominates B. This performs the
745  // special checks necessary if A and B are in the same basic block.
746  bool dominates(Instruction *A, Instruction *B) const {
747    BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
748    if (BBA != BBB) return DT->dominates(BBA, BBB);
749
750    // It is not possible to determine dominance between two PHI nodes
751    // based on their ordering.
752    if (isa<PHINode>(A) && isa<PHINode>(B))
753      return false;
754
755    // Loop through the basic block until we find A or B.
756    BasicBlock::iterator I = BBA->begin();
757    for (; &*I != A && &*I != B; ++I) /*empty*/;
758
759    //if(!DT.IsPostDominators) {
760      // A dominates B if it is found first in the basic block.
761      return &*I == A;
762    //} else {
763    //  // A post-dominates B if B is found first in the basic block.
764    //  return &*I == B;
765    //}
766  }
767
768  inline bool properlyDominates(const DomTreeNode* A, DomTreeNode* B) const {
769    return DT->properlyDominates(A, B);
770  }
771
772  inline bool properlyDominates(BasicBlock* A, BasicBlock* B) const {
773    return DT->properlyDominates(A, B);
774  }
775
776  /// findNearestCommonDominator - Find nearest common dominator basic block
777  /// for basic block A and B. If there is no such block then return NULL.
778  inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
779    return DT->findNearestCommonDominator(A, B);
780  }
781
782  inline DomTreeNode *operator[](BasicBlock *BB) const {
783    return DT->getNode(BB);
784  }
785
786  /// getNode - return the (Post)DominatorTree node for the specified basic
787  /// block.  This is the same as using operator[] on this class.
788  ///
789  inline DomTreeNode *getNode(BasicBlock *BB) const {
790    return DT->getNode(BB);
791  }
792
793  /// addNewBlock - Add a new node to the dominator tree information.  This
794  /// creates a new node as a child of DomBB dominator node,linking it into
795  /// the children list of the immediate dominator.
796  inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
797    return DT->addNewBlock(BB, DomBB);
798  }
799
800  /// changeImmediateDominator - This method is used to update the dominator
801  /// tree information when a node's immediate dominator changes.
802  ///
803  inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
804    DT->changeImmediateDominator(N, NewIDom);
805  }
806
807  inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
808    DT->changeImmediateDominator(N, NewIDom);
809  }
810
811  /// eraseNode - Removes a node from  the dominator tree. Block must not
812  /// domiante any other blocks. Removes node from its immediate dominator's
813  /// children list. Deletes dominator node associated with basic block BB.
814  inline void eraseNode(BasicBlock *BB) {
815    DT->eraseNode(BB);
816  }
817
818  /// splitBlock - BB is split and now it has one successor. Update dominator
819  /// tree to reflect this change.
820  inline void splitBlock(BasicBlock* NewBB) {
821    DT->splitBlock(NewBB);
822  }
823
824  bool isReachableFromEntry(BasicBlock* A) {
825    return DT->isReachableFromEntry(A);
826  }
827
828
829  virtual void releaseMemory() {
830    DT->releaseMemory();
831  }
832
833  virtual void print(std::ostream &OS, const Module* M= 0) const;
834};
835
836//===-------------------------------------
837/// DominatorTree GraphTraits specialization so the DominatorTree can be
838/// iterable by generic graph iterators.
839///
840template <> struct GraphTraits<DomTreeNode *> {
841  typedef DomTreeNode NodeType;
842  typedef NodeType::iterator  ChildIteratorType;
843
844  static NodeType *getEntryNode(NodeType *N) {
845    return N;
846  }
847  static inline ChildIteratorType child_begin(NodeType* N) {
848    return N->begin();
849  }
850  static inline ChildIteratorType child_end(NodeType* N) {
851    return N->end();
852  }
853};
854
855template <> struct GraphTraits<DominatorTree*>
856  : public GraphTraits<DomTreeNode *> {
857  static NodeType *getEntryNode(DominatorTree *DT) {
858    return DT->getRootNode();
859  }
860};
861
862
863//===----------------------------------------------------------------------===//
864/// DominanceFrontierBase - Common base class for computing forward and inverse
865/// dominance frontiers for a function.
866///
867class DominanceFrontierBase : public FunctionPass {
868public:
869  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
870  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
871protected:
872  DomSetMapType Frontiers;
873  std::vector<BasicBlock*> Roots;
874  const bool IsPostDominators;
875
876public:
877  DominanceFrontierBase(void *ID, bool isPostDom)
878    : FunctionPass(ID), IsPostDominators(isPostDom) {}
879
880  /// getRoots -  Return the root blocks of the current CFG.  This may include
881  /// multiple blocks if we are computing post dominators.  For forward
882  /// dominators, this will always be a single block (the entry node).
883  ///
884  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
885
886  /// isPostDominator - Returns true if analysis based of postdoms
887  ///
888  bool isPostDominator() const { return IsPostDominators; }
889
890  virtual void releaseMemory() { Frontiers.clear(); }
891
892  // Accessor interface:
893  typedef DomSetMapType::iterator iterator;
894  typedef DomSetMapType::const_iterator const_iterator;
895  iterator       begin()       { return Frontiers.begin(); }
896  const_iterator begin() const { return Frontiers.begin(); }
897  iterator       end()         { return Frontiers.end(); }
898  const_iterator end()   const { return Frontiers.end(); }
899  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
900  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
901
902  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
903    assert(find(BB) == end() && "Block already in DominanceFrontier!");
904    Frontiers.insert(std::make_pair(BB, frontier));
905  }
906
907  /// removeBlock - Remove basic block BB's frontier.
908  void removeBlock(BasicBlock *BB) {
909    assert(find(BB) != end() && "Block is not in DominanceFrontier!");
910    for (iterator I = begin(), E = end(); I != E; ++I)
911      I->second.erase(BB);
912    Frontiers.erase(BB);
913  }
914
915  void addToFrontier(iterator I, BasicBlock *Node) {
916    assert(I != end() && "BB is not in DominanceFrontier!");
917    I->second.insert(Node);
918  }
919
920  void removeFromFrontier(iterator I, BasicBlock *Node) {
921    assert(I != end() && "BB is not in DominanceFrontier!");
922    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
923    I->second.erase(Node);
924  }
925
926  /// compareDomSet - Return false if two domsets match. Otherwise
927  /// return true;
928  bool compareDomSet(DomSetType &DS1, const DomSetType &DS2) const {
929    std::set<BasicBlock *> tmpSet;
930    for (DomSetType::const_iterator I = DS2.begin(),
931           E = DS2.end(); I != E; ++I)
932      tmpSet.insert(*I);
933
934    for (DomSetType::const_iterator I = DS1.begin(),
935           E = DS1.end(); I != E; ) {
936      BasicBlock *Node = *I++;
937
938      if (tmpSet.erase(Node) == 0)
939        // Node is in DS1 but not in DS2.
940        return true;
941    }
942
943    if(!tmpSet.empty())
944      // There are nodes that are in DS2 but not in DS1.
945      return true;
946
947    // DS1 and DS2 matches.
948    return false;
949  }
950
951  /// compare - Return true if the other dominance frontier base matches
952  /// this dominance frontier base. Otherwise return false.
953  bool compare(DominanceFrontierBase &Other) const {
954    DomSetMapType tmpFrontiers;
955    for (DomSetMapType::const_iterator I = Other.begin(),
956           E = Other.end(); I != E; ++I)
957      tmpFrontiers.insert(std::make_pair(I->first, I->second));
958
959    for (DomSetMapType::iterator I = tmpFrontiers.begin(),
960           E = tmpFrontiers.end(); I != E; ) {
961      BasicBlock *Node = I->first;
962      const_iterator DFI = find(Node);
963      if (DFI == end())
964        return true;
965
966      if (compareDomSet(I->second, DFI->second))
967        return true;
968
969      ++I;
970      tmpFrontiers.erase(Node);
971    }
972
973    if (!tmpFrontiers.empty())
974      return true;
975
976    return false;
977  }
978
979  /// print - Convert to human readable form
980  ///
981  virtual void print(std::ostream &OS, const Module* = 0) const;
982};
983
984
985//===-------------------------------------
986/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
987/// used to compute a forward dominator frontiers.
988///
989class DominanceFrontier : public DominanceFrontierBase {
990public:
991  static char ID; // Pass ID, replacement for typeid
992  DominanceFrontier() :
993    DominanceFrontierBase(&ID, false) {}
994
995  BasicBlock *getRoot() const {
996    assert(Roots.size() == 1 && "Should always have entry node!");
997    return Roots[0];
998  }
999
1000  virtual bool runOnFunction(Function &) {
1001    Frontiers.clear();
1002    DominatorTree &DT = getAnalysis<DominatorTree>();
1003    Roots = DT.getRoots();
1004    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
1005    calculate(DT, DT[Roots[0]]);
1006    return false;
1007  }
1008
1009  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1010    AU.setPreservesAll();
1011    AU.addRequired<DominatorTree>();
1012  }
1013
1014  /// splitBlock - BB is split and now it has one successor. Update dominance
1015  /// frontier to reflect this change.
1016  void splitBlock(BasicBlock *BB);
1017
1018  /// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier
1019  /// to reflect this change.
1020  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB,
1021                                DominatorTree *DT) {
1022    // NewBB is now  dominating BB. Which means BB's dominance
1023    // frontier is now part of NewBB's dominance frontier. However, BB
1024    // itself is not member of NewBB's dominance frontier.
1025    DominanceFrontier::iterator NewDFI = find(NewBB);
1026    DominanceFrontier::iterator DFI = find(BB);
1027    // If BB was an entry block then its frontier is empty.
1028    if (DFI == end())
1029      return;
1030    DominanceFrontier::DomSetType BBSet = DFI->second;
1031    for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(),
1032           BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) {
1033      BasicBlock *DFMember = *BBSetI;
1034      // Insert only if NewBB dominates DFMember.
1035      if (!DT->dominates(NewBB, DFMember))
1036        NewDFI->second.insert(DFMember);
1037    }
1038    NewDFI->second.erase(BB);
1039  }
1040
1041  const DomSetType &calculate(const DominatorTree &DT,
1042                              const DomTreeNode *Node);
1043};
1044
1045
1046} // End llvm namespace
1047
1048#endif
1049