1ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
3ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//                     The LLVM Compiler Infrastructure
4ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
5ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// This file is distributed under the University of Illinois Open Source
6ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// License. See LICENSE.TXT for details.
7ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
8ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//===----------------------------------------------------------------------===//
9ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
10ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// DependenceAnalysis is an LLVM pass that analyses dependences between memory
11ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// accesses. Currently, it is an (incomplete) implementation of the approach
12ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// described in
13ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
14ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//            Practical Dependence Testing
15ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//            Goff, Kennedy, Tseng
16ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//            PLDI 1991
17ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
18ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// There's a single entry point that analyzes the dependence between a pair
19ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// of memory references in a function, returning either NULL, for no dependence,
20ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// or a more-or-less detailed description of the dependence between them.
21ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
22ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Currently, the implementation cannot propagate constraints between
23ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// coupled RDIV subscripts and lacks a multi-subscript MIV test.
24ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Both of these are conservative weaknesses;
25ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// that is, not a source of correctness problems.
26ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
27ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// The implementation depends on the GEP instruction to
28ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// differentiate subscripts. Since Clang linearizes subscripts
29ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// for most arrays, we give up some precision (though the existing MIV tests
30ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// will help). We trust that the GEP instruction will eventually be extended.
31ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// In the meantime, we should explore Maslov's ideas about delinearization.
32ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
33ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// We should pay some careful attention to the possibility of integer overflow
34ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// in the implementation of the various tests. This could happen with Add,
35ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Subtract, or Multiply, with both APInt's and SCEV's.
36ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
37ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Some non-linear subscript pairs can be handled by the GCD test
38ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// (and perhaps other tests).
39ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Should explore how often these things occur.
40ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
41ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Finally, it seems like certain test cases expose weaknesses in the SCEV
42ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// simplification, especially in the handling of sign and zero extensions.
43ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// It could be useful to spend time exploring these.
44ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
45ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Please note that this is work in progress and the interface is subject to
46ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// change.
47ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
48ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//===----------------------------------------------------------------------===//
49ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//                                                                            //
50ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//                   In memory of Ken Kennedy, 1945 - 2007                    //
51ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//                                                                            //
52ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//===----------------------------------------------------------------------===//
53ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
54ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop#define DEBUG_TYPE "da"
55ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
56ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop#include "llvm/Analysis/DependenceAnalysis.h"
57ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop#include "llvm/ADT/Statistic.h"
588e4e0074092f5e6e429f4ac5415a82a8423ec4f9Benjamin Kramer#include "llvm/Analysis/AliasAnalysis.h"
598e4e0074092f5e6e429f4ac5415a82a8423ec4f9Benjamin Kramer#include "llvm/Analysis/LoopInfo.h"
608e4e0074092f5e6e429f4ac5415a82a8423ec4f9Benjamin Kramer#include "llvm/Analysis/ScalarEvolution.h"
618e4e0074092f5e6e429f4ac5415a82a8423ec4f9Benjamin Kramer#include "llvm/Analysis/ScalarEvolutionExpressions.h"
62d04a8d4b33ff316ca4cf961e06c9e312eff8e64fChandler Carruth#include "llvm/Analysis/ValueTracking.h"
630b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth#include "llvm/IR/Operator.h"
64ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop#include "llvm/Support/Debug.h"
65ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop#include "llvm/Support/ErrorHandling.h"
66ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop#include "llvm/Support/InstIterator.h"
678e4e0074092f5e6e429f4ac5415a82a8423ec4f9Benjamin Kramer#include "llvm/Support/raw_ostream.h"
68ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
69ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popusing namespace llvm;
70ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
71ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//===----------------------------------------------------------------------===//
72ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// statistics
73ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
74ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(TotalArrayPairs, "Array pairs tested");
75ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
76ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
77ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
78ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(ZIVapplications, "ZIV applications");
79ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(ZIVindependence, "ZIV independence");
80ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(StrongSIVapplications, "Strong SIV applications");
81ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(StrongSIVsuccesses, "Strong SIV successes");
82ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(StrongSIVindependence, "Strong SIV independence");
83ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
84ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
85ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
86ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(ExactSIVapplications, "Exact SIV applications");
87ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(ExactSIVsuccesses, "Exact SIV successes");
88ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(ExactSIVindependence, "Exact SIV independence");
89ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
90ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
91ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
92ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(ExactRDIVapplications, "Exact RDIV applications");
93ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(ExactRDIVindependence, "Exact RDIV independence");
94ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
95ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
96ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(DeltaApplications, "Delta applications");
97ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(DeltaSuccesses, "Delta successes");
98ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(DeltaIndependence, "Delta independence");
99ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(DeltaPropagations, "Delta propagations");
100ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(GCDapplications, "GCD applications");
101ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(GCDsuccesses, "GCD successes");
102ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(GCDindependence, "GCD independence");
103ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(BanerjeeApplications, "Banerjee applications");
104ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(BanerjeeIndependence, "Banerjee independence");
105ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopSTATISTIC(BanerjeeSuccesses, "Banerjee successes");
106ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
107ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//===----------------------------------------------------------------------===//
108ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// basics
109ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
110ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopINITIALIZE_PASS_BEGIN(DependenceAnalysis, "da",
111ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                      "Dependence Analysis", true, true)
112ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopINITIALIZE_PASS_DEPENDENCY(LoopInfo)
113ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopINITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
114ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopINITIALIZE_AG_DEPENDENCY(AliasAnalysis)
115ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopINITIALIZE_PASS_END(DependenceAnalysis, "da",
116ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                    "Dependence Analysis", true, true)
117ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
118ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popchar DependenceAnalysis::ID = 0;
119ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
120ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
121ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopFunctionPass *llvm::createDependenceAnalysisPass() {
122ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return new DependenceAnalysis();
123ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
124ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
125ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
126ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::runOnFunction(Function &F) {
127ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  this->F = &F;
128ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  AA = &getAnalysis<AliasAnalysis>();
129ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  SE = &getAnalysis<ScalarEvolution>();
130ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  LI = &getAnalysis<LoopInfo>();
131ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return false;
132ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
133ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
134ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
135ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid DependenceAnalysis::releaseMemory() {
136ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
137ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
138ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
139ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid DependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
140ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  AU.setPreservesAll();
141ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  AU.addRequiredTransitive<AliasAnalysis>();
142ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  AU.addRequiredTransitive<ScalarEvolution>();
143ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  AU.addRequiredTransitive<LoopInfo>();
144ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
145ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
146ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
147ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Used to test the dependence analyzer.
148563e8fce2ee22b21beb40ac65a6eaf2199d30414Benjamin Kramer// Looks through the function, noting loads and stores.
149563e8fce2ee22b21beb40ac65a6eaf2199d30414Benjamin Kramer// Calls depends() on every possible pair and prints out the result.
150ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Ignores all other instructions.
151ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popstatic
152ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid dumpExampleDependence(raw_ostream &OS, Function *F,
153ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                           DependenceAnalysis *DA) {
154ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F);
155ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop       SrcI != SrcE; ++SrcI) {
156563e8fce2ee22b21beb40ac65a6eaf2199d30414Benjamin Kramer    if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
157ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      for (inst_iterator DstI = SrcI, DstE = inst_end(F);
158ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop           DstI != DstE; ++DstI) {
159563e8fce2ee22b21beb40ac65a6eaf2199d30414Benjamin Kramer        if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
160ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          OS << "da analyze - ";
161563e8fce2ee22b21beb40ac65a6eaf2199d30414Benjamin Kramer          if (Dependence *D = DA->depends(&*SrcI, &*DstI, true)) {
162ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            D->dump(OS);
163ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
164ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              if (D->isSplitable(Level)) {
165ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                OS << "da analyze - split level = " << Level;
166ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                OS << ", iteration = " << *DA->getSplitIteration(D, Level);
167ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                OS << "!\n";
168ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              }
169ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            }
170ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            delete D;
171ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          }
172ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          else
173ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            OS << "none!\n";
174ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
175ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
176ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
177ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
178ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
179ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
180ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
181ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid DependenceAnalysis::print(raw_ostream &OS, const Module*) const {
182ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  dumpExampleDependence(OS, F, const_cast<DependenceAnalysis *>(this));
183ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
184ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
185ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//===----------------------------------------------------------------------===//
186ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Dependence methods
187ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
188ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Returns true if this is an input dependence.
189ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool Dependence::isInput() const {
190ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
191ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
192ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
193ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
194ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Returns true if this is an output dependence.
195ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool Dependence::isOutput() const {
196ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
197ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
198ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
199ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
200ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Returns true if this is an flow (aka true)  dependence.
201ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool Dependence::isFlow() const {
202ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
203ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
204ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
205ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
206ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Returns true if this is an anti dependence.
207ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool Dependence::isAnti() const {
208ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
209ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
210ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
211ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
212ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Returns true if a particular level is scalar; that is,
213ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// if no subscript in the source or destination mention the induction
214ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// variable associated with the loop at this level.
215ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Leave this out of line, so it will serve as a virtual method anchor
216ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool Dependence::isScalar(unsigned level) const {
217ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return false;
218ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
219ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
220ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
221ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//===----------------------------------------------------------------------===//
222ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// FullDependence methods
223ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2247372a7d5f87bf1ff65d07f25bae037ddc4df994dSebastian PopFullDependence::FullDependence(Instruction *Source,
2257372a7d5f87bf1ff65d07f25bae037ddc4df994dSebastian Pop                               Instruction *Destination,
226ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                               bool PossiblyLoopIndependent,
227ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                               unsigned CommonLevels) :
228ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Dependence(Source, Destination),
229ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Levels(CommonLevels),
230ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  LoopIndependent(PossiblyLoopIndependent) {
231ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Consistent = true;
232ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DV = CommonLevels ? new DVEntry[CommonLevels] : NULL;
233ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
234ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
235ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// The rest are simple getters that hide the implementation.
236ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
237ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// getDirection - Returns the direction associated with a particular level.
238ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popunsigned FullDependence::getDirection(unsigned Level) const {
239ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(0 < Level && Level <= Levels && "Level out of range");
240ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return DV[Level - 1].Direction;
241ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
242ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
243ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
244ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Returns the distance (or NULL) associated with a particular level.
245ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst SCEV *FullDependence::getDistance(unsigned Level) const {
246ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(0 < Level && Level <= Levels && "Level out of range");
247ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return DV[Level - 1].Distance;
248ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
249ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
250ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
251ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Returns true if a particular level is scalar; that is,
252ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// if no subscript in the source or destination mention the induction
253ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// variable associated with the loop at this level.
254ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool FullDependence::isScalar(unsigned Level) const {
255ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(0 < Level && Level <= Levels && "Level out of range");
256ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return DV[Level - 1].Scalar;
257ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
258ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
259ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
260ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Returns true if peeling the first iteration from this loop
261ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// will break this dependence.
262ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool FullDependence::isPeelFirst(unsigned Level) const {
263ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(0 < Level && Level <= Levels && "Level out of range");
264ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return DV[Level - 1].PeelFirst;
265ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
266ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
267ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
268ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Returns true if peeling the last iteration from this loop
269ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// will break this dependence.
270ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool FullDependence::isPeelLast(unsigned Level) const {
271ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(0 < Level && Level <= Levels && "Level out of range");
272ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return DV[Level - 1].PeelLast;
273ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
274ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
275ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
276ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Returns true if splitting this loop will break the dependence.
277ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool FullDependence::isSplitable(unsigned Level) const {
278ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(0 < Level && Level <= Levels && "Level out of range");
279ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return DV[Level - 1].Splitable;
280ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
281ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
282ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
283ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//===----------------------------------------------------------------------===//
284ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// DependenceAnalysis::Constraint methods
285ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
286ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If constraint is a point <X, Y>, returns X.
287ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Otherwise assert.
288ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst SCEV *DependenceAnalysis::Constraint::getX() const {
289ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(Kind == Point && "Kind should be Point");
290ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return A;
291ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
292ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
293ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
294ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If constraint is a point <X, Y>, returns Y.
295ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Otherwise assert.
296ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst SCEV *DependenceAnalysis::Constraint::getY() const {
297ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(Kind == Point && "Kind should be Point");
298ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return B;
299ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
300ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
301ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
302ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If constraint is a line AX + BY = C, returns A.
303ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Otherwise assert.
304ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst SCEV *DependenceAnalysis::Constraint::getA() const {
305ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert((Kind == Line || Kind == Distance) &&
306ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop         "Kind should be Line (or Distance)");
307ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return A;
308ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
309ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
310ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
311ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If constraint is a line AX + BY = C, returns B.
312ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Otherwise assert.
313ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst SCEV *DependenceAnalysis::Constraint::getB() const {
314ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert((Kind == Line || Kind == Distance) &&
315ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop         "Kind should be Line (or Distance)");
316ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return B;
317ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
318ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
319ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
320ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If constraint is a line AX + BY = C, returns C.
321ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Otherwise assert.
322ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst SCEV *DependenceAnalysis::Constraint::getC() const {
323ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert((Kind == Line || Kind == Distance) &&
324ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop         "Kind should be Line (or Distance)");
325ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return C;
326ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
327ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
328ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
329ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If constraint is a distance, returns D.
330ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Otherwise assert.
331ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst SCEV *DependenceAnalysis::Constraint::getD() const {
332ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(Kind == Distance && "Kind should be Distance");
333ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return SE->getNegativeSCEV(C);
334ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
335ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
336ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
337ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Returns the loop associated with this constraint.
338ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst Loop *DependenceAnalysis::Constraint::getAssociatedLoop() const {
339ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert((Kind == Distance || Kind == Line || Kind == Point) &&
340ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop         "Kind should be Distance, Line, or Point");
341ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return AssociatedLoop;
342ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
343ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
344ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
345ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid DependenceAnalysis::Constraint::setPoint(const SCEV *X,
346ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                              const SCEV *Y,
347ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                              const Loop *CurLoop) {
348ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Kind = Point;
349ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  A = X;
350ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  B = Y;
351ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  AssociatedLoop = CurLoop;
352ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
353ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
354ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
355ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid DependenceAnalysis::Constraint::setLine(const SCEV *AA,
356ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                             const SCEV *BB,
357ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                             const SCEV *CC,
358ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                             const Loop *CurLoop) {
359ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Kind = Line;
360ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  A = AA;
361ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  B = BB;
362ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  C = CC;
363ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  AssociatedLoop = CurLoop;
364ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
365ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
366ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
367ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid DependenceAnalysis::Constraint::setDistance(const SCEV *D,
368ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                                 const Loop *CurLoop) {
369ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Kind = Distance;
370ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  A = SE->getConstant(D->getType(), 1);
371ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  B = SE->getNegativeSCEV(A);
372ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  C = SE->getNegativeSCEV(D);
373ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  AssociatedLoop = CurLoop;
374ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
375ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
376ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
377ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid DependenceAnalysis::Constraint::setEmpty() {
378ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Kind = Empty;
379ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
380ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
381ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
382ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid DependenceAnalysis::Constraint::setAny(ScalarEvolution *NewSE) {
383ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  SE = NewSE;
384ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Kind = Any;
385ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
386ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
387ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
388ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// For debugging purposes. Dumps the constraint out to OS.
389ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid DependenceAnalysis::Constraint::dump(raw_ostream &OS) const {
390ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (isEmpty())
391ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    OS << " Empty\n";
392ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else if (isAny())
393ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    OS << " Any\n";
394ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else if (isPoint())
395ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
396ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else if (isDistance())
397ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    OS << " Distance is " << *getD() <<
398ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
399ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else if (isLine())
400ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    OS << " Line is " << *getA() << "*X + " <<
401ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      *getB() << "*Y = " << *getC() << "\n";
402ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else
403ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    llvm_unreachable("unknown constraint type in Constraint::dump");
404ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
405ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
406ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
407ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Updates X with the intersection
408ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// of the Constraints X and Y. Returns true if X has changed.
409ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Corresponds to Figure 4 from the paper
410ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
411ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//            Practical Dependence Testing
412ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//            Goff, Kennedy, Tseng
413ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//            PLDI 1991
414ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::intersectConstraints(Constraint *X,
415ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                              const Constraint *Y) {
416ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  ++DeltaApplications;
417ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\tintersect constraints\n");
418ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
419ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
420ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(!Y->isPoint() && "Y must not be a Point");
421ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (X->isAny()) {
422ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (Y->isAny())
423ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return false;
424ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    *X = *Y;
425ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return true;
426ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
427ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (X->isEmpty())
428ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false;
429ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (Y->isEmpty()) {
430ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    X->setEmpty();
431ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return true;
432ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
433ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
434ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (X->isDistance() && Y->isDistance()) {
435ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    intersect 2 distances\n");
436ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
437ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return false;
438ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
439ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      X->setEmpty();
440ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++DeltaSuccesses;
441ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return true;
442ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
443ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // Hmmm, interesting situation.
444ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // I guess if either is constant, keep it and ignore the other.
445ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isa<SCEVConstant>(Y->getD())) {
446ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      *X = *Y;
447ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return true;
448ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
449ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false;
450ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
451ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
452ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // At this point, the pseudo-code in Figure 4 of the paper
453ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // checks if (X->isPoint() && Y->isPoint()).
454ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // This case can't occur in our implementation,
455ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // since a Point can only arise as the result of intersecting
456ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // two Line constraints, and the right-hand value, Y, is never
457ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // the result of an intersection.
458ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(!(X->isPoint() && Y->isPoint()) &&
459ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop         "We shouldn't ever see X->isPoint() && Y->isPoint()");
460ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
461ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (X->isLine() && Y->isLine()) {
462ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    intersect 2 lines\n");
463ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
464ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
465ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
466ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // slopes are equal, so lines are parallel
467ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t\tsame slope\n");
468ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Prod1 = SE->getMulExpr(X->getC(), Y->getB());
469ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Prod2 = SE->getMulExpr(X->getB(), Y->getC());
470ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
471ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        return false;
472ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
473ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        X->setEmpty();
474ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        ++DeltaSuccesses;
475ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        return true;
476ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
477ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return false;
478ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
479ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
480ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // slopes differ, so lines intersect
481ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t\tdifferent slopes\n");
482ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
483ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
484ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
485ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
486ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
487ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
488ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEVConstant *C1A2_C2A1 =
489ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
490ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEVConstant *C1B2_C2B1 =
491ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
492ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEVConstant *A1B2_A2B1 =
493ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
494ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEVConstant *A2B1_A1B2 =
495ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
496ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (!C1B2_C2B1 || !C1A2_C2A1 ||
497ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          !A1B2_A2B1 || !A2B1_A1B2)
498ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        return false;
499ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      APInt Xtop = C1B2_C2B1->getValue()->getValue();
500ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      APInt Xbot = A1B2_A2B1->getValue()->getValue();
501ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      APInt Ytop = C1A2_C2A1->getValue()->getValue();
502ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      APInt Ybot = A2B1_A1B2->getValue()->getValue();
503ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
504ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
505ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
506ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
507ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      APInt Xq = Xtop; // these need to be initialized, even
508ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      APInt Xr = Xtop; // though they're just going to be overwritten
509ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      APInt::sdivrem(Xtop, Xbot, Xq, Xr);
510ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      APInt Yq = Ytop;
51162d6fa5e8f9a3ffd270a6b08230ff61cae849dcfJakub Staszak      APInt Yr = Ytop;
512ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      APInt::sdivrem(Ytop, Ybot, Yq, Yr);
513ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (Xr != 0 || Yr != 0) {
514ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        X->setEmpty();
515ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        ++DeltaSuccesses;
516ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        return true;
517ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
518ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
519ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (Xq.slt(0) || Yq.slt(0)) {
520ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        X->setEmpty();
521ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        ++DeltaSuccesses;
522ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        return true;
523ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
524ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (const SCEVConstant *CUB =
525ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
526ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        APInt UpperBound = CUB->getValue()->getValue();
527ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
528ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
529ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          X->setEmpty();
530ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          ++DeltaSuccesses;
531ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          return true;
532ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
533ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
534ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      X->setPoint(SE->getConstant(Xq),
535ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                  SE->getConstant(Yq),
536ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                  X->getAssociatedLoop());
537ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++DeltaSuccesses;
538ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return true;
539ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
540ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false;
541ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
542ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
543ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // if (X->isLine() && Y->isPoint()) This case can't occur.
544ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
545ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
546ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (X->isPoint() && Y->isLine()) {
547ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    intersect Point and Line\n");
548ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
549ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
550ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
551ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
552ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return false;
553ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
554ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      X->setEmpty();
555ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++DeltaSuccesses;
556ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return true;
557ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
558ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false;
559ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
560ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
561ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  llvm_unreachable("shouldn't reach the end of Constraint intersection");
562ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return false;
563ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
564ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
565ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
566ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//===----------------------------------------------------------------------===//
567ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// DependenceAnalysis methods
568ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
569ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// For debugging purposes. Dumps a dependence to OS.
570ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid Dependence::dump(raw_ostream &OS) const {
571ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  bool Splitable = false;
572ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (isConfused())
573ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    OS << "confused";
574ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else {
575ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isConsistent())
576ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      OS << "consistent ";
577ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isFlow())
578ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      OS << "flow";
579ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else if (isOutput())
580ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      OS << "output";
581ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else if (isAnti())
582ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      OS << "anti";
583ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else if (isInput())
584ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      OS << "input";
585ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    unsigned Levels = getLevels();
586a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs    OS << " [";
587a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs    for (unsigned II = 1; II <= Levels; ++II) {
588a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs      if (isSplitable(II))
589a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs        Splitable = true;
590a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs      if (isPeelFirst(II))
591a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs        OS << 'p';
592a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs      const SCEV *Distance = getDistance(II);
593a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs      if (Distance)
594a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs        OS << *Distance;
595a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs      else if (isScalar(II))
596a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs        OS << "S";
597a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs      else {
598a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs        unsigned Direction = getDirection(II);
599a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs        if (Direction == DVEntry::ALL)
600a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs          OS << "*";
601ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        else {
602a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs          if (Direction & DVEntry::LT)
603a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs            OS << "<";
604a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs          if (Direction & DVEntry::EQ)
605a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs            OS << "=";
606a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs          if (Direction & DVEntry::GT)
607a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs            OS << ">";
608ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
609ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
610a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs      if (isPeelLast(II))
611a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs        OS << 'p';
612a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs      if (II < Levels)
613a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs        OS << " ";
614ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
615a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs    if (isLoopIndependent())
616a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs      OS << "|<";
617a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs    OS << "]";
618a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs    if (Splitable)
619a4eff77e37a59665b604cb8a644d66796b5622d4Preston Briggs      OS << " splitable";
620ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
621ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  OS << "!\n";
622ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
623ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
624ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
625ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
626ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popstatic
627ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopAliasAnalysis::AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
628ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                                  const Value *A,
629ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                                  const Value *B) {
630ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const Value *AObj = GetUnderlyingObject(A);
631ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const Value *BObj = GetUnderlyingObject(B);
632ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return AA->alias(AObj, AA->getTypeStoreSize(AObj->getType()),
633ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                   BObj, AA->getTypeStoreSize(BObj->getType()));
634ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
635ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
636ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
637ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Returns true if the load or store can be analyzed. Atomic and volatile
638ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// operations have properties which this analysis does not understand.
639ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popstatic
640ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool isLoadOrStore(const Instruction *I) {
641ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
642ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return LI->isUnordered();
643ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
644ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return SI->isUnordered();
645ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return false;
646ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
647ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
648ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
649ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popstatic
6507372a7d5f87bf1ff65d07f25bae037ddc4df994dSebastian PopValue *getPointerOperand(Instruction *I) {
6517372a7d5f87bf1ff65d07f25bae037ddc4df994dSebastian Pop  if (LoadInst *LI = dyn_cast<LoadInst>(I))
652ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return LI->getPointerOperand();
6537372a7d5f87bf1ff65d07f25bae037ddc4df994dSebastian Pop  if (StoreInst *SI = dyn_cast<StoreInst>(I))
654ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return SI->getPointerOperand();
655ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  llvm_unreachable("Value is not load or store instruction");
656ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return 0;
657ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
658ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
659ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
660ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Examines the loop nesting of the Src and Dst
661ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// instructions and establishes their shared loops. Sets the variables
662ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// CommonLevels, SrcLevels, and MaxLevels.
663ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// The source and destination instructions needn't be contained in the same
664ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// loop. The routine establishNestingLevels finds the level of most deeply
665ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// nested loop that contains them both, CommonLevels. An instruction that's
666ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// not contained in a loop is at level = 0. MaxLevels is equal to the level
667ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// of the source plus the level of the destination, minus CommonLevels.
668ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// This lets us allocate vectors MaxLevels in length, with room for every
669ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// distinct loop referenced in both the source and destination subscripts.
670ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// The variable SrcLevels is the nesting depth of the source instruction.
671ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// It's used to help calculate distinct loops referenced by the destination.
672ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Here's the map from loops to levels:
673ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//            0 - unused
674ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//            1 - outermost common loop
675ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//          ... - other common loops
676ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// CommonLevels - innermost common loop
677ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//          ... - loops containing Src but not Dst
678ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    SrcLevels - innermost loop containing Src but not Dst
679ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//          ... - loops containing Dst but not Src
680ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    MaxLevels - innermost loops containing Dst but not Src
681ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Consider the follow code fragment:
682ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//   for (a = ...) {
683ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//     for (b = ...) {
684ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//       for (c = ...) {
685ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//         for (d = ...) {
686ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//           A[] = ...;
687ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//         }
688ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//       }
689ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//       for (e = ...) {
690ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//         for (f = ...) {
691ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//           for (g = ...) {
692ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//             ... = A[];
693ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//           }
694ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//         }
695ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//       }
696ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//     }
697ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//   }
698ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If we're looking at the possibility of a dependence between the store
699ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// to A (the Src) and the load from A (the Dst), we'll note that they
700ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// have 2 loops in common, so CommonLevels will equal 2 and the direction
701ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
702ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// A map from loop names to loop numbers would look like
703ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//     a - 1
704ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//     b - 2 = CommonLevels
705ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//     c - 3
706ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//     d - 4 = SrcLevels
707ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//     e - 5
708ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//     f - 6
709ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//     g - 7 = MaxLevels
710ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid DependenceAnalysis::establishNestingLevels(const Instruction *Src,
711ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                                const Instruction *Dst) {
712ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const BasicBlock *SrcBlock = Src->getParent();
713ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const BasicBlock *DstBlock = Dst->getParent();
714ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
715ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  unsigned DstLevel = LI->getLoopDepth(DstBlock);
716ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
717ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const Loop *DstLoop = LI->getLoopFor(DstBlock);
718ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  SrcLevels = SrcLevel;
719ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  MaxLevels = SrcLevel + DstLevel;
720ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  while (SrcLevel > DstLevel) {
721ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    SrcLoop = SrcLoop->getParentLoop();
722ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    SrcLevel--;
723ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
724ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  while (DstLevel > SrcLevel) {
725ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DstLoop = DstLoop->getParentLoop();
726ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DstLevel--;
727ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
728ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  while (SrcLoop != DstLoop) {
729ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    SrcLoop = SrcLoop->getParentLoop();
730ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DstLoop = DstLoop->getParentLoop();
731ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    SrcLevel--;
732ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
733ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  CommonLevels = SrcLevel;
734ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  MaxLevels -= CommonLevels;
735ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
736ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
737ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
738ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Given one of the loops containing the source, return
739ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// its level index in our numbering scheme.
740ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popunsigned DependenceAnalysis::mapSrcLoop(const Loop *SrcLoop) const {
741ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return SrcLoop->getLoopDepth();
742ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
743ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
744ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
745ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Given one of the loops containing the destination,
746ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// return its level index in our numbering scheme.
747ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popunsigned DependenceAnalysis::mapDstLoop(const Loop *DstLoop) const {
748ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  unsigned D = DstLoop->getLoopDepth();
749ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (D > CommonLevels)
750ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return D - CommonLevels + SrcLevels;
751ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else
752ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return D;
753ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
754ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
755ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
756ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Returns true if Expression is loop invariant in LoopNest.
757ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::isLoopInvariant(const SCEV *Expression,
758ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                         const Loop *LoopNest) const {
759ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (!LoopNest)
760ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return true;
761ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return SE->isLoopInvariant(Expression, LoopNest) &&
762ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    isLoopInvariant(Expression, LoopNest->getParentLoop());
763ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
764ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
765ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
766ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
767ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Finds the set of loops from the LoopNest that
768ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// have a level <= CommonLevels and are referred to by the SCEV Expression.
769ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid DependenceAnalysis::collectCommonLoops(const SCEV *Expression,
770ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                            const Loop *LoopNest,
771ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                            SmallBitVector &Loops) const {
772ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  while (LoopNest) {
773ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    unsigned Level = LoopNest->getLoopDepth();
774ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
775ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Loops.set(Level);
776ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    LoopNest = LoopNest->getParentLoop();
777ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
778ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
779ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
780ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
781ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// removeMatchingExtensions - Examines a subscript pair.
782ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If the source and destination are identically sign (or zero)
783ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// extended, it strips off the extension in an effect to simplify
784ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// the actual analysis.
785ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid DependenceAnalysis::removeMatchingExtensions(Subscript *Pair) {
786ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Src = Pair->Src;
787ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Dst = Pair->Dst;
788ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
789ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
790ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
791ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
792ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (SrcCast->getType() == DstCast->getType()) {
793ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Pair->Src = SrcCast->getOperand();
794ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Pair->Dst = DstCast->getOperand();
795ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
796ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
797ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
798ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
799ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
800ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Examine the scev and return true iff it's linear.
801ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Collect any loops mentioned in the set of "Loops".
802ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::checkSrcSubscript(const SCEV *Src,
803ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                           const Loop *LoopNest,
804ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                           SmallBitVector &Loops) {
805ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
806ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (!AddRec)
807ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return isLoopInvariant(Src, LoopNest);
808ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Start = AddRec->getStart();
809ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Step = AddRec->getStepRecurrence(*SE);
810ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (!isLoopInvariant(Step, LoopNest))
811ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false;
812ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Loops.set(mapSrcLoop(AddRec->getLoop()));
813ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return checkSrcSubscript(Start, LoopNest, Loops);
814ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
815ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
816ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
817ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
818ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Examine the scev and return true iff it's linear.
819ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Collect any loops mentioned in the set of "Loops".
820ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::checkDstSubscript(const SCEV *Dst,
821ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                           const Loop *LoopNest,
822ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                           SmallBitVector &Loops) {
823ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
824ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (!AddRec)
825ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return isLoopInvariant(Dst, LoopNest);
826ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Start = AddRec->getStart();
827ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Step = AddRec->getStepRecurrence(*SE);
828ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (!isLoopInvariant(Step, LoopNest))
829ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false;
830ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Loops.set(mapDstLoop(AddRec->getLoop()));
831ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return checkDstSubscript(Start, LoopNest, Loops);
832ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
833ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
834ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
835ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Examines the subscript pair (the Src and Dst SCEVs)
836ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
837ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Collects the associated loops in a set.
838ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopDependenceAnalysis::Subscript::ClassificationKind
839ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopDependenceAnalysis::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
840ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                 const SCEV *Dst, const Loop *DstLoopNest,
841ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                 SmallBitVector &Loops) {
842ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  SmallBitVector SrcLoops(MaxLevels + 1);
843ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  SmallBitVector DstLoops(MaxLevels + 1);
844ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
845ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return Subscript::NonLinear;
846ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
847ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return Subscript::NonLinear;
848ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Loops = SrcLoops;
849ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Loops |= DstLoops;
850ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  unsigned N = Loops.count();
851ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (N == 0)
852ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return Subscript::ZIV;
853ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (N == 1)
854ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return Subscript::SIV;
855ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (N == 2 && (SrcLoops.count() == 0 ||
856ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                 DstLoops.count() == 0 ||
857ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
858ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return Subscript::RDIV;
859ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return Subscript::MIV;
860ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
861ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
862ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
863ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// A wrapper around SCEV::isKnownPredicate.
864ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Looks for cases where we're interested in comparing for equality.
865ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If both X and Y have been identically sign or zero extended,
866ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// it strips off the (confusing) extensions before invoking
867ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
868ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// will be similarly updated.
869ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
870ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If SCEV::isKnownPredicate can't prove the predicate,
871ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// we try simple subtraction, which seems to help in some cases
872ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// involving symbolics.
873ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::isKnownPredicate(ICmpInst::Predicate Pred,
874ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                          const SCEV *X,
875ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                          const SCEV *Y) const {
876ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (Pred == CmpInst::ICMP_EQ ||
877ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Pred == CmpInst::ICMP_NE) {
878ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if ((isa<SCEVSignExtendExpr>(X) &&
879ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop         isa<SCEVSignExtendExpr>(Y)) ||
880ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        (isa<SCEVZeroExtendExpr>(X) &&
881ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop         isa<SCEVZeroExtendExpr>(Y))) {
882ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
883ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
884ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEV *Xop = CX->getOperand();
885ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEV *Yop = CY->getOperand();
886ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (Xop->getType() == Yop->getType()) {
887ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        X = Xop;
888ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        Y = Yop;
889ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
890ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
891ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
892ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (SE->isKnownPredicate(Pred, X, Y))
893ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return true;
894ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // If SE->isKnownPredicate can't prove the condition,
895ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // we try the brute-force approach of subtracting
896ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // and testing the difference.
897ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // By testing with SE->isKnownPredicate first, we avoid
898ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // the possibility of overflow when the arguments are constants.
899ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Delta = SE->getMinusSCEV(X, Y);
900ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  switch (Pred) {
901ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  case CmpInst::ICMP_EQ:
902ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return Delta->isZero();
903ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  case CmpInst::ICMP_NE:
904ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return SE->isKnownNonZero(Delta);
905ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  case CmpInst::ICMP_SGE:
906ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return SE->isKnownNonNegative(Delta);
907ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  case CmpInst::ICMP_SLE:
908ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return SE->isKnownNonPositive(Delta);
909ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  case CmpInst::ICMP_SGT:
910ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return SE->isKnownPositive(Delta);
911ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  case CmpInst::ICMP_SLT:
912ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return SE->isKnownNegative(Delta);
913ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  default:
914ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    llvm_unreachable("unexpected predicate in isKnownPredicate");
915ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
916ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
917ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
918ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
919ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// All subscripts are all the same type.
920ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Loop bound may be smaller (e.g., a char).
921ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Should zero extend loop bound, since it's always >= 0.
922ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// This routine collects upper bound and extends if needed.
923ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Return null if no bound available.
924ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst SCEV *DependenceAnalysis::collectUpperBound(const Loop *L,
925ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                                  Type *T) const {
926ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
927ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *UB = SE->getBackedgeTakenCount(L);
928ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return SE->getNoopOrZeroExtend(UB, T);
929ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
930ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return NULL;
931ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
932ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
933ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
934ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
935ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If the cast fails, returns NULL.
936ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst SCEVConstant *DependenceAnalysis::collectConstantUpperBound(const Loop *L,
937ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                                                  Type *T
938ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                                                  ) const {
939ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (const SCEV *UB = collectUpperBound(L, T))
940ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return dyn_cast<SCEVConstant>(UB);
941ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return NULL;
942ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
943ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
944ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
945ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// testZIV -
946ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// When we have a pair of subscripts of the form [c1] and [c2],
947ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// where c1 and c2 are both loop invariant, we attack it using
948ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// the ZIV test. Basically, we test by comparing the two values,
949ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// but there are actually three possible results:
950ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// 1) the values are equal, so there's a dependence
951ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// 2) the values are different, so there's no dependence
952ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// 3) the values might be equal, so we have to assume a dependence.
953ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
954ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Return true if dependence disproved.
955ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::testZIV(const SCEV *Src,
956ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                 const SCEV *Dst,
957ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                 FullDependence &Result) const {
958ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    src = " << *Src << "\n");
959ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    dst = " << *Dst << "\n");
960ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  ++ZIVapplications;
961ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
962ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "    provably dependent\n");
963ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false; // provably dependent
964ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
965ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
966ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "    provably independent\n");
967ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++ZIVindependence;
968ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return true; // provably independent
969ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
970ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    possibly dependent\n");
971ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Result.Consistent = false;
972ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return false; // possibly dependent
973ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
974ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
975ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
976ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// strongSIVtest -
977ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// From the paper, Practical Dependence Testing, Section 4.2.1
978ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
979ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
980ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// where i is an induction variable, c1 and c2 are loop invariant,
981ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//  and a is a constant, we can solve it exactly using the Strong SIV test.
982ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
983ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Can prove independence. Failing that, can compute distance (and direction).
984ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// In the presence of symbolic terms, we can sometimes make progress.
985ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
986ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If there's a dependence,
987ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
988ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    c1 + a*i = c2 + a*i'
989ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
990ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// The dependence distance is
991ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
992ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    d = i' - i = (c1 - c2)/a
993ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
994ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// A dependence only exists if d is an integer and abs(d) <= U, where U is the
995ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// loop's upper bound. If a dependence exists, the dependence direction is
996ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// defined as
997ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
998ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//                { < if d > 0
999ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    direction = { = if d = 0
1000ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//                { > if d < 0
1001ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1002ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Return true if dependence disproved.
1003ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::strongSIVtest(const SCEV *Coeff,
1004ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                       const SCEV *SrcConst,
1005ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                       const SCEV *DstConst,
1006ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                       const Loop *CurLoop,
1007ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                       unsigned Level,
1008ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                       FullDependence &Result,
1009ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                       Constraint &NewConstraint) const {
1010ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\tStrong SIV test\n");
1011ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
1012ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1013ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
1014ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1015ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
1016ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1017ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  ++StrongSIVapplications;
1018ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(0 < Level && Level <= CommonLevels && "level out of range");
1019ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Level--;
1020ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1021ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1022ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    Delta = " << *Delta);
1023ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1024ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1025ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // check that |Delta| < iteration count
1026ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1027ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
1028ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1029ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *AbsDelta =
1030ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1031ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *AbsCoeff =
1032ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1033ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1034ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1035ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // Distance greater than trip count - no dependence
1036ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++StrongSIVindependence;
1037ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++StrongSIVsuccesses;
1038ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return true;
1039ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1040ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1041ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1042ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Can we compute distance?
1043ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1044ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt ConstDelta = cast<SCEVConstant>(Delta)->getValue()->getValue();
1045ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getValue()->getValue();
1046ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt Distance  = ConstDelta; // these need to be initialized
1047ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt Remainder = ConstDelta;
1048ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1049ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1050ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1051ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // Make sure Coeff divides Delta exactly
1052ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (Remainder != 0) {
1053ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // Coeff doesn't divide Distance, no dependence
1054ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++StrongSIVindependence;
1055ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++StrongSIVsuccesses;
1056ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return true;
1057ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1058ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Result.DV[Level].Distance = SE->getConstant(Distance);
1059ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1060ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (Distance.sgt(0))
1061ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1062ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else if (Distance.slt(0))
1063ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1064ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else
1065ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1066ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++StrongSIVsuccesses;
1067ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1068ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else if (Delta->isZero()) {
1069ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // since 0/X == 0
1070ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Result.DV[Level].Distance = Delta;
1071ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    NewConstraint.setDistance(Delta, CurLoop);
1072ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1073ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++StrongSIVsuccesses;
1074ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1075ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else {
1076ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (Coeff->isOne()) {
1077ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
1078ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Result.DV[Level].Distance = Delta; // since X/1 == X
1079ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      NewConstraint.setDistance(Delta, CurLoop);
1080ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1081ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else {
1082ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Result.Consistent = false;
1083ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      NewConstraint.setLine(Coeff,
1084ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                            SE->getNegativeSCEV(Coeff),
1085ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                            SE->getNegativeSCEV(Delta), CurLoop);
1086ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1087ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1088ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // maybe we can get a useful direction
1089ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
1090ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1091ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1092ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1093ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1094ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // The double negatives above are confusing.
1095ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // It helps to read !SE->isKnownNonZero(Delta)
1096ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // as "Delta might be Zero"
1097ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    unsigned NewDirection = Dependence::DVEntry::NONE;
1098ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if ((DeltaMaybePositive && CoeffMaybePositive) ||
1099ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        (DeltaMaybeNegative && CoeffMaybeNegative))
1100ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      NewDirection = Dependence::DVEntry::LT;
1101ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (DeltaMaybeZero)
1102ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      NewDirection |= Dependence::DVEntry::EQ;
1103ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1104ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        (DeltaMaybePositive && CoeffMaybeNegative))
1105ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      NewDirection |= Dependence::DVEntry::GT;
1106ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (NewDirection < Result.DV[Level].Direction)
1107ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++StrongSIVsuccesses;
1108ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Result.DV[Level].Direction &= NewDirection;
1109ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1110ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return false;
1111ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
1112ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1113ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1114ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// weakCrossingSIVtest -
1115ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// From the paper, Practical Dependence Testing, Section 4.2.2
1116ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1117ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1118ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// where i is an induction variable, c1 and c2 are loop invariant,
1119ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// and a is a constant, we can solve it exactly using the
1120ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Weak-Crossing SIV test.
1121ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1122ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Given c1 + a*i = c2 - a*i', we can look for the intersection of
1123ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// the two lines, where i = i', yielding
1124ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1125ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    c1 + a*i = c2 - a*i
1126ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    2a*i = c2 - c1
1127ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    i = (c2 - c1)/2a
1128ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1129ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If i < 0, there is no dependence.
1130ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If i > upperbound, there is no dependence.
1131ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1132ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If i = upperbound, there's a dependence with distance = 0.
1133ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If i is integral, there's a dependence (all directions).
1134ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If the non-integer part = 1/2, there's a dependence (<> directions).
1135ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Otherwise, there's no dependence.
1136ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1137ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Can prove independence. Failing that,
1138ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// can sometimes refine the directions.
1139ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Can determine iteration for splitting.
1140ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1141ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Return true if dependence disproved.
1142ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::weakCrossingSIVtest(const SCEV *Coeff,
1143ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                             const SCEV *SrcConst,
1144ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                             const SCEV *DstConst,
1145ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                             const Loop *CurLoop,
1146ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                             unsigned Level,
1147ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                             FullDependence &Result,
1148ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                             Constraint &NewConstraint,
1149ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                             const SCEV *&SplitIter) const {
1150ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1151ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
1152ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1153ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1154ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  ++WeakCrossingSIVapplications;
1155ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(0 < Level && Level <= CommonLevels && "Level out of range");
1156ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Level--;
1157ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Result.Consistent = false;
1158ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1159ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1160ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1161ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (Delta->isZero()) {
1162b4164284b58842571df1e3ca1467246cde8664ccSebastian Pop    Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1163b4164284b58842571df1e3ca1467246cde8664ccSebastian Pop    Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1164ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++WeakCrossingSIVsuccesses;
1165ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (!Result.DV[Level].Direction) {
1166ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++WeakCrossingSIVindependence;
1167ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return true;
1168ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1169ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Result.DV[Level].Distance = Delta; // = 0
1170ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false;
1171ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1172ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1173ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (!ConstCoeff)
1174ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false;
1175ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1176ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Result.DV[Level].Splitable = true;
1177ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (SE->isKnownNegative(ConstCoeff)) {
1178ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1179ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    assert(ConstCoeff &&
1180ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop           "dynamic cast of negative of ConstCoeff should yield constant");
1181ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Delta = SE->getNegativeSCEV(Delta);
1182ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1183ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1184ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1185ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // compute SplitIter for use by DependenceAnalysis::getSplitIteration()
1186ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  SplitIter =
1187ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    SE->getUDivExpr(SE->getSMaxExpr(SE->getConstant(Delta->getType(), 0),
1188ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                    Delta),
1189ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                    SE->getMulExpr(SE->getConstant(Delta->getType(), 2),
1190ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                   ConstCoeff));
1191ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");
1192ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1193ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1194ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (!ConstDelta)
1195ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false;
1196ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1197ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // We're certain that ConstCoeff > 0; therefore,
1198ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // if Delta < 0, then no dependence.
1199ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1200ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
1201ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (SE->isKnownNegative(Delta)) {
1202ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // No dependence, Delta < 0
1203ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++WeakCrossingSIVindependence;
1204ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++WeakCrossingSIVsuccesses;
1205ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return true;
1206ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1207ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1208ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // We're certain that Delta > 0 and ConstCoeff > 0.
1209ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Check Delta/(2*ConstCoeff) against upper loop bound
1210ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1211ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1212ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1213ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1214ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                    ConstantTwo);
1215ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
1216ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1217ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // Delta too big, no dependence
1218ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++WeakCrossingSIVindependence;
1219ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++WeakCrossingSIVsuccesses;
1220ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return true;
1221ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1222ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1223ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // i = i' = UB
1224b4164284b58842571df1e3ca1467246cde8664ccSebastian Pop      Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1225b4164284b58842571df1e3ca1467246cde8664ccSebastian Pop      Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1226ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++WeakCrossingSIVsuccesses;
1227ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (!Result.DV[Level].Direction) {
1228ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        ++WeakCrossingSIVindependence;
1229ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        return true;
1230ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
1231ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Result.DV[Level].Splitable = false;
1232ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Result.DV[Level].Distance = SE->getConstant(Delta->getType(), 0);
1233ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return false;
1234ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1235ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1236ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1237ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // check that Coeff divides Delta
1238ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt APDelta = ConstDelta->getValue()->getValue();
1239ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt APCoeff = ConstCoeff->getValue()->getValue();
1240ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt Distance = APDelta; // these need to be initialzed
1241ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt Remainder = APDelta;
1242ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1243ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1244ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (Remainder != 0) {
1245ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // Coeff doesn't divide Delta, no dependence
1246ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++WeakCrossingSIVindependence;
1247ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++WeakCrossingSIVsuccesses;
1248ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return true;
1249ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1250ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1251ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1252ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1253ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt Two = APInt(Distance.getBitWidth(), 2, true);
1254ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Remainder = Distance.srem(Two);
1255ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1256ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (Remainder != 0) {
1257ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // Equal direction isn't possible
1258b4164284b58842571df1e3ca1467246cde8664ccSebastian Pop    Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
1259ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++WeakCrossingSIVsuccesses;
1260ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1261ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return false;
1262ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
1263ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1264ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1265ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Kirch's algorithm, from
1266ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1267ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//        Optimizing Supercompilers for Supercomputers
1268ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//        Michael Wolfe
1269ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//        MIT Press, 1989
1270ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1271ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Program 2.1, page 29.
1272ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Computes the GCD of AM and BM.
1273ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Also finds a solution to the equation ax - by = gdc(a, b).
1274ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Returns true iff the gcd divides Delta.
1275ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popstatic
1276ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool findGCD(unsigned Bits, APInt AM, APInt BM, APInt Delta,
1277ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop             APInt &G, APInt &X, APInt &Y) {
1278ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt A0(Bits, 1, true), A1(Bits, 0, true);
1279ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt B0(Bits, 0, true), B1(Bits, 1, true);
1280ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt G0 = AM.abs();
1281ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt G1 = BM.abs();
1282ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt Q = G0; // these need to be initialized
1283ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt R = G0;
1284ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt::sdivrem(G0, G1, Q, R);
1285ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  while (R != 0) {
1286ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1287ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1288ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    G0 = G1; G1 = R;
1289ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt::sdivrem(G0, G1, Q, R);
1290ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1291ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  G = G1;
1292ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    GCD = " << G << "\n");
1293ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  X = AM.slt(0) ? -A1 : A1;
1294ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Y = BM.slt(0) ? B1 : -B1;
1295ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1296ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // make sure gcd divides Delta
1297ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  R = Delta.srem(G);
1298ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (R != 0)
1299ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return true; // gcd doesn't divide Delta, no dependence
1300ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Q = Delta.sdiv(G);
1301ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  X *= Q;
1302ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Y *= Q;
1303ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return false;
1304ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
1305ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1306ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1307ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popstatic
1308ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopAPInt floorOfQuotient(APInt A, APInt B) {
1309ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt Q = A; // these need to be initialized
1310ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt R = A;
1311ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt::sdivrem(A, B, Q, R);
1312ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (R == 0)
1313ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return Q;
1314ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if ((A.sgt(0) && B.sgt(0)) ||
1315ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      (A.slt(0) && B.slt(0)))
1316ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return Q;
1317ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else
1318ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return Q - 1;
1319ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
1320ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1321ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1322ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popstatic
1323ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopAPInt ceilingOfQuotient(APInt A, APInt B) {
1324ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt Q = A; // these need to be initialized
1325ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt R = A;
1326ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt::sdivrem(A, B, Q, R);
1327ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (R == 0)
1328ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return Q;
1329ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if ((A.sgt(0) && B.sgt(0)) ||
1330ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      (A.slt(0) && B.slt(0)))
1331ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return Q + 1;
1332ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else
1333ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return Q;
1334ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
1335ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1336ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1337ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popstatic
1338ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopAPInt maxAPInt(APInt A, APInt B) {
1339ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return A.sgt(B) ? A : B;
1340ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
1341ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1342ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1343ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popstatic
1344ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopAPInt minAPInt(APInt A, APInt B) {
1345ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return A.slt(B) ? A : B;
1346ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
1347ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1348ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1349ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// exactSIVtest -
1350ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1351ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// where i is an induction variable, c1 and c2 are loop invariant, and a1
1352ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// and a2 are constant, we can solve it exactly using an algorithm developed
1353ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// by Banerjee and Wolfe. See Section 2.5.3 in
1354ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1355ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//        Optimizing Supercompilers for Supercomputers
1356ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//        Michael Wolfe
1357ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//        MIT Press, 1989
1358ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1359ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1360ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// so use them if possible. They're also a bit better with symbolics and,
1361ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// in the case of the strong SIV test, can compute Distances.
1362ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1363ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Return true if dependence disproved.
1364ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::exactSIVtest(const SCEV *SrcCoeff,
1365ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                      const SCEV *DstCoeff,
1366ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                      const SCEV *SrcConst,
1367ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                      const SCEV *DstConst,
1368ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                      const Loop *CurLoop,
1369ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                      unsigned Level,
1370ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                      FullDependence &Result,
1371ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                      Constraint &NewConstraint) const {
1372ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\tExact SIV test\n");
1373ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1374ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1375ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1376ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1377ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  ++ExactSIVapplications;
1378ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(0 < Level && Level <= CommonLevels && "Level out of range");
1379ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Level--;
1380ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Result.Consistent = false;
1381ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1382ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1383ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1384ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                        Delta, CurLoop);
1385ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1386ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1387ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1388ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1389ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false;
1390ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1391ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // find gcd
1392ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt G, X, Y;
1393ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt AM = ConstSrcCoeff->getValue()->getValue();
1394ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt BM = ConstDstCoeff->getValue()->getValue();
1395ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  unsigned Bits = AM.getBitWidth();
1396ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
1397ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // gcd doesn't divide Delta, no dependence
1398ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++ExactSIVindependence;
1399ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++ExactSIVsuccesses;
1400ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return true;
1401ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1402ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1403ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1404ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1405ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // since SCEV construction normalizes, LM = 0
1406ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt UM(Bits, 1, true);
1407ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  bool UMvalid = false;
1408ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // UM is perhaps unavailable, let's check
1409ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (const SCEVConstant *CUB =
1410ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      collectConstantUpperBound(CurLoop, Delta->getType())) {
1411ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    UM = CUB->getValue()->getValue();
1412ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    UM = " << UM << "\n");
1413ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    UMvalid = true;
1414ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1415ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1416ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt TU(APInt::getSignedMaxValue(Bits));
1417ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt TL(APInt::getSignedMinValue(Bits));
1418ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1419ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // test(BM/G, LM-X) and test(-BM/G, X-UM)
1420ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt TMUL = BM.sdiv(G);
1421ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (TMUL.sgt(0)) {
1422ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1423ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1424ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (UMvalid) {
1425ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
1426ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1427ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1428ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1429ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else {
1430ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1431ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1432ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (UMvalid) {
1433ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
1434ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1435ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1436ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1437ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1438ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1439ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  TMUL = AM.sdiv(G);
1440ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (TMUL.sgt(0)) {
1441ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1442ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1443ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (UMvalid) {
1444ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
1445ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1446ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1447ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1448ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else {
1449ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1450ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1451ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (UMvalid) {
1452ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
1453ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1454ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1455ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1456ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (TL.sgt(TU)) {
1457ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++ExactSIVindependence;
1458ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++ExactSIVsuccesses;
1459ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return true;
1460ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1461ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1462ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // explore directions
1463ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  unsigned NewDirection = Dependence::DVEntry::NONE;
1464ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1465ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // less than
1466ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt SaveTU(TU); // save these
1467ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt SaveTL(TL);
1468ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    exploring LT direction\n");
1469ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  TMUL = AM - BM;
1470ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (TMUL.sgt(0)) {
1471ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1472ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1473ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1474ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else {
1475ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
1476ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1477ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1478ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (TL.sle(TU)) {
1479ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    NewDirection |= Dependence::DVEntry::LT;
1480ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++ExactSIVsuccesses;
1481ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1482ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1483ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // equal
1484ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  TU = SaveTU; // restore
1485ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  TL = SaveTL;
1486ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    exploring EQ direction\n");
1487ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (TMUL.sgt(0)) {
1488ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
1489ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1490ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1491ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else {
1492ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
1493ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1494ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1495ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  TMUL = BM - AM;
1496ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (TMUL.sgt(0)) {
1497ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
1498ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1499ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1500ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else {
1501ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
1502ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1503ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1504ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (TL.sle(TU)) {
1505ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    NewDirection |= Dependence::DVEntry::EQ;
1506ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++ExactSIVsuccesses;
1507ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1508ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1509ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // greater than
1510ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  TU = SaveTU; // restore
1511ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  TL = SaveTL;
1512ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    exploring GT direction\n");
1513ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (TMUL.sgt(0)) {
1514ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1515ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1516ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1517ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else {
1518ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
1519ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1520ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1521ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (TL.sle(TU)) {
1522ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    NewDirection |= Dependence::DVEntry::GT;
1523ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++ExactSIVsuccesses;
1524ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1525ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1526ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // finished
1527ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Result.DV[Level].Direction &= NewDirection;
1528ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1529ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++ExactSIVindependence;
1530ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1531ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
1532ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1533ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1534ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1535ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Return true if the divisor evenly divides the dividend.
1536ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popstatic
1537ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool isRemainderZero(const SCEVConstant *Dividend,
1538ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                     const SCEVConstant *Divisor) {
1539ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt ConstDividend = Dividend->getValue()->getValue();
1540ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt ConstDivisor = Divisor->getValue()->getValue();
1541ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return ConstDividend.srem(ConstDivisor) == 0;
1542ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
1543ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1544ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1545ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// weakZeroSrcSIVtest -
1546ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// From the paper, Practical Dependence Testing, Section 4.2.2
1547ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1548ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1549ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// where i is an induction variable, c1 and c2 are loop invariant,
1550ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// and a is a constant, we can solve it exactly using the
1551ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Weak-Zero SIV test.
1552ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1553ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Given
1554ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1555ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    c1 = c2 + a*i
1556ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1557ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// we get
1558ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1559ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    (c1 - c2)/a = i
1560ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1561ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If i is not an integer, there's no dependence.
1562ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If i < 0 or > UB, there's no dependence.
1563ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If i = 0, the direction is <= and peeling the
1564ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// 1st iteration will break the dependence.
1565ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If i = UB, the direction is >= and peeling the
1566ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// last iteration will break the dependence.
1567ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Otherwise, the direction is *.
1568ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1569ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Can prove independence. Failing that, we can sometimes refine
1570ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// the directions. Can sometimes show that first or last
1571ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// iteration carries all the dependences (so worth peeling).
1572ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1573ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// (see also weakZeroDstSIVtest)
1574ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1575ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Return true if dependence disproved.
1576ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1577ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                            const SCEV *SrcConst,
1578ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                            const SCEV *DstConst,
1579ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                            const Loop *CurLoop,
1580ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                            unsigned Level,
1581ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                            FullDependence &Result,
1582ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                            Constraint &NewConstraint) const {
1583ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // For the WeakSIV test, it's possible the loop isn't common to
1584ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // the Src and Dst loops. If it isn't, then there's no need to
1585ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // record a direction.
1586ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1587ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
1588ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1589ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1590ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  ++WeakZeroSIVapplications;
1591ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(0 < Level && Level <= MaxLevels && "Level out of range");
1592ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Level--;
1593ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Result.Consistent = false;
1594ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1595ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  NewConstraint.setLine(SE->getConstant(Delta->getType(), 0),
1596ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                        DstCoeff, Delta, CurLoop);
1597ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1598ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1599ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (Level < CommonLevels) {
1600ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1601ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Result.DV[Level].PeelFirst = true;
1602ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++WeakZeroSIVsuccesses;
1603ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1604ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false; // dependences caused by first iteration
1605ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1606ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1607ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (!ConstCoeff)
1608ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false;
1609ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *AbsCoeff =
1610ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    SE->isKnownNegative(ConstCoeff) ?
1611ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1612ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *NewDelta =
1613ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1614ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1615ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // check that Delta/SrcCoeff < iteration count
1616ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // really check NewDelta < count*AbsCoeff
1617ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1618ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1619ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1620ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1621ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++WeakZeroSIVindependence;
1622ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++WeakZeroSIVsuccesses;
1623ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return true;
1624ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1625ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1626ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // dependences caused by last iteration
1627ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (Level < CommonLevels) {
1628ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1629ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        Result.DV[Level].PeelLast = true;
1630ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        ++WeakZeroSIVsuccesses;
1631ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
1632ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return false;
1633ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1634ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1635ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1636ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // check that Delta/SrcCoeff >= 0
1637ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // really check that NewDelta >= 0
1638ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (SE->isKnownNegative(NewDelta)) {
1639ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // No dependence, newDelta < 0
1640ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++WeakZeroSIVindependence;
1641ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++WeakZeroSIVsuccesses;
1642ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return true;
1643ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1644ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1645ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // if SrcCoeff doesn't divide Delta, then no dependence
1646ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (isa<SCEVConstant>(Delta) &&
1647ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1648ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++WeakZeroSIVindependence;
1649ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++WeakZeroSIVsuccesses;
1650ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return true;
1651ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1652ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return false;
1653ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
1654ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1655ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1656ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// weakZeroDstSIVtest -
1657ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// From the paper, Practical Dependence Testing, Section 4.2.2
1658ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1659ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1660ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// where i is an induction variable, c1 and c2 are loop invariant,
1661ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// and a is a constant, we can solve it exactly using the
1662ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Weak-Zero SIV test.
1663ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1664ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Given
1665ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1666ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    c1 + a*i = c2
1667ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1668ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// we get
1669ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1670ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    i = (c2 - c1)/a
1671ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1672ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If i is not an integer, there's no dependence.
1673ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If i < 0 or > UB, there's no dependence.
1674ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If i = 0, the direction is <= and peeling the
1675ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// 1st iteration will break the dependence.
1676ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If i = UB, the direction is >= and peeling the
1677ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// last iteration will break the dependence.
1678ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Otherwise, the direction is *.
1679ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1680ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Can prove independence. Failing that, we can sometimes refine
1681ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// the directions. Can sometimes show that first or last
1682ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// iteration carries all the dependences (so worth peeling).
1683ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1684ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// (see also weakZeroSrcSIVtest)
1685ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1686ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Return true if dependence disproved.
1687ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1688ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                            const SCEV *SrcConst,
1689ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                            const SCEV *DstConst,
1690ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                            const Loop *CurLoop,
1691ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                            unsigned Level,
1692ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                            FullDependence &Result,
1693ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                            Constraint &NewConstraint) const {
1694ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // For the WeakSIV test, it's possible the loop isn't common to the
1695ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Src and Dst loops. If it isn't, then there's no need to record a direction.
1696ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1697ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
1698ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1699ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1700ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  ++WeakZeroSIVapplications;
1701ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(0 < Level && Level <= SrcLevels && "Level out of range");
1702ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Level--;
1703ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Result.Consistent = false;
1704ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1705ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  NewConstraint.setLine(SrcCoeff, SE->getConstant(Delta->getType(), 0),
1706ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                        Delta, CurLoop);
1707ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1708ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1709ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (Level < CommonLevels) {
1710ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1711ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Result.DV[Level].PeelFirst = true;
1712ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++WeakZeroSIVsuccesses;
1713ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1714ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false; // dependences caused by first iteration
1715ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1716ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1717ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (!ConstCoeff)
1718ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false;
1719ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *AbsCoeff =
1720ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    SE->isKnownNegative(ConstCoeff) ?
1721ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1722ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *NewDelta =
1723ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1724ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1725ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // check that Delta/SrcCoeff < iteration count
1726ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // really check NewDelta < count*AbsCoeff
1727ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1728ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1729ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1730ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1731ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++WeakZeroSIVindependence;
1732ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++WeakZeroSIVsuccesses;
1733ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return true;
1734ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1735ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1736ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // dependences caused by last iteration
1737ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (Level < CommonLevels) {
1738ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1739ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        Result.DV[Level].PeelLast = true;
1740ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        ++WeakZeroSIVsuccesses;
1741ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
1742ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return false;
1743ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1744ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1745ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1746ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // check that Delta/SrcCoeff >= 0
1747ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // really check that NewDelta >= 0
1748ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (SE->isKnownNegative(NewDelta)) {
1749ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // No dependence, newDelta < 0
1750ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++WeakZeroSIVindependence;
1751ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++WeakZeroSIVsuccesses;
1752ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return true;
1753ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1754ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1755ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // if SrcCoeff doesn't divide Delta, then no dependence
1756ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (isa<SCEVConstant>(Delta) &&
1757ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1758ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++WeakZeroSIVindependence;
1759ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++WeakZeroSIVsuccesses;
1760ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return true;
1761ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1762ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return false;
1763ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
1764ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1765ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1766ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// exactRDIVtest - Tests the RDIV subscript pair for dependence.
1767ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Things of the form [c1 + a*i] and [c2 + b*j],
1768ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// where i and j are induction variable, c1 and c2 are loop invariant,
1769ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// and a and b are constants.
1770ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Returns true if any possible dependence is disproved.
1771e803d05bd87d1181c971fb719fef5638dd44ce99Benjamin Kramer// Marks the result as inconsistent.
1772ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1773ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::exactRDIVtest(const SCEV *SrcCoeff,
1774ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                       const SCEV *DstCoeff,
1775ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                       const SCEV *SrcConst,
1776ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                       const SCEV *DstConst,
1777ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                       const Loop *SrcLoop,
1778ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                       const Loop *DstLoop,
1779ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                       FullDependence &Result) const {
1780ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\tExact RDIV test\n");
1781ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1782ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1783ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1784ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1785ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  ++ExactRDIVapplications;
1786ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Result.Consistent = false;
1787ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1788ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1789ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1790ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1791ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1792ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1793ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false;
1794ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1795ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // find gcd
1796ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt G, X, Y;
1797ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt AM = ConstSrcCoeff->getValue()->getValue();
1798ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt BM = ConstDstCoeff->getValue()->getValue();
1799ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  unsigned Bits = AM.getBitWidth();
1800ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
1801ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // gcd doesn't divide Delta, no dependence
1802ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++ExactRDIVindependence;
1803ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return true;
1804ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1805ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1806ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1807ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1808ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // since SCEV construction seems to normalize, LM = 0
1809ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt SrcUM(Bits, 1, true);
1810ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  bool SrcUMvalid = false;
1811ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // SrcUM is perhaps unavailable, let's check
1812ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (const SCEVConstant *UpperBound =
1813ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      collectConstantUpperBound(SrcLoop, Delta->getType())) {
1814ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    SrcUM = UpperBound->getValue()->getValue();
1815ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
1816ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    SrcUMvalid = true;
1817ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1818ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1819ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt DstUM(Bits, 1, true);
1820ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  bool DstUMvalid = false;
1821ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // UM is perhaps unavailable, let's check
1822ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (const SCEVConstant *UpperBound =
1823ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      collectConstantUpperBound(DstLoop, Delta->getType())) {
1824ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DstUM = UpperBound->getValue()->getValue();
1825ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
1826ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DstUMvalid = true;
1827ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1828ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1829ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt TU(APInt::getSignedMaxValue(Bits));
1830ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt TL(APInt::getSignedMinValue(Bits));
1831ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1832ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // test(BM/G, LM-X) and test(-BM/G, X-UM)
1833ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt TMUL = BM.sdiv(G);
1834ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (TMUL.sgt(0)) {
1835ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1836ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1837ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (SrcUMvalid) {
1838ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
1839ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1840ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1841ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1842ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else {
1843ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1844ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1845ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (SrcUMvalid) {
1846ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1847ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1848ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1849ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1850ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1851ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1852ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  TMUL = AM.sdiv(G);
1853ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (TMUL.sgt(0)) {
1854ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1855ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1856ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (DstUMvalid) {
1857ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
1858ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1859ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1860ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1861ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else {
1862ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1863ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1864ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (DstUMvalid) {
1865ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1866ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1867ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1868ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1869ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (TL.sgt(TU))
1870ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++ExactRDIVindependence;
1871ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return TL.sgt(TU);
1872ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
1873ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1874ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
1875ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// symbolicRDIVtest -
1876ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// In Section 4.5 of the Practical Dependence Testing paper,the authors
1877ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// introduce a special case of Banerjee's Inequalities (also called the
1878ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1879ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// particularly cases with symbolics. Since it's only able to disprove
1880ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// dependence (not compute distances or directions), we'll use it as a
1881ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// fall back for the other tests.
1882ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1883ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1884ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// where i and j are induction variables and c1 and c2 are loop invariants,
1885ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// we can use the symbolic tests to disprove some dependences, serving as a
1886ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// backup for the RDIV test. Note that i and j can be the same variable,
1887ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// letting this test serve as a backup for the various SIV tests.
1888ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1889ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1890ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1891ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// loop bounds for the i and j loops, respectively. So, ...
1892ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1893ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// c1 + a1*i = c2 + a2*j
1894ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// a1*i - a2*j = c2 - c1
1895ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1896ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// To test for a dependence, we compute c2 - c1 and make sure it's in the
1897ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// range of the maximum and minimum possible values of a1*i - a2*j.
1898ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Considering the signs of a1 and a2, we have 4 possible cases:
1899ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1900ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// 1) If a1 >= 0 and a2 >= 0, then
1901ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
1902ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//              -a2*N2 <= c2 - c1 <= a1*N1
1903ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1904ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// 2) If a1 >= 0 and a2 <= 0, then
1905ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
1906ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//                  0 <= c2 - c1 <= a1*N1 - a2*N2
1907ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1908ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// 3) If a1 <= 0 and a2 >= 0, then
1909ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
1910ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//        a1*N1 - a2*N2 <= c2 - c1 <= 0
1911ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1912ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// 4) If a1 <= 0 and a2 <= 0, then
1913ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
1914ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//        a1*N1         <= c2 - c1 <=       -a2*N2
1915ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
1916ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// return true if dependence disproved
1917ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::symbolicRDIVtest(const SCEV *A1,
1918ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                          const SCEV *A2,
1919ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                          const SCEV *C1,
1920ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                          const SCEV *C2,
1921ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                          const Loop *Loop1,
1922ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                          const Loop *Loop2) const {
1923ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  ++SymbolicRDIVapplications;
1924ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
1925ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    A1 = " << *A1);
1926ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
1927ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
1928ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
1929ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
1930ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
1931ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
1932ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
1933ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
1934ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
1935ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
1936ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
1937ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
1938ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (SE->isKnownNonNegative(A1)) {
1939ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (SE->isKnownNonNegative(A2)) {
1940ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // A1 >= 0 && A2 >= 0
1941ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (N1) {
1942ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        // make sure that c2 - c1 <= a1*N1
1943ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1944ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
1945ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
1946ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          ++SymbolicRDIVindependence;
1947ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          return true;
1948ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
1949ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
1950ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (N2) {
1951ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
1952ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1953ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
1954ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
1955ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          ++SymbolicRDIVindependence;
1956ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          return true;
1957ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
1958ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
1959ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1960ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else if (SE->isKnownNonPositive(A2)) {
1961ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // a1 >= 0 && a2 <= 0
1962ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (N1 && N2) {
1963ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        // make sure that c2 - c1 <= a1*N1 - a2*N2
1964ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1965ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1966ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
1967ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
1968ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
1969ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          ++SymbolicRDIVindependence;
1970ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          return true;
1971ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
1972ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
1973ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // make sure that 0 <= c2 - c1
1974ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (SE->isKnownNegative(C2_C1)) {
1975ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        ++SymbolicRDIVindependence;
1976ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        return true;
1977ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
1978ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
1979ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
1980ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else if (SE->isKnownNonPositive(A1)) {
1981ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (SE->isKnownNonNegative(A2)) {
1982ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // a1 <= 0 && a2 >= 0
1983ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (N1 && N2) {
1984ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        // make sure that a1*N1 - a2*N2 <= c2 - c1
1985ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1986ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1987ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
1988ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
1989ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
1990ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          ++SymbolicRDIVindependence;
1991ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          return true;
1992ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
1993ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
1994ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // make sure that c2 - c1 <= 0
1995ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (SE->isKnownPositive(C2_C1)) {
1996ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        ++SymbolicRDIVindependence;
1997ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        return true;
1998ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
1999ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
2000ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else if (SE->isKnownNonPositive(A2)) {
2001ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // a1 <= 0 && a2 <= 0
2002ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (N1) {
2003ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        // make sure that a1*N1 <= c2 - c1
2004ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2005ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
2006ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2007ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          ++SymbolicRDIVindependence;
2008ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          return true;
2009ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
2010ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
2011ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (N2) {
2012ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2013ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2014ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2015ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2016ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          ++SymbolicRDIVindependence;
2017ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          return true;
2018ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
2019ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
2020ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
2021ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2022ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return false;
2023ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2024ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2025ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2026ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// testSIV -
2027ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2028ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2029ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// a2 are constant, we attack it with an SIV test. While they can all be
2030ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// solved with the Exact SIV test, it's worthwhile to use simpler tests when
2031ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// they apply; they're cheaper and sometimes more precise.
2032ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2033ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Return true if dependence disproved.
2034ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::testSIV(const SCEV *Src,
2035ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                 const SCEV *Dst,
2036ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                 unsigned &Level,
2037ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                 FullDependence &Result,
2038ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                 Constraint &NewConstraint,
2039ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                 const SCEV *&SplitIter) const {
2040ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    src = " << *Src << "\n");
2041ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2042ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2043ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2044ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (SrcAddRec && DstAddRec) {
2045ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *SrcConst = SrcAddRec->getStart();
2046ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *DstConst = DstAddRec->getStart();
2047ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2048ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2049ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const Loop *CurLoop = SrcAddRec->getLoop();
2050ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    assert(CurLoop == DstAddRec->getLoop() &&
2051ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop           "both loops in SIV should be same");
2052ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Level = mapSrcLoop(CurLoop);
2053ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    bool disproven;
2054ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (SrcCoeff == DstCoeff)
2055ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2056ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                Level, Result, NewConstraint);
2057ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2058ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2059ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                      Level, Result, NewConstraint, SplitIter);
2060ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else
2061ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2062ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                               Level, Result, NewConstraint);
2063ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return disproven ||
2064ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      gcdMIVtest(Src, Dst, Result) ||
2065ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2066ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2067ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (SrcAddRec) {
2068ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *SrcConst = SrcAddRec->getStart();
2069ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2070ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *DstConst = Dst;
2071ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const Loop *CurLoop = SrcAddRec->getLoop();
2072ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Level = mapSrcLoop(CurLoop);
2073ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2074ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                              Level, Result, NewConstraint) ||
2075ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      gcdMIVtest(Src, Dst, Result);
2076ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2077ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (DstAddRec) {
2078ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *DstConst = DstAddRec->getStart();
2079ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2080ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *SrcConst = Src;
2081ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const Loop *CurLoop = DstAddRec->getLoop();
2082ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Level = mapDstLoop(CurLoop);
2083ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2084ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                              CurLoop, Level, Result, NewConstraint) ||
2085ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      gcdMIVtest(Src, Dst, Result);
2086ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2087ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  llvm_unreachable("SIV test expected at least one AddRec");
2088ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return false;
2089ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2090ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2091ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2092ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// testRDIV -
2093ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2094ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// where i and j are induction variables, c1 and c2 are loop invariant,
2095ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2096ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2097ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// It doesn't make sense to talk about distance or direction in this case,
2098ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// so there's no point in making special versions of the Strong SIV test or
2099ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// the Weak-crossing SIV test.
2100ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2101ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// With minor algebra, this test can also be used for things like
2102ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// [c1 + a1*i + a2*j][c2].
2103ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2104ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Return true if dependence disproved.
2105ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::testRDIV(const SCEV *Src,
2106ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                  const SCEV *Dst,
2107ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                  FullDependence &Result) const {
2108ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // we have 3 possible situations here:
2109ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //   1) [a*i + b] and [c*j + d]
2110ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //   2) [a*i + c*j + b] and [d]
2111ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //   3) [b] and [a*i + c*j + d]
2112ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // We need to find what we've got and get organized
2113ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2114ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *SrcConst, *DstConst;
2115ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *SrcCoeff, *DstCoeff;
2116ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const Loop *SrcLoop, *DstLoop;
2117ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2118ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    src = " << *Src << "\n");
2119ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2120ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2121ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2122ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (SrcAddRec && DstAddRec) {
2123ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    SrcConst = SrcAddRec->getStart();
2124ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2125ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    SrcLoop = SrcAddRec->getLoop();
2126ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DstConst = DstAddRec->getStart();
2127ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DstCoeff = DstAddRec->getStepRecurrence(*SE);
2128ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DstLoop = DstAddRec->getLoop();
2129ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2130ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else if (SrcAddRec) {
2131ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (const SCEVAddRecExpr *tmpAddRec =
2132ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2133ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SrcConst = tmpAddRec->getStart();
2134ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2135ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SrcLoop = tmpAddRec->getLoop();
2136ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DstConst = Dst;
2137ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2138ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DstLoop = SrcAddRec->getLoop();
2139ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
2140ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else
2141ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      llvm_unreachable("RDIV reached by surprising SCEVs");
2142ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2143ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else if (DstAddRec) {
2144ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (const SCEVAddRecExpr *tmpAddRec =
2145ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2146ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DstConst = tmpAddRec->getStart();
2147ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2148ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DstLoop = tmpAddRec->getLoop();
2149ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SrcConst = Src;
2150ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2151ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SrcLoop = DstAddRec->getLoop();
2152ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
2153ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else
2154ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      llvm_unreachable("RDIV reached by surprising SCEVs");
2155ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2156ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else
2157ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    llvm_unreachable("RDIV expected at least one AddRec");
2158ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return exactRDIVtest(SrcCoeff, DstCoeff,
2159ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                       SrcConst, DstConst,
2160ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                       SrcLoop, DstLoop,
2161ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                       Result) ||
2162ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    gcdMIVtest(Src, Dst, Result) ||
2163ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    symbolicRDIVtest(SrcCoeff, DstCoeff,
2164ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                     SrcConst, DstConst,
2165ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                     SrcLoop, DstLoop);
2166ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2167ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2168ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2169ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Tests the single-subscript MIV pair (Src and Dst) for dependence.
2170ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Return true if dependence disproved.
2171ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Can sometimes refine direction vectors.
2172ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::testMIV(const SCEV *Src,
2173ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                 const SCEV *Dst,
2174ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                 const SmallBitVector &Loops,
2175ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                 FullDependence &Result) const {
2176ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    src = " << *Src << "\n");
2177ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2178ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Result.Consistent = false;
2179ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return gcdMIVtest(Src, Dst, Result) ||
2180ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    banerjeeMIVtest(Src, Dst, Loops, Result);
2181ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2182ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2183ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2184ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Given a product, e.g., 10*X*Y, returns the first constant operand,
2185ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// in this case 10. If there is no constant part, returns NULL.
2186ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popstatic
2187ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst SCEVConstant *getConstantPart(const SCEVMulExpr *Product) {
2188ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  for (unsigned Op = 0, Ops = Product->getNumOperands(); Op < Ops; Op++) {
2189ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Product->getOperand(Op)))
2190ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return Constant;
2191ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2192ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return NULL;
2193ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2194ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2195ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2196ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//===----------------------------------------------------------------------===//
2197ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// gcdMIVtest -
2198ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Tests an MIV subscript pair for dependence.
2199ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Returns true if any possible dependence is disproved.
2200e803d05bd87d1181c971fb719fef5638dd44ce99Benjamin Kramer// Marks the result as inconsistent.
2201ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Can sometimes disprove the equal direction for 1 or more loops,
2202ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// as discussed in Michael Wolfe's book,
2203ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// High Performance Compilers for Parallel Computing, page 235.
2204ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2205ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// We spend some effort (code!) to handle cases like
2206ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2207ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// but M and N are just loop-invariant variables.
2208ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// This should help us handle linearized subscripts;
2209ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// also makes this test a useful backup to the various SIV tests.
2210ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2211ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// It occurs to me that the presence of loop-invariant variables
2212ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// changes the nature of the test from "greatest common divisor"
2213a18d377e73d3dd96233011e9da9789861fb8f315Preston Briggs// to "a common divisor".
2214ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::gcdMIVtest(const SCEV *Src,
2215ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                    const SCEV *Dst,
2216ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                    FullDependence &Result) const {
2217ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "starting gcd\n");
2218ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  ++GCDapplications;
221972a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2220ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt RunningGCD = APInt::getNullValue(BitWidth);
2221ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2222ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Examine Src coefficients.
2223ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Compute running GCD and record source constant.
2224ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Because we're looking for the constant at the end of the chain,
2225ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // we can't quit the loop just because the GCD == 1.
2226ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Coefficients = Src;
2227ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  while (const SCEVAddRecExpr *AddRec =
2228ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop         dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2229ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2230ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
2231ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2232ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // If the coefficient is the product of a constant and other stuff,
2233ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // we can use the constant in the GCD computation.
2234ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Constant = getConstantPart(Product);
2235ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (!Constant)
2236ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return false;
2237ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt ConstCoeff = Constant->getValue()->getValue();
2238ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2239ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Coefficients = AddRec->getStart();
2240ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2241ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *SrcConst = Coefficients;
2242ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2243ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Examine Dst coefficients.
2244ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Compute running GCD and record destination constant.
2245ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Because we're looking for the constant at the end of the chain,
2246ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // we can't quit the loop just because the GCD == 1.
2247ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Coefficients = Dst;
2248ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  while (const SCEVAddRecExpr *AddRec =
2249ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop         dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2250ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2251ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
2252ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2253ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // If the coefficient is the product of a constant and other stuff,
2254ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // we can use the constant in the GCD computation.
2255ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Constant = getConstantPart(Product);
2256ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (!Constant)
2257ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return false;
2258ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt ConstCoeff = Constant->getValue()->getValue();
2259ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2260ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Coefficients = AddRec->getStart();
2261ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2262ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *DstConst = Coefficients;
2263ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2264ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt ExtraGCD = APInt::getNullValue(BitWidth);
2265ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2266ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
2267ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2268ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2269ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // If Delta is a sum of products, we may be able to make further progress.
2270ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2271ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEV *Operand = Sum->getOperand(Op);
2272ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (isa<SCEVConstant>(Operand)) {
2273ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        assert(!Constant && "Surprised to find multiple constants");
2274ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        Constant = cast<SCEVConstant>(Operand);
2275ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
2276061938b90b1addc3c3269bdbfeae1029f0c05a43Benjamin Kramer      else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2277ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        // Search for constant operand to participate in GCD;
2278ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        // If none found; return false.
2279061938b90b1addc3c3269bdbfeae1029f0c05a43Benjamin Kramer        const SCEVConstant *ConstOp = getConstantPart(Product);
2280061938b90b1addc3c3269bdbfeae1029f0c05a43Benjamin Kramer        if (!ConstOp)
2281061938b90b1addc3c3269bdbfeae1029f0c05a43Benjamin Kramer          return false;
2282ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        APInt ConstOpValue = ConstOp->getValue()->getValue();
2283ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2284ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                                   ConstOpValue.abs());
2285ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
2286ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      else
2287ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        return false;
2288ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
2289ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2290ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (!Constant)
2291ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false;
2292ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt ConstDelta = cast<SCEVConstant>(Constant)->getValue()->getValue();
2293ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
2294ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (ConstDelta == 0)
2295ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false;
2296ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2297ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
2298ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  APInt Remainder = ConstDelta.srem(RunningGCD);
2299ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (Remainder != 0) {
2300ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++GCDindependence;
2301ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return true;
2302ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2303ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2304ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Try to disprove equal directions.
2305ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2306ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // the code above can't disprove the dependence because the GCD = 1.
2307ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // So we consider what happen if i = i' and what happens if j = j'.
2308ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2309ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // which is infeasible, so we can disallow the = direction for the i level.
2310ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Setting j = j' doesn't help matters, so we end up with a direction vector
2311ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // of [<>, *]
2312ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //
2313ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2314ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // we need to remember that the constant part is 5 and the RunningGCD should
2315ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // be initialized to ExtraGCD = 30.
2316ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');
2317ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2318ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  bool Improved = false;
2319ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Coefficients = Src;
2320ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  while (const SCEVAddRecExpr *AddRec =
2321ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop         dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2322ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Coefficients = AddRec->getStart();
2323ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const Loop *CurLoop = AddRec->getLoop();
2324ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    RunningGCD = ExtraGCD;
2325ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2326ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2327ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *Inner = Src;
2328ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2329ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      AddRec = cast<SCEVAddRecExpr>(Inner);
2330ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2331ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (CurLoop == AddRec->getLoop())
2332ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        ; // SrcCoeff == Coeff
2333ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      else {
2334ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2335ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          // If the coefficient is the product of a constant and other stuff,
2336ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          // we can use the constant in the GCD computation.
2337ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Constant = getConstantPart(Product);
2338ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        else
2339ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Constant = cast<SCEVConstant>(Coeff);
2340ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        APInt ConstCoeff = Constant->getValue()->getValue();
2341ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2342ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
2343ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Inner = AddRec->getStart();
2344ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
2345ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Inner = Dst;
2346ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2347ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      AddRec = cast<SCEVAddRecExpr>(Inner);
2348ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2349ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (CurLoop == AddRec->getLoop())
2350ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DstCoeff = Coeff;
2351ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      else {
2352ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2353ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          // If the coefficient is the product of a constant and other stuff,
2354ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          // we can use the constant in the GCD computation.
2355ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Constant = getConstantPart(Product);
2356ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        else
2357ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Constant = cast<SCEVConstant>(Coeff);
2358ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        APInt ConstCoeff = Constant->getValue()->getValue();
2359ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2360ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
2361ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Inner = AddRec->getStart();
2362ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
2363ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2364ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Delta))
2365ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // If the coefficient is the product of a constant and other stuff,
2366ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // we can use the constant in the GCD computation.
2367ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Constant = getConstantPart(Product);
2368ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else if (isa<SCEVConstant>(Delta))
2369ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Constant = cast<SCEVConstant>(Delta);
2370ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else {
2371ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // The difference of the two coefficients might not be a product
2372ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // or constant, in which case we give up on this direction.
2373ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      continue;
2374ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
2375ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt ConstCoeff = Constant->getValue()->getValue();
2376ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2377ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2378ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (RunningGCD != 0) {
2379ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Remainder = ConstDelta.srem(RunningGCD);
2380ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2381ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (Remainder != 0) {
2382ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        unsigned Level = mapSrcLoop(CurLoop);
2383b4164284b58842571df1e3ca1467246cde8664ccSebastian Pop        Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
2384ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        Improved = true;
2385ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
2386ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
2387ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2388ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (Improved)
2389ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++GCDsuccesses;
2390ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "all done\n");
2391ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return false;
2392ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2393ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2394ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2395ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//===----------------------------------------------------------------------===//
2396ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// banerjeeMIVtest -
2397ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Use Banerjee's Inequalities to test an MIV subscript pair.
2398ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2399ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Generally follows the discussion in Section 2.5.2 of
2400ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2401ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    Optimizing Supercompilers for Supercomputers
2402ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    Michael Wolfe
2403ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2404ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// The inequalities given on page 25 are simplified in that loops are
2405ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// normalized so that the lower bound is always 0 and the stride is always 1.
2406ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// For example, Wolfe gives
2407ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2408ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2409ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2410ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// where A_k is the coefficient of the kth index in the source subscript,
2411ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// B_k is the coefficient of the kth index in the destination subscript,
2412ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2413ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// index, and N_k is the stride of the kth index. Since all loops are normalized
2414ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2415ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// equation to
2416ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2417ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2418ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//            = (A^-_k - B_k)^- (U_k - 1)  - B_k
2419ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2420ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Similar simplifications are possible for the other equations.
2421ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2422ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// When we can't determine the number of iterations for a loop,
2423ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// we use NULL as an indicator for the worst case, infinity.
2424ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// When computing the upper bound, NULL denotes +inf;
2425ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// for the lower bound, NULL denotes -inf.
2426ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2427ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Return true if dependence disproved.
2428ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::banerjeeMIVtest(const SCEV *Src,
2429ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                         const SCEV *Dst,
2430ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                         const SmallBitVector &Loops,
2431ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                         FullDependence &Result) const {
2432ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "starting Banerjee\n");
2433ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  ++BanerjeeApplications;
2434ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    Src = " << *Src << '\n');
2435ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *A0;
2436ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2437ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
2438ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *B0;
2439ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2440ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2441ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2442ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2443ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2444ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Compute bounds for all the * directions.
2445ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\tBounds[*]\n");
2446ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  for (unsigned K = 1; K <= MaxLevels; ++K) {
2447ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2448ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Bound[K].Direction = Dependence::DVEntry::ALL;
2449ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Bound[K].DirSet = Dependence::DVEntry::NONE;
2450ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    findBoundsALL(A, B, Bound, K);
2451ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop#ifndef NDEBUG
2452ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    " << K << '\t');
2453ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (Bound[K].Lower[Dependence::DVEntry::ALL])
2454ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2455ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else
2456ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "-inf\t");
2457ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (Bound[K].Upper[Dependence::DVEntry::ALL])
2458ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2459ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else
2460ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "+inf\n");
2461ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop#endif
2462ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2463ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2464ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Test the *, *, *, ... case.
2465ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  bool Disproved = false;
2466ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2467ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // Explore the direction vector hierarchy.
2468ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    unsigned DepthExpanded = 0;
2469ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    unsigned NewDeps = exploreDirections(1, A, B, Bound,
2470ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                         Loops, DepthExpanded, Delta);
2471ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (NewDeps > 0) {
2472ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      bool Improved = false;
2473ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      for (unsigned K = 1; K <= CommonLevels; ++K) {
2474ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (Loops[K]) {
2475ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          unsigned Old = Result.DV[K - 1].Direction;
2476ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2477ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Improved |= Old != Result.DV[K - 1].Direction;
2478ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          if (!Result.DV[K - 1].Direction) {
2479ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            Improved = false;
2480ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            Disproved = true;
2481ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            break;
2482ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          }
2483ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
2484ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
2485ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (Improved)
2486ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        ++BanerjeeSuccesses;
2487ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
2488ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else {
2489ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++BanerjeeIndependence;
2490ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Disproved = true;
2491ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
2492ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2493ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else {
2494ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ++BanerjeeIndependence;
2495ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Disproved = true;
2496ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2497ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  delete [] Bound;
2498ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  delete [] A;
2499ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  delete [] B;
2500ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return Disproved;
2501ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2502ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2503ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2504ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Hierarchically expands the direction vector
2505ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// search space, combining the directions of discovered dependences
2506ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// in the DirSet field of Bound. Returns the number of distinct
2507ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// dependences discovered. If the dependence is disproved,
2508ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// it will return 0.
2509ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popunsigned DependenceAnalysis::exploreDirections(unsigned Level,
2510ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                               CoefficientInfo *A,
2511ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                               CoefficientInfo *B,
2512ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                               BoundInfo *Bound,
2513ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                               const SmallBitVector &Loops,
2514ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                               unsigned &DepthExpanded,
2515ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                               const SCEV *Delta) const {
2516ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (Level > CommonLevels) {
2517ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // record result
2518ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t[");
2519ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    for (unsigned K = 1; K <= CommonLevels; ++K) {
2520ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (Loops[K]) {
2521ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        Bound[K].DirSet |= Bound[K].Direction;
2522ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop#ifndef NDEBUG
2523ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        switch (Bound[K].Direction) {
2524ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        case Dependence::DVEntry::LT:
2525ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          DEBUG(dbgs() << " <");
2526ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          break;
2527ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        case Dependence::DVEntry::EQ:
2528ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          DEBUG(dbgs() << " =");
2529ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          break;
2530ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        case Dependence::DVEntry::GT:
2531ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          DEBUG(dbgs() << " >");
2532ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          break;
2533ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        case Dependence::DVEntry::ALL:
2534ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          DEBUG(dbgs() << " *");
2535ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          break;
2536ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        default:
2537ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          llvm_unreachable("unexpected Bound[K].Direction");
2538ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
2539ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop#endif
2540ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
2541ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
2542ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << " ]\n");
2543ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return 1;
2544ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2545ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (Loops[Level]) {
2546ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (Level > DepthExpanded) {
2547ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DepthExpanded = Level;
2548ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // compute bounds for <, =, > at current level
2549ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      findBoundsLT(A, B, Bound, Level);
2550ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      findBoundsGT(A, B, Bound, Level);
2551ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      findBoundsEQ(A, B, Bound, Level);
2552ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop#ifndef NDEBUG
2553ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2554ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t    <\t");
2555ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (Bound[Level].Lower[Dependence::DVEntry::LT])
2556ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] << '\t');
2557ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      else
2558ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << "-inf\t");
2559ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (Bound[Level].Upper[Dependence::DVEntry::LT])
2560ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] << '\n');
2561ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      else
2562ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << "+inf\n");
2563ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t    =\t");
2564ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2565ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] << '\t');
2566ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      else
2567ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << "-inf\t");
2568ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2569ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] << '\n');
2570ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      else
2571ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << "+inf\n");
2572ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "\t    >\t");
2573ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (Bound[Level].Lower[Dependence::DVEntry::GT])
2574ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] << '\t');
2575ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      else
2576ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << "-inf\t");
2577ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (Bound[Level].Upper[Dependence::DVEntry::GT])
2578ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] << '\n');
2579ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      else
2580ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << "+inf\n");
2581ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop#endif
2582ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
2583ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2584ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    unsigned NewDeps = 0;
2585ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2586ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // test bounds for <, *, *, ...
2587ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2588ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      NewDeps += exploreDirections(Level + 1, A, B, Bound,
2589ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                   Loops, DepthExpanded, Delta);
2590ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2591ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // Test bounds for =, *, *, ...
2592ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2593ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      NewDeps += exploreDirections(Level + 1, A, B, Bound,
2594ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                   Loops, DepthExpanded, Delta);
2595ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2596ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // test bounds for >, *, *, ...
2597ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2598ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      NewDeps += exploreDirections(Level + 1, A, B, Bound,
2599ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                   Loops, DepthExpanded, Delta);
2600ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2601ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Bound[Level].Direction = Dependence::DVEntry::ALL;
2602ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return NewDeps;
2603ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2604ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else
2605ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2606ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2607ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2608ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2609ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Returns true iff the current bounds are plausible.
2610ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::testBounds(unsigned char DirKind,
2611ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                    unsigned Level,
2612ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                    BoundInfo *Bound,
2613ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                    const SCEV *Delta) const {
2614ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Bound[Level].Direction = DirKind;
2615ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (const SCEV *LowerBound = getLowerBound(Bound))
2616ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2617ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return false;
2618ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (const SCEV *UpperBound = getUpperBound(Bound))
2619ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2620ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return false;
2621ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return true;
2622ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2623ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2624ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2625ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Computes the upper and lower bounds for level K
2626ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// using the * direction. Records them in Bound.
2627ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Wolfe gives the equations
2628ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2629ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2630ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2631ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2632ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Since we normalize loops, we can simplify these equations to
2633ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2634ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    LB^*_k = (A^-_k - B^+_k)U_k
2635ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    UB^*_k = (A^+_k - B^-_k)U_k
2636ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2637ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// We must be careful to handle the case where the upper bound is unknown.
2638ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Note that the lower bound is always <= 0
2639ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// and the upper bound is always >= 0.
2640ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid DependenceAnalysis::findBoundsALL(CoefficientInfo *A,
2641ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                       CoefficientInfo *B,
2642ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                       BoundInfo *Bound,
2643ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                       unsigned K) const {
2644ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Bound[K].Lower[Dependence::DVEntry::ALL] = NULL; // Default value = -infinity.
2645ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Bound[K].Upper[Dependence::DVEntry::ALL] = NULL; // Default value = +infinity.
2646ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (Bound[K].Iterations) {
2647ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Bound[K].Lower[Dependence::DVEntry::ALL] =
2648ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2649ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                     Bound[K].Iterations);
2650ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Bound[K].Upper[Dependence::DVEntry::ALL] =
2651ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2652ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                     Bound[K].Iterations);
2653ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2654ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else {
2655ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // If the difference is 0, we won't need to know the number of iterations.
2656ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2657ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Bound[K].Lower[Dependence::DVEntry::ALL] =
2658ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        SE->getConstant(A[K].Coeff->getType(), 0);
2659ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2660ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Bound[K].Upper[Dependence::DVEntry::ALL] =
2661ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        SE->getConstant(A[K].Coeff->getType(), 0);
2662ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2663ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2664ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2665ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2666ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Computes the upper and lower bounds for level K
2667ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// using the = direction. Records them in Bound.
2668ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Wolfe gives the equations
2669ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2670ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2671ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2672ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2673ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Since we normalize loops, we can simplify these equations to
2674ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2675ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    LB^=_k = (A_k - B_k)^- U_k
2676ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    UB^=_k = (A_k - B_k)^+ U_k
2677ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2678ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// We must be careful to handle the case where the upper bound is unknown.
2679ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Note that the lower bound is always <= 0
2680ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// and the upper bound is always >= 0.
2681ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid DependenceAnalysis::findBoundsEQ(CoefficientInfo *A,
2682ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                      CoefficientInfo *B,
2683ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                      BoundInfo *Bound,
2684ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                      unsigned K) const {
2685ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Bound[K].Lower[Dependence::DVEntry::EQ] = NULL; // Default value = -infinity.
2686ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Bound[K].Upper[Dependence::DVEntry::EQ] = NULL; // Default value = +infinity.
2687ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (Bound[K].Iterations) {
2688ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2689ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *NegativePart = getNegativePart(Delta);
2690ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Bound[K].Lower[Dependence::DVEntry::EQ] =
2691ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SE->getMulExpr(NegativePart, Bound[K].Iterations);
2692ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *PositivePart = getPositivePart(Delta);
2693ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Bound[K].Upper[Dependence::DVEntry::EQ] =
2694ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SE->getMulExpr(PositivePart, Bound[K].Iterations);
2695ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2696ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else {
2697ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // If the positive/negative part of the difference is 0,
2698ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // we won't need to know the number of iterations.
2699ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2700ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *NegativePart = getNegativePart(Delta);
2701ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (NegativePart->isZero())
2702ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2703ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *PositivePart = getPositivePart(Delta);
2704ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (PositivePart->isZero())
2705ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2706ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2707ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2708ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2709ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2710ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Computes the upper and lower bounds for level K
2711ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// using the < direction. Records them in Bound.
2712ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Wolfe gives the equations
2713ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2714ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2715ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2716ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2717ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Since we normalize loops, we can simplify these equations to
2718ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2719ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2720ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2721ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2722ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// We must be careful to handle the case where the upper bound is unknown.
2723ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid DependenceAnalysis::findBoundsLT(CoefficientInfo *A,
2724ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                      CoefficientInfo *B,
2725ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                      BoundInfo *Bound,
2726ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                      unsigned K) const {
2727ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Bound[K].Lower[Dependence::DVEntry::LT] = NULL; // Default value = -infinity.
2728ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Bound[K].Upper[Dependence::DVEntry::LT] = NULL; // Default value = +infinity.
2729ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (Bound[K].Iterations) {
2730ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *Iter_1 =
2731ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SE->getMinusSCEV(Bound[K].Iterations,
2732ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                       SE->getConstant(Bound[K].Iterations->getType(), 1));
2733ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *NegPart =
2734ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2735ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Bound[K].Lower[Dependence::DVEntry::LT] =
2736ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2737ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *PosPart =
2738ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2739ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Bound[K].Upper[Dependence::DVEntry::LT] =
2740ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2741ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2742ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else {
2743ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // If the positive/negative part of the difference is 0,
2744ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // we won't need to know the number of iterations.
2745ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *NegPart =
2746ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2747ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (NegPart->isZero())
2748ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2749ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *PosPart =
2750ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2751ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (PosPart->isZero())
2752ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2753ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2754ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2755ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2756ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2757ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Computes the upper and lower bounds for level K
2758ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// using the > direction. Records them in Bound.
2759ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Wolfe gives the equations
2760ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2761ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2762ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2763ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2764ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Since we normalize loops, we can simplify these equations to
2765ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2766ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2767ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2768ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2769ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// We must be careful to handle the case where the upper bound is unknown.
2770ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid DependenceAnalysis::findBoundsGT(CoefficientInfo *A,
2771ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                      CoefficientInfo *B,
2772ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                      BoundInfo *Bound,
2773ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                      unsigned K) const {
2774ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Bound[K].Lower[Dependence::DVEntry::GT] = NULL; // Default value = -infinity.
2775ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Bound[K].Upper[Dependence::DVEntry::GT] = NULL; // Default value = +infinity.
2776ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (Bound[K].Iterations) {
2777ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *Iter_1 =
2778ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SE->getMinusSCEV(Bound[K].Iterations,
2779ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                       SE->getConstant(Bound[K].Iterations->getType(), 1));
2780ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *NegPart =
2781ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2782ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Bound[K].Lower[Dependence::DVEntry::GT] =
2783ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2784ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *PosPart =
2785ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2786ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Bound[K].Upper[Dependence::DVEntry::GT] =
2787ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2788ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2789ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else {
2790ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // If the positive/negative part of the difference is 0,
2791ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // we won't need to know the number of iterations.
2792ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2793ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (NegPart->isZero())
2794ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2795ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2796ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (PosPart->isZero())
2797ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2798ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2799ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2800ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2801ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2802ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// X^+ = max(X, 0)
2803ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst SCEV *DependenceAnalysis::getPositivePart(const SCEV *X) const {
2804ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return SE->getSMaxExpr(X, SE->getConstant(X->getType(), 0));
2805ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2806ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2807ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2808ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// X^- = min(X, 0)
2809ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst SCEV *DependenceAnalysis::getNegativePart(const SCEV *X) const {
2810ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return SE->getSMinExpr(X, SE->getConstant(X->getType(), 0));
2811ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2812ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2813ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2814ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Walks through the subscript,
2815ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// collecting each coefficient, the associated loop bounds,
2816ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// and recording its positive and negative parts for later use.
2817ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopDependenceAnalysis::CoefficientInfo *
2818ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian PopDependenceAnalysis::collectCoeffInfo(const SCEV *Subscript,
2819ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                     bool SrcFlag,
2820ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                     const SCEV *&Constant) const {
2821ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Zero = SE->getConstant(Subscript->getType(), 0);
2822ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2823ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  for (unsigned K = 1; K <= MaxLevels; ++K) {
2824ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    CI[K].Coeff = Zero;
2825ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    CI[K].PosPart = Zero;
2826ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    CI[K].NegPart = Zero;
2827ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    CI[K].Iterations = NULL;
2828ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2829ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2830ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const Loop *L = AddRec->getLoop();
2831ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2832ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2833ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    CI[K].PosPart = getPositivePart(CI[K].Coeff);
2834ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    CI[K].NegPart = getNegativePart(CI[K].Coeff);
2835ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2836ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Subscript = AddRec->getStart();
2837ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2838ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Constant = Subscript;
2839ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop#ifndef NDEBUG
2840ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\tCoefficient Info\n");
2841ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  for (unsigned K = 1; K <= MaxLevels; ++K) {
2842ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
2843ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\tPos Part = ");
2844ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << *CI[K].PosPart);
2845ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\tNeg Part = ");
2846ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << *CI[K].NegPart);
2847ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\tUpper Bound = ");
2848ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (CI[K].Iterations)
2849ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << *CI[K].Iterations);
2850ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else
2851ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "+inf");
2852ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << '\n');
2853ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2854ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
2855ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop#endif
2856ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return CI;
2857ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2858ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2859ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2860ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Looks through all the bounds info and
2861ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// computes the lower bound given the current direction settings
2862ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// at each level. If the lower bound for any level is -inf,
2863ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// the result is -inf.
2864ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst SCEV *DependenceAnalysis::getLowerBound(BoundInfo *Bound) const {
2865ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2866ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2867ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (Bound[K].Lower[Bound[K].Direction])
2868ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2869ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else
2870ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Sum = NULL;
2871ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2872ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return Sum;
2873ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2874ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2875ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2876ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Looks through all the bounds info and
2877ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// computes the upper bound given the current direction settings
2878ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// at each level. If the upper bound at any level is +inf,
2879ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// the result is +inf.
2880ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst SCEV *DependenceAnalysis::getUpperBound(BoundInfo *Bound) const {
2881ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2882ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2883ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (Bound[K].Upper[Bound[K].Direction])
2884ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2885ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else
2886ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Sum = NULL;
2887ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2888ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return Sum;
2889ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2890ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2891ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2892ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//===----------------------------------------------------------------------===//
2893ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Constraint manipulation for Delta test.
2894ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2895ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Given a linear SCEV,
2896ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// return the coefficient (the step)
2897ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// corresponding to the specified loop.
2898ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If there isn't one, return 0.
2899ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// For example, given a*i + b*j + c*k, zeroing the coefficient
2900ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// corresponding to the j loop would yield b.
2901ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst SCEV *DependenceAnalysis::findCoefficient(const SCEV *Expr,
2902ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                                const Loop *TargetLoop)  const {
2903ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2904ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (!AddRec)
2905ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return SE->getConstant(Expr->getType(), 0);
2906ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (AddRec->getLoop() == TargetLoop)
2907ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return AddRec->getStepRecurrence(*SE);
2908ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return findCoefficient(AddRec->getStart(), TargetLoop);
2909ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2910ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2911ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2912ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Given a linear SCEV,
2913ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// return the SCEV given by zeroing out the coefficient
2914ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// corresponding to the specified loop.
2915ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// For example, given a*i + b*j + c*k, zeroing the coefficient
2916ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// corresponding to the j loop would yield a*i + c*k.
2917ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst SCEV *DependenceAnalysis::zeroCoefficient(const SCEV *Expr,
2918ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                                const Loop *TargetLoop)  const {
2919ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2920ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (!AddRec)
2921ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return Expr; // ignore
2922ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (AddRec->getLoop() == TargetLoop)
2923ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return AddRec->getStart();
2924ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
2925ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                           AddRec->getStepRecurrence(*SE),
2926ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                           AddRec->getLoop(),
2927ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                           AddRec->getNoWrapFlags());
2928ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2929ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2930ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2931ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Given a linear SCEV Expr,
2932ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// return the SCEV given by adding some Value to the
2933ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// coefficient corresponding to the specified TargetLoop.
2934ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// For example, given a*i + b*j + c*k, adding 1 to the coefficient
2935ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
2936ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst SCEV *DependenceAnalysis::addToCoefficient(const SCEV *Expr,
2937ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                                 const Loop *TargetLoop,
2938ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                                 const SCEV *Value)  const {
2939ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2940ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (!AddRec) // create a new addRec
2941ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return SE->getAddRecExpr(Expr,
2942ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                             Value,
2943ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                             TargetLoop,
2944ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                             SCEV::FlagAnyWrap); // Worst case, with no info.
2945ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (AddRec->getLoop() == TargetLoop) {
2946ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
2947ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (Sum->isZero())
2948ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      return AddRec->getStart();
2949ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return SE->getAddRecExpr(AddRec->getStart(),
2950ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                             Sum,
2951ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                             AddRec->getLoop(),
2952ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                             AddRec->getNoWrapFlags());
2953ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
295426ba4953091491989eb21feb68fef27ca3f280afPreston Briggs  if (SE->isLoopInvariant(AddRec, TargetLoop))
295526ba4953091491989eb21feb68fef27ca3f280afPreston Briggs    return SE->getAddRecExpr(AddRec,
295626ba4953091491989eb21feb68fef27ca3f280afPreston Briggs			     Value,
295726ba4953091491989eb21feb68fef27ca3f280afPreston Briggs			     TargetLoop,
295826ba4953091491989eb21feb68fef27ca3f280afPreston Briggs			     SCEV::FlagAnyWrap);
2959ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return SE->getAddRecExpr(addToCoefficient(AddRec->getStart(),
2960ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                            TargetLoop, Value),
2961ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                           AddRec->getStepRecurrence(*SE),
2962ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                           AddRec->getLoop(),
2963ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                           AddRec->getNoWrapFlags());
2964ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2965ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2966ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2967ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Review the constraints, looking for opportunities
2968ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// to simplify a subscript pair (Src and Dst).
2969ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Return true if some simplification occurs.
2970ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If the simplification isn't exact (that is, if it is conservative
2971ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// in terms of dependence), set consistent to false.
2972ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Corresponds to Figure 5 from the paper
2973ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
2974ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//            Practical Dependence Testing
2975ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//            Goff, Kennedy, Tseng
2976ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//            PLDI 1991
2977ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::propagate(const SCEV *&Src,
2978ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                   const SCEV *&Dst,
2979ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                   SmallBitVector &Loops,
2980a0ec3f9b7b826b9b40b80199923b664bad808cceCraig Topper                                   SmallVectorImpl<Constraint> &Constraints,
2981ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                   bool &Consistent) {
2982ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  bool Result = false;
2983ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  for (int LI = Loops.find_first(); LI >= 0; LI = Loops.find_next(LI)) {
2984ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
2985ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(Constraints[LI].dump(dbgs()));
2986ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (Constraints[LI].isDistance())
2987ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
2988ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else if (Constraints[LI].isLine())
2989ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
2990ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else if (Constraints[LI].isPoint())
2991ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Result |= propagatePoint(Src, Dst, Constraints[LI]);
2992ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
2993ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return Result;
2994ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
2995ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2996ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
2997ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Attempt to propagate a distance
2998ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// constraint into a subscript pair (Src and Dst).
2999ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Return true if some simplification occurs.
3000ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If the simplification isn't exact (that is, if it is conservative
3001ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// in terms of dependence), set consistent to false.
3002ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::propagateDistance(const SCEV *&Src,
3003ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                           const SCEV *&Dst,
3004ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                           Constraint &CurConstraint,
3005ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                           bool &Consistent) {
3006ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3007ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3008ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *A_K = findCoefficient(Src, CurLoop);
3009ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (A_K->isZero())
3010ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return false;
3011ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3012ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Src = SE->getMinusSCEV(Src, DA_K);
3013ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Src = zeroCoefficient(Src, CurLoop);
3014ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3015ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3016ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3017ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3018ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (!findCoefficient(Dst, CurLoop)->isZero())
3019ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Consistent = false;
3020ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return true;
3021ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
3022ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3023ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3024ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Attempt to propagate a line
3025ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// constraint into a subscript pair (Src and Dst).
3026ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Return true if some simplification occurs.
3027ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// If the simplification isn't exact (that is, if it is conservative
3028ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// in terms of dependence), set consistent to false.
3029ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::propagateLine(const SCEV *&Src,
3030ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                       const SCEV *&Dst,
3031ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                       Constraint &CurConstraint,
3032ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                       bool &Consistent) {
3033ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3034ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *A = CurConstraint.getA();
3035ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *B = CurConstraint.getB();
3036ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *C = CurConstraint.getC();
3037ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C << "\n");
3038ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3039ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3040ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (A->isZero()) {
3041ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3042ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3043ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (!Bconst || !Cconst) return false;
3044ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt Beta = Bconst->getValue()->getValue();
3045ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt Charlie = Cconst->getValue()->getValue();
3046ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt CdivB = Charlie.sdiv(Beta);
3047ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3048ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3049ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3050ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3051ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Dst = zeroCoefficient(Dst, CurLoop);
3052ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (!findCoefficient(Src, CurLoop)->isZero())
3053ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Consistent = false;
3054ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
3055ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else if (B->isZero()) {
3056ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3057ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3058ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (!Aconst || !Cconst) return false;
3059ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt Alpha = Aconst->getValue()->getValue();
3060ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt Charlie = Cconst->getValue()->getValue();
3061ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt CdivA = Charlie.sdiv(Alpha);
3062ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3063ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *A_K = findCoefficient(Src, CurLoop);
3064ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3065ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Src = zeroCoefficient(Src, CurLoop);
3066ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (!findCoefficient(Dst, CurLoop)->isZero())
3067ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Consistent = false;
3068ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
3069ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3070ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3071ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3072ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (!Aconst || !Cconst) return false;
3073ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt Alpha = Aconst->getValue()->getValue();
3074ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt Charlie = Cconst->getValue()->getValue();
3075ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    APInt CdivA = Charlie.sdiv(Alpha);
3076ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3077ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *A_K = findCoefficient(Src, CurLoop);
3078ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3079ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Src = zeroCoefficient(Src, CurLoop);
3080ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Dst = addToCoefficient(Dst, CurLoop, A_K);
3081ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (!findCoefficient(Dst, CurLoop)->isZero())
3082ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Consistent = false;
3083ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
3084ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else {
3085ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // paper is incorrect here, or perhaps just misleading
3086ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    const SCEV *A_K = findCoefficient(Src, CurLoop);
3087ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Src = SE->getMulExpr(Src, A);
3088ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Dst = SE->getMulExpr(Dst, A);
3089ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3090ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Src = zeroCoefficient(Src, CurLoop);
3091ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3092ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (!findCoefficient(Dst, CurLoop)->isZero())
3093ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Consistent = false;
3094ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
3095ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3096ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3097ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return true;
3098ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
3099ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3100ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3101ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Attempt to propagate a point
3102ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// constraint into a subscript pair (Src and Dst).
3103ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Return true if some simplification occurs.
3104ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popbool DependenceAnalysis::propagatePoint(const SCEV *&Src,
3105ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                        const SCEV *&Dst,
3106ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                        Constraint &CurConstraint) {
3107ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3108ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *A_K = findCoefficient(Src, CurLoop);
3109ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3110ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3111ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3112ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3113ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3114ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Src = zeroCoefficient(Src, CurLoop);
3115ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3116ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3117ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Dst = zeroCoefficient(Dst, CurLoop);
3118ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3119ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return true;
3120ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
3121ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3122ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3123ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Update direction vector entry based on the current constraint.
3124ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popvoid DependenceAnalysis::updateDirection(Dependence::DVEntry &Level,
3125ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                         const Constraint &CurConstraint
3126ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                         ) const {
3127ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "\tUpdate direction, constraint =");
3128ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(CurConstraint.dump(dbgs()));
3129ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (CurConstraint.isAny())
3130ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    ; // use defaults
3131ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else if (CurConstraint.isDistance()) {
3132ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // this one is consistent, the others aren't
3133ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Level.Scalar = false;
3134ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Level.Distance = CurConstraint.getD();
3135ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    unsigned NewDirection = Dependence::DVEntry::NONE;
3136ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3137ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      NewDirection = Dependence::DVEntry::EQ;
3138ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3139ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      NewDirection |= Dependence::DVEntry::LT;
3140ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3141ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      NewDirection |= Dependence::DVEntry::GT;
3142ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Level.Direction &= NewDirection;
3143ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
3144ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else if (CurConstraint.isLine()) {
3145ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Level.Scalar = false;
3146ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Level.Distance = NULL;
3147ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // direction should be accurate
3148ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
3149ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else if (CurConstraint.isPoint()) {
3150ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Level.Scalar = false;
3151ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Level.Distance = NULL;
3152ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    unsigned NewDirection = Dependence::DVEntry::NONE;
3153ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (!isKnownPredicate(CmpInst::ICMP_NE,
3154ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                          CurConstraint.getY(),
3155ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                          CurConstraint.getX()))
3156ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // if X may be = Y
3157ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      NewDirection |= Dependence::DVEntry::EQ;
3158ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (!isKnownPredicate(CmpInst::ICMP_SLE,
3159ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                          CurConstraint.getY(),
3160ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                          CurConstraint.getX()))
3161ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // if Y may be > X
3162ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      NewDirection |= Dependence::DVEntry::LT;
3163ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (!isKnownPredicate(CmpInst::ICMP_SGE,
3164ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                          CurConstraint.getY(),
3165ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                          CurConstraint.getX()))
3166ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // if Y may be < X
3167ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      NewDirection |= Dependence::DVEntry::GT;
3168ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    Level.Direction &= NewDirection;
3169ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
3170ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  else
3171ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    llvm_unreachable("constraint has unexpected kind");
3172ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
3173ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3174ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3175ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//===----------------------------------------------------------------------===//
3176ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3177ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop#ifndef NDEBUG
3178ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// For debugging purposes, dump a small bit vector to dbgs().
3179ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popstatic void dumpSmallBitVector(SmallBitVector &BV) {
3180ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  dbgs() << "{";
3181ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  for (int VI = BV.find_first(); VI >= 0; VI = BV.find_next(VI)) {
3182ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    dbgs() << VI;
3183ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (BV.find_next(VI) >= 0)
3184ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      dbgs() << ' ';
3185ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
3186ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  dbgs() << "}\n";
3187ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
3188ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop#endif
3189ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3190ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3191ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// depends -
3192ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Returns NULL if there is no dependence.
3193ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Otherwise, return a Dependence with as many details as possible.
3194ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Corresponds to Section 3.1 in the paper
3195ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
3196ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//            Practical Dependence Testing
3197ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//            Goff, Kennedy, Tseng
3198ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//            PLDI 1991
3199ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
320072a2c0622ab072030c9108badea50074d96bec6aPreston Briggs// Care is required to keep the routine below, getSplitIteration(),
320172a2c0622ab072030c9108badea50074d96bec6aPreston Briggs// up to date with respect to this routine.
32027372a7d5f87bf1ff65d07f25bae037ddc4df994dSebastian PopDependence *DependenceAnalysis::depends(Instruction *Src,
32037372a7d5f87bf1ff65d07f25bae037ddc4df994dSebastian Pop                                        Instruction *Dst,
3204ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                        bool PossiblyLoopIndependent) {
32056ee74f52e987036ced56293d50580f8208b863f5Preston Briggs  if (Src == Dst)
32066ee74f52e987036ced56293d50580f8208b863f5Preston Briggs    PossiblyLoopIndependent = false;
32076ee74f52e987036ced56293d50580f8208b863f5Preston Briggs
3208ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
3209ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
3210ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // if both instructions don't reference memory, there's no dependence
3211ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return NULL;
3212ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
321372a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3214ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
321572a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    DEBUG(dbgs() << "can only handle simple loads and stores\n");
3216ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return new Dependence(Src, Dst);
321772a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  }
3218ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
32197372a7d5f87bf1ff65d07f25bae037ddc4df994dSebastian Pop  Value *SrcPtr = getPointerOperand(Src);
32207372a7d5f87bf1ff65d07f25bae037ddc4df994dSebastian Pop  Value *DstPtr = getPointerOperand(Dst);
3221ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3222ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  switch (underlyingObjectsAlias(AA, DstPtr, SrcPtr)) {
3223ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  case AliasAnalysis::MayAlias:
3224ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  case AliasAnalysis::PartialAlias:
3225ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // cannot analyse objects if we don't understand their aliasing.
322672a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    DEBUG(dbgs() << "can't analyze may or partial alias\n");
3227ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return new Dependence(Src, Dst);
3228ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  case AliasAnalysis::NoAlias:
3229ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // If the objects noalias, they are distinct, accesses are independent.
323072a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    DEBUG(dbgs() << "no alias\n");
3231ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    return NULL;
3232ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  case AliasAnalysis::MustAlias:
3233ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    break; // The underlying objects alias; test accesses for dependence.
3234ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
3235ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3236ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // establish loop nesting levels
3237ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  establishNestingLevels(Src, Dst);
3238ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
3239ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");
3240ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3241ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3242ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  ++TotalArrayPairs;
3243ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
324472a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  // See if there are GEPs we can use.
324572a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  bool UsefulGEP = false;
324672a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
324772a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
324872a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  if (SrcGEP && DstGEP &&
324972a2c0622ab072030c9108badea50074d96bec6aPreston Briggs      SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
325072a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
325172a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
325272a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    DEBUG(dbgs() << "    SrcPtrSCEV = " << *SrcPtrSCEV << "\n");
325372a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    DEBUG(dbgs() << "    DstPtrSCEV = " << *DstPtrSCEV << "\n");
325472a2c0622ab072030c9108badea50074d96bec6aPreston Briggs
325572a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    UsefulGEP =
325672a2c0622ab072030c9108badea50074d96bec6aPreston Briggs      isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
325772a2c0622ab072030c9108badea50074d96bec6aPreston Briggs      isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent()));
325872a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  }
325972a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3260ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  SmallVector<Subscript, 4> Pair(Pairs);
326172a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  if (UsefulGEP) {
326272a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    DEBUG(dbgs() << "    using GEPs\n");
326372a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    unsigned P = 0;
326472a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
326572a2c0622ab072030c9108badea50074d96bec6aPreston Briggs           SrcEnd = SrcGEP->idx_end(),
326672a2c0622ab072030c9108badea50074d96bec6aPreston Briggs           DstIdx = DstGEP->idx_begin();
326772a2c0622ab072030c9108badea50074d96bec6aPreston Briggs         SrcIdx != SrcEnd;
326872a2c0622ab072030c9108badea50074d96bec6aPreston Briggs         ++SrcIdx, ++DstIdx, ++P) {
326972a2c0622ab072030c9108badea50074d96bec6aPreston Briggs      Pair[P].Src = SE->getSCEV(*SrcIdx);
327072a2c0622ab072030c9108badea50074d96bec6aPreston Briggs      Pair[P].Dst = SE->getSCEV(*DstIdx);
327172a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    }
327272a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  }
327372a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  else {
327472a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    DEBUG(dbgs() << "    ignoring GEPs\n");
327572a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
327672a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    const SCEV *DstSCEV = SE->getSCEV(DstPtr);
327772a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n");
327872a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n");
327972a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    Pair[0].Src = SrcSCEV;
328072a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    Pair[0].Dst = DstSCEV;
328172a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  }
328272a2c0622ab072030c9108badea50074d96bec6aPreston Briggs
328372a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  for (unsigned P = 0; P < Pairs; ++P) {
328472a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    Pair[P].Loops.resize(MaxLevels + 1);
328572a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    Pair[P].GroupLoops.resize(MaxLevels + 1);
328672a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    Pair[P].Group.resize(Pairs);
328772a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    removeMatchingExtensions(&Pair[P]);
328872a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    Pair[P].Classification =
328972a2c0622ab072030c9108badea50074d96bec6aPreston Briggs      classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
329072a2c0622ab072030c9108badea50074d96bec6aPreston Briggs                   Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
329172a2c0622ab072030c9108badea50074d96bec6aPreston Briggs                   Pair[P].Loops);
329272a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    Pair[P].GroupLoops = Pair[P].Loops;
329372a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    Pair[P].Group.set(P);
329472a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    DEBUG(dbgs() << "    subscript " << P << "\n");
329572a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
329672a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
329772a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3298ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "\tloops = ");
329972a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    DEBUG(dumpSmallBitVector(Pair[P].Loops));
3300ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
3301ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3302ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  SmallBitVector Separable(Pairs);
3303ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  SmallBitVector Coupled(Pairs);
3304ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3305ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Partition subscripts into separable and minimally-coupled groups
3306ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Algorithm in paper is algorithmically better;
3307ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // this may be faster in practice. Check someday.
3308ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //
3309ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Here's an example of how it works. Consider this code:
3310ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //
3311ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //   for (i = ...) {
3312ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //     for (j = ...) {
3313ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //       for (k = ...) {
3314ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //         for (l = ...) {
3315ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //           for (m = ...) {
3316ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //             A[i][j][k][m] = ...;
3317ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //             ... = A[0][j][l][i + j];
3318ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //           }
3319ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //         }
3320ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //       }
3321ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //     }
3322ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //   }
3323ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //
3324ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // There are 4 subscripts here:
3325ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //    0 [i] and [0]
3326ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //    1 [j] and [j]
3327ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //    2 [k] and [l]
3328ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //    3 [m] and [i + j]
3329ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //
3330ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // We've already classified each subscript pair as ZIV, SIV, etc.,
3331ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // and collected all the loops mentioned by pair P in Pair[P].Loops.
3332ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3333ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // and set Pair[P].Group = {P}.
3334ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //
3335ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //      Src Dst    Classification Loops  GroupLoops Group
3336ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //    0 [i] [0]         SIV       {1}      {1}        {0}
3337ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //    1 [j] [j]         SIV       {2}      {2}        {1}
3338ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
3339ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
3340ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //
3341ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3342ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3343ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //
3344ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3345ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3346ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3347ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3348ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // to either Separable or Coupled).
3349ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //
3350ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3351ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
3352ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // so Pair[3].Group = {0, 1, 3} and Done = false.
3353ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //
3354ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3355ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Since Done remains true, we add 2 to the set of Separable pairs.
3356ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //
3357ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Finally, we consider 3. There's nothing to compare it with,
3358ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // so Done remains true and we add it to the Coupled set.
3359ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3360ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  //
3361ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // In the end, we've got 1 separable subscript and 1 coupled group.
3362ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  for (unsigned SI = 0; SI < Pairs; ++SI) {
3363ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (Pair[SI].Classification == Subscript::NonLinear) {
3364ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // ignore these, but collect loops for later
3365ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      ++NonlinearSubscriptPairs;
3366ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      collectCommonLoops(Pair[SI].Src,
3367ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                         LI->getLoopFor(Src->getParent()),
3368ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                         Pair[SI].Loops);
3369ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      collectCommonLoops(Pair[SI].Dst,
3370ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                         LI->getLoopFor(Dst->getParent()),
3371ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                         Pair[SI].Loops);
3372ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Result.Consistent = false;
3373ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
3374ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else if (Pair[SI].Classification == Subscript::ZIV) {
3375ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // always separable
3376ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Separable.set(SI);
3377ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
3378ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else {
3379ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // SIV, RDIV, or MIV, so check for coupled group
3380ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      bool Done = true;
3381ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3382ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        SmallBitVector Intersection = Pair[SI].GroupLoops;
3383ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        Intersection &= Pair[SJ].GroupLoops;
3384ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (Intersection.any()) {
3385ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          // accumulate set of all the loops in group
3386ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3387ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          // accumulate set of all subscripts in group
3388ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Pair[SJ].Group |= Pair[SI].Group;
3389ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Done = false;
3390ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
3391ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
3392ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (Done) {
3393ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (Pair[SI].Group.count() == 1) {
3394ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Separable.set(SI);
3395ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          ++SeparableSubscriptPairs;
3396ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
3397ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        else {
3398ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Coupled.set(SI);
3399ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          ++CoupledSubscriptPairs;
3400ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
3401ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
3402ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
3403ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
3404ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3405ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    Separable = ");
3406ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dumpSmallBitVector(Separable));
3407ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dbgs() << "    Coupled = ");
3408ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  DEBUG(dumpSmallBitVector(Coupled));
3409ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3410ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Constraint NewConstraint;
3411ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  NewConstraint.setAny(SE);
3412ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3413ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // test separable subscripts
3414ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3415ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "testing subscript " << SI);
3416ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    switch (Pair[SI].Classification) {
3417ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    case Subscript::ZIV:
3418ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << ", ZIV\n");
3419ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3420ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        return NULL;
3421ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      break;
3422ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    case Subscript::SIV: {
3423ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << ", SIV\n");
3424ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      unsigned Level;
3425ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEV *SplitIter = NULL;
3426ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3427ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                  Result, NewConstraint, SplitIter))
3428ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        return NULL;
3429ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      break;
3430ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
3431ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    case Subscript::RDIV:
3432ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << ", RDIV\n");
3433ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3434ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        return NULL;
3435ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      break;
3436ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    case Subscript::MIV:
3437ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << ", MIV\n");
3438ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3439ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        return NULL;
3440ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      break;
3441ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    default:
3442ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      llvm_unreachable("subscript has unexpected classification");
3443ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
3444ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
3445ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3446ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (Coupled.count()) {
3447ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // test coupled subscript groups
3448ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "starting on coupled subscripts\n");
3449ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3450ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3451ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    for (unsigned II = 0; II <= MaxLevels; ++II)
3452ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Constraints[II].setAny(SE);
3453ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3454ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3455ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SmallBitVector Group(Pair[SI].Group);
3456ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SmallBitVector Sivs(Pairs);
3457ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SmallBitVector Mivs(Pairs);
3458ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SmallBitVector ConstrainedLevels(MaxLevels + 1);
3459ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3460ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        DEBUG(dbgs() << SJ << " ");
3461ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (Pair[SJ].Classification == Subscript::SIV)
3462ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Sivs.set(SJ);
3463ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        else
3464ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Mivs.set(SJ);
3465ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
3466ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "}\n");
3467ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      while (Sivs.any()) {
3468ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        bool Changed = false;
3469ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3470ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3471ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          // SJ is an SIV subscript that's part of the current coupled group
3472ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          unsigned Level;
3473ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          const SCEV *SplitIter = NULL;
3474ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          DEBUG(dbgs() << "SIV\n");
3475ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3476ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                      Result, NewConstraint, SplitIter))
3477ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            return NULL;
3478ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          ConstrainedLevels.set(Level);
3479ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3480ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            if (Constraints[Level].isEmpty()) {
3481ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              ++DeltaIndependence;
3482ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              return NULL;
3483ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            }
3484ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            Changed = true;
3485ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          }
3486ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Sivs.reset(SJ);
3487ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
3488ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (Changed) {
3489ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          // propagate, possibly creating new SIVs and ZIVs
3490ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          DEBUG(dbgs() << "    propagating\n");
3491ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          DEBUG(dbgs() << "\tMivs = ");
3492ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          DEBUG(dumpSmallBitVector(Mivs));
3493ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3494ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            // SJ is an MIV subscript that's part of the current coupled group
3495ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3496ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3497ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                          Constraints, Result.Consistent)) {
3498ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              DEBUG(dbgs() << "\t    Changed\n");
3499ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              ++DeltaPropagations;
3500ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              Pair[SJ].Classification =
3501ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3502ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                             Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3503ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                             Pair[SJ].Loops);
3504ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              switch (Pair[SJ].Classification) {
3505ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              case Subscript::ZIV:
3506ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                DEBUG(dbgs() << "ZIV\n");
3507ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3508ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                  return NULL;
3509ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                Mivs.reset(SJ);
3510ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                break;
3511ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              case Subscript::SIV:
3512ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                Sivs.set(SJ);
3513ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                Mivs.reset(SJ);
3514ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                break;
3515ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              case Subscript::RDIV:
3516ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              case Subscript::MIV:
3517ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                break;
3518ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              default:
3519ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                llvm_unreachable("bad subscript classification");
3520ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              }
3521ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            }
3522ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          }
3523ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
3524ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
3525ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3526ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // test & propagate remaining RDIVs
3527ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3528ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (Pair[SJ].Classification == Subscript::RDIV) {
3529ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          DEBUG(dbgs() << "RDIV test\n");
3530ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3531ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            return NULL;
3532ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          // I don't yet understand how to propagate RDIV results
3533ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Mivs.reset(SJ);
3534ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
3535ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
3536ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3537ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // test remaining MIVs
3538ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // This code is temporary.
3539ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // Better to somehow test all remaining subscripts simultaneously.
3540ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3541ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (Pair[SJ].Classification == Subscript::MIV) {
3542ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          DEBUG(dbgs() << "MIV test\n");
3543ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3544ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            return NULL;
3545ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
3546ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        else
3547ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          llvm_unreachable("expected only MIV subscripts at this point");
3548ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
3549ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3550ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // update Result.DV from constraint vector
3551ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      DEBUG(dbgs() << "    updating\n");
3552ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      for (int SJ = ConstrainedLevels.find_first();
3553ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop           SJ >= 0; SJ = ConstrainedLevels.find_next(SJ)) {
3554ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3555ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3556ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          return NULL;
3557ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
3558ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
3559ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
3560ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3561a18d377e73d3dd96233011e9da9789861fb8f315Preston Briggs  // Make sure the Scalar flags are set correctly.
3562ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  SmallBitVector CompleteLoops(MaxLevels + 1);
3563ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  for (unsigned SI = 0; SI < Pairs; ++SI)
3564ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    CompleteLoops |= Pair[SI].Loops;
3565ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  for (unsigned II = 1; II <= CommonLevels; ++II)
3566ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (CompleteLoops[II])
3567ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Result.DV[II - 1].Scalar = false;
3568ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3569ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (PossiblyLoopIndependent) {
35703c1cc3888bbfbb568dad296f577c63eba8999a72Preston Briggs    // Make sure the LoopIndependent flag is set correctly.
35713c1cc3888bbfbb568dad296f577c63eba8999a72Preston Briggs    // All directions must include equal, otherwise no
35723c1cc3888bbfbb568dad296f577c63eba8999a72Preston Briggs    // loop-independent dependence is possible.
3573ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    for (unsigned II = 1; II <= CommonLevels; ++II) {
3574ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3575ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        Result.LoopIndependent = false;
3576ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        break;
3577ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
3578ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
3579ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
35803c1cc3888bbfbb568dad296f577c63eba8999a72Preston Briggs  else {
35813c1cc3888bbfbb568dad296f577c63eba8999a72Preston Briggs    // On the other hand, if all directions are equal and there's no
35823c1cc3888bbfbb568dad296f577c63eba8999a72Preston Briggs    // loop-independent dependence possible, then no dependence exists.
35833c1cc3888bbfbb568dad296f577c63eba8999a72Preston Briggs    bool AllEqual = true;
35843c1cc3888bbfbb568dad296f577c63eba8999a72Preston Briggs    for (unsigned II = 1; II <= CommonLevels; ++II) {
35853c1cc3888bbfbb568dad296f577c63eba8999a72Preston Briggs      if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3586a18d377e73d3dd96233011e9da9789861fb8f315Preston Briggs        AllEqual = false;
3587a18d377e73d3dd96233011e9da9789861fb8f315Preston Briggs        break;
35883c1cc3888bbfbb568dad296f577c63eba8999a72Preston Briggs      }
35893c1cc3888bbfbb568dad296f577c63eba8999a72Preston Briggs    }
35903c1cc3888bbfbb568dad296f577c63eba8999a72Preston Briggs    if (AllEqual)
35913c1cc3888bbfbb568dad296f577c63eba8999a72Preston Briggs      return NULL;
35923c1cc3888bbfbb568dad296f577c63eba8999a72Preston Briggs  }
3593ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3594ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  FullDependence *Final = new FullDependence(Result);
3595ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Result.DV = NULL;
3596ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return Final;
3597ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
3598ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3599ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3600ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3601ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//===----------------------------------------------------------------------===//
3602ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// getSplitIteration -
3603ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Rather than spend rarely-used space recording the splitting iteration
3604ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// during the Weak-Crossing SIV test, we re-compute it on demand.
3605ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// The re-computation is basically a repeat of the entire dependence test,
3606ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// though simplified since we know that the dependence exists.
3607ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// It's tedious, since we must go through all propagations, etc.
3608ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
360972a2c0622ab072030c9108badea50074d96bec6aPreston Briggs// Care is required to keep this code up to date with respect to the routine
361072a2c0622ab072030c9108badea50074d96bec6aPreston Briggs// above, depends().
3611ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
3612ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Generally, the dependence analyzer will be used to build
3613ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// a dependence graph for a function (basically a map from instructions
3614ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// to dependences). Looking for cycles in the graph shows us loops
3615ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// that cannot be trivially vectorized/parallelized.
3616ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
3617ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// We can try to improve the situation by examining all the dependences
3618ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// that make up the cycle, looking for ones we can break.
3619ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Sometimes, peeling the first or last iteration of a loop will break
3620ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// dependences, and we've got flags for those possibilities.
3621ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Sometimes, splitting a loop at some other iteration will do the trick,
3622ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// and we've got a flag for that case. Rather than waste the space to
3623ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// record the exact iteration (since we rarely know), we provide
3624ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// a method that calculates the iteration. It's a drag that it must work
3625ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// from scratch, but wonderful in that it's possible.
3626ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
3627ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Here's an example:
3628ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
3629ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    for (i = 0; i < 10; i++)
3630ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//        A[i] = ...
3631ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//        ... = A[11 - i]
3632ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
3633ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// There's a loop-carried flow dependence from the store to the load,
3634ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// found by the weak-crossing SIV test. The dependence will have a flag,
3635ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// indicating that the dependence can be broken by splitting the loop.
3636ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Calling getSplitIteration will return 5.
3637ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// Splitting the loop breaks the dependence, like so:
3638ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
3639ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    for (i = 0; i <= 5; i++)
3640ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//        A[i] = ...
3641ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//        ... = A[11 - i]
3642ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//    for (i = 6; i < 10; i++)
3643ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//        A[i] = ...
3644ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//        ... = A[11 - i]
3645ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop//
3646ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// breaks the dependence and allows us to vectorize/parallelize
3647ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop// both loops.
3648ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Popconst  SCEV *DependenceAnalysis::getSplitIteration(const Dependence *Dep,
3649ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                                                   unsigned SplitLevel) {
3650ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(Dep && "expected a pointer to a Dependence");
3651ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(Dep->isSplitable(SplitLevel) &&
3652ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop         "Dep should be splitable at SplitLevel");
36537372a7d5f87bf1ff65d07f25bae037ddc4df994dSebastian Pop  Instruction *Src = Dep->getSrc();
36547372a7d5f87bf1ff65d07f25bae037ddc4df994dSebastian Pop  Instruction *Dst = Dep->getDst();
3655ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3656ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3657ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(isLoadOrStore(Src));
3658ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(isLoadOrStore(Dst));
365972a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  Value *SrcPtr = getPointerOperand(Src);
366072a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  Value *DstPtr = getPointerOperand(Dst);
3661ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  assert(underlyingObjectsAlias(AA, DstPtr, SrcPtr) ==
3662ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop         AliasAnalysis::MustAlias);
3663ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3664ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // establish loop nesting levels
3665ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  establishNestingLevels(Src, Dst);
3666ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3667ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  FullDependence Result(Src, Dst, false, CommonLevels);
3668ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
366972a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  // See if there are GEPs we can use.
367072a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  bool UsefulGEP = false;
367172a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
367272a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
367372a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  if (SrcGEP && DstGEP &&
367472a2c0622ab072030c9108badea50074d96bec6aPreston Briggs      SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
367572a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
367672a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
367772a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    UsefulGEP =
367872a2c0622ab072030c9108badea50074d96bec6aPreston Briggs      isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
367972a2c0622ab072030c9108badea50074d96bec6aPreston Briggs      isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent()));
368072a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  }
368172a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3682ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  SmallVector<Subscript, 4> Pair(Pairs);
368372a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  if (UsefulGEP) {
368472a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    unsigned P = 0;
368572a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
368672a2c0622ab072030c9108badea50074d96bec6aPreston Briggs           SrcEnd = SrcGEP->idx_end(),
368772a2c0622ab072030c9108badea50074d96bec6aPreston Briggs           DstIdx = DstGEP->idx_begin();
368872a2c0622ab072030c9108badea50074d96bec6aPreston Briggs         SrcIdx != SrcEnd;
368972a2c0622ab072030c9108badea50074d96bec6aPreston Briggs         ++SrcIdx, ++DstIdx, ++P) {
369072a2c0622ab072030c9108badea50074d96bec6aPreston Briggs      Pair[P].Src = SE->getSCEV(*SrcIdx);
369172a2c0622ab072030c9108badea50074d96bec6aPreston Briggs      Pair[P].Dst = SE->getSCEV(*DstIdx);
369272a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    }
369372a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  }
369472a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  else {
369572a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
369672a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    const SCEV *DstSCEV = SE->getSCEV(DstPtr);
369772a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    Pair[0].Src = SrcSCEV;
369872a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    Pair[0].Dst = DstSCEV;
369972a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  }
370072a2c0622ab072030c9108badea50074d96bec6aPreston Briggs
370172a2c0622ab072030c9108badea50074d96bec6aPreston Briggs  for (unsigned P = 0; P < Pairs; ++P) {
370272a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    Pair[P].Loops.resize(MaxLevels + 1);
370372a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    Pair[P].GroupLoops.resize(MaxLevels + 1);
370472a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    Pair[P].Group.resize(Pairs);
370572a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    removeMatchingExtensions(&Pair[P]);
370672a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    Pair[P].Classification =
370772a2c0622ab072030c9108badea50074d96bec6aPreston Briggs      classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
370872a2c0622ab072030c9108badea50074d96bec6aPreston Briggs                   Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
370972a2c0622ab072030c9108badea50074d96bec6aPreston Briggs                   Pair[P].Loops);
371072a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    Pair[P].GroupLoops = Pair[P].Loops;
371172a2c0622ab072030c9108badea50074d96bec6aPreston Briggs    Pair[P].Group.set(P);
3712ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
3713ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3714ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  SmallBitVector Separable(Pairs);
3715ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  SmallBitVector Coupled(Pairs);
3716ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3717ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // partition subscripts into separable and minimally-coupled groups
3718ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  for (unsigned SI = 0; SI < Pairs; ++SI) {
3719ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    if (Pair[SI].Classification == Subscript::NonLinear) {
3720ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // ignore these, but collect loops for later
3721ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      collectCommonLoops(Pair[SI].Src,
3722ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                         LI->getLoopFor(Src->getParent()),
3723ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                         Pair[SI].Loops);
3724ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      collectCommonLoops(Pair[SI].Dst,
3725ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                         LI->getLoopFor(Dst->getParent()),
3726ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                         Pair[SI].Loops);
3727ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Result.Consistent = false;
3728ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
3729ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else if (Pair[SI].Classification == Subscript::ZIV)
3730ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Separable.set(SI);
3731ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    else {
3732ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      // SIV, RDIV, or MIV, so check for coupled group
3733ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      bool Done = true;
3734ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3735ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        SmallBitVector Intersection = Pair[SI].GroupLoops;
3736ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        Intersection &= Pair[SJ].GroupLoops;
3737ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (Intersection.any()) {
3738ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          // accumulate set of all the loops in group
3739ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3740ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          // accumulate set of all subscripts in group
3741ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Pair[SJ].Group |= Pair[SI].Group;
3742ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Done = false;
3743ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
3744ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
3745ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (Done) {
3746ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (Pair[SI].Group.count() == 1)
3747ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Separable.set(SI);
3748ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        else
3749ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Coupled.set(SI);
3750ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
3751ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
3752ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
3753ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3754ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  Constraint NewConstraint;
3755ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  NewConstraint.setAny(SE);
3756ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3757ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  // test separable subscripts
3758ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3759ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    switch (Pair[SI].Classification) {
3760ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    case Subscript::SIV: {
3761ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      unsigned Level;
3762ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      const SCEV *SplitIter = NULL;
3763ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3764ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                     Result, NewConstraint, SplitIter);
3765ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      if (Level == SplitLevel) {
3766ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        assert(SplitIter != NULL);
3767ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        return SplitIter;
3768ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
3769ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      break;
3770ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
3771ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    case Subscript::ZIV:
3772ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    case Subscript::RDIV:
3773ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    case Subscript::MIV:
3774ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      break;
3775ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    default:
3776ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      llvm_unreachable("subscript has unexpected classification");
3777ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
3778ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
3779ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop
3780ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  if (Coupled.count()) {
3781ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    // test coupled subscript groups
3782ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3783ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    for (unsigned II = 0; II <= MaxLevels; ++II)
3784ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      Constraints[II].setAny(SE);
3785ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3786ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SmallBitVector Group(Pair[SI].Group);
3787ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SmallBitVector Sivs(Pairs);
3788ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SmallBitVector Mivs(Pairs);
3789ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      SmallBitVector ConstrainedLevels(MaxLevels + 1);
3790ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3791ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (Pair[SJ].Classification == Subscript::SIV)
3792ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Sivs.set(SJ);
3793ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        else
3794ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Mivs.set(SJ);
3795ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
3796ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      while (Sivs.any()) {
3797ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        bool Changed = false;
3798ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3799ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          // SJ is an SIV subscript that's part of the current coupled group
3800ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          unsigned Level;
3801ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          const SCEV *SplitIter = NULL;
3802ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3803ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                         Result, NewConstraint, SplitIter);
3804ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          if (Level == SplitLevel && SplitIter)
3805ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            return SplitIter;
3806ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          ConstrainedLevels.set(Level);
3807ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          if (intersectConstraints(&Constraints[Level], &NewConstraint))
3808ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            Changed = true;
3809ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          Sivs.reset(SJ);
3810ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
3811ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        if (Changed) {
3812ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          // propagate, possibly creating new SIVs and ZIVs
3813ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3814ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            // SJ is an MIV subscript that's part of the current coupled group
3815ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
3816ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                          Pair[SJ].Loops, Constraints, Result.Consistent)) {
3817ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              Pair[SJ].Classification =
3818ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3819ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                             Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3820ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                             Pair[SJ].Loops);
3821ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              switch (Pair[SJ].Classification) {
3822ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              case Subscript::ZIV:
3823ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                Mivs.reset(SJ);
3824ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                break;
3825ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              case Subscript::SIV:
3826ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                Sivs.set(SJ);
3827ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                Mivs.reset(SJ);
3828ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                break;
3829ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              case Subscript::RDIV:
3830ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              case Subscript::MIV:
3831ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                break;
3832ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              default:
3833ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop                llvm_unreachable("bad subscript classification");
3834ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop              }
3835ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop            }
3836ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop          }
3837ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop        }
3838ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop      }
3839ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop    }
3840ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  }
3841ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  llvm_unreachable("somehow reached end of routine");
3842ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop  return NULL;
3843ad43499fc4c2879e25e8c83ddd556a3079e41516Sebastian Pop}
3844